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Abstract—The problem of parametric, autoregressive model
based estimation of a time-varying spectral density function of a
multivariate nonstationary process is considered. It is shown that
estimation results can be considerably improved if identification
of the autoregressive model is carried out using the two-sided
doubly exponentially weighted lattice algorithm which combines
results yielded by two one-sided lattice algorithms running
forward in time and backward in time, respectively. It is also
shown that the model order and the most appropriate estimation
bandwidth can be efficiently selected using the suitably modified
Akaike’s final prediction error criterion.

Index Terms: Identification of nonstationary systems, para-
metric spectrum estimation, lattice algorithms.

I. INTRODUCTION

SPECTRAL analysis is an important tool allowing one to
better “understand” investigated random signals. Analysis

of the resonant structure of such signals – detection of the
presence or absence of their rhythmic (periodic or pseudope-
riodic) components, detection of coherent rhythmic activities
in different signal channels – is performed in many disciplines
of science for both exploratory and diagnostic purposes [1],
[2].

The techniques that can be used to estimate power spectrum
of a wide-sense stationary process are usually divided into
nonparametric, i.e., transform-based methods and parametric,
i.e., model-based ones [1], [2]. In the nonparametric case,
spectrum estimates are obtained by applying Fourier transform
either directly to the analyzed data (periodogram approach)
or to the sequence of estimated signal autocorrelation coeffi-
cients (Blackman-Tukey approach). In the parametric case, the
spectral density function is parametrized in terms of a finite
number of coefficients of an explicit, linear signal description,
such as the autoregressive model. Spectrum estimates can then
be calculated by replacing the true model coefficients in the
derived formulas with their estimates obtained via process
identification. Both nonparametric and parametric techniques
have been extended to selected classes of nonstationary pro-
cesses. The best known examples of the first category are
the Wigner-Ville spectral analysis [3] and the Priestley’s
evolutionary spectra framework [4], [5]. The time-varying
autoregressive spectrum estimation based on the theory of
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icza 11/12, Gdańsk, Poland (maciekn@eti.pg.gda.pl; mmeller@eti.pg.gda.pl;
damian.chojnacki@pg.gda.pl).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org., provided by the authors. The material includes
Matlab codes and input data allowing one to reproduce simulation results
shown in the paper. This material is 1.3 MB in size.

locally stationary processes, developed by Dahlhaus [6]–[9],
belongs to the second category.

Since the pioneering work of Burg [10], who linked au-
toregressive modeling with a more general maximum entropy
principle, autoregressive spectrum estimation became a stan-
dard analytical tool in such research areas as biomedical signal
processing [11]–[14] and exploration of geophysical data [16]–
[18], among many others. It is worth noticing that in the
majority of applications mentioned above, the analyzed signals
are nonstationary and multivariate (multichannel).

In this paper we will focus on the problem of off-line para-
metric estimation of a spectrum of a locally stationary multi-
variate random process. When spectral analysis is performed
off-line, based on the entire signal history, signal identification
can be carried out using reduced-bias two-sided (noncausal)
estimation schemes which offer both qualitative and quantita-
tive improvements over the one-sided (causal) solutions. We
will present a two-sided doubly exponentially weighted lattice
algorithm obtained by combining results yielded by two one-
sided algorithms running forward in time and backward in
time, respectively. Two methods of merging the forward and
backward estimation results will be proposed and evaluated.
Paralleling the results obtained in [19] for the Yule-Walker
estimators, we will show that two decisions that strongly affect
quality of the autoregressive spectral estimates – selection of
the model order and the choice of the appropriate estimation
bandwidth – can be made based on the suitably modified
multivariate version of the Akaike’s final prediction error
criterion. The preliminary results of the current work, obtained
for univariate autoregressive processes, were presented in [20].

The remaining part of the paper is organized as follows.
Section II presents basic facts about stationary multivariate
autoregressive processes, including their time and frequency
representations, as well as different parametrizations. Section
III presents a brief overview of the Dahlhaus concept of locally
stationary processes which, under certain conditions, allows
one to define the instantaneous spectral density function of
a nonstationary autoregressive process. Section IV describes
a new parallel estimation scheme, made up of a number of
simultaneously running doubly exponentially weighted least
squares algorithms, which allows for noncausal estimation
of parameters of a nonstationary autoregressive process and
is capable of adapting both the order of the autoregressive
model and the applied estimation bandwidth to local process
characteristics. It is also shown that minimization of the suit-
ably modified Akaike’s final prediction error statistic, which
constitutes the core of the proposed adaptation mechanism, is
equivalent to minimization of the mean-square log spectral
distortion measure evaluated for gain normalized spectra.
Sections V and IV present the main contribution of the paper
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– the model stability preserving order and bandwidth adaptive
identification algorithm which combines results yielded by
several exponentially weighted normalized lattice algorithms,
and its simplified, computationally less demanding version.
Section VII presents discussion of some implementation issues
and Section VIII shows simulation results. Finally, section IX
concludes.

II. BASIC FACTS ABOUT STATIONARY MULTIVARIATE
AUTOREGRESSIVE PROCESSES

A. Model
Consider a discrete-time stationary m-dimensional random

signal {y(t)}, y(t) = [y1(t), . . . , ym(t)]T, where t ∈ Z =
{. . . ,−1, 0, 1, . . .} denotes the normalized (dimensionless)
time. Suppose that y(t) obeys the following vector autore-
gressive (VAR) equation of order n

y(t) =

n∑
i=1

Ai,ny(t− i) + εn(t), cov[εn(t)] = ρn (1)

where

Ai,n =

 ai,n11 . . . ai,n1m
...

...
ai,nm1 . . . ai,nmm

 , i = 1, . . . , n

are the m × m matrices of autoregressive coefficients and
{εn(t)} denotes m-dimensional white noise sequence with
covariance matrix ρn

Denote by

θn =vec{[A1,n| . . . |An,n]T}
= [a1,n

11 , . . . , a
1,n
1m, . . . , a

n,n
11 , . . . , an,n1m , . . .

a1,n
m1, . . . , a

1,n
mm, . . . , a

n,n
m1 , . . . , a

n,n
mm]T

the m2n × 1 vector of autoregressive coefficients, ob-
tained by means of row-wise vectorization of the matrix
[A1,n| . . . |An,n], and denote by ϕn(t) = [yT(t − 1), . . . ,
yT(t − n)]T the mn × 1 vector of regression variables (the
same for all signal “channels”). Using this notation, one can
rewrite (1) in the form

y(t) = ΨT
n (t)θn + εn(t) (2)

where

Ψn(t) = Im ⊗ϕn(t) = diag{ϕn(t), . . . ,ϕn(t)}

and the symbol ⊗ denotes Kronecker product of the corre-
sponding vectors/matrices.

Remark 1
The forward-time model (1) has its equivalent backward-time
representation [21]

y(t) =

n∑
i=1

Bi,ny(t+ i) + ηn(t), cov[ηn(t)] = σn

where {ηn(t)} denotes another m-dimensional white noise,
different from {εn(t)}, with covariance matrix σn. Unlike the
univariate case (m = 1), the forward and backward model
coefficients differ, i.e., it holds that Ai,n 6= Bi,n, i = 1, . . . , n
and ρn 6= σn (but det ρn = det σn).

B. Spectral density function

Let

AAA(z,θn) = Im −
n∑
i=1

Ai,nz
−i.

The model (1) is stable, i.e., it describes a stationary (asymp-
totically) VAR process, provided that all zeros of the polyno-
mial det[AAA(z,θn)] lie inside the unit circle in the complex
plane. Under this condition {y(t)} has the so-called spectral
representation and the associated spectral density function [5].

The spectral density (matrix) function of a stationary VAR
process can be expressed in the form

Sn(ω) =AAA−1[ejω,θn] ρn AAA−T[e−jω,θn] (3)

where ω ∈ (−π, π] denotes the normalized angular frequency.

C. Equivalent parametrizations

Any stationary VAR process of order n with parameters

Pn = {ρn,A1,n, . . . ,An,n}

or equivalently

P∗n = {σn,B1,n, . . . ,Bn,n}

can be uniquely characterized by specifying the set

Qn = {R0,Q1, . . . ,Qn}

where Qi, i = 1, . . . , n denote the so-called normalized
(matrix) reflection coefficients, or normalized partial auto-
correlation coefficients [22]. In time series analysis, partial
autocorrelation between y(t) and y(t − τ) is defined as the
conditional correlation between y(t) and y(t − τ) given that
the intermediate values y(t− τ + 1), . . . ,y(t− 1) are known
and accounted for. Finally, R0 = E[y(t)yT(t)] denotes the
covariance matrix of y(t). The VAR model is stable if and
only if all normalized reflection coefficients obey the condition

smax[Qi] < 1, i = 1, . . . , n

where smax(X) denotes the maximum singular value of the
matrix X, i.e., the maximum eigenvalue of the matrix XXT.

The last way of characterizing a stationary VAR process of
order n is by means of specifying the set of its autocorrelation
(matrix) coefficients

Rn = {R0,R1, . . . ,Rn}

where Ri = E[y(t)yT(t− i)].
The Pn, P∗n, Qn and Rn parametrizations are equivalent,

which means that given any of them, one can uniquely
determine the remaining three.

III. SPECTRAL ANALYSIS OF NONSTATIONARY
AUTOREGRESSIVE PROCESSES

Consider a nonstationary autoregressive process governed
by a time-varying VAR model

y(t) =

n∑
i=1

Ai,n(t)y(t− i) + εn(t)

cov[εn(t)] = ρn(t).

(4)
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Let

AAA[z,θn(t)] = Im −
n∑
i=1

Ai,n(t)z−i

where
θn(t) = vec{[A1,n(t)| . . . |An,n(t)]T}

and denote by z1(t), . . . , zmn(t) the zeros of the characteristic
polynomial det{AAA[z,θn(t)]}.

Suppose that the discrete time trajectories {θn(t),ρn(t), t ∈
Z} can be regarded as a result of “sampling” the continuous
time trajectories {θc(s),ρc(s), s ∈ R}, namely

θn(t) = θc(s)|s=t∆, ρn(t) = ρc(s)|s=t∆
where ∆ denotes the “sampling interval”. Furthermore, assume
that all zeros of det{AAA[z,θn(t)]} are uniformly bounded away
from the unit circle in the complex plane

(A1) ∃ε > 0 ∀t ∈ Z |zi(t)| ≤ 1− ε, i = 1, . . . ,mn

and

(A2) The function ρc(s) is bounded and θc(s) is
Lipschitzian, i.e.,

sups1 6=s2
‖ θc(s1)− θc(s2) ‖

|s1 − s2|
≤ cθ <∞

A sequence of VAR processes, indexed by ∆, that obey
(A1) and (A2) belongs to the general class of locally sta-
tionary processes introduced by Dahlhaus [6]–[9]. Similar to
stationary processes, locally stationary processes have a well-
defined spectral representation. In particular, under (A1) and
(A2) the instantaneous spectral density function of the process
{y(t)} governed by (4) is given by

Sn(ω, t) =AAA−1[ejω,θn(t)] ρn(t)AAA−T[e−jω,θn(t)], (5)

and is uniquely defined in the rescaled time domain. In the
nonrescaled case, considered e.g. by Priestley in his work on
evolutionary spectra [4], such uniqueness is not guaranteed.
Without getting into details of the theory of locally stationary
processes, we note that in this framework a fixed-length time
interval is sampled over a finer and finer grid of points
(∆ → 0) as the sample size increases, allowing one to
define and use the so-called infill asymptotics. The concept of
infill (or fixed domain) asymptotics was introduced by Cressie
[23] as an alternative to the conventional increasing domain
asymptotics, where the increasing number of observations is
considered while the time or spatial scale of the analyzed
process remains fixed. The instantaneous spectrum Sn(ω, t)
can be interpreted as the spectrum of a stationary process
{y0(τ), τ ∈ Z} “tangent” to {y(τ), τ ∈ Z} at the point t.

With a slight abuse of terminology, the VAR process obey-
ing assumptions (A1) and (A2) will be further referred to
as locally stationary (strictly speaking local stationarity is an
asymptotic property which holds for ∆→ 0, i.e., formally, it
cannot be attributed to any process corresponding to a finite
value of ∆).

Remark 2
Under conditions (A1) and (A2) the stochastic difference equa-
tion (4) is exponentially stable (exponential stability implies

exponential forgetting of the initial condition) – see [24] for
the proof of this result in the univariate case (m = 1).

In [8] Dahlhaus showed that the Lipschitz smoothness
condition (A2) can be substantially weakened by requiring
only that θc(s) be a function of bounded variation (which
admits trajectories with isolated parameter jumps).

Finally, we note that the family of increasingly stationary
autoregressive processes obtained in the way described above
for ∆ → 0 cannot be regarded as a result of sampling,
with a decreasing sampling interval ∆, of some underlying
continuous time process {y(s), s ∈ R}.

IV. SPECTRAL ESTIMATION BASED ON DIRECT SIGNAL
PARAMETRIZATION

In this paper we will consider the problem of off-line
estimation of Sn(ω, t), t ∈ [1, T0] based on the prerecorded
data sequence Y = {y(1), . . . ,y(T0)}. To obtain the local
model of the analyzed nonstationary VAR signal, one can use
the two-sided exponential weighting technique. The doubly
exponentially weighted least squares (E2WLS) estimator has
the form

{Â1,n|π(t), . . . , Ân,n|π(t)} = arg min
{A1,n,...,An,n}

T0∑
τ=1

wt|π(τ) ‖ y(τ)−
n∑
i=1

Ai,ny(τ − i) ‖2
(6)

ρ̂n|π(t) =
1

Lπ(t)

T0∑
τ=1

wt|π(τ)
[
y(τ)−

n∑
i=1

Âi,n|π(t)y(τ − i)
]

×
[
y(τ)−

n∑
i=1

Âi,n|π(t)y(τ − i)
]T

(7)

where

wt|π(τ) =

{
λt−τk− τ ≤ t
λτ−tk+ τ > t

(8)

denotes the two-sided exponential window, π = (λk− , λk+)
denotes the particular choice of forgetting constants λk− , λk+ ,
k−, k+ ∈ K = {1, . . . ,K} from the set {λ1, . . . , λK}, 0 <
λk < 1, k = 1, . . . ,K, and

Lπ(t) =

T0∑
τ=1

wt|π(τ)

denotes the so-called effective window width, often referred to
as effective memory of the estimation algorithm. The adopted
formula (8) admits both symmetric windows (k− = k+) and
asymmetric ones (k− 6= k+). In the latter case the “past”
measurements {y(τ), τ ≤ t} are treated differently than the
“future” measurements {y(τ), τ ≥ t}, which may prove useful
in the presence of abrupt changes of signal characteristics.

In [25] it was shown that when the time-varying param-
eters can be modeled as random processes with orthogonal
increments, such as a random walk, the symmetric two-sided
exponential window yields the best (in the mean square sense)
parameter estimation results among all symmetric windows.
The random walk model is often employed in tracking studies

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


since it allows one to obtain analytical results and, at the
same time, can be regarded a good local description of a slow
drift (e.g. thermal drift) of process parameters [26], [27]. Even
though the result mentioned above was obtained for a different
estimation problem - identification of a finite impulse response
(FIR) system - its qualitative implications seem to be more
general.

The E2WLS estimate of the vector of VAR coefficients

θ̂n|π(t) = vec{[Â1,n|π(t)| . . . |Ân,n|π(t)]T}

can be expressed in an explicit form as

θ̂n|π(t) = Υ−1
n|π(t)χn|π(t) (9)

where

Υn|π(t) =

T0∑
τ=1

wt|π(τ)Ψn(τ)ΨT
n (τ)

χn|π(t) =

T0∑
τ=1

wt|π(τ)Ψn(τ)y(τ)

A. Selection of model order and estimation bandwidth

To obtain good spectral estimation results, two important
decisions must be made: one should choose the best-fitting
order of the autoregressive model and select the appropriate
estimation bandwidth, i.e., the frequency range in which pa-
rameters can be tracked “successfully”, inversely proportional
to the effective memory of the applied estimation algorithm
[27]. Both choices should ensure compliance with the locally
observed spectral richness of the investigated process and
its degree of nonstationarity. When the selected model order
is too small, the estimated spectrum may not reveal some
important signal features, such as the existing pseudoperiodic
components (corresponding to spectral resonances); when it
is too large, some spurious, nonexistent components may
be detected [2]. The choice of the estimation bandwidth is
equally important. To achieve the best estimation results, the
estimation bandwidth should be chosen so as to trade-off the
bias and variance parts of the mean square parameter tracking
error, i.e., it should be large (short estimation memory) under
fast parameter changes and small (long estimation memory)
under slow variations [7].

In practical situations neither the best-local value of the
order of autoregression n, nor the most appropriate bandwidth
parameters π = (k−, k+) are known a priori. To solve this
problem, one can run simultaneously several E2WLS with
different order and bandwidth settings and, at each time instant
t, choose the best fitting model. As shown in [19], joint order
and bandwidth selection can be successfully made using the
suitably modified Akaike’s multivariate final prediction error
(MFPE) criterion [28].

Akaike defined final prediction error as the mean squared
value of the error observed when the model based on the data
set Y is used to predict another, independent realization of Y ,

denoted by Ỹ = {ỹ(1), . . . , ỹ(T0)}

δn|π(t) = E
{[

ỹ(τ)−
n∑
i=1

Âi,n|π(t)ỹ(τ − i)
]

×
[
ỹ(τ)−

n∑
i=1

Âi,n|π(t)ỹ(τ − i)
]T}

where the expectation is carried out over Y and Ỹ .
If the order of the model is not underestimated, i.e., it is

not smaller than the true order n0, and the analyzed signal is
locally stationary, one can show that [19]

δn|π(t) ∼=
[
1 +

mn

Mπ(t)

]
ρn (10)

E[ρ̂n|π(t)] ∼=
[
1− mn

Mπ(t)

]
ρn (11)

where

Mπ(t) =

[∑T0

τ=1 wt|π(τ)
]2

∑T0

τ=1 w
2
t|π(τ)

denotes the so-called equivalent width of the two-sided expo-
nential window [27].

Combining (10) with (11), one arrives at the following
estimate of δn|π(t)

δ̂n|π(t) =

[
1 + mn

Mπ(t)

1− mn
Mπ(t)

]
ρ̂n|π(t) (12)

and the corresponding decision rule

{n̂(t), π̂(t)} = {n̂(t), k̂−(t), k̂+(t)}
= arg min

n∈N
π∈Π

MFPEn|π(t) (13)

where N and Π denote the sets of competing order and
bandwidth settings, respectively, and

MFPEn|π(t) = det δ̂n|π(t). (14)

Based on (13), the parametric estimate of the instantaneous
signal spectrum can be expressed in the form

Ŝn̂(t)|π̂(t)(ω, t) =AAA−1[ejω, θ̂n̂(t)|π̂(t)(t)]

× ρ̂n̂(t)|π̂(t)(t)AAA−T[e−jω, θ̂n̂(t)|π̂(t)(t)]. (15)

B. Relationship between final prediction error and log spectral
distortion measure

Suppose that the analyzed process is locally stationary and
that the order of the VAR model used to obtain the spectral
estimate Ŝn|π(ω, t) is not underestimated. Denote by

S◦n(ω) = Sn(ω)|ρn=Im
=AAA−1[ejω,θn]AAA−T[e−jω,θn]

the gain normalized spectral density function and let

Ŝ◦n|π(ω, t) =AAA−1[ejω, θ̂n|π(t)]AAA−T[e−jω, θ̂n|π(t)].
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Distortion of the shape of the estimated spectral density
function can be quantified using the following gain normalized
mean-squared log (MSL) measure

d◦MSL(t)

=E

{
1

2π

∫ π

−π

[
log det S◦n(ω)− log det Ŝ◦n|π(ω, t)

]2
dω

}
It can be shown that under the assumptions made above it
holds that (see Appendix)

d◦MSL(t) ∼=
2mn

Mπ(t)
. (16)

Since ρn = ρn0 , ∀n ≥ n0, minimization of δn|π(t) is
equivalent to minimization of the gain normalized distortion
measure d◦MSL(t).

Finally, it is worth noticing that in the scalar case (m = 1),
when distortions are small the gain normalized MSL measure
is approximately proportional to the gain normalized Itakura-
Saito measure – see e.g. [29].

For a more general view of the problem of quantification of
spectral distortions in the multivariate case see e.g. [30] and
[31].

V. SOLUTION BASED ON THE LATTICE SIGNAL
PARAMETRIZATION

The E2WLS procedure described in the previous section
does not guarantee that the resulting VAR models will be
at all times stable. This is a serious drawback since model
stability is a prerequisite for well-posed parametric spectrum
estimation. Actually, note that whenever one or more zeros
z1(t), . . . , zmn(t) of the characteristic polynomial fall out of
the unit circle, spectral estimates are evaluated in terms of
parameters of an unstable model, which makes the estimation
procedure conceptually defective. In the univariate case model
stability can be reinstated by projecting unstable zeros into
the stability region [zi(t) → 1/zi(t)], and by modifying the
variance of the driving noise accordingly. However, no such
a simple procedure seems to exist in the multivariate case,
the alternative being application of computationally expensive
covariance/spectrum approximation techniques, such as the
one proposed in [31]. Finally, we note that the model stability
requirement is critical when the time-varying VAR modeling
is performed for simulation purposes, i.e., when the obtained
model is next used to generate artificial data similar to the
analized one.

In this section we will present an estimation approach
which works similarly as E2WLS but is free of the drawback
mentioned above. The proposed scheme combines results
yielded by two lattice algorithms running forward in time (t =
1, 2, . . . , T0) and backward in time (t = T0, T0 − 1, . . . , 1),
respectively. Lattice algorithms estimate reflection coefficients
directly from the data. We will use the exponentially weighted
lattice (ladder) algorithm proposed by Lee, Morf and Fried-
lander (EWLMF) – see [32]. Unlike E2WLS, the EWLMF
algorithm guarantees stability of the VAR model. Additionally,
it is computationally efficient (both time- and order-recursive)
and has very good numerical properties.

The proposed estimation scheme, further referred to as
the E2WLMF algorithm. can be summarized in four steps.
To make the paper self-contained, all component algorithms,
taken from different sources, are listed below using a unified
notation.

Step 1 - evaluation of reflection coefficients

Let N = {1, . . . , N}. For each value of λk, k ∈ K, compute
and memorize two sets of normalized reflection coefficients
obtained by means of forward time (−) and backward time
(+) estimation using the EWLMF algorithm

Q±N |k(t) = {R̂±0|k(t), Q̂±1|k(t), . . . , Q̂±N |k(t)}, t ∈ [1, T0].

Both sets completely characterize models of order n =
1, . . . , N and can be computed using the time- and order-
recursive algorithm derived in [32] (Algorithm 1)

Algorithm 1

Y −→ Q±N|k(t)

for t = 1, . . . , T0 do (−)
for t = T0, . . . , 1 do (+)

P±k (t) = λkP
±
k (t± 1) + y(t)yT(t)

L±k (t) = λkL
±
k (t± 1) + 1

R̂±0|k(t) =
1

L±k (t)
P±k (t)

ε±0|k(t) = η
±
0|k(t) =

[
P±k (t)

]−1/2
y(t)

N− = min{N, t}
N+ = min{N,T0 − t+ 1}

for n = 1, . . . , N± do

Q̂±n|k(t) = F
[
ε±n−1|k(t), Q̂

±
n|k(t± 1),η±n−1|k(t± 1)

]
ε±n|k(t) = g

[
ε±n−1|k(t), Q̂

±
n|k(t),η

±
n−1|k(t± 1)

]
η±n|k(t) = g

[
η±n−1|k(t± 1),

[
Q̂±n|k(t)

]T
, ε±n−1|k(t)

]
end

end

where

F(x,Y, z) = (Im − xxT)1/2Y(Im − zzT)T/2 + xzT

g(x,Y, z) =
(Im −YYT)−1/2(x−Yz)√

1− zTz

are transformations defined for an m×m matrix Y and m×1
vectors x and z. Here and later the square root X1/2 of the
positive definite matrix X is defined as the lower triangular
matrix (obtained by the Cholesky decomposition of X) such
that X1/2[X1/2]T = X. Additionally, the following notation
is used: XT/2 = (X1/2)T, X−1/2 = (X1/2)−1 and X−T/2 =
[XT/2]−1.

The initial conditions should be set to

L−k (0) = L+
k (T0 + 1) = 0
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ε−0|k(0) = ε+
0|k(T0 + 1) = 0m

η−n|k(0) = η+
n|k(T0 + 1) = 0m

Q̂−n|k(0) = Q̂+
n|k(T0 + 1) = Om

n = 1, . . . , N

and

P−k (0) = P+
k (T0 + 1) = εIm

where ε denotes a small positive constant.

The quantities

L−k (t) =
t−1∑
i=0

λik, L+
k (t) =

T0−t∑
i=0

λik

denote effective widths of the corresponding one-sided expo-
nential windows.

The auxiliary variables ε±n|k(t) and η±n|k(t) can be inter-
preted as normalized one-step-ahead forward and backward
prediction errors, respectively. Note that the forgetting constant
λk appears only in the first two recursions of the EWLMF
algorithm.

The important feature of the EWLMF algorithm is that the
obtained reflection coefficients always characterize a stable
VAR model, i.e., the condition

smax[Q̂±n|k(t)] < 1, n ∈ N (17)

holds true for all time instants t ∈ [1, T0].

Step 2 - evaluation of autocorrelation coefficients

Prior to merging the forward time and backward time estima-
tion results, change Q-parametrization to R-parametrization

R±N |k(t) = {R̂±0|k(t), R̂±1|k(t), . . . , R̂±N |k(t)}, t ∈ [1, T0].

This can be achieved using the order-recursive algorithm
presented in [34] ( Algorithm 2)

Algorithm 2

Q±N|k(t) −→ R
±
N|k(t)

for t = 1, . . . , T0 do

for n = 1, . . . , N do

∆±n|k(t) =
[
ρ̂±n−1|k(t)

]1/2
Q̂±n|k(t)

[
σ̂±n−1|k(t)

]−1/2

∇±n|k(t) =
[
σ̂±n−1|k(t)

]1/2[
Q̂±n|k(t)

]T[
ρ̂±n−1|k(t)

]−1/2

Â±n,n|k(t) = ∆±n|k(t)

B̂±n,n|k(t) = ∇±n|k(t)

for i = 1, . . . , n− 1 do

Â±i,n|k(t) = Â±i,n−1|k(t)−∆±n|k(t)B̂
±
n−i,n−1|k(t)

B̂±i,n|k(t) = B̂±i,n−1|k(t)−∇±n|k(t)Â
±
n−i,n−1|k(t)

end

[ρ̂±n|k(t)]
1/2 =

[
ρ̂±n−1|k(t)

]1/2{
Im − Q̂±n|k(t)

[
Q̂±n|k(t)

]T}1/2
[σ̂±n|k(t)]

1/2 =
[
σ̂±n−1|k(t)

]1/2{
Im −

[
Q̂±n|k(t)

]T
Q̂±n|k(t)

}1/2
R̂±n|k(t) =

n∑
i=1

Â±i,n|k(t)R̂
±
n−i|k(t)

end

end

with initial conditions set to [ρ̂±0|k(t)]1/2 = [σ̂±0|k(t)]1/2 =

[R̂±0|k(t)]1/2.
The following matrices, made up of the estimates of auto-

correlation coefficients, will be further used for model fusion
purposes

W±
N |k(t)

=


R̂±0|k(t) R̂±1|k(t) . . . R̂±N |k(t)[
R̂±1|k(t)

]T . . . . . .
...

...
. . . . . . R̂±1|k(t)[

R̂±N |k(t)
]T

. . .
[
R̂±1|k(t)

]T
R̂±0|k(t)


Since Q−N |k(t) and Q+

N |k(t) are parametrizations of sta-
ble VAR models, the block Toeplitz matrices W−

N |k(t) and
W+

N |k(t) are guaranteed to be positive definite.

Step 3 - model fusion

To obtain two-sided parameter estimates, analogous to E2WLS
estimates described in the previous section, combine results
yielded by selected forward-time and backward-time EWLMF
algorithms.

Denote by Π the set of all considered pairs π = (k−, k+)
where k−, k+ ∈ K. For each pair π ∈ Π the covariance
matrices W−

N |k−(t) and W+
N |k+(t) can be merged using the

formula

WN |π(t) = µπ(t)W−
N |k−(t) + [1− µπ(t)]

[
W+

N |k+(t)
]T
(18)
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where

µπ(t) =
L−k−(t)

L−k−(t) + L+
k+(t)

. (19)

Note that the matrix WN |π(t), which is the convex combina-
tion of W−

N |k−(t) and
[
W+

N |k+(t)
]T

, is also block Toeplitz
and positive definite. The corresponding blocks have the form

R̂n|π(t) = µπ(t)R̂−n|k−(t) + [1− µπ(t)]
[
R̂+
n|k+(t)

]T
(20)

n = 0, . . . , N.

Based on Wn|π(t), which is a principal submatrix of
WN |π(t), the estimates of forward-time model parameters
Pn|π(t) = {ρ̂n|π(t), Â1,n|π(t), . . . , Ân,n|π(t)} and backward-
time model parameters P∗n|π(t) = {σ̂n|π(t), B̂1,n|π(t), . . . ,

B̂n,n|π(t)}, can be obtained by solving the corresponding
Yule-Walker equations[

Im −Â1,n|π(t) . . . −Ân,n|π(t)

−B̂n,n|π(t) . . . −B̂1,n|π(t) Im

]

×Wn|π(t) =

[
ρ̂n|π(t) Om . . . Om

Om . . . Om σ̂n|π(t)

]
The order-recursive Whittle-Wiggins-Robinson (WWR) algo-
rithm [35] which provides such a solution is listed below
(Algorithm 3)

Algorithm 3

RN|k(t) −→ Pn|π(t),P∗n|π(t), n = 1, . . . , N

for t = 1, . . . , T0 do

for n = 1, . . . , N do

Vn|π(t) = R̂n|π(t)−
n−1∑
i=1

Âi,n−1|πR̂n−i|π(t)

∆n|π(t) = Vn|π(t)σ̂
−1
n−1|π(t)

∇n|π(t) = VT
n|π(t)ρ̂

−1
n−1|π(t)

Ân,n|π(t) = ∆n|π(t)

B̂n,n|π(t) = ∇n|π(t)

for i = 1, . . . , n− 1 do

Âi,n|π(t) = Âi,n−1|π(t)−∆n|π(t)B̂n−i,n−1|π(t)

B̂i,n|π(t) = B̂i,n−1|π(t)−∇n|π(t)Ân−i,n−1|π(t)

end

ρ̂n|π(t) = ρ̂n−1|π(t)−∆n|π(t)V
T
n|π(t)

σ̂n|π(t) = σ̂n−1|π(t)−∇n|π(t)Vn|π(t)

end

end

with initial conditions ρ̂0|π(t) = σ̂0|π(t) = R̂0|π(t).

Remark 3
The EWLMF algorithm operated in backward time processes
data in reverse order. As a consequence, the matrix R̂+

n|k+(t)

is a local estimate of E[y(t)yT(t + n)] = R−n(t) = RT
n

instead of Rn. This explains why the second components in
(18) and (20) are transposed.

Remark 4
The two-sided estimates of autocorrelation coefficients ob-
tained in the way described above combine causal covariance
estimates R̂n|k−(t), obtained by means of analyzing past sig-
nal samples {y(τ), τ ≤ t}, and anticausal estimates R̂n|k+(t),
obtained by analyzing future samples {y(τ), τ ≥ t}. The
weighting coefficients µπ(t) and [1−µπ(t)] are proportional to
L−k−(t) and L+

k+(t), respectively, i.e., to the effective memory
spans of the corresponding one-sided exponential windows.
Such a scheme can be regarded as a lattice implementation of
the E2WLS approach (except that the “central” measurement
y(t) is incorporated twice).

Step 4 - selection of the best fitting model

Let

C−k (t) =
t−1∑
i=0

λ2i
k = λ2

kC
−
k (t− 1) + 1

C+
k (t) =

T0−t∑
i=0

λ2i
k = λ2

kC
+
k (t+ 1) + 1

where the initial conditions are set to C−k (0) = C+
k (T0 +1) =

0.
Choose the best fitting model according to

{n̂(t), π̂(t)} = {n̂(t), k̂−(t), k̂+(t)}
= arg min

n∈N
π∈Π

MFPEn|π(t). (21)

where

MFPEn|π(t) =

[
1 + mn

Mπ(t)

1− mn
Mπ(t)

]m
det ρ̂n|π(t) (22)

and Mπ(t) denotes the equivalent width of the applied window

Mπ(t) =
[L−k−(t) + L+

k+(t)]2

C−k−(t) + C+
k+(t)

. (23)

VI. SIMPLIFIED LATTICE SOLUTION

The model fusion technique, described in the previous
section, is based on covariance averaging, which guarantees
stability of the resulting VAR models and has a clear statistical
interpretation as explained in Remark 4 above.

As an alternative, one can consider a scheme based on direct
averaging of reflection coefficients evaluated at Step 1 of the
previous approach

Q̂n|π(t) = µπ(t)Q̂−n|k−(t) + [1− µπ(t)]
[
Q̂+
n|k+(t)

]T
(24)

n = 1, . . . , N

R̂0|π(t) = µπ(t)R̂−0|k−(t) + [1− µπ(t)]R̂+
0|k+(t) (25)
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Using the triangle inequality that holds for the spectral norm
smax(·), one arrives at

smax

[
Q̂n|π(t)

]
≤ µπ(t)smax

[
Q̂−n|k−(t)

]
+ [1− µπ(t)]smax

[
Q̂+
n|k+(t)

]
≤ 1

where the last transition follows from (17). This means that
the models

Qn|π(t) = {R̂0|π(t), Q̂1|π(t), . . . , Q̂n|π(t)}

are at all times stable.
Based on QN |π(t), the results of combined forward-

backward estimation can be obtained using the order-recursive
algorithm listed below (Algorithm 4)

Algorithm 4

QN|π(t) −→ Pn|π(t),P∗n|π(t), n = 1, . . . , N

for t = 1, . . . , T0 do

for n = 1, . . . , N do

∆n|π(t) = ρ̂
1/2

n−1|π(t)Q̂n|π(t)σ̂
−1/2

n−1|π(t)

∇n|π(t) = σ̂
1/2

n−1|π(t)Q̂
T
n|π(t)ρ̂

−1/2

n−1|π(t)

Ân,n|π(t) = ∆n|π(t)

B̂n,n|π(t) = ∇n|π(t)

for i = 1, . . . , n− 1 do

Âi,n|π(t) = Âi,n−1|π(t)−∆n|π(t)B̂n−i,n−1|π(t)

B̂i,n|π(t) = B̂i,n−1|π(t)−∇n|π(t)Ân−i,n−1|π(t)

end

ρ̂
1/2

n|π(t) = ρ̂
1/2

n−1|π(t)
[
Im − Q̂n|π(t)Q̂

T
n|π(t)

]1/2
σ̂

1/2

n|π(t) = σ̂
1/2

n−1|π(t)
[
Im − Q̂T

n|π(t)Q̂n|π(t)
]1/2

end

end

with initial conditions [ρ̂0|π(t)]1/2 = [σ̂0|π(t)]1/2 =

[R̂0|π(t)]1/2.
The best fitting model can be determined, as before, by

minimizing the MFPE statistic. Note that the direct averaging
scheme is computationally simpler than the one based on
covariance averaging.

Remark 5
The model averaging technique was originally proposed by
Akaike in his work on the Bayesian reinterpretation of the AIC
criterion, designed for selection of the order of an autoregres-
sive model of a stationary process [36], [37]. It is known that
Bayesian estimators of the quantities that depend on unknown
parameters, such as the model order, often take the form of a
weighted sum of conditional estimates with weights equal to
the appropriately defined posterior probabilities. Based on this
insight, Akaike proposed that instead of selecting one model
of the order indicated by the AIC criterion, one could build an
averaged model using the AIC-based posteriors. Taking into
account uncertainty embedded in the order selection process,

such an averaged model offers performance improvements
over the one selected in the traditional, competitive way. Due
to nonconvexity of the stability subspace of the AR parameter
space, even if all combined models are stable, averaging of
their autoregressive coefficients does not guarantee stability of
the resultant model. For this reason Akaike suggested that one
should average reflection coefficients of the combined models.
The procedure described above is an ad hoc adaptation of this
idea.

VII. IMPLEMENTATION ISSUES

A. Selection of forgetting constants

The problem of selection of effective memory spans of the
competing algorithms was studied in [19]. As shown there, in
order to maximize robustness of the parallel estimation scheme
made up of K EWLMF algorithms, the forgetting constants
λ1, . . . , λK should be chosen so that the corresponding steady-
state memories form a geometric progression

Lk(∞) = αLk−1(∞), i = 2, . . . ,K

where Lk(∞) = 1/(1 − λk). The recommended values of
α range between 1.57 (for smooth parameter trajectories)
and 2.43 (for random walk type trajectories) – see [19] for
optimization details. If nothing is known a priori about the
way signal parameters change, α = 2 is usually a good choice.

B. Curse of dimensionality

The VAR model of order N (maximum order considered)
requires estimation of Nm2 autoregressive/reflection coeffi-
cients. Since, according to the principle of parsimony [27],
estimation memory of the parameter tracking algorithm should
be much larger than the number of estimated parameters, one
arrives at the limitation LK(∞) > . . . > L1(∞) � Nm2

which, even for relatively small values of N and m, sets
an impractically large lower bound on the memory of the
shortest-memory algorithm. For example, taking N = 10,
m = 10 and interpreting the term “much larger” as “at
least five times larger”, one obtains L1(∞) ≥ 5000, which
is inacceptable from the practical viewpoint unless process
parameters vary extremely slowly. One way out of difficulty
is to assign different values of N to different values of λk
so as to fulfill the condition Lk(∞)� Nkm

2, k = 1, . . . ,K.
Another solution is to downscale the model. For example, if
one is interested only in estimation of autospectra of different
signal channels, the m-dimensional VAR model (4) can be
replaced with m one-dimensional ones describing each chan-
nel separately. The loss of interchannel information incurred
in such a case is usually offset by better parameter tracking
due to the fact that adaptation is carried out independently for
each channel. Similarly, if one is interested in estimation of the
cross spectrum Si1i2(ω) between channels i1 and i2, the m-
dimensional model can be downsized to the two-dimensional
one by setting y(t) = [yi1(t), yi2(t)]T. If needed, such a
procedure can be repeated for all pairs (i1, i2) of interest.
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TABLE I: Computational load of the algorithms described
in the text in terms of the maximum model order N , the
number of signal channels m, the number of forward/backward
algorithms K, and the number of forward-backward pairs Kπ .

Algorithm Computational load
(per sample)

1 O(KNm3)
2 O(KN2m3)
3 O(KπN2m3)
4 O(KπN2m3)

C. Computational complexity

Denote by Kπ ≤ K(K + 1)/2 the number of consid-
ered forward-backward pairs π = (k−, k+). The per sample
computational load (the number of multiply-add operations)
of the algorithms presented in Sections V and VI is sum-
marized in Table I. Note that the first stage of processing,
which is the same for the basic approach and its simplified
version, is the computationally cheapest one. Note also, that
the only quantities that have to be memorized during the
forward/backward sweep of the EWLMF algorithms are the
matrices of forward/backward reflection coefficients. For the
reader’s convenience, MATLAB codes of the Algorithms 1–4
are listed in the file linked to this paper.

VIII. SIMULATION RESULTS

Generation of the time-varying VAR processes, used for
testing purposes, was based on three two-dimensional (m = 2)
time-invariant “anchor” models obtained by means of iden-
tification of three fragments of a stereo audio file: the 2nd
order model M1, characterized by 2 matrices of normal-
ized reflection coefficients Q0

1,1, Q0
1,2, the 6th order model

M2, characterized by 6 matrices Q0
2,1, . . . ,Q

0
2,6, and the

10th order model model M3, characterized by 10 matrices
Q0

3,1, . . . ,Q
0
3,10. Identification was carried out using the LMF

algorithm.
The generated signal {y(t), t = 1, . . . , T0} had periods of

stationarity, governed by the models M1, . . . ,M3, interleaved
with periods of nonstationary behavior. Two simulation scenar-
ios were applied, corresponding to smooth transitions between
the models (A) and abrupt transitions (B), respectively. In the
smooth case, symbolically depicted in Fig. 1a, transition from
the model M1, valid at the instant t1, to the model M2, valid
at the instant t2, was realized using the linear morphing tech-
nique. The corresponding time-varying reflection coefficients
were obtained from

Qi(t) = [1− β(t)]Q0
1,i + β(t)Q0

2,i, t ∈ [t1, t2]

i = 1, . . . , 6

where β(t) = (t−t1)/(t2−t1) and Q0
1,i = 0 for i = 3, . . . , 6.

Transition from the model M2, valid at the instant t3, to the
model M3, valid at the instant t4, was realized in an analogous
way, namely

Qi(t) = [1− γ(t)]Q0
2,i + γ(t)Q0

3,i, t ∈ [t3, t4]

i = 1, . . . , 10

where γ(t) = (t−t3)/(t4−t3) and Q0
2,i = 0 for i = 7, . . . , 10.

Evolution of the spectral density function in the smooth
parameter variation case is illustrated in Fig. 2, along with
the typical estimation results.

In the abrupt case, illustrated in Fig 1b, the model was
instantaneously switched from M1 to M2 at the instant t5
and from M2 to M3 at the instant t6, which resulted in jump
changes of both model order and model parameters.

In both cases discussed above a stationary white Gaussian
driving noise was used with covariance matrix set to

ρ0 =

[
1.49 0.99
0.99 0.74

]
× 10−5.

The length of the simulated nonstationary VAR signal was
set to T0 = 4000 and the breakpoints, marked with bullets
in Fig. 1, had the following time coordinates: t1 = 1000,
t2 = 1500, t3 = 2500, t4 = 3000 (for type-A changes), and
t5 = 1250, t6 = 2750, (for type-B changes). Data generation
was started 1000 instants prior to t = 1 and was continued for
1000 instants after T0 = 4000.

The parallel estimation scheme was made up of Kπ = 4
E2WLMF algorithms combining results yielded by K = 3
forward/backward EWLMF trackers equipped with forgetting
constants λ1 = 0.95, λ2 = 0.99 and λ3 = 0.995. The 4
combinations of forward/backward forgetting constants were:
(0.99, 0.99), (0.995, 0.995), (0.995, 0.95) and (0.95, 0.995),
which corresponds to π1 = (2, 2), π2 = (3, 3), π3 = (3, 1)
and π4 = (1, 3), respectively.

Spectral estimation results were evaluated using the relative
entropy rate (RER) [38]

dRER(t) =
1

4π

∫ π

−π

{
tr
[(

S(ω, t)− Ŝ(ω, t)
)

Ŝ−1(ω, t)
]

− log det
[
S(ω, t)Ŝ−1(ω, t)

]}
dω

which is a multivariate extension of the Itakura-Saito spectral
distortion measure.

Table II shows the RER scores, obtained by means of
combined time and ensemble averaging (over t ∈ [1, T0] and
100 independent realizations of {y(t)}). The first three double
columns show results yielded by one-sided (forward) EWLMF
algorithms for different choices of estimation bandwidth (λ)
and model order (n). The next four double columns show
the analogous results obtained for the two-sided E2WLMF
algorithms incorporating covariance averaging. Finally, the last
double column shows results yielded by the parallel estimation
scheme with MFPE-based joint bandwidth and order selection
(for different values of the maximum model order N ).

The results presented in Table II clearly demonstrate advan-
tages of two-sided estimation as well as advantages of adaptive
bandwidth and order scheduling. In particular, note that when
the maximum model order is not underestimated, i.e., when
N ≥ 10, the parallel estimation scheme outperforms all non-
adaptive fixed-bandwidth fixed-order algorithms it combines.
Additionally, it should be stressed that the proposed approach
is pretty insensitive to the choice of N (as long as N is not
smaller than the true signal order) – in both cases considered
the relative performance degradation caused by picking overly
large N remains well below 1%.
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Fig. 1: Simulation scenarios used in the case of smooth pa-
rameter variations (upper figure) and abrupt parameter changes
(lower figure).

Table III shows the analogous results obtained for the
E2WLMF algorithms based on direct averaging of reflection
coefficients. Note that the scores are uniformly worse than
those obtained under covariance averaging, which means that
reduction of computational load can be only achieved at the
cost of some performance degradation. In the univariate case
the difference in the performance of the basic scheme and its
simplified version are even more emphasized – see [20]. Since
direct averaging is an ad hoc procedure, without any statistical
justification (unlike Akaike’s approach, the applied weights are
not data-dependent), such results come as no surprise.

Fig. 3 shows the locally time-averaged (each time bin covers
200 consecutive time instants) histograms of the results of
bandwidth and order selection obtained for smooth parameter
changes using the covariance averaging technique. Note good
bandwidth and order adaptivity of the proposed parallel esti-
mation scheme. In particular, note that, exactly as expected,
the asymmetric estimation variants π4 and π3 prevail at the
very beginning and at the very end of the simulation interval,
respectively. Asymmetric windows prove also very useful in
the presence of parameter jumps (immediately before and
immediately after the jump), which can be easily seen when
examining histograms (not shown here) corresponding to the
second simulation scenario.

IX. CONCLUSION

The problem of spectral density estimation of a nonsta-
tionary autoregressive process, with unknown (and possibly
time-varying) model order and rate of parameter variation,
was considered. The proposed estimation algorithms combine
results yielded by two banks of exponentially weighted least-
squares lattice algorithms, equipped with different bandwidth
and order settings, running forward in time and backward
in time, respectively. It was shown that selection of the lo-
cally most appropriate order of autoregression and estimation
bandwidth can be made using the suitably modified Akaike’s
multivariate final prediction error (MFPE) criterion. It was also
shown that minimization of the MFPE statistic is equivalent
to minimization of the gain normalized mean-square log
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Fig. 3: Locally time-averaged histograms of the results of
bandwidth selection (upper figure) and order selection (lower
figure) obtained, for a nonstationary AR process with smooth
parameter changes, using the covariance averaging technique
(N = 20).

spectral distortion measure. The proposed algorithms are com-
putationally attractive and guarantee stability of the resultant
autoregressive models, which is a prerequisite for well-posed
AR-model based spectral estimation.
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Fig. 2: True time-varying spectrum of the simulated autoregressive process (a), its E2WLMF estimate obtained for a single
process realization (b), and the plot obtained after averaging estimation results over 100 realizations (c). All plots were obtained
for the left signal channel and smooth parameter variations.

TABLE II: Mean spectral distortion scores for a nonstationary autoregressive signal with smooth (A) and abrupt (B) parameter
changes, obtained for 3 one-sided EWLMF estimators (the first 3 double columns), 4 two-sided E2WLMF estimators with
covariance averaging (the next 4 double columns), and the proposed basic parallel estimation scheme (the last double column).

unidirectional (forward-time) bidirectional proposed
n/N 0.95 0.99 0.995 (0.99, 0.99) (0.995, 0.995) (0.995, 0.95) (0.95, 0.995) (basic)

A B A B A B A B A B A B A B A B
1 12.8973 13.3516 5.8007 6.0068 4.1654 4.2705 4.4438 4.6277 3.3231 3.4138 4.0786 4.1854 4.2170 4.3796 4.9254 5.1437
2 5.1666 5.3807 1.3349 1.3914 0.9504 0.9796 1.0929 1.1418 0.8874 0.9156 0.9529 0.9826 1.1774 1.2250 0.8812 0.9189
3 6.2374 6.4309 1.1493 1.2018 0.7322 0.7559 0.8450 0.8834 0.6364 0.6570 0.7281 0.7511 0.9167 0.9548 0.6635 0.6949
4 5.2626 5.4063 0.7835 0.8126 0.5203 0.5373 0.6146 0.6387 0.5009 0.5169 0.5191 0.5351 0.7316 0.7577 0.4311 0.4476
5 4.6610 4.7743 0.5368 0.5535 0.3472 0.3602 0.4176 0.4321 0.3563 0.3694 0.3463 0.3581 0.5507 0.5688 0.2449 0.2484
6 5.0467 5.1342 0.5294 0.5436 0.3371 0.3494 0.3976 0.4107 0.3380 0.3502 0.3339 0.3449 0.5272 0.5436 0.2323 0.2343
7 5.8996 6.0190 0.5469 0.5600 0.3377 0.3495 0.3899 0.4022 0.3271 0.3387 0.3316 0.3419 0.5192 0.5338 0.2277 0.2299
8 5.9564 6.0371 0.4880 0.4976 0.3078 0.3191 0.3587 0.3685 0.3115 0.3223 0.3036 0.3132 0.4992 0.5106 0.1950 0.1963
9 6.3270 6.4345 0.4653 0.4730 0.2938 0.3048 0.3342 0.3428 0.2954 0.3056 0.2876 0.2968 0.4726 0.4823 0.1748 0.1755

10 6.4825 6.6035 0.4292 0.4376 0.2740 0.2853 0.3066 0.3140 0.2781 0.2879 0.2668 0.2759 0.4394 0.4479 0.1498 0.1498
11 7.3034 7.4045 0.4485 0.4576 0.2822 0.2932 0.3056 0.3129 0.2747 0.2844 0.2723 0.2811 0.4255 0.4334 0.1500 0.1499
12 8.0629 8.1924 0.4655 0.4755 0.2888 0.3000 0.3092 0.3167 0.2754 0.2852 0.2770 0.2859 0.4259 0.4335 0.1501 0.1500
13 9.0989 9.1802 0.4843 0.4941 0.2953 0.3067 0.3144 0.3222 0.2773 0.2870 0.2819 0.2909 0.4350 0.4420 0.1502 0.1501
14 10.3284 10.3829 0.5048 0.5148 0.3025 0.3143 0.3198 0.3277 0.2790 0.2887 0.2870 0.2963 0.4451 0.4516 0.1502 0.1502
15 11.6525 11.7004 0.5271 0.5366 0.3107 0.3226 0.3249 0.3326 0.2805 0.2902 0.2924 0.3018 0.4515 0.4578 0.1502 0.1502
16 13.0967 13.1045 0.5510 0.5574 0.3183 0.3303 0.3290 0.3363 0.2813 0.2910 0.2976 0.3070 0.4536 0.4597 0.1503 0.1502
17 14.4930 14.5570 0.5732 0.5782 0.3265 0.3384 0.3340 0.3411 0.2827 0.2925 0.3035 0.3129 0.4580 0.4638 0.1503 0.1502
18 16.3820 16.4000 0.5932 0.5979 0.3341 0.3460 0.3388 0.3459 0.2845 0.2943 0.3090 0.3182 0.4651 0.4709 0.1503 0.1503
19 18.7848 18.5769 0.6176 0.6192 0.3426 0.3541 0.3448 0.3516 0.2865 0.2964 0.3151 0.3241 0.4731 0.4791 0.1503 0.1503
20 21.1446 20.9522 0.6365 0.6413 0.3494 0.3613 0.3506 0.3580 0.2884 0.2983 0.3199 0.3291 0.4802 0.4867 0.1503 0.1503

TABLE III: Mean spectral distortion scores for a nonstationary autoregressive signal with smooth (A) and abrupt (B) parameter
changes, obtained for 4 two-sided E2WLMF estimators with direct averaging of reflection coefficients (the first 4 double
columns) and the proposed simplified parallel estimation scheme (the last double column)

bidirectional proposed
n/N (0.99, 0.99) (0.995, 0.995) (0.995, 0.95) (0.95, 0.995) (simplified)

A B A B A B A B A B
1 4.6084 4.7964 3.4648 3.5601 4.1363 4.2438 4.2779 4.4413 5.0942 5.3039
2 1.1839 1.2355 0.9562 0.9857 0.9886 1.0188 1.2220 1.2707 0.9537 0.9968
3 0.9202 0.9616 0.6928 0.7149 0.7545 0.7786 0.9511 0.9898 0.7172 0.7552
4 0.6711 0.6967 0.5447 0.5617 0.5385 0.5554 0.7637 0.7898 0.4617 0.4838
5 0.4533 0.4684 0.3867 0.4002 0.3585 0.3709 0.5732 0.5912 0.2579 0.2649
6 0.4483 0.4618 0.3822 0.3952 0.3495 0.3611 0.5563 0.5727 0.2474 0.2529
7 0.4494 0.4624 0.3781 0.3906 0.3494 0.3604 0.5547 0.5695 0.2451 0.2498
8 0.4137 0.4241 0.3603 0.3719 0.3188 0.3290 0.5357 0.5473 0.2081 0.2115
9 0.3839 0.3930 0.3411 0.3520 0.3013 0.3111 0.5079 0.5177 0.1865 0.1885

10 0.3535 0.3615 0.3231 0.3336 0.2794 0.2892 0.4723 0.4808 0.1593 0.1604
11 0.3573 0.3649 0.3231 0.3335 0.2859 0.2954 0.4613 0.4692 0.1600 0.1610
12 0.3619 0.3697 0.3244 0.3348 0.2907 0.3003 0.4641 0.4715 0.1601 0.1611
13 0.3671 0.3753 0.3266 0.3371 0.2954 0.3052 0.4748 0.4818 0.1602 0.1613
14 0.3743 0.3825 0.3297 0.3401 0.3008 0.3108 0.4879 0.4944 0.1603 0.1613
15 0.3813 0.3893 0.3326 0.3431 0.3072 0.3173 0.4981 0.5043 0.1603 0.1613
16 0.3882 0.3956 0.3350 0.3454 0.3131 0.3232 0.5051 0.5110 0.1603 0.1613
17 0.3939 0.4010 0.3370 0.3474 0.3196 0.3296 0.5136 0.5193 0.1603 0.1614
18 0.3993 0.4065 0.3392 0.3497 0.3255 0.3354 0.5245 0.5304 0.1603 0.1614
19 0.4061 0.4128 0.3416 0.3522 0.3321 0.3416 0.5364 0.5426 0.1603 0.1614
20 0.4135 0.4208 0.3445 0.3551 0.3374 0.3471 0.5482 0.5548 0.1603 0.1614
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[35] T. Söderström and P. Stoica, System Identification. Englewoods Cliffs
NJ: Prentice-Hall, 1988.

[36] H. Akaike, “On the likelihood of a time series model,” J. Roy. Statist.
Soc. D, vol. 27, pp. 217–235, 1978.

[37] H. Akaike, “A Bayesian extension of the minimum AIC procedure of
autoregressive model fitting,” Biometrika, vol. 66, pp. 237–242, 1979.

[38] A. Ferrante, C. Masiero, and M. Pavon, “Time and spectral domain
relative entropy: A new approach to multivariate spectral estimation,”
IEEE Trans. Automat. Contr., vol. 57, pp. 2561–2575, 2012.

[39] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.
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APPENDIX [derivation of (16)]

Note that

S◦n(ω) =
[
AAAT(e−jω,θn)AAA(ejω,θn)

]−1

Ŝ◦n|π(ω, t) =
{
AAAT[e−jω, θ̂n|π(t)]AAA[ejω, θ̂n|π(t)]

}−1

.

Using Taylor series expansion, one obtains

log det S◦n(ω)− log det Ŝ◦n|π(ω, t)

= log det{AAAT[e−jω, θ̂n|π(t)]AAA[ejω, θ̂n|π(t)]}
− log det{AAAT(e−jω,θn)AAA(ejω,θn)}
∼= ∆θT

n|π(t)ζ(ω)

where ∆θn|π(t) = θ̂n|π(t)− θn and

ζ(ω) = ∇θn log det[AAAT(e−jω,θn)AAA(ejω,θn)].

Since [39]

d log det V(x)

dx
= tr

{
V−1(x)

dV(x)

dx

}
one arrives at

∂ log det[AAAT(e−jω,θn)AAA(ejω,θn)]

∂ai,ni1i2

= tr

{[
AAAT(e−jω,θn)AAA(ejω,θn)

]−1

×

[
AAAT(e−jω,θn)

∂AAA(ejω,θn)

∂ai,ni1i2

+
∂AAAT(e−jω,θn)

∂ai,ni1i2
AAA(ejω,θn)

]}

= tr

{
AAA−1(ejω,θn)

∂AAA(ejω,θn)

∂ai,ni1i2

}

+ tr

{
∂AAAT(e−jω,θn)

∂ai,ni1i2
AAA−T(e−jω,θn)

}
= ξii1i2(ω) + [ξii1i2(ω)]∗

i1, i2 = 1, . . . ,m, i = 1, . . . , n

where

ξii1i2(ω) = tr

{
AAA−1(ejω,θn)

∂AAA(ejω,θn)

∂ai,ni1i2

}
.

Note that
∂AAA(ejω,θn)

∂ai,ni1i2
= −Ji1i2e

−jiω

where Ji1i2 is a m×m matrix with only one nonzero element,
equal to 1, located at the position (i1, i2)

[Ji1i2 ]kl =

{
1 if k = i1, l = i2
0 elsewhere

.

Denote by βi(ω) = [bi1(ω), . . . , bim(ω)]T the i-th column of
the matrix AAA−1(ejω,θn)

AAA−1(ejω,θn) = [β1(ω)| · · · |βm(ω)] .
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Then it is straightforward to check that

ξii1i2(ω) = −bi1i2(ω)e−jiω

and

ζ(ω) = w(ω) + w∗(ω)

where w(ω) is the nm2-dimensional vector of the form

w(ω) = [ξ1
11(ω), . . . , ξ1

1m(ω), . . . , ξn11(ω), . . . , ξn1m(ω),

. . . , ξ1
m1(ω), . . . , ξ1

mm(ω), . . . , ξnm1(ω), . . . , ξnmm(ω)]T

= −
[
βT

1 (ω)e−jω, . . . ,βT
1 (ω)e−jnω,

. . . ,βT
m(ω)e−jω, . . . ,βT

m(ω)e−jnω
]T

.

Consequently

d◦MSL(t) = E

{
1

2π

∫ π

−π
γ2(ω, t)dω

}
where

γ(ω, t) = x(ω, t) + x∗(ω, t)

and
x(ω, t) ∼= ∆θT

n|π(t)w(ω).

Using the equivalence (x+x∗)2 = 2|x|2+2Re[x2], one arrives
at

d◦MSL(t) = 2d1(t) + 2Re[d2(t)]

where

d1(t) =
1

2π

∫ π

−π
E
{
|x(ejω, t)|2

}
dω

d2(t) =
1

2π

∫ π

−π
E
{
x2(ejω, t)

}
dω.

Straightforward calculations lead to

d1(t) =
1

2π

∫ π

−π
tr {UUU(t)WWW(ω)} dω

where UUU(t) = E[∆θn|π(t)∆θT
n|π(t)] and WWW(ω) =

w(ω)wH(ω).
Under the assumptions made and some additional stochastic

invertibility conditions, such as those given in [40], one can
show that [19]

E[θ̂n|π(t)] ∼= θn, cov[θ̂n|π(t)] =
ρn ⊗Φ−1

n

Mπ(t)
+ o

(
1

Mπ(t)

)
where Φn = E[ϕn(t)ϕT

n (t)]. This leads to

UUU(t) ∼=
1

Mπ(t)

 ρ11Φ
−1
n . . . ρ1mΦ−1

n
...

...
ρm1Φ

−1
n . . . ρmmΦ−1

n

 .
One can check that

WWW(ω) =

 W11(ω) . . . W1m(ω)
...

...
Wm1(ω) . . . Wmm(ω)


where

Wi1i2(ω) = Gn(ω)⊗Bi1i2(ω)

Gn(ω) =


1 ejω . . . ej(n−1)ω

e−jω 1
...

. . .
...

e−j(n−1)ω . . . 1


and Bi1i2(ω) = βi1(ω)βH

i2
(ω). Note that

tr {UUU(t)WWW(ω)} =
1

Mk(t)
tr
{
Φ−1
n Γn(ω)

}
where

Γn(ω) =
m∑
i1=1

m∑
i2=1

ρi1i2Wi2i1(ω)

=
m∑
i1=1

m∑
i2=1

ρi1i2Gn(ω)⊗Bi2i1(ω).

Using the associative property of Kronecker products A ⊗
(B + C) = A⊗B + A⊗C, one gets

Γn(ω) = Gn(ω)⊗

[
m∑
i1=1

m∑
i2=1

ρi1i2Bi2i1(ω)

]
Note that

Sn(ω) =AAA−1(ejω,θn)ρnAAA−T(e−jω,θn)

= [β1(ω)| · · · |βm(ω)]ρn [β1(ω)| · · · |βm(ω)]
H

=
m∑
i1=1

m∑
i2=1

ρi1i2βi1(ω)βH
i2(ω) =

m∑
i1=1

m∑
i2=1

ρi1i2Bi1i2(ω)

=
m∑
i1=1

m∑
i2=1

ρi1i2Bi2i1(ω)

where the last transition is due to the fact that ρi1i2 = ρi2i1 .
Therefore

Γn(ω) = Gn(ω)⊗ Sn(ω) =
Sn(ω) Sn(ω)ejω . . . Sn(ω)ej(n−1)ω

Sn(ω)e−jω Sn(ω)
...

. . .
...

Sn(ω)e−j(n−1)ω . . . Sn(ω)


Note that

1

2π

∫ π

−π
ejiωSn(ω)dω = Ri

1

2π

∫ π

−π
e−jiωSn(ω)dω = R−i = RT

i

Hence
1

2π

∫ π

−π
Γn(ω)dω

=


R0 R1 . . . Rn−1

RT
1 R0

...
...

. . .
RT
n−1 . . . R0

 = Φn

which results in

d1(t) ∼=
1

Mk(t)
tr
{
Φ−1
n Φn

}
=

mn

Mk(t)
.
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To evaluate the second component of d◦MSL(t) note that

d2(t) =
1

2π

∫ π

−π
tr {UUU(t)VVV(ω)} dω

where
VVV(ω) = w(ω)wT(ω)

Using the expansion AAA−1(ejω,θn) =
∑∞
i=0 Cie

jiω and the
fact that

∫ π
−π e

jωidω = 0 for i ≥ 1, one arrives at

1

2π

∫ π

−π
VVV(ω)dω = Onm2

which entails d2(t) = 0.
Combining all earlier results, one obtains

d◦MSL(t) ∼=
2mn

Mk(t)
.

We note that the above formula is a nontrivial extension of the
classical result of Akaike obtained for univariate processes and
least squares estimators [41].
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