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1. Introduction

An important but difficult problem in dynamical systems is to identify the periodic point free maps on a given compact
manifold. The necessary (but not sufficient) condition for a map to be periodic point free is that the Lefschetz numbers of
all its iterates vanish. This motivates the following definition: a map f is called Lefschetz periodic point free iff L( f m) = 0
for m = 1,2,3, . . . . In [7] a characterization of Lefschetz periodic point free maps on Sn , CPn , HPn and Sp × Sq was
given. The aim of this paper is to give a more detailed description of the Lefschetz periodic point free maps on the spaces
considered in [7] (Section 2), as well as to generalize these results for the large class of manifolds called rational exterior
spaces (Section 3).

Our approach in this part of the paper is based on the use of additional information, hidden in the structure of the coho-
mology ring, which allows one to determine the sequence {L( f m)}∞m=1 (cf. [4]). This method enables us to show that some
conditions found in [7] are superfluous, because they are always satisfied. Moreover, it makes it possible to find the explicit
formula for L( f m) which is conceptually simpler than the use of the Lefschetz zeta function applied in [7]. We also correct
some incorrect statements in [7] concerning CPn and HPn .

In Section 4 we formulate the necessary and sufficient conditions for a map to be Lefschetz periodic point free in
the language of eigenvalues, based only on the definition of Lefschetz number. These conditions enable us to identify some
spaces that do not admit Lefschetz periodic point free maps.
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In the final part of the paper (Section 5) we illustrate the way in which the purely algebraical condition of being
“Lefschetz periodic point free” provides some important information about the structure of periodic points of the map.

2. Lefschetz periodic point free maps of SSSn , CCCP n , HHHP n and SSSp ×SSSq: cohomological ring approach

2.1. Lefschetz numbers of iterates

For a compact connected manifold M of dimension n we will consider Hi(M;Q), where i = 0,1, . . . ,n, the cohomology
groups with coefficients in Q, which are then finite dimensional linear spaces over Q. For a self-map f of M we denote by
f ∗i the linear map induced by f on Hi(M;Q) and by f ∗ the self-map

⊕n
i=0 f ∗i of

⊕n
i=0 Hi(M;Q). The Lefschetz number

L( f m) of f m is then equal to

L
(

f m) =
n∑

i=0

(−1)i tr
(

f m)∗i
, (2.1)

where tr( f m)∗i is the trace of the matrix representing ( f m)∗i : Hi(M;Q) → Hi(M;Q). Notice that if A is a matrix of f ∗i ,
then Am is a matrix of ( f m)∗i , representing the homomorphism induced on Hi(M;Q) by f m , the m-th iteration of f
(cf. [2,9]). Consequently, when tr f ∗i = ∑k

j=1 λ j , then tr( f m)∗i = ∑k
j=1 λm

j , where the sum is taken over all eigenvalues λ j

in the spectrum of A, counted with multiplicities.
Often the Lefschetz number of f is defined via homology groups, but for our purposes it is more convenient to give the

equivalent definition (2.1).
We will make use of the structure of the cohomology ring

⊕
i=0 Hi(X;Q) to obtain additional information concerning

the Lefschetz numbers of iterates of f . Let us recall two basic properties of cup product that we will apply later in the
paper:

• f ∗ is a homomorphism of
⊕n

i=0 Hi(M;Q), i.e.

f ∗(α ∪ β) = f ∗(α) ∪ f ∗(β); (2.2)

• the cup product is anticommutative, i.e. if α ∈ Hk(M;Q) and β ∈ Hl(M;Q), then

α ∪ β = (−1)klβ ∪ α. (2.3)

2.2. Lefschetz periodic point free maps on CPn

We consider the complex projective space, denoted CPn . The cohomology ring over Q of CPn is isomorphic to the
quotient polynomial ring Q[α]/(αn+1), where α is the generator of H2(CPn;Q) = Q (cf. e.g. [8]). As a consequence,
H∗(CPn;Q) = ⊕n

i=0 H2i(CPn,Q) and each H2i(CPn,Q) is generated by

αi = α � α � · · · � α︸ ︷︷ ︸
i

for i � 0

where we adopt the convention that α0 = 1. Now, we are in a position to calculate the sequence of Lefschetz numbers of
iterates (cf. similar calculation for L( f ) in [9]). As ( f m)∗2 has the eigenvalue am , where a ∈ Z is such that f ∗2(α) = aα, we
get by the formulas (2.1) and (2.2):

L
(

f m) = 1 +
n∑

i=1

(
am)i =

{
1−(am)n+1

1−am if am �= 1,

n + 1 if am = 1.
(2.4)

It is obvious that if a /∈ {−1,1} then L( f m) �= 0 for m = 1,2,3, . . . . On the other hand, if a ∈ {−1,1} then either for m = 1
or for m = 2 we get am = 1 and thus by the second part of formula (2.4) L( f m) = n + 1 �= 0. As a result we obtain the
following:

Proposition 2.1. There are no Lefschetz periodic point free maps on CPn.

2.3. Lefschetz periodic point free maps on HPn

Let HPn denote the n-dimensional quaternionic projective space. The structure of the cohomology ring over Q is similar
to CPn; however now the generator is four-dimensional (see e.g. [8]):

H∗(HPn;Q) =
n⊕

i=0

H4i(HPn,Q
) � Q[α]/(αn+1),

where α ∈ H4(HPn;Q) � Q.
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Since the generator of H4i(HPn,Q) equals αi and each ( f m)∗4 has am as an eigenvalue (with f ∗4(α) = aα) we find in
the analogous way as for CPn that the sequence of Lefschetz numbers of iterates of a continuous map f : HPn → HPn has
exactly the same form as in (2.4).

Again we conclude

Proposition 2.2. There are no Lefschetz periodic point free maps on HPn.

Remark 2.3. There is an error in [7] in Theorems 1 and 2, which state that for a = 0 the self-maps of CPn or HPn could be
Lefschetz periodic point free.

2.4. Lefschetz periodic point free maps on spaces of the type S p × Sq

Now let us consider products of multidimensional spheres. We break the problem into cases as follows

(1) M = S p × S p , where p is odd,
(2) M = S p × S p , where p is even,
(3) M = S p × Sq , where p,q even, p �= q,
(4) M = S p × Sq , where p,q odd, p �= q,
(5) M = S p × Sq , where one of the p, q is even, the other is odd.

In the first two cases the cohomology groups of M are the following:
H0(M;Q) = Q, H p(M;Q) = Q ⊕ Q, H2p(M;Q) = Q and all the other cohomology groups vanish. The induced homo-

morphism f ∗p is represented by the matrix A = ( a b
c d

)
and f ∗2p is multiplication by a constant e ∈ Z, where e is the degree

of f .
The cohomology ring of M has the form (cf. [8]): H∗(M;Q) = ⊕

i∈{0,p,2p} Hi(M;Q) and if α and β are the generators of

H p(M;Q), then α ∪ β is a generator of H2p(M;Q).
Then by (2.2) and (2.3) and the fact that α2 = β2 = 0 we obtain

f ∗2p(α � β) = f ∗p(α) � f ∗p(β) = (aα + cβ) � (bα + dβ)

= ad(α � β) + bc(β � α) = (
ad + (−1)p2

bc
)
(α � β). (2.5)

Now, we consider the cases (1) and (2) separately.

Case 1. Since p is odd, p2 is also odd, and thus (2.5) takes the form:

f ∗2p(α � β) = (ad − bc)(α � β) = e(α � β). (2.6)

As a result, for p odd ad − bc = e. Thus, if λ1 and λ2 are the eigenvalues of f ∗p then λ1λ2 is the eigenvalue of f ∗2p , so

L
(

f m) = 1 + (−1)p tr
((

f m)∗p) + (−1)2p tr
((

f m)∗2p)
= 1 + (−1)p(

λm
1 + λm

2

) + (λ1λ2)
m = (

1 − λm
1

)(
1 − λm

2

)
.

We obtain the conclusion that f is Lefschetz periodic point free if and only if λ1 = 1 or λ2 = 1 or, equivalently, L( f ) = 0.
On the other hand,

L( f ) = 1 − (a + d) + ad − bc.

Thus we have

Proposition 2.4. A map f : S p × S p → S p × S p where p is odd is Lefschetz periodic point free if and only if ad − bc = −1 + a + d,
or equivalently, if and only if one of its eigenvalues is equal to 1.

Remark 2.5. In [7, Theorem 5] besides the condition of Proposition 2.4 there is an additional condition which states that
ad − bc = e, but it follows from the formula (2.6) that this is always satisfied and thus the condition is superfluous.

Case 2. For p even (2.5) takes the form:

f ∗2p(α � β) = (ad + bc)(α � β) = e(α � β) (2.7)

and therefore ad + bc = e. We have L( f 1) = 1 + a + d + (ad + bc) and L( f 2) = 1 + a2 + 2bc + d2 + (ad + bc)2. Assuming now
that L( f 1) = 0 and L( f 2) = 0 we see that ad + bc = −1 − a − d and a2 + d2 = 0, hence a = d = 0 and bc = −1 that is b = 1
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and then c = −1 or the other way round. In this case one may verify that also L( f 3) = 0. However, for m = 4 the matrix for
( f 4)∗p is of the form[

a b
c d

]4

=
[

0 −b
−c 0

]
·
[

0 b
c 0

]
=

[
1 0
0 1

]
,

therefore

L
(

f 4) = 1 + 2 + (−1)4 = 4

and thus f is never Lefschetz periodic point free.
In the cases (3), (4) and (5) the cohomology groups are

Hi(M;Q) =
{
Q for i = 0, p,q, p + q;
0 otherwise.

We will denote by (x) the 1 × 1 matrix with entry x. Then let f ∗p = (a), f ∗q = (b) and f ∗p+q = (c) be the homomorphisms
acting correspondingly on H p(M;Q), Hq(M;Q) and H p+q(M;Q) as multiplication by integer numbers a, b and c, respec-
tively. However, since for generators α ∈ H p(M;Q) and β ∈ Hq(M;Q) the cup product α � β is a generator of H p+q(M;Q),
the formula (2.5) yields that

f ∗p+q(α � β) = f ∗p(α) � f ∗q(β) = aα � bβ = ab(α � β) = c(α � β)

and thus c = ab.

Case 3. Suppose now that p,q are even and p �= q. Then

L
(

f m) = 1 + am + bm + (ab)m = (
1 + am)(

1 + bm)
.

Thus for even m, L( f m) �= 0.

In cases (2) and (3) we have shown that

Proposition 2.6. Let f : S p × Sq → S p × Sq, with p and q even (including the case p = q), then f is never Lefschetz periodic point
free.

Case 4. Suppose now that M = S p × Sq , where both p and q are odd and p �= q. Calculation of the Lefschetz number for f m

then gives

L
(

f m) = 1 + (−1)p tr
(

f m)∗p + (−1)q tr
(

f m)∗q + (−1)p+q tr
(

f m)∗p+q

= 1 − am − bm + (ab)m = (
1 − am)(

1 − bm)
.

We obtain the following conclusion:

Proposition 2.7. A continuous map f : S p × Sq → S p × Sq where p and q are odd, p �= q, is Lefschetz periodic point free if and only
if a = 1 or b = 1.

Remark 2.8. In [7, Theorem 4 (i) and (ii)] the corresponding condition is stated in the form (1) a = 1 and b = c or (2) a = c
and b = 1, where f ∗p = (a), f ∗q = (b) and f ∗p+q = (c). However, since c = ab by the structure of the cohomology ring,
these conditions reduce to (1) a = 1 or (2) b = 1.

Case 5. It remains to analyze what happens for products of even and odd-dimensional spheres. If p is even and q is odd
then, by the same arguments as above

L
(

f m) = 1 + am − bm − (ab)m = (
1 + am)(

1 − bm)
and thus L( f m) = 0 for all m ∈ N if and only if b = 1 or a = b = −1. In the case b = 1 necessarily c = a, where f ∗p+q = (c)
since always c = ab. The second part of the following proposition can be proved in the same way.

Proposition 2.9. Let f : S p × Sq → S p × Sq with p �= q and f ∗p = (a) and f ∗q = (b). Then:

(1) If p is even and q is odd, then f is Lefschetz periodic point free if and only if b = 1 or a = b = −1.
(2) If p is odd and q is even, then f is Lefschetz periodic point free if and only if a = 1 or a = b = −1.
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Remark 2.10. In [7, Theorem 4 (iii)–(vi)] there are more conditions which are equivalent to the statement that in Case 5
f is Lefschetz periodic point free. However, they all reduce to the items (1) and (2) of Proposition 2.9. In particular, the
condition (iv) (and in the same way (vi)): a = b and c = 1 is covered by the items (1) and (2), because c = ab and a = b
imply that a = b = −1 or a = b = 1.

3. The Lefschetz number of maps of rational exterior spaces

In this section we apply the powerful theorem of Duan in [4] to generalize the results concerning products of odd-
dimensional spheres.

Let H∗(X;Q) = ⊕n
r=0 Hr(X;Q) be the cohomology algebra of the finite complex X with multiplication given by the

cup product. We will call an element x ∈ Hr(X;Q) decomposable if there are pairs (xi, yi) ∈ H pi (X;Q) × Hqi (X;Q) with pi ,
qi > 0, pi + qi = r > 0 such that x = ∑

i(xi ∪ yi). For r � 1 let Ar(X) = Hr(X;Q)/Dr(X), where Dr is the linear subspace
over Q consisting of all decomposable elements. For a continuous map f : X → X let f ∗ be the induced homomorphism on
cohomology algebra and A( f ) = ⊕n

r=1 Ar( f ) the induced homomorphism on A(X) = ⊕n
r=1 Ar(X).

Definition 3.1. Let f : X → X and let I : A(X) → A(X) be the identity morphism. The polynomial

A f (t) := det
(
t I − A( f )

) =
∏
r�1

det
(
t I − Ar( f )

)
will be called the characteristic polynomial of f . The zeros of this polynomial: λ1( f ), . . . , λk( f ), k = rankQ A(X) (the dimen-
sion of A(X) over Q), will be called the quotient eigenvalues of f .

Definition 3.2. Let R be a commutative ring with identity.
An exterior algebra ΛR[α1,α2, . . .] over R is a free R – module with a basis of all finite products αi1αi2 . . . αik , where

the ordering i1 < i2 < · · · < ik holds, and the associative and distributive multiplication defined by the rules: αiα j = −α jα j

for i �= j and α2
i = 0. The empty product 1 ∈ ΛR[α1,α2, . . .] is the identity element.

In general the exterior algebra ΛR[α1,α2, . . .] is the graded tensor product over the ring R of the one-variable exterior
algebras ΛR[αi], where all the dimensions |αi | are odd, which we denote

ΛR[α1,α2, . . .] =
⊗

R
i

ΛR[αi], |αi |-odd.

Definition 3.3. A connected topological space X is called rational exterior if there are some homogeneous elements xi ∈
Hodd(X;Q), i = 1, . . . ,k, such that the inclusions xi ↪→ H∗(X;Q) give rise to a ring isomorphism ΛQ[x1, . . . , xk] = H∗(X;Q).

Among examples of rational exterior spaces are: finite H-spaces (including all finite dimensional Lie groups) and some
real Stiefel manifolds and spaces that admit a filtration X = X0

p0−−→ X1
p1−−→ · · · pk−1−−−→ Xk

pk−−→ Xk+1 = {point}, where pi is
the projection of an odd-dimensional sphere bundle (cf. [4]).

Theorem 3.4. (Duan [4]) Let f be a self-map of a rational exterior space of rank k, and let λ1, . . . , λk be the quotient eigenvalues of f .
Let A denote the matrix of A( f ). Then L( f m) = det(I − Am) = ∏k

i=1(1 − λm
i ).

The above theorem has significant consequences in periodic point theory (cf. [1,5]). One of them is the following nice
characterization of Lefschetz periodic point free self-maps of rational exterior spaces:

Corollary 3.5. Any map f : M → M, where M is a rational exterior space is Lefschetz periodic point free if and only if at least one of
the quotient eigenvalues equals 1.

The cohomology ring H∗(M;Q) when M is any product of odd-dimensional spheres is isomorphic to the corresponding
exterior algebra, i.e. H∗(Sk1 × · · · × Skn ;Q) � ΛQ[α1,α2, . . . ,αn] with ki odd and αi – a generator of Hki (Ski ;Q) � Q.

Thus, by Corollary 3.5 we obtain in particular a generalization of the results of [7] for odd-dimensional products of
spheres.

Example 3.6. Let M = S p × S p × S p with p-odd. Then

Hi(M;Q) = Q for i = 0,3p

http://mostwiedzy.pl


G. Graff et al. / Topology and its Applications 159 (2012) 2728–2735 2733

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

and

Hi(M;Q) = Q⊕Q⊕Q for i = p,2p.

All the other cohomology groups vanish. Moreover, if α,β,γ are the generators of H p(M;Q) then α � β,β � γ ,α � γ
are generators of H2p(M;Q) and α � β � γ is a generator of H3p(M;Q). Groups H2p(M;Q) and H3p(M;Q) consist only of
decomposable elements and in H p(M;Q) no elements are decomposable. Thus A(X) = H p(M;Q) and A( f ) is represented
by the matrix A of f ∗p . Let λ1, λ2, λ3 be the eigenvalues of A, which are also the quotient eigenvalues of f . Theorem 3.4
asserts that L( f m) = det(I − Am) = (1 −λm

1 )(1 −λm
2 )(1 −λm

3 ) and thus f is Lefschetz periodic point free if and only if λ1 = 1
or λ2 = 1 or λ3 = 1. What is more, one can easily express these conditions in terms of coefficients of the matrix A, which
are coded in the equation det(I − Am) = 0.

4. Description of Lefschetz periodic point free maps in terms of essential eigenvalues

Let M be an n-dimensional compact connected manifold. For integers i � 0 and f : M → M , let ei(λ) �= 0 be the number
of eigenvalues of f ∗i equal to λ. Define

e(λ) :=
n∑

i=0

(−1)iei(λ).

Definition 4.1. ([9]) An eigenvalue λ �= 0 is essential if e(λ) �= 0.

Let σ( f ) denote the spectrum of f ∗ . The set of essential eigenvalues will be denoted by σes( f ). Notice that only essential
eigenvalues contribute to {L( f m)}∞m=1 since

L
(

f m) =
∑

λ∈σ ( f )

e(λ)λm =
∑

λ∈σes( f )

e(λ)λm.

Remark 4.2. Observe that if there are no essential eigenvalues, then L( f m) = 0 for all m ∈ N, so f is Lefschetz periodic point
free.

Now we ask whether the converse statement is valid: assume that f is Lefschetz periodic point free, is that true that f
has no essential eigenvalues? We will obtain an affirmative answer to that question as follows:

Theorem 4.3. Let M be a compact connected manifold. f : M → M is Lefschetz periodic point free if and only if there are no essential
eigenvalues of f .

In the proof of the above theorem we will make use of the following algebraic result (for the proof see e.g. [3]).

Lemma 4.4. Let A and B be finitely generated C-vector spaces and u : A → A and v : B → B linear maps. If tr(uk) = tr(vk) for every
k � 1, then u and v have the same non-zero eigenvalues counted with their multiplicities.

Proof of Theorem 4.3. We can divide cohomology groups into odd-dimensional and even-dimensional ones:

Hev(M;Q) :=
⊕

i-even

Hi(M;Q), Hodd(M;Q) :=
⊕
i-odd

Hi(M;Q)

and analogously for the induced homomorphisms

f ∗ev : Hev(M;Q) → Hev(M;Q), f ∗odd : Hodd(M;Q) → Hodd(M;Q).

Then

L( f ) = tr f ∗ev − tr f ∗odd.

Suppose that L( f m) = 0 for every m ∈ N. Then L( f m) = tr Am
ev − tr Am

odd = 0, where Aev and Aodd are the matrices
representing f ∗ev and f ∗odd, respectively. By Lemma 4.4 we get that the eigenvalues of f ∗ev and f ∗odd are the same,
together with corresponding multiplicities. As a consequence, for any λ ∈ σ( f ) we have e(λ) = 0, so there are no essential
eigenvalues. �

Notice that to determine if there exist some essential eigenvalues it is enough to consider only the first iterate f , not all
the iterates f m .
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Now we present two applications of Theorem 4.3.
Let us consider a self-map f of a connected compact manifolds with Hi(M;Q) = 0 for i-odd. Examples of the manifolds

satisfying these conditions are CPn and HPn . Then, 1 is an eigenvalue on H0(M;Q) and obviously it is essential, thus by
Theorem 4.3 f cannot be Lefschetz periodic point free. We obtain the following corollary which is much more general than
Propositions 2.1 and 2.2.

Corollary 4.5. If Hi(M;Q) = 0 for all odd i, then there are no Lefschetz periodic point free maps on M.

Now, let us consider a self-map f of a connected compact manifold with Hi(M;Q) = 0 for even i, i > 1. As M is
connected H0(M;Q) = Q and 1 is the only eigenvalue on H0(M;Q). A simple example of such a space is a sphere Sn with
n odd. Now, by Theorem 4.3, if f is Lefschetz periodic point free then there are no non-zero eigenvalues different from 1 on
Hodd(M;Q) (otherwise they were essential). Furthermore, there must be exactly one eigenvalue equal to 1 on Hodd(M;Q)

to make 1 inessential. We then have the following:

Corollary 4.6. If Hi(M;Q) = 0 for i > 0 even, then f is Lefschetz periodic point free if and only if there is exactly one non-zero
eigenvalue equal to 1 on Hodd(M;Q).

In particular for f : Sn → Sn , where n is odd, f is Lefschetz periodic point free if and only if f is a map of degree one.

5. Removing periodic points for Lefschetz periodic point free self-maps of simply-connected manifolds

In this section we will demonstrate the method for minimizing the number of periodic points in the homotopy class for
Lefschetz periodic point free maps. We consider f a self-map of a compact connected manifold of dimension at least 3.

For a given fixed natural r we define the numbers MFr( f ) and MF�r( f ) in the following way:

MFr( f ) = min
{

# Fix
(

gr): g ∼ f
}
, (5.1)

MF�r( f ) = min

{
#

⋃
k�r

Fix
(

gk): g ∼ f

}
, (5.2)

where ∼ means that the maps g and f are homotopic.
The following formula was proved by Jezierski in [6, Theorem 5.1] for self-maps of simply-connected manifolds:

MFr( f ) =
{

0 if L( f k) = 0 for all k|r,
1 otherwise.

(5.3)

We can apply this formula to remove all k periodic points (k � r) in the homotopy class of a map that is Lefschetz
periodic point free.

Theorem 5.1. Let f be a self-map of a compact connected and simply-connected manifold M which is Lefschetz periodic point free.
Then, for any fixed r one can find in the homotopy class of f a map with no k-periodic points for k � r.

Proof. Let r be a fixed natural number. Assume that g1 is the map that realizes the minimum in the formula (5.2) for r and
g2 in the formula (5.1) but for r!. Then

MF�r( f ) = #
⋃
k�r

Fix
(

gk
1

)
� #

⋃
k�r

Fix
(

gk
2

)
� #

⋃
k|r!

Fix
(

gk
2

)
= # Fix

(
gr!

2

) = MFr!( f ).

On the other hand, the condition that f is Lefschetz periodic point free implies by the formula (5.3) that MFr!( f ) = 0.
As a consequence MF�r( f ) = 0, which ends the proof. �
Remark 5.2. In general Theorem 5.1 does not hold for manifolds that are not simply-connected, because then the for-
mula (5.3) is not true.

Remark 5.3. Theorem 5.1 concerns only k-periodic points with k � r (where r is fixed) i.e. it does not provide any knowledge
about the existence of periodic points with higher minimal periods for maps in the homotopy class.

Remark 5.4. We note that the opposite kind of information, establishing the existence of many periodic points, can be
obtained by the use of cohomological ring. For example, consider the product of odd-dimensional spheres, X = Sd1 × Sd2 ×
· · · × Sds , where di � 3. Let a finite group G act freely on the space X and f : X → X be an equivariant map. Suppose that
there exists a prime p|#G such that there are no roots of unity of order pτ (τ � 1) among quotients eigenvalues of f .
Recently, Jezierski and Marzantowicz proved that then f has infinitely many periodic points (Theorem 7.1 in [10]).
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