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Abstract
Two explicit schemes of the finite difference method are presented and analyzed in the paper.
The applicability of the Lax-Wendroff and McCormack schemes for modeling unsteady rapidly
and gradually varied open channel flow is investigated. For simulation of the transcritical flow
the original and improved McCormack scheme is used. The schemes are used for numerical
solution of one dimensional Saint-Venant equations describing free surface water flow. Two
numerical simulations of flow with different hydraulic characteristics were performed – the
first one for the extreme flow of the dam-break type and the second one for the simplified
flood wave propagation problem. The computational results are compared to each other and to
arbitrary solutions.
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1. Introduction

In recent years considerable effort has been devoted to modelling one-dimensional
open channel flow. The free surface one-dimensional, unsteady water flow is governed
by the mathematical model called the Saint-Venant equations (Cunge et al 1980).
Quite a number of numerical methods of solving this equations system have been pro-
posed and successfully applied, so far. Numerous schemes of finite difference method
(FDM) and finite element method (FEM) are widely used (Szymkiewicz 2010) for
simulation of the gradually varied flow. However, the FDM and FEM standard al-
gorithms are often inefficient for modelling rapidly varied transcritical flow. For this
kind of flow, shock-capturing methods should be implemented to solve the conserva-
tive form of the Saint-Venant equations. Many of these methods are based on the fi-
nite volume method (FVM). Numerous analysis of FVM schemes for hydrodynamics
problems are available in the technical literature (LeVeque 2002). The FVM schemes
are usually reported as efficient and robust.
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The aim of this research is to analyze some numerical schemes of FDM in a case of
gradually and rapidly varied flow in open channels. This analysis will allow to assess
the usefulness of selected schemes to simulate the transitions between gradually and
rapidly varied flow with local effects like steep wave fronts, which can be observed
during sudden and flush floods.

The paper presents results of simulation of rapidly varied flow in open channel us-
ing the Lax-Wendroff scheme, as well as standard and improved McCormack scheme.
Improvement of the latter is based on the theory of total variation diminishing (TVD)
schemes that are capable of capturing sharp discontinuities without generating spuri-
ous oscillations of the numerical results. This technique was originally presented by
Garcia-Navarro et al (1992). In order to assess the applicability and numerical features
of particular schemes they were implemented to simulate an extreme, rapidly varied
flow occurring in horizontal and frictionless open channel due to sudden, catastrophic
dam collapse. The same schemes were also applied to simulate gradually varied flow
related to the standard flood wave propagation problem in a prismatic open channel.

2. Governing Equations

Generally, the free surface water flow in channels and rivers is a phenomenon varying
in time. Therefore, water motion in open channels is usually described using unsteady
flow equations – often the Saint-Venant model is applied (Cunge et al 1980) for flow
simulation. As various local phenomena, like hydraulic jumps, bores and steep surface
fronts can occur during intense floods, a special form of flow model equations must be
used. To properly reproduce the local phenomena, the conservative equations of water
flow should be used in the hydraulic calculations. The Saint-Venant system, written
in the conservative form for the rectangular channel of unit width, can be presented
as:

∂U
∂ t

+
∂ F
∂ x

+ S = 0, (1)

where the vectors U, F and S are given as:

U =

(
h
uh

)
, F =

(
uh
u2h + 0.5g h2

)
, S =

( 0
−gh

(
So − S f

) )
(2)

and:

x, t – distance and time,
h – water depth,
u – flow velocity,
g – acceleration due to gravity,
So – slope of the bottom,
S f – slope of energy grade line (friction slope).
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The friction slope can be defined by the Manning’s formula:

S f =
n2u |u|

h4/3 (3)

where n denotes the Manning’s friction coefficient. Such approach to hydraulic losses
in open channel is generally valid for steady and unsteady gradually varied flow. When
the rapidly varied flow occurs in the channel the Manning theory does not represent
energy loss precisely due to multidimensional characteristic of the flow for example.
Howeveer, it is often used in hydraulic modeling as the simplest friction representation
technique.

3. Solution Method and Numerical Tests

The Saint-Venant model (1, 2) is a system of partial differential equations and its so-
lution for the given boundary conditions is composed of functions h(x, t) and u(x, t).
In order to solve the Saint-Venant equations for complex hydraulic conditions, nu-
merical method must be applied. In the paper, a finite difference method (FDM) was
chosen to integrate the model equations in space and time. FDM schemes discretize
continuous space and time into a grid system, and values of the variables are evalu-
ated at separate nodes of the numerical grid. In simple FDM schemes, the first-order
derivatives are approximated with either central, backward, or forward discretization,
while the second–order derivatives are approximated with central discretization. Af-
ter discretization of integration space, selected time level can be represented as time
tn = n · ∆t, and each point in space (along the channel length) defines the computing
node xi = (i − 1) · ∆x, where ∆t is the time increment and ∆x is the size of an uniform
mesh.

There are various FDM numerical schemes that can be used to solve the Saint-Ve-
nant equations. In order to ensure the second order accuracy of derivatives approxi-
mation in space and time, and keep calculations simple, two explicit schemes known
as Lax-Wendroff and McCormack methods were applied in numerical solution.

The two stage Lax-Wendroff scheme (Potter 1973) is second order accurate in
space and time. At the first stage, values of the Un+1/2 variables values are calculated
using the method of Lax for half time step and at half step grid xi+1/2:

Un+1/2
i+1/2 =

1
2

(
Un

i+1 + Un
i

)
−

∆t
2∆x

(
Fn

i+1 − Fn
i

)
−

1
4

∆t
(
Sn

i+1 + Sn
i

)
. (4)

Next, the fluxes F and source terms S are calculated at intermediate points of space
and time as:

Fn+1/2
i+1/2 = F

(
Un+1/2

i+1/2

)
(5)

Sn+1/2
i+1/2 = S

(
Un+1/2

i+1/2

)
. (6)
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At the second stage, values of the midpoint variables values are used for final calcu-
lation:

Un+1
i = Un

i −
∆t
∆x

(
Fn+1/2

i+1/2 − Fn+1/2
i−1/2

)
−

1
2

∆t
(
Sn+1/2

i+1/2 + Sn+1/2
i−1/2

)
. (7)

The Lax-Wendroff scheme is an explicit technique of FDM, so in order to be stable,
it must satisfy the Courant-Friedrich-Lewy (CFL) criterion (Potter 1973) at each grid
point i in order to be stable. The CLF criterion is defined as:

Cr =
|u| + c
∆ x/∆t

≤ 1, (8)

where Cr is the Courant number at point i and c =
√
gh is a celerity.

To perform numerical simulation of unsteady flow in open channel it is neces-
sary to specify additional solution conditions. According to the theory of solving par-
tial differential equations they include the initial condition and boundary conditions
(Cunge et al 1980). For the solution of unsteady flow equations, before the start of the
calculation, the initial water surface profile and flow rate must be known and adopted
along the channel. The boundary conditions depend on the time variability of flow
parameters at the inflow and outflow cross-sections of the channel. The previously
assumed calculations at the inlet section developed hydrogram of water inflow. At
the outlet section of the channel time-varying water table position was forced. The
Manning’s formula was used as a known relationship between parameters of flow at
the outflow cross-section.

In this study, the original and improved McCormack schemes were also investi-
gated. The main advantage of the original scheme is an ability to calculate gradually
and rapidly varied flow, what is needed to simulate water flow during flush floods.
Moreover, the inclusion of the source terms is relatively simple and suitable for im-
plementation in the explicit time-marching algorithm. The standard algorithm based
on McCormack original scheme (McCormack 1971) involves a two stage procedure
known as the predictor–corrector method and it can be presented as:

Up
i = Un

i −
∆t
∆x

(
Fn

i+1 − Fn
i

)
+ ∆tSn

i , (9)

Uc
i = Un

i −
∆t
∆x

(
Fp

i − Fp
i−1

)
+ ∆tSp

i , (10)

where the superscript p(c) refers to the predictor (corrector) step and n is the time
level.

The final updating formula, representing the solution at the next time level n + 1)
has a form:

Un+1
i =

1
2

(
Up

i + Uc
i

)
. (11)

The numerical stability condition for the McCormack scheme is the same as for the
Lax-Wendroff method due to the explicit nature of both schemes and it is defined
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by CFL condition (8). The initial and boundary conditions used for the numerical
solution of Saint-Venant using McCormack were also the same as before.

In order to asses the quality of numerical solution based on standard Lax-Wendroff
and McCormack schemes for rapidly varied flow, the classical problem of hydrody-
namics known as the dam break test was simulated. The simulation was performed for
water flow in a 200 m long horizontal and frictionless (n = 0.0 s/m1/3) channel with
rectangular cross-section of unit width. The channel was divided by the dimension-
less wall (virtual dam) into two 100 m segments. Water depth in the first section was
2 m, while in the other 1 m. Initially, water in channel was at rest. At the start of the
simulation (t = 0) s the dam failure is forced (the barrier that separated two different
levels of water is suddenly removed). As a consequence, two water waves could be
observed in the channel. The negative wave was moving upstream the channel and
the positive one was travelling downstream. This hydraulic phenomena of rapidly
varied flow was simulated using two standard numerical schemes. For the numerical
calculation the channel was discretized into 201 nodes with the spatial step Dx = 1 m
long. Simulations were carried out with the time step equal to Dt = 0.01 s, ensuring
stability of the solution.

The initial condition representing the water surface profile before the crash of
the virtual barrier is presented in Figure 1 as a dashed line. The comparison of the
analytical and numerical solution of the Saint-Venant equations after 10 s of the flow
simulation is shown in the same figure. The analytical results were acquired using
Stoker (1957) solution of the Saint-Venant equations. It can be observed that, regard-
less of the method applied, an unphysical water surface oscillation have been occurred
in the numerical solutions. However, the solutions obtained using both FDM schemes
are stable. The highest oscillations are visible at the front of the positive (shock) wave.
There are no oscillations in the vicinity of the negative wave, but the simulated water
surface is slightly smeared due to numerical diffusion. The high discrepancy between
analytical and both numerical solutions suggests that all tested methods are not ad-
equate to simulate rapidly varied flow in open channel during extreme episodes like
flush floods.

In order to eliminate or reduce the problem of the spurious oscillations in rapidly
varied flow modelling with FDM schemes, an improvement for the method based
on TVD theory can be implemented. The concept of TVD schemes was introduced
by Harten and Hyman (Toro 1997). Generally, for certain types of equations TVD
algorithms ensure that the total variation (TV) does not increase with time, that is:

TV
(
Un+1

)
≤ TV (Un) ⇒

∑
i

∣∣∣Un+1
i+1 −Un+1

i

∣∣∣ ≤∑
i

∣∣∣Un
i+1 −Un

i

∣∣∣ . (12)

For the investigation how the standard FDM technique can be improved using
TVD approach, the McCormack scheme was chosen for the analysis. The TVD im-
proved McCormack scheme is an extension of the original method and it includes
a shock-capturing technique capable of rendering the solution oscillation. The scheme
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Fig. 1. The dam break problem. Initial condition (dashed line) and calculated water profile
after 10 s of flow – analytical solution (solid line), Lax-Wendroff scheme (triangle marker) and

McCormack scheme (rectangle marker)

is of second-order accuracy both in time and space in non-critical sections, but it
switches the accuracy to the first-order at extreme points. The improved scheme in-
volves an additional computational term in updating step of the original predictor
corrector procedure (11) (Garcia-Navarro et al 1992), which can be written as:

Un+1
i =

1
2

(
Up

i + Uc
i

)
+

1
2

∆t
∆x

(
Ri+1/2Φi+1/2 − Ri−1/2Φi−1/2

)
. (13)

The second term in equation (13), which is calculated at intermediate states be-
tween grid points i − 1, i and i + 1, what is described later in this point, equips the
McCormack scheme with TVD properties adding a numerical dissipation to the orig-
inal method. Due to this modification, the scheme retains second-order accuracy in
space and time for continuous regions and it is able to limit the solution oscillations
near the extremes by reducing the accuracy to first-order in these sections.

To calculate the additional term in formula (13), the TVD improvement requires
the quasi linear form of the Saint-Venant equations (1, 2). The original problem (1)
can be transformed to the following form:

∂U
∂ t

+ A
∂U
∂ x

= S, (14)

where U is the same as in equation (1) and the jacobian matrix A of F with respect
to U can be written as:

A =

[
0 1
c2 − u2 2u

]
, (15)

where c =
√
gh is a celerity. The jacobian matrix A is diagonalizable, so the following

equation must be satisfied:
A = R Λ L, (16)
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where Λ is a diagonal matrix containing the eigenvalues of matrix A, whereas R and
L contain associated right and left eigenvectors. The eigenvalues λ of matrix A can
be evaluated by solution of the characteristic equation:

|A − λI| = 0, (17)

where I is the identity matrix. Considering jacobian matrix (15), the roots of (17)
equal:

λ1 = u − c, λ2 = u + c. (18)

The matrix Λ and the corresponding right, used in the updating step of TVD Mc-
Cormack scheme (13), and left eigenvector matrices for matrix A are defined as:

Λ =

[
λ1 0
0 λ2

]
, R =

[
1 1
λ1 λ2

]
, L =

1
2c

[
−λ2 1
λ1 −1

]
. (19)

The two components of vector Φi in Eq. (13), that are evaluated at the intermediate
state between grid points i and i + 1, are defined as:

Φk
i+1/2 = Ψ

(
λk

i+1/2

) (
1 −

∆t
∆x

∣∣∣λk
i+1/2

∣∣∣) (
1 − ϕ

(
rk

i+1/2

))
αk

i+1/2 (k = 1, 2) . (20)

The function Ψ is an entropy correction to the eigenvalues preventing the appearance
of unphysical flow discontinuities, those in which energy increases across the shock.
In the simplest form it can be written as (Garcia-Navarro et al 1992):

Ψ (λ) =

{
|λ| if |λ| ≥ ε,
ε if |λ| < ε, (21)

where ε is a small positive number (from 0.1 to 0.3), which value must be determined
for each individual problem. Formulas for the ε evaluation and other forms of the
entropy correction were proposed by Harten and Hyman (Toro 1997).

The characteristic variable α in formula (20) is defined as:

αi+1/2 =
1

2ci+1/2

[
−λ2 1
λ1 −1

]
i+1/2

[
hi+1 − hi

(uh)i+1 − (uh)i

]
. (22)

In order to calculate the mean values of flow parameters in (22), that need to be de-
termined at the intermediate point i + 1/2, the averaging procedure proposed by Roe
(1981) can be applied. The discrete approximations of the local water velocity and
wave celerity can be presented as:

ui+1/2 =
ui+1
√

hi+1 + ui
√

hi
√

hi+1 +
√

hi
, ci+1/2 =

ci + ci+1

2
. (23)

For obtaining non-oscillatory solutions in regions where some flow discontinu-
ities like hydraulic jumps or bores exist, the limiter parameter has to be incorporated
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into the solution procedure. In equation (20) the function ϕ is a limiter parameter
and it is responsible for adding artificial dissipation to the numerical solution in a re-
gions of steep gradients. The numerical dissipation makes the solution monotone at
extreme points. In the continuous regions of smooth variation little or no dissipation
is added. Many forms of the limiting function can be found in the literature. Their
review in terms of the water flow problem was presented by Toro (1997). Following
Tseng (2003), the minmod limiter was used to simulate rapidly varied open channel
flow. This function can be written as:

ϕ
(
rk

i+1/2

)
=

 min
(∣∣∣∣rk

i+1/2

∣∣∣∣ , 1
)

if rk
i+1/2 > 0,

0 if rk
i+1/2 ≤ 0,

(24)

where r is the ratio of characteristic variables estimated as follows:

rk
i+1/2 =

αk
i+1/2−s

αk
i+1/2

s = sign
(
αk

i+1/2

)
. (25)

Fig. 2. The dam break problem. Initial condition (dashed line) and calculated water profile
after 10 s of flow – analytical solution (solid line), McCormack scheme (rectangle marker) and

TVD McCormack scheme (circle marker)

The results of the dam break flow simulation using standard and improved Mc-
Cormack schemes are presented in Figure 2. The graph shows the shape of the water
surface after the same time period like in Fig. 1 (t = 10 s). It can be observed that
water level along the channel and speed of the waves fronts simulated by the TVD
scheme seem to be in a good agreement with the analytical solution. It can be also
seen that the results obtained with classic and improved McCormack schemes differ.
The standard scheme produces the spurious oscillations near steep water level front,
while the improved version ensures the solution to be quite smooth. However, the front
of the positive wave is more smeared in case of the TVD than for standard scheme. It
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is a result of the scheme accuracy reduction in the vicinity of the surface discontinuity
(wave front). The influence of the numerical diffusion is also visible near the nega-
tive wave front, but the shapes of the surface obtained using standard and improved
McCormack schemes are almost the same.

In order to assess the quality of numerical solutions of the Saint-Venant model ob-
tained from the presented FDM schemes for unsteady gradually varied flow, the simu-
lation of simple flood wave propagation in open channel was performed. The test was
prepared using data defined for the numerical simulation presented by Szymkiewicz
(1995). The problem was solved for flow equations in an open prismatic channel with
rectangular cross-section and bottom slope equal to 0.0001. The considered channel
was 4 m wide and 50 km long. In the numerical calculation, the following parameters
were used:

– spatial step ∆x = 1000 m,
– Manning’s coefficient of roughness n = 0.02 s/m1/3,
– integration time step ∆t = 100 s,
– initial flow Q0 = 49, 646 m3/s,
– initial depth in the channel H0 = 2 m.

Fig. 3. The flood wave propagation problem. Boundary condition (dashed line) and FEM solu-
tion (cross marker) obtained by Szymkiewicz (1995), Lax-Wendroff scheme (triangle marker),
McCormack scheme (rectangle marker) and TVD McCormack scheme (circle marker) for

cross-section located at x = 20 km

Results of own calculations using the Lax-Wendroff scheme, as well as standard
and improved McCormack schemes, compared to the results presented in the original
article calculated using modified scheme of the finite element method, are presented
in Figures 3 and 4. The FEM solution is digitized directly from the paper version of
the source article, so precision of its display is limited. The hydrographs representing
flow discharge varying in time at two analyzed cross-sections are presented in the
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Figures. The boundary condition, forced at the inflow cross-section, was defined as
an initial trapezoidal form of the wave and it is shown as a dashed line in the graphs.

Fig. 4. The flood wave propagation problem. Boundary condition (dashed line) and FEM solu-
tion (cross marker) obtained by Szymkiewicz (1995), Lax-Wendroff scheme (triangle marker),
McCormack scheme (rectangle marker) and TVD McCormack scheme (circle marker) for

cross-section located at x = 40 km

The hydrographs calculated for x = 20 km cross-section (Fig. 3) have similar
shape and agreement of the FEM and the FDM results is satisfactory. The results
indicate the correctness of the FDM computational schemes adopted in the simula-
tion and the appropriate solution with the equations of unsteady gradually varied flow.
However, the solutions obtained using both McCormack schemes better fit the FEM
simulation results. The Lax-Wendroff scheme is overestimated for increasing part of
the hydrograph. The same effect can be seen in case of the solution obtained for the
cross-section located at x = 40 km (Fig. 4). It can also be observed that the numerical
solutions obtained using original and improved McCormack schemes are almost the
same for the gradually flow simulations.

4. Conclusions

The numerical solution of the Saint-Venant equations for one–dimensional flow
based on the some FDM schemes was analyzed in this paper. In particular, the
Lax-Wendroff, as well as standard and improved McCormack scheme were investi-
gated. The improvement of the original scheme was based on the theory of total varia-
tion diminishing schemes. The results of numerical simulations of open channel flow
were presented in adequate Figures and analyzed. In the first numerical test there was a
rapidly varied flow, but in the second numerical test there was a gradually varied flow.
In first test of dam break flow type both standard schemes (Lax-Wendroff and McCor-
mack) have produced unphysical results because the spurious oscillations near the
wave steep front. The numerical results of the improved McCormack scheme better
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fit the analytical solution. The second numerical test has also proved that both McCor-
mack schemes simulate the gradually varied flow more precisely than Lax-Wendroff
method.

The following final conclusions can be drawn from the conducted research:

– The spurious oscillations of the calculated results obtained using standard Lax-
Wendroff and McCormack schemes make the solution of rapidly varied flow un-
physical. The improved McCormack scheme is capable of capturing sharp fronts
without generating oscillations. The modification can be easily introduced into the
standard McCormack scheme algorithm.

– The improved McCormack scheme allows to model rapidly as well gradually var-
ied flow in open channels. It quite accurately describes main flow features, such as
positive and negative open channel waves. The improved method better predicts
the flow parameters than the standard algorithms.

– Results of numerical simulations compared to the arbitrary solutions show that
the overall performance of the TVD McCormack method can qualify the method
as a very good candidate for modeling of the open channel flow during storms and
flush floods. It seems that the improved McCormack scheme can be incorporated
into the integrated model of urban flooding.
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