

Imię i nazwisko autora rozprawy: Mariusz Pietrołaj
Dyscyplina naukowa: Informatyka techniczna i telekomunikacja

ROZPRAWA DOKTORSKA

Tytuł rozprawy w języku polskim: Ograniczanie precyzji arytmetyki zmiennoprzecinkowej
w celu treningu sieci neuronowych przy ograniczonych zasobach

Tytuł rozprawy w języku angielskim: Limitation of Floating-Point Precision for Resource
Constrained Neural Network Training

Promotor

podpis

Drugi promotor

podpis

dr hab. inż. Marek Blok <Tytuł, stopień, imię i nazwisko>

Promotor pomocniczy

podpis

Kopromotor

podpis

<Tytuł, imię i nazwisko> <Tytuł, stopień, imię i nazwisko>

Gdańsk, rok 2024

The author of the doctoral dissertation: Mariusz Pietrołaj

Scientific discipline: Technical Informatics and Telecommunications

DOCTORAL DISSERTATION

Title of doctoral dissertation: Limitation of Floating-Point Precision for Resource
Constrained Neural Network Training

Title of doctoral dissertation (in Polish): Ograniczanie precyzji arytmetyki
zmiennoprzecinkowej w celu treningu sieci neuronowych przy ograniczonych zasobach

Supervisor

signature

Second supervisor

signature

dr hab. inż. Marek Blok <Title, degree, first name and surname>

Auxiliary supervisor

signature

Cosupervisor

signature

<Title, degree, first name and surname> <Title, degree, first name and surname>

Gdańsk, year 2024

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

OŚWIADCZENIE

Autor rozprawy doktorskiej: Mariusz Pietrołaj

Ja, niżej podpisany(a), oświadczam, iż jestem świadomy(a), że zgodnie z przepisem art. 27 ust.
1 i 2 ustawy z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (t.j. Dz.U. z 2021
poz. 1062), uczelnia może korzystać z mojej rozprawy doktorskiej zatytułowanej:

Ograniczanie precyzji arytmetyki zmiennoprzecinkowej w celu treningu sieci neuronowych przy
ograniczonych zasobach

do prowadzenia badań naukowych lub w celach dydaktycznych.1

Świadomy(a) odpowiedzialności karnej z tytułu naruszenia przepisów ustawy z dnia 4 lutego
1994 r. o prawie autorskim i prawach pokrewnych i konsekwencji dyscyplinarnych określonych w
ustawie Prawo o szkolnictwie wyższym i nauce (Dz.U.2021.478 t.j.), a także odpowiedzialności
cywilno-prawnej oświadczam, że przedkładana rozprawa doktorska została napisana przeze
mnie samodzielnie.

Oświadczam, że treść rozprawy opracowana została na podstawie wyników badań
prowadzonych pod kierunkiem i w ścisłej współpracy z promotorem dr hab. inż. Marek Blokiem.

Niniejsza rozprawa doktorska nie była wcześniej podstawą żadnej innej urzędowej procedury
związanej z nadaniem stopnia doktora.

Wszystkie informacje umieszczone w ww. rozprawie uzyskane ze źródeł pisanych
i elektronicznych, zostały udokumentowane w wykazie literatury odpowiednimi odnośnikami,
zgodnie z przepisem art. 34 ustawy o prawie autorskim i prawach pokrewnych.

Potwierdzam zgodność niniejszej wersji pracy doktorskiej z załączoną wersją elektroniczną.

Gdańsk, dnia
podpis doktoranta

Ja, niżej podpisany(a), wyrażam zgodę/nie wyrażam zgody* na umieszczenie ww. rozprawy
doktorskiej w wersji elektronicznej w otwartym, cyfrowym repozytorium instytucjonalnym
Politechniki Gdańskiej.

Gdańsk, dnia
 podpis doktoranta

*niepotrzebne usunąć

1 Art. 27. 1. Instytucje oświatowe oraz podmioty, o których mowa w art. 7 ust. 1 pkt 1, 2 i 4–8 ustawy z dnia 20 lipca 2018

r. – Prawo o szkolnictwie wyższym i nauce, mogą na potrzeby zilustrowania treści przekazywanych w celach
dydaktycznych lub w celu prowadzenia działalności naukowej korzystać z rozpowszechnionych utworów w oryginale i
w tłumaczeniu oraz zwielokrotniać w tym celu rozpowszechnione drobne utwory lub fragmenty większych utworów.

 2. W przypadku publicznego udostępniania utworów w taki sposób, aby każdy mógł mieć do nich dostęp w miejscu i
czasie przez siebie wybranym korzystanie, o którym mowa w ust. 1, jest dozwolone wyłącznie dla ograniczonego kręgu
osób uczących się, nauczających lub prowadzących badania naukowe, zidentyfikowanych przez podmioty wymienione
w ust. 1.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

STATEMENT

The author of the doctoral dissertation: Mariusz Pietrołaj

I, the undersigned, declare that I am aware that in accordance with the provisions of Art. 27 (1)
and (2) of the Act of 4th February 1994 on Copyright and Related Rights (Journal of Laws of 2021,
item 1062), the university may use my doctoral dissertation entitled:

Limitation of Floating-Point Precision for Resource Constrained Neural Network Training

for scientific or didactic purposes.12

Gdańsk,....................................... ..
signature of the PhD student

Aware of criminal liability for violations of the Act of 4th February 1994 on Copyright and Related
Rights and disciplinary actions set out in the Law on Higher Education and Science(Journal of
Laws 2021, item 478),3as well as civil liability, I declare, that the submitted doctoral dissertation
is my own work.

I declare, that the submitted doctoral dissertation is my own work performed under and in
cooperation with the supervision of dr hab. inż. Marek Blok.

This submitted doctoral dissertation has never before been the basis of an official procedure
associated with the awarding of a PhD degree.

All the information contained in the above thesis which is derived from written and electronic
sources is documented in a list of relevant literature in accordance with Art. 34 of the Copyright
and Related Rights Act.

I confirm that this doctoral dissertation is identical to the attached electronic version.

Gdańsk,....................................... ..
 signature of the PhD student

I, the undersigned, agree/do not agree* to include an electronic version of the above doctoral
dissertation in the open, institutional, digital repository of Gdańsk University of Technology.

Gdańsk,....................................... ..
 signature of the PhD student

*delete where appropriate

1 Art 27. 1. Educational institutions and entities referred to in art. 7 sec. 1 points 1, 2 and 4–8 of the Act of 20 July 2018 –

Law on Higher Education and Science, may use the disseminated works in the original and in translation for the
purposes of illustrating the content provided for didactic purposes or in order to conduct research activities, and to
reproduce for this purpose disseminated minor works or fragments of larger works.

 2. If the works are made available to the public in such a way that everyone can have access to them at the place and
time selected by them, as referred to in para. 1, is allowed only for a limited group of people learning, teaching or
conducting research, identified by the entities listed in paragraph 1.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

OPIS ROZPRAWY DOKTORSKIEJ

Autor rozprawy doktorskiej: Mariusz Pietrołaj

Tytuł rozprawy doktorskiej w języku polskim: Ograniczanie precyzji arytmetyki
zmiennoprzecinkowej w celu treningu sieci neuronowych przy ograniczonych zasobach

Tytuł rozprawy w języku angielskim: Limitation of Floating-Point Precision for Resource
Constrained Neural Network Training

Język rozprawy doktorskiej: angielski

Promotor rozprawy doktorskiej: dr hab. inż. Marek Blok

Drugi promotor rozprawy doktorskiej*: <imię, nazwisko>

Promotor pomocniczy rozprawy doktorskiej*: <imię, nazwisko>

Kopromotor rozprawy doktorskiej*: <imię, nazwisko>

Data obrony:

Słowa kluczowe rozprawy doktorskiej w języku polskim: sieci neuronowe, uczenie głębokie,
uczenie maszynowe, ograniczenie precyzji, asymetryczny wykładnik, liczby
zmiennoprzecinkowe

Słowa kluczowe rozprawy doktorskiej w języku angielskim: neural networks, deep learning,
machine learning, precision limitation, asymmetric exponent, floating point

Streszczenie rozprawy w języku polskim:

Niewystarczająca dostępność wymaganej mocy obliczeniowej i pamięci jest istotnym

ograniczeniem w przypadku eksperymentów obejmujących domenę sztucznej inteligencji.

Niniejsza praca skupia się na rozwiązaniu zarysowanego problemu poprzez trening sieci

neuronowych z użyciem arytmetyki o ograniczonej precyzji. Na podstawie przeprowadzonych

badań autor proponuje nową metodę ograniczenia arytmetyki na potrzeby treningu sieci

neuronowych przy wykorzystaniu niestandardowej reprezentacji formatu zmiennoprzecinkowego

o ograniczonej precyzji z zaokrąglaniem wartości współczynników. Rozprawa prezentuje wyniki

uzyskane dla proponowanej metody na przykładzie wybranych referencyjnych konwolucyjnych

sieci neuronowych, takich jak LeNet, AlexNet i ResNet. Zaproponowane rozwiązanie pozwala na

ograniczenie zasobów wymaganych podczas treningu wybranych sieci neuronowych poprzez

zmniejszenie złożoności obliczeniowej wykonywanych operacji oraz zapotrzebowania na pamięć.

W ramach pracy wykazano również, że zaproponowana procedura umożliwia wytrenowanie

badanych sieci neuronowych bez znaczącej utraty dokładności przy użyciu niestandardowych 8-

bitowych liczb zmiennoprzecinkowych. Udowodniono również, że zaproponowany sposób

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

6

ograniczenia precyzji treningu nie wpływa negatywnie na jego zbieżność i nie jest wymagane

kosztowne wydłużanie treningu poprzez zwiększoną liczbę epok.

Streszczenie rozprawy w języku angielskim:

Insufficient availability of computational power and runtime memory is a major concern when it

comes to experiments in the field of artificial intelligence. One of the promising solutions for this

problem is an optimization of internal neural network’s calculations and its parameters’

representation. This work focuses on the mentioned issue by the application of neural network

training with limited precision. Based on this research, the author proposes a new method of

precision limitation for neural network training leveraging a custom, constrained floating-point

representation with additional rounding mechanism. Its application allows to limit the resources

required during neural network training thanks to the reduction of computational complexity and

memory usage. The work shows that the proposed procedure allows to train commonly used

benchmark networks such as LeNet, AlexNet and ResNet without significant accuracy

degradation while using only 8-bit custom floating-point variables. It has also been proven that

the proposed method of precision limitation does not negatively affect the network’s convergence,

therefore, it is not required to extend the training by increasing the number of costly training

epochs.

* niepotrzebne skreślić

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

DESCRIPTION OF DOCTORAL DISSERTATION

The Author of the doctoral dissertation: Mariusz Pietrołaj

Title of doctoral dissertation: Limitation of Floating-Point Precision for Resource Constrained
Neural Network Training

Title of doctoral dissertation in Polish: Ograniczanie precyzji arytmetyki
zmiennoprzecinkowej w celu treningu sieci neuronowych przy ograniczonych zasobach

Language of doctoral dissertation: English

Supervisor: dr hab. inż. Marek Blok

Second supervisor*: <first name, surname >

Auxiliary supervisior*: <first name, surname >

Cosupervisior*: <first name, surname >

Date of doctoral defense:

Keywords of doctoral dissertation in Polish: sieci neuronowe, uczenie głębokie, uczenie
maszynowe, ograniczenie precyzji, asymetryczny wykładnik, liczby zmiennoprzecinkowe

Keywords of doctoral dissertation in English: neural networks, deep learning, machine
learning, precision limitation, asymmetric exponent, floating point

Summary of doctoral dissertation in Polish:

Niewystarczająca dostępność wymaganej mocy obliczeniowej i pamięci jest istotnym

ograniczeniem w przypadku eksperymentów obejmujących domenę sztucznej inteligencji.

Niniejsza praca skupia się na rozwiązaniu zarysowanego problemu poprzez trening sieci

neuronowych z użyciem arytmetyki o ograniczonej precyzji. Na podstawie przeprowadzonych

badań autor proponuje nową metodę ograniczenia arytmetyki na potrzeby treningu sieci

neuronowych przy wykorzystaniu niestandardowej reprezentacji formatu zmiennoprzecinkowego

o ograniczonej precyzji z zaokrąglaniem wartości współczynników. Rozprawa prezentuje wyniki

uzyskane dla proponowanej metody na przykładzie wybranych referencyjnych konwolucyjnych

sieci neuronowych, takich jak LeNet, AlexNet i ResNet. Zaproponowane rozwiązanie pozwala na

ograniczenie zasobów wymaganych podczas treningu wybranych sieci neuronowych poprzez

zmniejszenie złożoności obliczeniowej wykonywanych operacji oraz zapotrzebowania na pamięć.

W ramach pracy wykazano również, że zaproponowana procedura umożliwia wytrenowanie

badanych sieci neuronowych bez znaczącej utraty dokładności przy użyciu niestandardowych 8-

bitowych liczb zmiennoprzecinkowych. Udowodniono również, że zaproponowany sposób

ograniczenia precyzji treningu nie wpływa negatywnie na jego zbieżność i nie jest wymagane

kosztowne wydłużanie treningu poprzez zwiększoną liczbę epok.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

8

Summary of doctoral dissertation in English:

Insufficient availability of computational power and runtime memory is a major concern when it

comes to experiments in the field of artificial intelligence. One of the promising solutions for this

problem is an optimization of internal neural network’s calculations and its parameters’

representation. This work focuses on the mentioned issue by the application of neural network

training with limited precision. Based on this research, the author proposes a new method of

precision limitation for neural network training leveraging a custom, constrained floating-point

representation with additional rounding mechanism. Its application allows to limit the resources

required during neural network training thanks to the reduction of computational complexity and

memory usage. The work shows that the proposed procedure allows to train commonly used

benchmark networks such as LeNet, AlexNet and ResNet without significant accuracy

degradation while using only 8-bit custom floating-point variables. It has also been proven that

the proposed method of precision limitation does not negatively affect the network’s convergence,

therefore, it is not required to extend the training by increasing the number of costly training

epochs.

*delete where appropriate

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

9

STRESZCZENIE ROZSZERZONE W J. POLSKIM

W dzisiejszych czasach informacja stała się jednym z najcenniejszych zasobów. Wzrost

liczby urządzeń komunikujących się ze sobą oraz zbierających informacje na temat swoich

użytkowników sprawił, że dostęp do obszernych źródeł danych z wielu dziedzin jest większy niż

kiedykolwiek wcześniej. W wielu przypadkach analiza lub określanie zależności pomiędzy dużymi

zbiorami danych stanowią realną przeszkodę w ich efektywnym wykorzystaniu [1]. Odpowiedzią

na ten problem mają być algorytmy sztucznej inteligencji, w tym szeroko rozumiane sieci

neuronowe [2].

Rosnąca złożoność problemów i wymagania jakościowe stawiane przed współczesnymi

architekturami sieci neuronowych zapoczątkowały gwałtowny wzrost zapotrzebowania na moc

obliczeniową i zasoby sprzętowe wymagane do ich inferencji oraz znacznie bardziej złożonego

treningu [3]. Wraz ze wzrostem wymagań, wykorzystanie ogólnodostępnych procesorów okazało

się niewystarczające, co skłoniło badaczy do poszukiwania alternatywnych rozwiązań

sprzętowych takich jak karty graficzne lub niestandardowe architektury oparte na bezpośrednio

programowalnej macierzy bramek [4]. Rosnący koszt energii i sprzętu niezbędnego do

wytrenowania współczesnych sieci neuronowych był naturalnym następstwem wykorzystywania

coraz większej mocy obliczeniowej i złożonych architektur docelowych modeli. Czynniki te skłoniły

badaczy do zgłębienia tematu możliwego ograniczenia wymagań zasobów stawianych przez

standardowe procedury wykorzystania sieci neuronowych [5] [6] [7] [8].

Początkowe badania dotyczące optymalizacji sieci neuronowych skupiały się głównie na

mniej skomplikowanej, lecz znacznie częściej wykonywanej fazie inferencji. Techniki takie jak

kwantyzacja, pruning czy uwspólnianie wag pozwalają na znaczne zmniejszenie rozmiaru jak i

złożoności obliczeniowej modelu [9]. W ślad za tym pojawiły się rozwiązania sprzętowe, w tym

akceleratory, pozwalające na efektywne wykorzystanie zoptymalizowanych topologii modeli [10]

[11] [12]. Pomimo iż wymienione metody zostały na stałe ugruntowane w rozwiązaniach

wdrażanych produkcyjnie oraz bibliotekach programistycznych, temat optymalizacji treningu jest

nadal otwartym zagadnieniem [13].

W rozprawie przedstawiony jest przegląd propozycji i rozwiązań opracowany na bazie

dostępnej literatury. Techniki obejmują zarówno rozwiązania programistyczne [5] [6] [14] jak i

czysto sprzętowe [15] [16] [17]. Ze względu na kierunek przedstawionej pracy i skupieniu się na

zagadnieniu treningu sieci neuronowych z wykorzystaniem liczb o ograniczonej precyzji,

szczególnej uwadze poddano rozwiązania dotyczące kwantyzacji, ograniczonej i mieszanej

precyzji liczb zmiennoprzecinkowych oraz wspierające je rozwiązania sprzętowe.

Po zarysowaniu teorii dotyczącej wybranych architektur sieci neuronowych oraz ich

optymalizacji, przedstawiony został cel pracy, którym było opracowanie nowej metody

ograniczenia arytmetyki na potrzeby treningu konwolucyjnych sieci neuronowych przy

wykorzystaniu zmniejszonej precyzji liczb zmiennoprzecinkowych. Dodatkowo przyjęto założenie

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

10

braku znaczącej utraty jakości wytrenowanych w ten sposób modeli. W ramach tego zagadnienia

postawione i udowodnione zostały dwie tezy:

1. Możliwe jest wytrenowanie referencyjnych sieci neuronowych takich jak LeNet,

AlexNet i ResNet-18 przy użyciu niestandardowych 8-bitowych liczb

zmiennoprzecinkowych bez znaczącej utraty dokładności w porównaniu do treningu z

użyciem 32-bitowych liczb zmiennoprzecinkowych opisanych w standardzie IEEE-754.

2. Zastosowanie zaproponowanej metody ograniczenia precyzji arytmetyki do treningu

konwolucyjnych sieci neuronowych przy zmniejszonej precyzji liczb

zmiennoprzecinkowych pozwala na ograniczenie wymaganej do realizacji treningu

mocy obliczeniowej oraz pamięci.

Autor rozprawy przeprowadza analizę wykorzystania wykładnika 32-bitowych liczb

zmiennoprzecinkowych podczas treningu wybranych sieci neuronowych na publicznie

dostępnych zbiorach treningowych. W ramach tej analizy zaobserwowana została

nieefektywność wykorzystania bitów wykładnika dostępnych w 32-bitowym typie IEEE-754.

Przedstawione zjawisko wskazuje, że z dużym prawdopodobieństwem użycie liczb

zmiennoprzecinkowych o mniejszym zakresie bitowym do treningu wskazanych architektur sieci

neuronowych nie spowoduje pogorszenia skuteczności tego treningu.

Następnie zaprezentowana została autorska metoda ograniczonej arytmetyki na

potrzeby treningu sieci neuronowych opierająca się na wykorzystaniu niestandardowego,

ograniczonego bitowo typu danych zmiennoprzecinkowych. Wskazana technika, oprócz

ograniczenia pamięci wymaganej przez poszczególne parametry sieci neuronowej, wprowadza

również modyfikację interpretacji wykładnika poprzez zastosowanie jej asymetrycznej

reprezentacji z przesunięciem. Oznacza to, że wszystkie bity przeznaczone na wykładnik

reprezentują tylko wybrany zakres jej ujemnych wartości. Dodatkowe przesunięcie pozwala na

odpowiednie dopasowanie zakresu wartości reprezentowanych przez wykładnik do wybranej

architektury sieci. Oprócz wymienionych elementów, metoda uwzględnia również

zdenormalizowaną reprezentację wartości oraz zaokrąglanie stochastyczne niwelujące

ograniczenia wynikające z dostępnego podczas treningu bardzo zawężonego zbioru wartości

zmiennoprzecinkowych. W celu zastosowania przedstawionej metody opracowano środowisko

programistyczne wspierające wymienione techniki, co zostało przedstawiona na Rys. 1.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

11

Rys. 1. Środowisko programistyczne proponowanej metody ograniczenia arytmetyki treningu sieci
neuronowych z użyciem liczb zmiennoprzecinkowych o zmniejszonej precyzji

W celu sprawdzenia efektywności zaprezentowanej metody przeprowadzono liczne

treningi referencyjnych sieci neuronowych. Jako punkt odniesienia prezentowanych wyników

przyjęto rezultaty referencyjnych sieci neuronowych trenowanych z użyciem wielu wariantów

długości bitowej liczb zmiennoprzecinkowych. Następnie przeprowadzono analogiczne treningi

wraz z zastosowaniem przedstawionej metody w pełnym zakresie dostępnych kombinacji liczby

bitów wykładnika i mantysy. We wszystkich przypadkach ograniczenie precyzji było realizowane

programowo i wykonywane na ogólnodostępnych procesorach z wykorzystanie tymczasowej

translacji limitowanych zmiennych do typu 32-bitowego. Tabela 1 przedstawia rezultaty

porównania wyników treningu sieci neuronowych przy użyciu proponowanej metody z

uwzględnieniem różnych wariantów reprezentacji 8-bitowego typu zmiennoprzecinkowego.

Dodatkowo Tabela 1 przedstawia porównanie dokładności trenowanych sieci

neuronowych z ograniczoną precyzją ze standardowym treningiem 32-bitowym. Podkreślone

wartości wskazują konfiguracje w których proponowana metoda pozwoliła na uzyskanie

dokładności powyżej standardowego podejścia 32-bitowego. Wyniki te wskazują również, że

użycie proponowanej metody nie wymaga zwiększenia liczby epok treningowych, co mogłoby

negatywnie wpłynąć na zakres zużytej energii i czasu wykorzystania zasobów obliczeniowych.

Uzyskane rezultaty pozwoliły na potwierdzenie obu postawionych tez. Pierwsza teza:

„Możliwe jest wytrenowanie referencyjnych sieci neuronowych takich jak LeNet, AlexNet i

ResNet-18 przy użyciu niestandardowych 8-bitowych liczb zmiennoprzecinkowych bez

znaczącej utraty dokładności w porównaniu do treningu z użyciem 32-bitowych liczb

zmiennoprzecinkowych opisanych w standardzie IEEE-754” została bezpośrednio

potwierdzona licznymi treningami sieci neuronowych nie tylko w zakresie liczb 8-bitowych, ale

również typów danych o mniejszej liczbie bitów. W przypadku wszystkich weryfikowanych sieci

udało się uzyskać wyniki na poziome standardowych treningów z użyciem 32-bitowych liczb

zmiennoprzecinkowych.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

12

Tabela 1. Porównanie wyników 10-tej epoki treningów z użyciem zaprezentowanej metody na różnych 8-
bitowych wariantach danych zmiennoprzecinkowych, ostatni wiersz przedstawia wyniki dla bazowego 32-

bitowego formatu IEEE-754

Liczba zmiennoprzecinkowa LeNet AlexNet ResNet-18

Liczba
bitów
znaku

Liczba
bitów

wykładnika

Liczba
bitów

mantysy
MNIST CIFAR10 CIFAR100 CIFAR10 CIFAR100

1 1 6 54.84 22.23% 1.98% 8.02% 0.91%

1 2 5 77.81 62.93% 1.46% 9.97% 1.02%

1 3 4 96.15% 72.94% 38.59% 7.34% 1.17%

1 4 3 95.98% 74.50% 38.69% 76.01% 40.21%

1 5 2 95.78% 71.10% 36.02% 62.85% 42.62%

1 6 1 94.66% 66.11% 30.00% 63.39% 39.68%

Bazowy format zmiennoprzecinkowy IEEE-754 32-bit

1 8 23 96.18% 74.39% 38.93% 77.08% 39.54%

Druga teza stawiana w rozprawie: „Zastosowanie zaproponowanej metody

ograniczenia arytmetyki do treningu konwolucyjnych sieci neuronowych przy

zmniejszonej precyzji liczb zmiennoprzecinkowych pozwala na ograniczenie wymaganej

do realizacji treningu mocy obliczeniowej oraz pamięci” została udowodniona pośrednio.

Wykorzystanie typów danych o 75% mniejszej liczbie bitów pozwala na jednoznaczne

zaoszczędzenie zarówno cykli procesora niezbędnych na przeprowadzenia operacji mnożenia i

dodawania liczb zmiennoprzecinkowych oraz składowanie ich wyników w pamięci operacyjnej

[18]. Dodatkowo zmniejszone typy danych jednoznacznie przyczyniają się do ograniczenia

pamięci wymaganej do zapisywania i przechowywania współczynników wytrenowanego modelu.

Osiągnięcie zakładanych rezultatów i udowodnienie tez pracy nie oznacza jednak, że

analizowany problem został ostatecznie rozwiązany. Zaprezentowana metoda otwiera wiele

kierunków dalszych badań i optymalizacji. Oprócz weryfikacji przedstawionych technik na

większej grupie architektur sieci neuronowych, kluczowa jest dalsza optymalizacja samej metody

i jej elementów do poszczególnych parametrów sieci. Dzięki zastosowanej technice przesunięcia

asymetrycznego wykładnika, przedstawiona metoda może zostać użyta w realizacjach o

mieszanej precyzji, wraz ze zmianą przesunięcia istnieje możliwość określenia różnych zakresów

precyzji dla:

• Kolejnych epok treningowych, wprowadzając możliwość regularyzacji uczenia

sieci wraz z postępem procesu treningu,

• poszczególnych warstw danej architektury sieci neuronowej,

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

13

• parametrów sieci neuronowych z rozróżnieniem na wagi, bias [19], gradient i

aktywacje.

Dodatkowym krokiem mającym na celu dokładniejsze określenie oszczędności zasobów

stawianych przez zaprezentowaną metodę jest jej implementacja przy pomocy bezpośrednio

programowalnej macierzy bramek. Prace w tym kierunku zostały już zapoczątkowane przez

Aleksiuk et al. (2023) [20] w ramach implementacji 8-bitowego mnożnika wspierającego założenia

prezentowanej metody.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

14

ACKNOWLEDGMENTS

I would like to thank my supervisor, dr hab. inż. Marek Blok, for his invaluable help and constant

support during the preparation of this dissertation. Without his extraordinary commitment and

immense amount of time spent on steering me in the right direction regarding the conducted

research, it wouldn’t be possible. His insights were instrumental in shaping this dissertation into

its current form, and I appreciate them greatly.

Many thanks to dr inż. Bartosz Czaplewski and mgr Wojciech Borkowski for giving me a

constant access to their computational infrastructure which allowed me to continue my research.

I am extremely grateful to my mother and sister for encouraging me throughout the whole time

and giving me huge motivation to continue this work.

Finally, I wouldn’t have done it without the remarkable patience and understanding of my beloved

fiancée Asia. Despite the circumstances, she continues to support me, even though I should

spend more time with her rather than working.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

15

LIST OF THE MOST IMPORTANT SYMBOLS AND ABBREVIATIONS

AI - Artificial Intelligence

ASIC - Application Specific Integration Circuits

BPTT - Backpropagation Through Time

CIFAR - Canadian Institute for Advanced Research

CNN - Convolutional Neural Network

CPT - Cyclic Precision Training

CPU - Common Processing Unit

DLA - Deep Learning Accelerator

DNN - Deep Neural Network

DSP - Dynamic Precision Scaling

FGMP - Fined-grained Mixed Precision

FLOP - Floating-point Operation

FP - Floating-point

FP32 - 32-bit Floating-point

FP8 - 8-bit Floating-point

FP8-SEB - 8-bit Floating-point Type with a Shared Exponent Bias

FPGA - Field Programmable Gate Array

FPU - Floating Point Unit

GD - Gradient Descent

GPU - Graphical Processing Units

GRU - Gated Recurrent Units

IEEE - Institute of Electrical and Electronics Engineers

ILSVRC - International Large Scale Visual Recognition Challenge

INT - Integer

INT32 - 32-bit Integer

INT8 - 8-bit Integer

IoT - Internet of Things

LDP - Learnable Dynamic Precision

LNPU - Learning Processing Unit

LSTM - Long-Short Term Memory

LUT - Lookup Table

MAC - Multiply-accumulate

MB - Megabyte

ML - Machine Learning

MNIST - Modified National Institute of Standards and Technology

MoFQ - Mixture-of-Formats Quantization

NaN - Not a Number

NLP - Natural Language Processing

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

16

NN - Neural Network

NPU - Neural Processing Unit

PCM - Precision-Controlled Memory

PE - Processing Engine

PTQ - Post Training Quantization

QAT - Quantization Aware Training

R&D - Research and Development

ResNet - Residual Neural Network

RNN - Recurrent Neural Network

TPU - Tensorflow Processing Unit

UNPU - Unified Neural Processing Unit

VGG - Visual Geometry Group

XLA - Tensorflow Accelerated Linear Algebra

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

17

TABLE OF CONTENTS

1 INTRODUCTION .. 19

2 NEURAL NETWORKS ... 24

2.1 Training... 24

2.2 Topologies .. 25

2.2.1 Convolutional NN .. 26

2.2.2 Recurrent NN ... 29

2.2.3 NN parameters .. 31

2.3 Floating-point representation ... 31

2.3.1 IEEE-754 ... 33

2.3.2 Precision and rounding .. 36

2.4 Neural Network Acceleration .. 39

2.4.1 Inference acceleration ... 40

2.4.2 Training acceleration ... 43

2.4.3 Resource demand ... 46

3 NUMERICAL PRECISION LIMITATION IN NEURAL NETWORKS 50

3.1 Related study ... 50

3.1.1 Fixed- and floating-point limitations ... 50

3.1.2 Mixed-precision approaches ... 51

3.1.3 Hardware proposals .. 53

3.1.4 Results comparison ... 54

3.2 Limitation framework .. 58

3.3 Limitation results .. 61

3.3.1 LeNet ... 62

3.3.2 AlexNet .. 64

3.3.3 ResNet ... 67

3.4 Exponent utilization .. 73

4 EXPERIMENTS AND RESULTS ... 79

4.1 Method proposal ... 79

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

18

4.1.1 Asymmetric exponent ... 80

4.1.2 Stochastic rounding .. 83

4.1.3 Denormalized values .. 85

4.1.4 Method’s application ... 87

4.2 Conducted trainings ... 88

4.2.1 LeNet .. 88

4.2.2 AlexNet ... 89

4.2.3 ResNet .. 91

4.3 Method’s features impact analysis .. 96

4.3.1 Exponent shift analysis ... 96

4.3.2 Denormalization .. 100

4.3.3 Approach to activations .. 100

4.4 Results convergence ... 101

5 SUMMARY... 106

5.1 Future directions .. 107

6 REFERENCES .. 109

7 LIST OF FIGURES .. 120

8 LIST OF TABLES .. 123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

19

1 INTRODUCTION

Nowadays, information can be treated as one of the most precious resources. The

continuing expansion of Internet of Things (IoT) along with an increasing number of various mobile

devices, sensors and smart utilities produces an unprecedented amount of data every day. The

ability to efficiently process, analyze, and filter data is one of the main challenges facing the big

data domain [1]. Application of Artificial Intelligence (AI) is often presented as a viable solution for

this problem, especially in case of extremely large, differentiated datasets [2]. Unfortunately,

increasing complexity and abundance of incoming data requires more resources for effective

processing. This issue is especially vivid in the case of neural networks (NN) evolution and its

adaptation by the industry [21]. Along with the difficulty of the problems that need to be solved,

there can be observed a growth of NN architectures size and complexity [3]. Many recent

improvements have been implemented at the cost of additional computational power, runtime

memory and storage required by NN designs which poses a question of both financial and

environmental profitability in terms of NN applications if such a trend remains unchanged [22].

Although big data is much more accessible today for the industry and researchers, its

applicability to machine learning is not always straightforward. Lack of accurately labeled data is

still a relevant concern for many classification tasks, especially in case of supervised learning

[23]. Continuous improvement of NN models, depending on training data accessibility, was

followed by increasing storage and computational requirements [24]. Leveraging Graphical

Processing Units (GPU), Field Programmable Gate Array (FPGA) and Application Specific

Integrated Circuits (ASIC) was a common response from the research community to overcome

high computational demands [4]. Further development started a rapid increase of neurons in

broadly used NN architectures and shifted researchers focus to deep neural network (DNN)

topologies. Fig. 1.1 gives a good perspective on a growing computational and memory complexity

as an aim to achieve better classification accuracy.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

20

Fig. 1.1. Top-1 accuracy compared to the computational complexity of NN models in floating-point
operations (FLOPs) required for a single forward pass. The size of each ball corresponds to the model’s

complexity (required memory in MB) [3]

Utilization of deeper NN topologies brought a disadvantage of a significant number of

power-consuming floating-point operations. Additionally, the growing size of neural network

architectures translated to bigger memory footprint [3]. These problems were apparent in the case

of both training and inference. Over recent years, many researchers pursued the subject of

resource efficiency of neural networks [5] [6] [7] [8]. The utilization of less resource demanding

operations was one of the paths which showed satisfactory results. Focusing on restraining

power-hungry floating-point operations proved to be an effective way for limiting both

computational and memory requirements. Multiple techniques such as pruning or quantization of

regular IEEE-754 32-bit floating-point parameters have been successfully adapted by the industry

to improve resource efficiency of the inference process [9]. Nevertheless, this technique is not

always easily applicable to the training phase of neural models which requires much more time

and resources.

Modern machine learning domain relies on high performance GPUs and cloud computing

with robust datacenter backends [25]. Nevertheless, plenty of neural network-based solutions are

developed and deployed on mobile and low-power devices [26]. Software optimization is not

always sufficient for running AI applications in such a constrained environment. Hence, innovation

on the hardware side of the machine learning (ML) applicability is crucial for broader

productization of modern AI [15] [16] [17]. The most vivid response from the market in the

hardware field are dedicated chips and accelerators, often integrated into common processing

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

21

units (CPU). Market leaders such as Nvidia, Google, Intel and Qualcomm continue development

on this path as general purpose hardware is not always efficiently utilized in the case of NN

processing [27]. The influence of AI specific hardware is especially visible in the case of

functionalities that need to be continuously enabled on the device such as phrase recognition,

voice translation or image augmentation [28]. Offloading such computation to low-power neural

accelerators significantly increases energy efficiency of the device and related user experience.

However multiple effective methods of neural network optimization have been proposed,

the aspect of low-resource training process is still an open issue [13]. The initial focus on the

inference is understandable as the network, once it is trained, can be used and deployed on

multiple devices. Additionally, experiments showed that inference is much more resilient to

parameters precision limitation [29]. The training phase, required for NN model preparation,

requires much more resources and a significant amount of input data. Although in theory this

process can be done only once, in practice creating a good quality model requires extensive

experimentation and hyper-parameterization [30]. Limiting the time and resources required for

such a model preparation would allow for a broader experimentation phase within the research

community and faster productization of less resource demanding products [22]. Fig. 1.2 presents

an overview of the inference and training comparison.

Fig. 1.2. Simplified overview of NN training and inference processes

Although resource utilization and efficiency of neural network-based solutions is an

extremely important aspect, factors of privacy and security cannot be overlooked, especially in

terms of low-power devices. A growing number of mobile applications base their functionalities

on various forms of NN architectures. Such a model can be inferred on the device itself or

offloaded to a cloud backend [31]. Inference on a user’s device requires usage of a memory

constrained neural network model which is usually trained before the deployment into the device

takes place [32]. Such an approach often limits the performance of the model and requires re-

deployment of a new instance in case there is an update of the functionality. Usage of a cloud

infrastructure for NN related computations resolves issues related to the device’s hardware

limitations as long as there is a stable network connection available. However, transferring user

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

22

data to an external server can be treated as a potential privacy and security risk [33]. Ideally, the

model should be able to continuously adapt to users’ private data without transferring it outside

the device. Optimization of the training process may be a promising solution for these problems.

In the face of the contradictory relation between AI solutions and scarcity of available

resources, the aim of the study considers the following subjects:

1. Verification of influence of limited precision variables to the training quality of popular

benchmark convolutional neural networks.

2. Consideration of limited precision influence on resource consumption of neural network

training process.

3. Proposition of neural network training process with limited precision floating-point variables,

including new data type parameters format.

Based on the aims set for this dissertation, the following theses are to be proven by the

conducted studies:

1. It is possible to train popular convolutional neural networks as LeNet, AlexNet and

ResNet-18 with custom 8-bit floating-point variable’s type without significant

classification accuracy degradation in comparison to regular IEEE-754 32-bit floating-

point.

2. Application of the proposed arithmetic precision limitation method for convolutional

neural networks training with low level bit count floating-point variables allows to

decrease computational power and memory requirements.

This dissertation is organized in a form of 5 separate chapters. The following, chapter 2,

starts with a concise presentation of the theory behind NN training with a major focus on several

common neural topologies used in this area. Afterwards, it outlines a background behind floating-

point representation with a perspective on its limitations and popular rounding techniques that are

also applicable to the ML domain. The wide area of NN optimization and acceleration is covered

at the end of chapter 2 including software and hardware-based solutions. The next, 3rd chapter,

is solely focused on neural network precision limitation. It opens with a related study section

containing a wide presentation of the dissertation’s results in comparison to other researchers’

outcomes. Subsequently starts the description of experiments on NN limitations conducted by the

author, giving an insight into the influence of limited precision parameters to the network’s

classification accuracy. Additionally, the exponent utilization results are presented and

commented as an introduction to the proposed limitation method. Chapter 4 depicts the proposed

method along with an explanation of the techniques incorporated into the training process.

Moreover, details of the conducted experiments are presented for several neural network

architectures. The impact of incorporated method’s features is also discussed with a strong focus

on neural network training convergence. The last, 5th chapter, closes the dissertation with a

summary and directions for the future work on the presented method of NN training with limited

precision. Fig. 1.3 gives a detailed overview of the dissertation’s structure.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

23

Fig. 1.3. An overview of the dissertation’s structure

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

24

2 NEURAL NETWORKS

The foundation of NN creation lies in the attempt to model a human brain behavior with a

mathematical algorithm [34]. In general, this structure aims to approximate the relation between

input and output data during the process of training. As in the case of a human brain, neurons are

core building elements of the whole network entity. In the initial proposal in 1958, a single artificial

neuron, also known as perceptron, includes three basic features as weights, bias, and activation

[35]. Based on its state, a neuron can react accordingly to the input data and fire with a response

providing output for other elements of the network. The mechanics behind this functionality can

be described by the following equation.

𝑦 = ƒ𝑎((∑ 𝑥𝑖 ∙ 𝑤𝑖
𝑛
𝑖=1) + 𝑏) (2.1)

where:

𝑦 – output of the neuron,

ƒ𝑎(⋅) – activation function,

𝑥𝑖 – i-th input of the neuron,

𝑤𝑖 – weight assigned to the i-th input of the neuron,

𝑏 – bias.

Although a single neuron cannot be used for any complicated task, it proves to be

extremely useful when scaled into a form of a larger structure. Modern NN architectures consist

of millions of artificial neurons connected with each other. In most cases those neurons are

grouped in the form of layers which output is then passed as an input to other deeper parts of the

structure forming a deep neural network [3]. Fig. 2.1 depicts a single artificial neuron.

Fig. 2.1. Single artificial neuron with two inputs [36]

2.1 Training

The procedure of neural network training is a heavily time and resource consuming

process. In order to adapt the network to a particular problem, weights and biases of each neuron

have to be tediously adjusted based on the training input and the current network’s predictions.

This issue is especially vivid in the case of deep neural networks where mentioned adjustments

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

25

need to be continuously applied to millions of neurons grouped in hundreds of layers. In fact, this

problem was the reason behind the longtime lack of interest for NN in the field of AI [37].

The mechanism of backpropagation proved to be a solution for deep neural network

training. It leverages chain rule for derivatives calculation in order to establish a gradient of a loss

function with respect to the parameters of the models [38]. Thanks to this mechanism it is possible

to establish the influence of a single parameter on a final error of the network. Along with the

application of optimizers such as Gradient Descent (GD), and its variations like Stochastic GD,

Batch GD, Mini-Batch GD [39], it enables deep neural network training by adjusting trainable

parameters. Additional hyper-parameters such as learning rate and batch size enable the

algorithm to define the size of the update steps or frequency of gradient calculation in relation to

input data samples. Fig. 2.2 presents a simple one-layer neural network structure with a single

backpropagation example for one of the paths in a network.

Fig. 2.2. Backpropagation chain rule example - gradient calculation with respect to a single weight
parameter (biases excluded)

Frequent gradient calculation and parameters adjustment requires many floating-point

based multiplications which are one of the most power-hungry operations. Hence, gradient

calculation and update of the network’s parameters are the most computationally expensive parts

of the neural network training [40]. It needs to be mentioned that there are several issues

connected with gradient calculation such as gradient explosion or gradient vanishing [41]. The

latter one is especially important in case of using limited precision parameters for NN training.

Additional reduction of precision increases the vanishing effect of small floating-point numbers

that require high negative exponent values [42]. Those are only a few reasons why researchers

still pursue a more efficient way for DNN training.

2.2 Topologies

The transition from a perceptron to a multilayer perceptron can be treated as the

beginning of deeper NN architectures [43]. The ability to stack neurons in layers enabled

researchers to touch much more complex problems that led to the growing size of proposed

architectures. It is generally accepted that a structure with more than two layers can be called a

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

26

DNN, however, modern architectures often significantly exceed this minimum [44] [45]. Fig. 2.3

gives an example of a simple multilayer perceptron with input layer, output layer and two hidden

layers.

Fig. 2.3. Deep Neural Network with two hidden layers [46]

The evolution of robust deep learning architectures enabled neural networks to represent

multiple levels of abstraction in the scope of available training data [47]. Easier access to large

amounts of data and high computational power led to multiple breakthroughs in image, video [48]

[49] and natural language processing [50], making this domain a main ML solution when it comes

to solving complex problems. The input data format was an additional factor that influenced neural

topology designs. In general, initial artificial NNs treated input as a vector of correlated numbers.

However, such an approach proved to be insufficient for multi-dimensional data such as images

[51]. Additionally, in many cases the time relation between input data is crucial for its

understanding and proper classification or new data generation. Those, among many, factors

highly contributed to the evolution of convolutional [52] and recurrent [53] neural networks that

are known today and were used as a starting point for further architectural improvements in the

field.

2.2.1 Convolutional NN

Convolutional Neural Networks (CNN), which are a focus of this dissertation, are one of

the architectures which have been highly adopted by the industry. They proved to be especially

useful in case of image and audio pattern processing [52]. The key element differentiating CNNs

from regular NN is the ability to efficiently handle spatial dimensionality of the input. A batch of

images is a good example of such data [51]. We can distinguish two basic dimensions as height

and width, the third dimension based on the number of samples can be treated as the depth of

the input. It needs to be mentioned that we could still use a multilayer perceptron for processing

such data, but it would be much more complex and require additional data preparations such as

flattening. Although regular fully connected layers are still used by CNN architectures, there are

two main additional mechanisms that differ from this architecture: convolution and pooling. The

combination of multiple instances of these layer types is the reason behind such appreciated

effectiveness of CNNs.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

27

Convolution layer treats its 1D or 2D input as a map of features. This map is scanned by

a filter which is applied to the whole input including its depth which is perceived as input channels.

The result of the filter operation creates an output features map. After applying activation, it can

be used as an input for deeper layers of the network, commonly this structure is called an

activation map. The number of filters used for the convolution layer defines output channels which

state for the depth of the output. Fig. 2.4 depicts an example of a convolution with one channel

4x4 input, single 2x2 filter, stride equal to 1 and no padding.

Fig. 2.4. Example of a simple 1 channel 2d convolution

In case of high-resolution input, applying multiple convolutions might be a computationally

heavy procedure. In order to reduce dimensionality of feature maps, neural network models

leverage pooling layers which allow for limiting the number of operations in a model. Max and

average pooling are the two most commonly used layers for this purpose. In a similar fashion to

convolutions, there are multiple parameters that can be adjusted in case of pooling such as kernel

size or overlapping. Fig. 2.5 gives an example of 2x2 max pooling with stride 2, applied to a one

channel 4x4 input.

Fig. 2.5. Example of a simple 1 channel max pooling

Fully connected layers are usually applied at the end of convolutional network topology.

A meaningful showcase of abilities of such CNN architecture was LeNet-5 designed for zip codes

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

28

reading in the US postal offices [54]. The originally presented neural network consisted of three

convolutional layers, two pooling layers followed by two fully connected layers and a softmax

classifier. The overall number of trainable parameters of this network totals to 60000. Fig. 2.6

presents the original LeNet-5 network as proposed by (LeCun et al 1998) [55].

Fig. 2.6. Original LeNet-5 architecture [55]

The modern interest in deep CNN topologies has been restored by the winner of the 2012

ImageNet competition AlexNet. The challenge involved a trainset of 1.2 million images split into

1000 categories. Evaluation of models was done on a separate classification test data that has

not been previously seen by the competing models [56]. The AlexNet architecture outperformed

other competitors by almost over 10 percentage points of accuracy [48]. The results have been

achieved thanks to a large CNN topology which was executed on GPU instead of, popular at this

time, CPU. This event initiated a rapid shift to GPU NN training, which is confirmed by the change

in ImageNet challenge submissions. In 2012 four entrants used GPUs, when in 2014 almost all

110 were using such devices [40]. Fig. 2.7 depicts the original topology of AlexNet architecture.

The size of the network was so big for current standards that it had to be trained on two GPU

cards due to hardware memory constraints [48].

Fig. 2.7. Original AlexNet architecture [48]

The success of AlexNet started the pursuit of continuously growing network architectures

as VGG [57] and GoogLeNet [58], where improved accuracy of the model has been achieved at

the cost of increasing the number of layers and computational complexity. Although, in theory,

more robust neural networks should provide better prediction accuracy, it became apparent that

increasing the number of layers enhances the problem of exploding and vanishing gradient [59]

[60]. The novel architecture change proposed by Zhang et al. (2016) [61] addressed this problem

by introducing ResNet (Residual Network) which won the 2015 ImageNet competition. The key

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

29

idea behind ResNet revolves around shortcut connections which skip one or more layers in the

network’s topology providing an identity mapping by adding the output of such a layer to the output

of skipped layers. An example building block of a residual connection is presented in Fig. 2.8.

Fig. 2.8. An example of a residual building block with a shortcut connection [61]

ResNet provides a scalable architecture for building a deep neural network topology.

Although in order to lower training time and the complexity of the model bottleneck blocks with

1x1 convolutions are introduced as a replacement for standard building blocks. Fig. 2.9 gives an

example of a building block used for ResNet with 18 and 34 layers, and a bottleneck block

introduced for 40, 101 and 152 layers ResNet versions.

Fig. 2.9. Comparison of a building block (left) and a bottleneck block (right) used in ResNet topology [61]

The proposed approach of building blocks enabled further increases of neural network

depth without degradation of the prediction quality. According to the authors, the presented

architecture allowed to train a ResNet architecture with over 1000 layers with no optimization

difficulty on the method’s side.

2.2.2 Recurrent NN

Another path in the neural network development domain has been directed by the data

which contains a strict time relation between the following input samples. In many input formats

such as audio, video or time labeled statistical data, the sequential characteristic is crucial for its

understanding. Recurrent neural networks (RNN) were developed to address this issue [53]. The

architecture of RNN strongly depends on maintaining a hidden state of a neuron and is based on

the previous output. Such functionality is possible due to recurrent connections in the network,

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

30

allowing for applying information from the previously seen information to a present input. Fig. 2.10

presents an example of simple RNN architecture with one hidden layer.

Fig. 2.10. Example of a simple Recurrent Neural Network

Although powerful, RNN often struggles with learning long-term connections in the

provided data. Moreover, due to sequence dependent characteristics, backpropagation for RNN

networks needs to be extended, this mechanism is known as backpropagation through time

(BPTT) [62]. The RNN design also struggles with problems of vanishing and exploding gradient

due to a fact that a back-propagated error either grows or shrinks in every calculated time step

[63].

The mentioned RNN related issues and the need for more flexible adaptation to

sequential data lies at the architecture of Long-Short Term Memory (LSTM) network. Although

this topology provides additional complexity on the design itself, it proved to be extremely efficient

for sequence data where crucial information is widely spread through time as in natural language

processing [63]. The basic building block of an LSTM layer is a memory block which stores two

states of the unit. The first one called cell states plays a role of long-term memory, the second

one called hidden state is treated as short-term memory. Such a mechanism is achieved with the

application of three gates responsible for forgetting data, storing information in memory, and

adapting the output based on the cell’s memory [64]. The implementation of gates is commonly

accomplished by using a sigmoid function. Fig. 2.11 gives an example of a single LSTM memory

cell.

Fig. 2.11. An example of a single LSTM memory cell

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

31

There are multiple implementation variants when it comes to LSTM architecture [65].

Moreover, a simplified version of the gating mechanism has been proposed in the Gated

Recurrent Unit (GRU), which gained popularity in the research community [66]. The domain of

NN architecture is still evolving, often new designs are proposed and experimented on. The one

that gathers much of the attention in the context of processing sequential data is transformer [67].

2.2.3 NN parameters

Regardless of the size or topology leveraged by a particular NN architecture, the core

implementation depends on simple mathematical operations. Matrix addition and multiplications

stand for the majority of calculations required for both forward and backward passes through the

network [68]. To achieve a sufficient dynamic range of variables for weights, biases and

activations most current implementations depend on IEEE-754 32-bit floating-point representation

available in general purpose hardware [69]. This case is especially important during NN training

where a vanishing gradient problem might be intensified with lower precision variables.

The need for a high number of floating-point multiplications has a direct impact on

computational requirements during neural network training. Floating-point operations are one of

the most power demanding hardware operations. This not only translates to high computational

demands while training large architectures but also the time required for finishing such a process.

These two factors create difficulties not only related to financial effectiveness but also impose a

long time of experimentation and tuning for research and development tasks [70].

Computational requirements are not the only issue related to the usage of 32-bit variables

for NN. In the scale of million parameters, reserving 4 bytes for each parameter can create

problems with storing the network itself, especially in case of low-power devices or chipset’s

internal memory. Even if the instance of the network is stored in the backend it usually takes more

than hundreds of megabytes. VGG-19 with a size of 550MB is a good example of such a case

[57]. Memory issue is much more crucial in terms of runtime memory requirements, in the majority

of cases inferring the network requires loading the trained topology to a runtime memory which is

much scarcer than the regular storage [71]. This is often a blocking constraint for deploying larger

topologies on edge and mobile devices.

2.3 Floating-point representation

Digital systems enforce a binary format for representation of numeric values. Storing them

in a form of ones and zeroes hardly ever easily translates into a commonly used decimal system.

Moreover, due to limited variable’s bit count there are strict constraints when it comes to storing

numerical data in digital memory. Over the years, engineers came up with multiple formats for

addressing this issue [72] [73]. Although, translation of integers to binary system is

straightforward, complications appear in the case of real numbers.

There are two common ways for storing real numbers in digital variables, floating-point

and fixed-point [74]. The first one dedicates a specific number of bits for integers and factorial

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

32

parts of the number, which makes the implementation less complicated. This translates to

economical savings due to lower hardware cost, power and time of computation [75]. Such an

approach, however, not computationally complex, limits the dynamic range of numeric values that

could be stored on a particular number of bits. The answer to this issue, coming at a cost of

additional complexity, was a floating-point representation which stores a number in a form of the

exponent and mantissa. This format can be depicted in the form of the following equation.

𝑥 = 𝑆 ∙ 𝑀 ∙ 𝐵𝐸 (2.2)

where:

 𝑥 – floating-point numeric value,

𝑆 – sign of the value,

𝑀 – mantissa,

𝐵 – base of the number system, two for binary,

𝐸 − exponent.

Fig. 2.12 shows a bit level comparison between an 8-bit fixed-point and 32-bit floating-

point formats representations for numeric value 6.75.

Fig. 2.12. The number 6.75 represented in a) 8-bit fixed-point with 4-bits integral and 3 bits fractional part
b) IEEE-754 32-bit floating-point

Values distribution is another important factor when it comes to a number format type

applicability to an optimized NN training algorithm. As presented in Fig. 2.13 fixed-point type

uniformly distributes its values, the difference between adjacent numbers is always equal to one.

In contrast, floating-point values are distributed non-uniformly providing more representations of

values closer to zero. Moreover, a denormalized range of values specific for floating-point

implementations provides an additional numbers’ representation that otherwise would be rounded

to zero [76]. Such characteristic may be especially important in case where NN training requires

multiple low-value gradient updates.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

33

Fig. 2.13. Values distribution in 8-bit floating-point (FP8) and 8-bit fixed-point (INT8) variable [77]

2.3.1 IEEE-754

The common standard for general purpose computing is IEEE-754 floating-point

providing definitions for 16-, 32-, 64- and 128-bit formats. Higher bit counts which are a

multiplication of 32-bits are also included in the standard [78]. It is mostly appreciated for its high

dynamic range and ease of use when it comes to software implementation. Due to wide global

adaptation, most modern processors contain floating-point processing units (FPU).

The format of a single-precision 32-bit floating-point variable contains:

• 1-bit sign (set to 1 if the number is negative),

• 8-bit exponent with a base of 2,

• 23-bit mantissa.

The 8-bit exponent is split into a range of < −126, 127 > with a bias equal to 127. The

format includes special representations for zero, infinity and “not a number” (NaN) values. In order

to support a wider range of close to zero numbers it introduces denormalized values, also known

as subnormal values, which interpret the leading hidden bit of mantissa as 0. Thanks to this

feature, which is achieved at the expense of significant mantissa’s bits, it is possible to limit

underflow cases as limited exponent range could be easily exceeded during floating-point

arithmetic.

The standard had its beginning in 1985. It specified formats, rounding, exceptions and

operations for floating-point arithmetic. Before then, multiple available hardware architectures

defined their own arithmetic, forcing engineers to support and maintain cumbersome conversion

mechanisms. The IEEE-1987 revision introduced radix-independent floating-point arithmetic.

Other important updates were submitted in 2008 covering binary and floating-point arithmetic,

extensions of types, supplementary functions and attributes. The latest changes were included in

the IEEE-754 2019 providing among others optional augmented arithmetic calculations. It is

argued that future revisions may provide more machine learning focused updates allowing for

sacrificing precision over pure accuracy [79]. Table 2.1 gives an example of several bit variants

of floating-point types.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

34

Table 2.1. Comparison of several floating-point types [80]

Type
Bit count

details
Min (normalized) Max Unit roundoff

16-bit brain
float (bfloat)

8-bit exponent

8-bit mantissa
1.18 × 10−38 3.39 × 1038 3.91 × 10−3

16-bit floating-
point

5-bit exponent

11-bit mantissa
6.10 × 10−5 6.55 × 104 4.88 × 10−4

32-bit floating-
point

8-bit exponent

24-bit mantissa
1.18 × 10−38 3.40 × 1038 5.96 × 10−8

64-bit floating-
point

11-bit exponent

53-bit mantissa
2.22 × 10−308 1.80 × 10308 1.11 × 10−16

Selecting a specific variable type for neural network representation has a direct impact

on its resource requirements. This trend has been especially important in case of inference

optimization when quantization to smaller, often fixed-point, formats enabled minimization of

latency or output size of the model [29]. Although FPUs are commonly available in modern

processors for both GPUs and CPUs, there are still devices that can benefit from using fixed-point

arithmetic, digital signal processing (DSP) units are a good example of that [81]. In case of small

low-power devices, various factors such as speed, power consumption or chip’s area are crucial

requirements for the final productization.

Consideration of pros and cons regarding usage of floating- and fixed-point

representation is not a new problem. Over 25 years ago (Inacio & Ombres 1996) [82] described

their point of view for selecting one of these numeric types to DSP implementations. The domains

that were considered are not so different from those investigated today. The major factors

included cost of the mathematical unit, number of cycles required for computation, ease of use

and software support. Today we consider the same aspects in order to efficiently execute ML

specific computations [77].

Binary representation of a real number format is not the only factor that impacts

calculations’ precision and performance. Besides accessibility to hardware computation units that

can be optimized to support chosen formats of numeric operations, a crucial role is played by the

size of variables that are used. Despite the precision-wise disadvantages of this solution, limiting

bit count of variables is a straightforward method to limit both computational complexity and

memory consumption when it comes to neural network training and inference [40]. Even modern

neural network frameworks such as Tensorflow [83] or Pytorch [84] introduced similar

mechanisms to enable neural network training on 16-bit half-precision or lower floating-point

variables [26] [85].

Considering the bit-width of used variables, interesting research on custom floating- and

regular fixed-point usage has been conducted by (Barrois & Sentieys 2017) [75] in a relation to k-

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

35

means clustering. The proposed custom floating-point format loosens some IEEE-754 restrictions

on normalization or special values. Their comparison showed a significant overhead in case of

floating-point energy consumption which needs 5-12x more energy for adders and 2-10x in case

of multipliers. However, when both numeric types were applied to k-mean clustering task, the 8-

bit floating-point algorithm was 80% more accurate than the 8-bit fixed-point with only a 1.6 energy

increase. As the increased accuracy enabled the algorithm to converge faster, the overall energy

cost of using fixed-point was higher. It is important to highlight that the advantage of floating-point

variables was not observed for higher bit counts than 16-bit. In such scenarios 16-bit fixed point

was a more efficient choice. The authors see such a scenario as an opportunity for development

of energy-efficient microcontrollers with small bit-width floating-point variables as a compromise

between accuracy and energy consumption.

A few years later Zhang et al. (2023) presented research in the same domain as Barrois

& Sentieys (2017) [75] with focus on low-bit fixed-point and floating-point comparison in relation

to large language models quantization. In their proposal of Mixture-of-Formats Quantization

(MoFQ), the authors proved that although floating-point support translates to higher hardware

cost due to required area size, the difference between fixed-point and floating-point decreases

along with the limited bit count of the supported variables (Fig. 2.14). In terms of 8-bit variables,

the overall required multiply–accumulate (MAC) area is comparable for both types.

Fig. 2.14. Required area size of fixed-point integer and floating-point operators across various bit widths
[77]

When it comes to power efficiency, an interesting study conducted by (Tong et al 2000)

[86] verified the idea of floating-point variables limitation with an aim of energy savings. Their

implementation of optimized floating-point representation included the change of the implied radix,

simplification of rounding modes and most importantly a reduction in mantissa and exponent bit-

width. The presented work confirmed that energy per operation increases linearly with growing

bit count of operands. As presented in Fig. 2.15, an 8-bit multiplication consumes 78% less energy

in comparison to 24 x 24 Wallace tree multiplier [18] used as a baseline. Even in the case of

limiting mantissa to 16-bit, the energy consumption was 32% lower.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

36

Fig. 2.15. Performance of the digital multiplier across selected floating-point variables bit-widths [86]

The above results should be interpreted along with power consumption per functional

block in a single precision multiplier. As presented in Table 2.2, the authors measured that over

80% of power is used by the unit responsible for mantissa multiplication. These results show that

limiting mantissa bit count may be especially important in terms of power efficiency for precision

limited NN training. Even earlier studies of (Meier et al. 1996) [87] and (Callaway et al. 1997) [88]

confirm that limitation of variables’ bit count translates to a significant reduction of the multiplier’s

power consumption.

Table 2.2. Power consumption of a single precision floating-point multiplier [86]

Functional Block Power consumption (% of total)

Mantissa Multiplier 81.2

Rounding Unit 17.9

Exponent Unit 0.833

Others (exception handling etc.) 0.066

2.3.2 Precision and rounding

The uniform placement of a decimal point in a fixed-point format allows for more natural

translation of real numeric values to binary representation. Although such simplified

representation may require less complicated hardware arithmetic, it significantly reduces the

dynamic range of a numeric variable [69] . Leveraging fixed-point representation may also create

more complication on the software development side when it comes to handling overflow and

underflow scenarios. Additionally, fitting real values into fixed-point arithmetic may especially

suffer due to quantization noise caused by enforced rounding. Such a problem has been already

investigated as early as in 1993 by (Choi et al 1993) [89] who signaled the issue of accumulating

arithmetic rounding and quantization errors with large feedforward neural networks.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

37

It is worth mentioning that rounding related issues may be a vital problem in case of

several aspects of neural network applications, especially in domains where correctness of

inference results is an aspect of security. The work presented by (Jia & Rinard 2021) [90] states

that floating-point error might be used to exploit real-valued neural network verifiers. Such cases

are especially important where space of the input of the model is not constrained or limited.

The necessity of allocating analog numerical values into a limited number of bits, forced

engineers to apply various rounding techniques on digital numeric representations [5]. Although,

rounding to nearest is sufficient for most common use cases, it may pose a significant problem in

the case of neural network training where rounding errors tend to accumulate over time. Hence,

stochastic rounding rose in popularity in recent years around deep learning researchers.

Wide application of quantization and precision limitation in the ML field pushed

researchers in the direction of better ways of handling rounding and truncation errors. The

standard to-nearest method, which is a default for IEEE-754 floating-point arithmetic, introduced

many issues due to accumulating errors over the time of training or inferencing the network,

especially in case of low bit-width variables. This reinstated interest in the stochastic rounding

method that was initially proposed in the 1950s [91].

Stochastic rounding, in contrast to the to-nearest technique, proposes a non-deterministic

approach to rounding numbers. In general, two flavors of the method can be distinguished. The

first one randomly rounds the number up or down with 50% probability. The other one, more

commonly used in low-precision machine learning computations, determines the direction of

rounding based on the number’s relative distance to the nearest upper or lower boundary [80].

The following equation sums up the second version of the stochastic rounding algorithm,

which is also presented in Fig. 2.16.

𝑟(𝑥) = ⌊𝑥⌋ + 𝑝, 𝑤ℎ𝑒𝑟𝑒 𝑝 = {
0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦: 1 − (𝑥 − ⌊𝑥⌋)

1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦: 𝑥 − ⌊𝑥⌋
(2.3)

The following alternative of this equation can be considered:

𝑟(𝑥) = ⌊𝑥 + 𝑢⌋, 𝑤ℎ𝑒𝑟𝑒 𝑢 ∈ [0,1) 𝑤𝑖𝑡ℎ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (2.4)

which emphasize hardware design efficiency improvement relying on the possibility of using a

random bit stream generator for the generation of binary representation of the stochastic

parameter 𝑢.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

38

Fig. 2.16. Stochastic rounding with distance-based probability [92]

Although the error with this approach can be larger in a singular case than with to-nearest

rounding, the statistical characteristic enables the reduction of accumulated error on a larger

scale. Fig. 2.17 provides a comparison of accumulated error between 16- and 32-bit IEEE-754

floating-point, and 8-bit floating-point with stochastic and to-nearest rounding. The experiment

involved multiplication of two randomly generated vectors containing one hundred 64-bit floating-

point elements each. The average limitation and rounding error have been calculated for each

iteration.

Fig. 2.17. Comparison of average error after multiplication of two vectors with 64-bit floating-point variables
for various variable types and rounding techniques

Based on Fig. 2.17 it can be observed that along with increasing test iterations the

average error of 8-bit floating-point with stochastic rounding is decreasing and after 100000

iterations gets lower than the one for 16-bit IEEE-754 floating-point. On the other hand, types with

to-nearest rounding maintain a constant level of error. As explained by (Connolly et al 2021) [80]

rounding errors produced by stochastic rounding are mean independent. Additionally, it allows to

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

39

avoid stagnation which is especially important for tiny parameters updated in NN. Random based

rounding increases a chance for error cancellation, especially in case of low precision numbers

where mantissa bit count is highly limited.

An important aspect that needs to be considered when it comes to the application of

additional rounding techniques is their overhead on the overall algorithm. Although accuracy

results may improve due to the rounding, it is important to not sacrifice possible efficiency gains.

This opens a subject of hardware support for efficient stochastic rounding. First hardware

implementation of stochastic rounding was presented in the 1950s [93]. Researchers continue

the work on this subject with dedicated stochastic rounding accelerators which may make

software implementations redundant in the highly efficient implementations. For example, the

proposal presented by (Mikaitis 2021) [94] focuses on algorithms and hardware-based

acceleration for various fixed-point types commonly used in ML. The solution includes mixing of

the used formats and, as the authors suggest, it should be applicable to floating-point arithmetic

adders and multipliers.

The review of patents and devices done by (Croci et al 2022) [92] shows that multiple

major hardware manufacturers own patents or products supporting stochastic rounding.

Graphcore IPU parallel machine learning accelerators include stochastic rounding of 32-bit values

to 16 bits [95]. IBM patents include using stochastic rounding for floating-point adders and

multipliers [96]. AMD depicts methods for using stochastic rounding for integer adders and

accumulators for 32- and 16- bit mixed precision [97]. Similar methods are presented by NVIDIA

for 64-, 32- and 16- binary and floating-point types [98].

The number of published papers using stochastic rounding with limited precision confirms

its advantages for neural network training. The method includes experiments on 12- and 14-bit

fixed point variables [5], 12-bit floating- and fixed-point with additional context representation [6]

or dynamic precision scaling for 14- and 16-bit fixed-point [7].

2.4 Neural Network Acceleration

Regular purpose hardware rarely provides optimal performance when it comes to specific

calculation tasks. Modern NN architectures give good examples of structures that require

significant computational power and large amounts of high-speed memory. These constraints

were the major reason behind the rapid shift of researchers and industry from standard CPUs to

more efficient GPUs [68]. The parallel computation provided by GPUs proved to be a perfect fit

for huge amounts of multi-add floating-point operations required for neural networks training.

Although such a change usually results in an order of magnitude improvement, the necessity of

having a powerful GPU on the device limits the possible productization use cases especially when

AI models have doubled the usage of computational power every 3.4 months since 2012 [99].

Recent years have shown increasing interest in neural network-based solutions for low-

power devices. The growing domain of mobile and edge devices enforced researchers to avoid

pursuing the best possible classification accuracy at any cost. From now on, computational and

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

40

memory requirements became an important factor in terms of NN architecture’s productization

potential. As presented by Dhar et al. (2020) [100] it applied not only to the hardware design but

also algorithms, software ML libraries and general NN learning theory. New factors, closely

related to mobile devices, as battery life and cost of additional hardware components had to be

considered in the perspective of AI-based features introduction.

In the face of new requirements, both researchers and hardware designers responded

with new ideas. Multiple software techniques focusing on trimming or compressing existing neural

network architectures have been proposed and rapidly adapted by the industry. The same is true

for the hardware side, where the era of AI accelerators has already begun [40].

2.4.1 Inference acceleration

The inference is the most common, user faced functionality provided by a neural network.

Once the network is trained, it can be deployed on a variety of devices as a part of a larger

software application or cloud-based solution. Then the results, for a specific input data, can be

generated with a feedforward mechanism. Such scale of adoption was followed by multiple

software and hardware acceleration techniques for the inference, this section presents a few of

the most popular methods.

Most software techniques for neural network acceleration depend on modifications of an

already trained full-precision model. The aim is to generalize or remove non indispensable

information from the network without heavy impact on the final classification accuracy. The most

common approaches include:

Pruning is aimed to reduce the size of the network by its parameters removal. There are

various ways on how it can be applied to an already trained neural network. Two most common

techniques focus on weights and neurons [101]. The idea is that connections with weights below

a particular threshold have a smaller influence on the final network’s prediction, hence they can

be removed. Similar approach applies to nodes, if the resulting activations are low or close to zero

then there is a big chance that a particular neuron has a minor role in the inference outcome. It is

worth highlighting that the fine-tuning approach can be also applied to pruning. The pruned

network can be retrained to recover some of the lost accuracy [102]. In many cases, removal of

weights or nodes produce a sparse network (Fig. 2.18) which may result in computational

inefficiencies with the usage of general-purpose hardware or modern machine learning libraries.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

41

Fig. 2.18. Example of neural network pruning

Quantization is one of the most common inference acceleration techniques (Fig. 2.19).

The method relies on replacing regular 32-bit floating-point parameters with low-bit integer

variables, however floating-point variants are also considered. It leverages the fact that, in

general, fixed-point operations are much more efficient on general purpose hardware. Post

Training Quantization (PTQ) is a common technique that modifies an already trained neural

network, which no longer requires a high dynamic range for backpropagation steps [103]. In order

to limit quantization error, many frameworks already provide an option of Quantization Aware

Training (QAT) that emulates quantized inference during training time in order to prepare the

model for the quantization step [104]. The usual target for quantization is 8-bit integer but there

are several studies showing ways to compress a network to 4- or lower-bit fixed-point variables

[103]. The extreme case in terms of quantization is represented by binary neural networks which

store parameters values on a single bit [105]. Such architectures enforce changing the regular

neural network mechanisms to bit level operations.

Fig. 2.19. Example of neural network parameters quantization [104]

Weight sharing is another technique focusing on limiting the number of parameters in

the neural network and reducing redundancy. As the name suggests, it relies on reducing

trainable parameters in the network by sharing them between multiple nodes [106]. The most

common scenario for weight sharing applications is using the same weights across convolutional

filters. The other case may include sharing weights between initial layers of single or multiple

neural networks.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

42

Knowledge distillation aims to improve resource efficiency of inference at the cost of

more complicated training steps [107]. It uses a large neural network to supervise and train

smaller topology with similar accuracy results. This technique is commonly referred to as the

teacher-learner approach [108]. It provides a utility to train a smaller neural topology that could

not be trained from scratch on the same dataset as the teacher model. The main advantage of

this method is minimizing entropy and the distance between probabilistic estimates of the network

and in result compressing the final NN model. Fig. 2.20 gives an example of this technique.

Fig. 2.20. Example of a teacher-learner training technique

In the pursuit for the best accuracy to efficiency ratio for neural network inference, a lot of

the above methods are used jointly. There are various examples of such approaches as Han et

al. (2015) [29] where pruning, quantization and Huffman coding are combined to compress CNNs.

In another example Tung et al. (2018) [109] presents CLIP-Q method that leverages in-parallel

pruning and quantization for networks such as AlexNet, VGGNet, GoogleNet and ResNet.

Along with the software proposals, there has been continuous development on the

hardware side of NN acceleration. Using more efficient general-purpose devices was not always

an option to limit the latency or energy consumption of a particular model. This opened an

opportunity for custom neural accelerators and hardware optimizations aiming for better

computational parallelism and memory access reduction.

Such a trend is already visible on the market and supported by major corporations

dedicated to AI development. A few years ago, Google introduced its TensorFlow Processing Unit

(TPU) [10] and Nvidia followed with Deep Learning Accelerator (DLA) [11]. Other vendors as Intel,

Samsung or Qualcomm provide specialized Neural Processing Units (NPU) for AI related

workloads [27]. The key idea is to provide specialized, highly efficient hardware for common ML

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

43

tasks as convolutions, matrix multiplications or activations. Depending on the hardware

placement, ML accelerators can be briefly divided into the following groups.

On-chip accelerators which aim to offload ML related computation from the main CPU.

With the use of multiple Processing Engines (PE), such devices can speed up repetitive matrix-

based computations [12]. This is especially important in case of edge and mobile devices where

inference needs to be done on the device itself. Often the network is stored on the chip memory,

hence there might be a strong limitation when it comes to supported network topologies [100].

Another constraint can be posed by operations supported by a given accelerator which may limit

the use of newer topologies or network layers. Various NPUs [110] or a NN specific accelerator

RENO [111] are good examples of on-chip accelerators.

Standalone accelerators present a domain of often highly specific powerful devices for

ML tasks. Such architecture is not limited by the constraints related to CPU or GPU chip designs

and can be used in separation to general purpose hardware architecture. Additionally, standalone

accelerators are often designed to support both training and inference use cases. The family of

DianNao devices [112] or TPUs [113] shows benefits of such architectures in terms of deep

learning acceleration. Many standalone accelerators leverage field programmable array gates

(FPGA) or application specific integrated circuits (ASIC) for its designs, which manifest a better

performance density than GPUs despite lower throughput [114]. Zhang et al (2015) [115], Guo et

al (2017) [116], Nguyen et al (2019) [117] provide examples of such an approach.

Hardware acceleration can have a significant impact on efficient execution of ML

algorithms. This is especially important in case of on-device inference or algorithms that had to

be close to the data source or sensors such as smart cameras or smartphones [71]. In many

situations, the network throughput is limited, and algorithms response time is crucial for the

application use cases. Nevertheless, in general the common way to provide AI based functionality

is a cloud base backend leveraging powerful datacenters [33] [100]. This scenario combines a

wide range of CPUs, GPUs and ML accelerators that handle ML tasks on a large scale. Many

cloud market leaders such as Amazon, Google, Microsoft support AI cloud acceleration [118].

The infrastructure is used for providing computational power behind common AI applications

leveraging natural language processing, image recognition or risk identification.

2.4.2 Training acceleration

In contrast to the inference, training acceleration is a much less examined subject. Up to

recently, spending days or even weeks on training a particular model was acceptable as long as

proper computational power was available [119]. The continuously growing domain of IoT and

environment related consequences of energy consumption, put into question the rapidly growing

neural network resource requirements. Additionally, usability and privacy aspects force the

industry to focus on on-device NN training [33].

Reducing computational complexity of an algorithm has been often a much cheaper way

to improve overall efficiency. Upgrading the hardware in order to get additional computational

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

44

power can be costly and does not always scale appropriately along with growing input data or

topology sizes [100]. The same goes for custom hardware designs which are usually much more

expensive and require a long research and development (R&D) phase before entering the market

[70]. Due to these reasons, researchers pursue multiple ways of NN training acceleration on

existing general-purpose hardware including the following:

Topology and hyper-parameters tuning are common approaches when looking for

reduction in NN resource consumption. Selecting a smaller topology is an obvious choice to limit

the number of parameters that need to be trained, however, it usually comes at the cost of

decreased performance of the final network. Applying additional normalization and regularization

techniques may also impact the time required for the network to efficiently converge for a given

problem. Tweaking with batch-size or input data size may be an additional factor in speeding up

the training process [120].

Transfer learning is an interesting technique which decreases the time and resources

required for training the neural network. The key element of this method revolves around using

already trained weights of an existing network to solve a different problem, as presented in Fig.

2.21. It has been proved that even if the network has been trained for a different task, the training

time required for adjusting the network to other problems is much shorter than starting the process

from random weights [121]. Unfortunately, this method has its limitations when it comes to training

completely new architectures.

Fig. 2.21. Example of transfer learning

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

45

Usage of half precision variables is a common optimization technique that focuses on

the format of network parameters. IEEE-754 32-bit floating-point is a standard type used for neural

network training. The bit count of parameters used in this process has a direct impact on energy

consumption and memory required for loading and storing the model [86]. Leveraging half

precision 16-bit floating point format for all or part of model parameters is a simple way for

resource savings. A vivid disadvantage of this solution is the limitation of available precision and

dynamic range of the variable. In case of 16-bit floating-point overflow and underflow scenarios

may be much more common, especially during gradient calculations where values can be

extremely low. The response to this problem has been proposed by NVIDIA in a form of mixed

precision training [122]. The method chooses half precision types for parameters where it does

not impact the final accuracy of the network. Additionally, a tool for mixed precision training called

“A Pytorch Extension” (Apex) has been developed in order to support this technique in modern

ML training frameworks [123].

In a similar way to inference, using specific hardware accelerators can have an enormous

impact on NN training optimization. Progressive parallelization and increasing computational

power of available GPUs allowed for training big modern architectures in a reasonable time.

Nevertheless, resource constraints and long training time limit the ability to experimentation,

debugging or touching complex problems in an efficient manner. Increasing the gap between the

continuous growth of modern deep neural models and general-purpose hardware brings concerns

in terms of future scalability of edge-based AI solutions [124]. There are two main paths when it

comes to hardware-based advancements for NN training. The first one revolves around

optimization of currently executed ML operations in relation to memory access, caching and data

throughput. The other one focuses on allowing network designers for more flexibility in terms of

parameters bit count and its precision which often requires specialized software support.

NN accelerators are much less common to support the training stage of the network as

it is a much more complex task. However, there are examples of architectures which support this

use case [27]. Google TPU [10] is one of them, providing its functionality via cloud infrastructure.

Another one is presented by Tensorflow Accelerated Linear Algebra (XLA) which optimizes GPU

operation for specific NVIDIA hardware [125].

Low precision operations support is a crucial advancement when it comes to supporting

a power efficient NN architecture. Fixed point integer values are often not sufficient for inference

of large topologies, the more for their training. Moreover, the general-purpose hardware usually

supports 16-bit variables as the smallest floating-point format. IEEE-754 is not an ideal type for

neural network training, hence enabling experiments on smaller and custom floating-point

representation is an important step to low-power network architectures [122]. Several design

proposals of custom precision accelerators have been presented in the literature, along with

custom precision support as in (Lee et al 2018) [15]. Additionally, such research may enhance

development on efficient binary neural networks.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

46

In general AI hardware supports high-bit floating-point operations and low-bit fixed-point

operations [77]. Nevertheless, the shift in this approach is noticeable as the global GPU

manufacturers as NVIDIA does not stay behind custom NN accelerators. The recently introduced

NVIDIA H100 Tensor Core GPU provides support for efficient 8-bit floating-point operations,

considering the types with 4-bit and 5-bit exponents with comparable performance to the 8-bit

fixed point [126]. Such products show that focusing on training algorithms for NN with low-bit

floating-point variables may be especially fruitful when it comes to the future energy efficient ML

development.

2.4.3 Resource demand

Despite hardware and software advancements in the field of NN acceleration, the rapid

growth of future state-of-the-art models’ performance may be no longer sustainable due to the

continuously growing computational demand [119]. Many novel breakthroughs in the field of

image classification, voice recognition or text generation came from incremental growth of

resources used for the model’s preparation. It is especially visible in the case of hardware applied

to NN training. The advancements over the years were often related to faster CPUs availability

and then overall switch to GPUs. Once using GPU was not enough, then the era of ML

accelerators began with the additional increase of devices used in the process of multi-GPU

training [68]. Finally, the largest, most complicated topologies were pushed out to the cloud due

to their extreme resource requirements [127].

According to (Thompson et al. 2020) [119] over-parameterization of deep learning models

is a key factor contributing to AI sustainability issues as it strictly depends on the growing number

of network parameters and input data points. The cost of model training scales with the product

of its parameters and data points in at least quadratic scaling, highly limiting performance

improvement of existing deep learning architectures. ImageNet competition focused on image

classification task can be a good example of this phenomenon [56]. Fig. 2.22 presents ImageNet

state-of-the-art models along with their number of operations required.

Fig. 2.22. ImageNet competition top-5 error in comparison to the number of operations required by the NN
[114]

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

47

The continuous increase in the image classification accuracy is followed by the growth of

the model itself. This is especially vivid in the case of the newest models as CoCa where the

number of parameters almost doubles for a slight accuracy improvement [127]. This subject has

been deeply investigated by Canziani et al. (2016) [45] in the analysis of practicality of deep neural

network models based on the ImagNet competition submissions. The authors argue that key

factors such as upper computational boundaries or inference time should be a part of

benchmarking for real-life use case models.

Optimization and proper acceleration are potential ways to increase profitability and

market adaptation of cutting-edge AI solutions. Nevertheless, growing cost of developing and

productization of modern AI solutions may become a possible issue for its adaptation by a broader

market. According to recent online publications, keeping a novel ChatGPT [128] chatbot running

costs around $100000 a day which may hinder the profitability of such applications in the future

[129]. Moreover, the estimations suggested by Thompson et al. (2020) [119] based on their

models say that achieving smaller error rates on ImageNet and other benchmark datasets may

be financially and environmentally unprofitable. Reducing 4% percentage points of error on

ImageNet dataset provides, at least, a major polynomial increase in required computation, CO2

production and overall economic cost. Table 2.3 presents their summary for the ImageNet

benchmark.

Table 2.3. Implication of achieving performance benchmarks on the computational requirements from
polynomial and exponential models’ projections [119]

Benchmark Error Rate

Polynomial Exponential

Computation
Required

(flops)

Environmental
Cost (CO2)

Economic
Cost ($)

Computation
Required

(flops)

Environment
al Cost (CO2)

Economi
c Cost ($)

ImageNet

Today:
9.00%

1023 105 106 1024 106 107

Target 1:
5%

1026 108 109 1030 1013 1014

Target 2:
1%

1033 1016 1016 1092 1074 1075

In the past decades, we have observed an enormous growth in various processor

improvements [130]. Deep learning is not the only field where computational power drives the

increase in performance. In his work (Thompson 2017) [131] shows that modern computer chips

and Moore’s Law had a direct impact on productivity growth in the mid-2000s. Similar observation

has been made by Thompson et al (2020) [132] in terms of computational power influence on

progress in the areas of weather prediction, oil exploration and protein folding. In order to maintain

the continuous growth in deep learning and related areas, the computational requirements for

new architectures need to be met by the hardware. One of the promising domains for providing

such computational capacity is quantum computing, however, it is still an open domain for

extensive research [133]. The other one is a possible breakthrough in terms of NN resource

consumption, hence experiments in this area are especially important.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

48

The issue of a narrow approach to deep learning development is also investigated by

Martínez-Plumed et al. (2018) [134] who states that many advancements are not coming from the

architecture or software improvements but are a side effect of computational hardware

advancements. The proposal is to look at the AI advancements in a multi-dimensional way instead

of following a specific task performance. These would include such aspects as economic value,

social value, scientific progress, computer efficiency, data efficiency, automation, reproducibility

and generality. In essence, the idea revolves around comparing the resources spent on preparing

a particular solution as engineering effort, data preparation, implementation and deployment to

the profitability of the outcome.

Although the focus is often put on computational power, the memory limitations are also

an important subject. As stated by Gholami et al. (2021) [135] NLP models have been increasing

in size by 240x every 2 years, however, DRAM memory growth is only 2x over the same period.

Such a situation creates a bottleneck for rapidly growing NN architectures. Similarly, other

researchers state that exponential growth of resource consumption cannot be maintained and

needs to be substituted with architectural, hardware and methodical advancements. The solution

for this problem, depicted as a “memory wall”, was also investigated by Jain et al. (2020) [136]

with a novel approach to tensor re-materialization.

Fortunately, examples of more resource focused NN architectures are also present in the

deep learning domain. The proposals of MobileNet topologies for vision use cases proves that

resource efficiency improvements can be executed also at the architectural level of the model

[137]. The family of EfficientNet designs, the successor of MobileNet, is another example of such

resource constrained approach to the NN design [138]. Both mentioned architectures proved their

strength by winning ImageNet competition.

The global discussion about computational demand raised questions regarding

environmental and social impacts of power-hungry deep learning developments. The carbon

emission of the largest models seems to be noticed by researchers and loudly stated as a possible

issue [107]. Energy consumed by the public cloud providers, and computational requirements of

recent NLP models tend to raise questions about the overall profitability of such designs in terms

of required resources [139]. According to Strubell et al. (2019) [70] the NLP BERT model training

on a GPU is comparable to a trans-America flight in the matter of carbon emission. Patterson et

al. (2021) [140] calculated energy use and carbon footprint for several modern deep neural

models. The authors admit that not only the training step is a problematic factor. In case of leading

AI companies as NVIDIA, Amazon or Google the overall inference cost states for approximately

90% of energy consumed.

Another important aspect of deep learning growth focuses on the financial requirements

for developing new models. Along with larger, more computationally complex topologies comes

an increased cost of energy and hardware utilization required for model preparation. Table 2.4

provides a few examples of training resource required per model based on estimations of

Schwartz et al. (2019) [107]:

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

49

Table 2.4. Selected neural network models comparison in terms of training hardware, time and application
type [107]

Model Device Time Type

BERT-large 64 TPUs 4 days NLP

Grover 256 TPUs 14 days
Fake news
detection

XLNet 512 TPUs 2.5 days NLP

AlphaGo
1920 CPUs and

280 GPUs
N/A Playing GO

However, the advancements in the field are important, the question arises if results

provided by some of the new, extremely large neural network models are justifiable. Often a small

benchmark improvement in specific classification task is achieved only with disproportional

scaling of the network’s architecture [86]. Huge investments required for creation of the state-of-

the-art models might have a negative impact on the deep learning field in general. The ability to

work on such topologies is currently limited by access to resources and can be continued only by

the largest companies with their own cloud infrastructure. Such a situation can limit the possibility

of scientific discoveries by smaller, independent companies or the academic community [22].

Future development directions of ML should take into consideration both environmental and

financial overhead. As discussed by Patterson et al. (2021) [140], there are several aspects such

as increased deep neural network model sparsity, geographic location of ML workloads based on

an available energy mix or even improved datacenters infrastructure that can benefit

environmental footprint and reduce the overall cost of AI development.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

50

3 NUMERICAL PRECISION LIMITATION IN NEURAL NETWORKS

As already discussed, floating-point multiplications, dominant in the process of NN

training, are one of the most power-expensive low-level, digital operations [70]. Limiting the length

of variables by reducing their bit count is one of the most effective methods to reduce

computational overhead and hardware area required for such calculations [114]. Although plenty

of architectures already leverage this approach for inference step [9] [29] [109], NN training with

limited precision is still an open subject for the research community [8] [141] [142].

Once the literature review for this specific domain is introduced, then the presented

chapter focuses on the impact of floating-point precision limitation on a selected, common

convolutional neural networks’ prediction quality. The experiments consisted of numerous NN

trainings, where parameters such as weights, gradients, biases and activations were constrained

in order to fit into low-bit representations. The limitation operation was based on 32-bit IEEE-754

floating-point format and included all possible bit count variants, starting with as low as 1-bit

exponent and 1-bit mantissa, up to the total 32-bit limit of the baseline variable.

3.1 Related study

Based on high adaptation of precision limitation for NN inference, various researchers

pursued a similar path to optimize the computationally demanding training procedure. The scope

of work conducted in this field can be grouped into two general categories of software and

hardware designs. According to available literature, training optimization experiments are

concentrated on leveraging low bit count for fixed- and floating-point variables. Along with further

advancements, the focus has been shifted to mixed-precision NN implementations for both

inference and training. Hardware-based inventions and architectural proposals aim to efficiently

support the mentioned arithmetic allowing engineers to overcome limitations of general-purpose

processors. The inventions in these fields create a promising view for further advancements and

overcoming resource related constraints associated with NN training.

3.1.1 Fixed- and floating-point limitations

Software approach to NN training optimization focuses on modified representation or bit

count changes of the network’s parameters. The approach adopted by Gupta et al. (2015) [5]

examined training NN using fixed-point variables with the limited bit count. Their experiments

show that 12- and 14-bit fixed-point variables are sufficient for NN training as long as stochastic

rounding is applied. The results have been verified on MNIST [143] and CIFAR [144] datasets

achieving almost no accuracy degradation in comparison to the 32-bit floating-point baseline.

Additionally, their work introduced a proposal of a low-precision fixed-point arithmetic hardware

accelerator with support of stochastic rounding.

In a similar way to Gupta et al. (2015), Ortiz et al. (2018) [6] followed experimentation on

12-bit fixed-point parameters. Their work showed that such a limited CNN cannot be trained

without accuracy degradation on the CIFAR10 dataset. The results have been improved with

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

51

application of stochastic rounding during the training process. This operation allowed to train the

mentioned CNN with approximately two percentage points of accuracy degradation. Finally, the

authors proposed a context-based float variable format which allowed to improve the 32-bit

floating-point baseline results by two percentage points. The limitation has been emulated in the

software layer while using 32-bit floating-point variables. It is worth mentioning that in addition to

precision limitation experiments, Ortiz et al. (2018) proposed a power of two network which uses

only bit level operations for limiting memory usage and computational requirements.

Park et al. (2018) [14] proposed a variation of stochastic gradient descent leveraging

Kahan summation to overcome issues with updating low precision parameters. The lazy update

method used in this solution allowed the authors to achieve 32-bit baseline accuracy with 8-bit

signed integer variables. The results have been validated with multiple datasets as MNIST, CIFAR

and SVHN [145].

The work of Fuketa et al. (2018) [146] focused on floating-point variables limitation. The

proposed 9-bit floating-point type included a 5-bits exponent, 3-bits mantissa with the hidden most

significant bit. The authors were able to achieve accuracy on par with 16-bit floating-point

variables. The solution has been verified on two network topologies AlexNet and ResNet-50. The

ImageNet ILSVRC2012 dataset has been used as input training data. Along with the results, the

authors proposed a hardware design required for supporting the method and its size estimations.

Park et al. (2021) [8] approach to limited precision training is based on a custom 8-bit

floating-point type with a shared exponent bias (FP8-SEB). The underlying hardware proposal for

this method introduces multiple-way fuse multiply-add (FMA) trees. The FP8-SEB leverages

tensor with variables consisting of 1-bit sign, 4-bit exponent and 3-bit mantissa. Each tensor can

use a different bias depending on required dynamic range. According to the authors, their

hardware proposal requires 78.1 times less power than standard GPU and overhead related to

additional biasing is negligible. The provided data shows that results for ResNet-18 on ImageNet

achieve 69% accuracy.

3.1.2 Mixed-precision approaches

Various experiments showed that searching for one fit all approach is not always the best

path for finding an optimal solution. The precision required from NN parameters is often

dependable on their role in the network’s topology or phase of the training process. In the spirit of

this principle, the technique proposed by Na and Mukhopadhyay (2016) [147] touches both the

software and hardware side of the optimization problem by introducing Dynamic Precision Scaling

(DPS). The proposed mechanism allows for dynamic adjustment of parameter precision based

on its value. In order to address the need for multiplication of variables with flexible sizes, the

authors introduced multiplayer-accumulator (MAC) design. According to the experiments’ results,

this solution allowed to shorten the training time of LeNet and AlexNet networks by a few times.

Another approach on mix-precision floating-point utilization for NN training has been

presented by Taras and Stuart (2018) [7]. In a similar fashion to Na and Mukhopadhyay (2016),

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

52

their work focused on leveraging DPS technique. The NN has been trained on the MNIST dataset

with parameters limited to 14-bits for weights and 16-bits for activations. The achieved accuracy

was at the level of 98.8%.

Lee (2020) [148] in his research towards energy-efficient neural network training

proposed a fine-grained mixed precision (FGMP) method. In contrast to applying one type of

variable to a specific parameter, the author dynamically adjusts the ratio of 8- and 16-bit floating-

point types during the training. The aim is to achieve the lowest possible power and memory

requirements without decreasing the final accuracy of the NN. Along with the limitation method, a

deep learning neural processing unit (LNPU) is proposed, which aims to double the energy

efficiency of the training process. The results provided by the author stated that this method

allowed to reduce external memory accesses during ResNet-18 training by 38.9%. While tested

on CIFAR10 and ImageNet datasets, the accuracy of the ResNet-18 network was on par with 16-

bit floating-point baseline.

The path of dynamic adjustment of floating-point variable bit count has been also followed

by Rios et al. (2021) [149]. In this case, the technique combines regular 32-bit floating-point type

with brain floating-point half-precision type. The author claims that 16-bit type stands for up to

96.4% of all computations required during the training. The method achieved results close to 32-

bit floating-point baseline on AlexNet, Inception and ResNet-50 architectures.

The Cycling Precision Training (CPT) developed by Fu et al. (2021) [141] relies on

initializing the training process with low precision variables and incrementation of their bit count

along further iterations. The main idea behind this method states that a parameter’s precision can

be treated as a hyper-parameter in a similar way to the learning rate. Low bit count of initial training

epochs aims to improve generalization abilities of the trained NN. The results have been verified

on multiple topologies as Transformer, LSTM, ResNet and MobilNet. According to the authors,

the achieved accuracies were on par with 32-bit floating-point baseline.

Another idea of dynamic precision adjustments for internal NN parameters has been

established by Yu et al. (2022) [142]. The proposed Learnable Dynamic Precision (LDP)

framework uses additional parameters for selecting optimal precision for each network layer.

According to conducted evaluation on multiple ResNet models, their results surpass both SBM

[150] and CPT [142] methods.

Junaid et al. (2022) [151] proposes a combination of 32-, 24- and 16-bits floating-point

parameters for mixed precision neural network training. The research includes an additional

hardware accelerator engine, which allows for reduction of energy consumption by 3.91 in

comparison to regular 32-bit floating-point architecture. The results have been verified on a CNN

with MNIST dataset providing 93.32% accuracy in comparison to 96% 32-bit baseline.

In their work (Micikevicius et al. 2022) [152] investigate two 8-bit floating-point variants

with 4-bit exponent and 3-bit mantissa, and 5-bit exponent and 2-bit mantissa. Although the 5-bit

exponent type follows IEEE-754 convention, the 4-bit exponent type is modified by removal of

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

53

infinite representations and one of the mantissa patterns for NaN. The authors provide the results

on a wide scope of NN topologies where their method’s accuracy is on par with the 16-bit training

baseline. Both presented 8-bit floating-point types are used depending on the chosen network

topology, but the proposed direction is to use 5-bit exponent for gradients and 4-bit exponent for

weights and activations. The 8-bit tensors were simulated by clipping the original 16-bit values to

a target type, including an additional scaling factor and saturation, and then once again converted

to a 16-bit floating-point type. According to the authors, the output tensors were represented in

higher precision.

Another research on 8-bit floating-point utilization for NN training has been presented by

(Noune et al. 2022) [153]. They consider multiple alternative formats including those with 3-, 4-

and 5-bit exponents. In addition to precision limitation, the bias offset is considered as a

replacement for a fixed scaling factor. Moreover, only one representation is used for Inf and Nan

special values. According to the results presented by the authors, their method achieves the level

of 32-bit float-point baseline with a mix of 8-bit floating-point types with 4- and 5-bit exponents. It

is important to remark that the input to the first layer of the network must remain unquantized in

order to avoid the network’s accuracy decrease.

3.1.3 Hardware proposals

However, the software level definition of new variable formats and training procedures is

crucial for NN training optimization, there is a necessity of an efficient hardware that supports the

mentioned advancements. A good example of such a step is the Unified Neural Processing Unit

(UNPU) designed by Lee et al. (2018) [15]. The accelerator enables flexible precision variable

definition in the range from 1 to 16 bits. The support includes convolutional, fully connected, and

recurrent layers covering a wide spectrum of modern NN architectures. The key features include

an additional speed up due to reduction of off-chip memory accesses. According to the authors,

this architecture allows for a 50% reduction of energy consumption and external memory

accesses for specific NN definitions.

Another proposal that can be placed on the edge of hardware improvements is a

quantization-based method introduced by Onishi et al. (2020) [16]. The proposal assumes the

utilization of lookup tables (LUT) for optimization of memory and power usage. According to the

authors, LUT allows to limit memory usage by up to 22% for a forward pass and 60% for a

backward pass while training LeNet-5. The validation has been conducted with MNIST dataset

and achieved accuracy with degradation of 1.41 percentage points in comparison to the baseline.

It is worth mentioning that the overall number of multiplications has been reduced by 11.7%.

Kim et al. (2020) [17] introduced a precision-controlled memory system (PCM) which aims

to reduce power requirements for NN trained with limited precision parameters. The authors state

that, in comparison to regular GPU architectures, their method provides 34% lower energy

consumption and 20% speedup. The solution has been evaluated on ResNet-20 with CIFAR100

dataset.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

54

3.1.4 Results comparison

In order to present a comparison of methods reviewed in this literature study, an overview

of key aspects of each proposal has been prepared in a form of Table 3.1. The summary includes

training optimization details including variable types and applied techniques. Due to the variety of

evaluation methods, implementation details and topologies used during investigated research, it

is extremely difficult to fully compare performance of each method. Hence, the provided details

include information about the baseline and post limitation accuracy to give the reader a better

view on improvements reported by each author. The results are provided along with NN

architectures and datasets used for accuracy validation.

Table 3.1. Detailed summary of the related study with comparison to the proposed precision limitation
method for neural network training [36] [154]

Paper Variable type Technique Dataset Topology
Baseline

accuracy

Accuracy after
limitation

Gupta et al.
(2015) [5]

12-bit fixed-point

14-bit fixed-point

Stochastic
rounding

MNIST

Custom
LeNet

99.23%

99.17%

(14-bit fixed-point)

99.11%

(12-bit fixed-point)

CIFAR10

3-layer CNN

75.4%

74.6%

(14-bit fixed-point)

71.2%

(12-bit fixed-point)

Na and
Mukhopadhyay

(2016) [147]

16-bit fixed-point

32-bit fixed-point

Dynamic
Precision

Scaling (DPS)

Flexible
multiplier-

accumulator
(MAC)

MNIST

LeNet

Not given (only
loss charts
presented)

32-bit fixed-point
accuracy achieved on
16-bit fixed point with

DPS

Flickr

images

AlexNet
(pre-trained)

64-bit fixed-point
accuracy achieved on
32-bit fixed point with

DPS

Ortiz et al.
(2018) [6]

12-bit floating-point

12-bit fixed-point

Stochastic
rounding

Context
representation

CIFAR10
3-layer CNN

75,6%

63.03%

(12-bit fixed-point)

74.20%

(12-bit floating-point)

78.02%

(12-bit context-float)

76.32%

(12-bit context-fixed)

Taras and
Stuart (2018)

[7]

14-bit fixed-point
(weights)

16-bit fixed-point

(activations)

Stochastic
rounding

Dynamic
Precision

Scaling (DPS)

MNIST LeNet 98.80% 98.80%

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

55

Paper Variable type Technique Dataset Topology
Baseline

accuracy

Accuracy after
limitation

Park et al.
(2018) [14]

Combination of 8-
bit and 16-bit

integers

Stochastic
gradient

descent with
Kahan

summation

Lazy update

MNIST
LeNet-like

CNN
99.10% 99.24%

SVHN 4-layer CNN 97.06% 96.99%

CIFAR10

3-layer CNN 81.56% 81.17%

ResNet-20 90.16% 90.23%

ImageNet AlexNet 80.81% 80.62%

Fuketa et al.
(2018) [146]

9-bit floating point
format with hidden
most significant bit

and sign bit

Custom float
representation

Custom MAC
unit

ILSVRC

AlexNet 48.27% 46.18%

ResNet-50 68.84% 67.55%

Lee et al.
(2018) [15]

Fully variable
weight bit-precision

from 1b to 16b

Original
hardware

accelerator for
CNN-RNN
networks

Not
applicable

AlexNet
VGG-16

Not applicable
Operation based
power savings

presented

Onishi et al.
(2020) [16]

No strict
parameters
limitation,

factorization based
on LUT is used for

limiting memory
consumption and

multi-adds
operations.

Lookup-Table
(LUT) based
quantization

Cluster swap

MNIST LeNet 99.28%

97.87%

Memory consumption
reduced:
-22.2%

(forward pass)

-60%

(backward pass)

Lee (2020)
[148]

Mix of:

16-bit floating-point

8-bit floating-point

Fine-Grained
Mixed

Precision

CIFAR10

ResNet-18

72.48%

(16-bit floating-
point)

72.45%

(up to 94% of 8-bit
floating-point)

ImageNet

68.25%

(16-bit floating-
point)

99.11%

(up to 90% of 8-bit
floating-point)

Kim et al.
(2020) [17]

Subset of
results

presented

Mix of:

7-bit floating-point

9-bit floating-point

Precision-
controlled
memory

system (PCM)

CIFAR10 ResNet-200

69%

(16-bit floating-
point)

~69%

(9-bit floating-point)

Rios et al.
(2021) [149]

Mix of:

32-bit floating-point

16-bit Brain
floating-point

Mixed
precision
training

ImageNet

AlexNet

60.79%

(32-bit floating-
point)

60.32%

(BF16FMA 94.60%)

Inception

74.01%

(32-bit floating-
point)

72.80%

(BF16FMA 95.55%)

ResNet-50

75.69%

(32-bit floating-
point)

92.70%

(BF16FMA 96.40%)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

56

Paper Variable type Technique Dataset Topology
Baseline

accuracy

Accuracy after
limitation

Fu et al. (2021)
[141]

Subset of
results

presented

Dynamic range:

From 2-bit floating-
point to 32-bit
floating-point

Cycling
Precision
Training
(CPT)

Last two
stages trained

with full
precision

CIFAR10

ResNet-74
91.15%

(SBM 6 bit)

92.4%

(CPT 3-t o 6-bit, grad
6 bit)

MobileNetV2
91.56%

(SBM 6 bit)

91.81%

(CPT 4- to 6-bit, grad
6 bit)

CIFAR100

ResNet-74
70.31%

(SBM 6 bit)

70.83%

(CPT 3- to 6-bit, grad
6 bit)

MobileNetV2
72.31%

(SBM 6 bit)

73.18%

(CPT 4– to 6-bit, grad
6 bit)

ImageNet ResNet-18

69.76%

(32-bit floating-
point)

70.67%

(CPT: 8- to 32- bit)

Park et al.
(2021) [8]

8-bit floating-point

Floating point
with shared

exponent bias

multiple-way
fuse multiply-

add trees

ImageNet ResNet-18 Not defined

69%

(8-bit floating-point +
SEB)

Junaid et al.
(2022) [151]

Mix of:

32-bit floating-point

24-bit floating-point

16-bit floating-point

Mixed
precision
training

MNIST
Custom

CNN

96%

(32-bit floating-
point)

93.32%

Yu et al. (2022)
[142]

Subset of
results

presented

Dynamic range:

From 3-bit floating-
point to 16-bit
floating-point

Learnable
Dynamic
Precision

(LDP)

CIFAR10

ResNet-18

91.86%

(SBM 8 bit)

92.08%

(LDP 3- to 8- bit, grad
8 bit)

CIFAR100
67.24%

(SBM 8 bit)

67.88%

(LDP 3- to 8- bit, grad
8 bit)

ImageNet
69.60%

(SBM 8 bit)

69.62%

(LDP 4- to 8- bit, grad
8 bit)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

57

Paper Variable type Technique Dataset Topology
Baseline

accuracy

Accuracy after
limitation

Micikevicius et
al. (2022) [152]

Subset of image
classification

results
presented

8-bit FP

(4-bit exponent and
3-bit mantissa for

weights and
activations

5-bit exponent and
2-bit mantissa for

gradients)

Scaling factor ImageNet

VGG-16

71.27%

(16-bit floating-
point)

71.11%

Inception v3

77.23%

(16-bit floating-
point)

77.06%

ResNet-18

70.58%

(16-bit floating-
point)

70.12%

ResNeXt50

77.68%

(16-bit floating-
point)

77.62%

MobileNet
v2

71.65%

(16-bit floating-
point)

71.04%

Noune et al.
(2022) [153]

Subset of image
classification

results
presented

8-bit FP

(4-bit exponent and
3-bit mantissa for

weights and
activations

5-bit exponent and
2-bit mantissa for

gradients)

32-bit FP input to
the first layer of the

network

Bias offset
(per

parameter
type)

CIFAR100 ResNet-32 70.26%

70.42%

(32-bit floating-point
used for first layer

activations and
activations gradients)

ImageNet

ResNet-18 70.35%

70.29%

(32-bit floating-point
used for first layer

activations and
activations gradients)

ResNet-50 76.61%

76.57%

(32-bit floating-point

used for first layer
activations and

activations gradients)

EfficientNet-
B4

82.42%

82.34%

(16-bit floating-point
used for first layer

activations and
activations gradients)

Pietrołaj and
Blok (2022) [36]

8-bit floating-point

12-bit floating-point

14-bit floating-point

Asymmetric
exponent

No additional
rounding

MNIST LeNet 96.04%

75.89%

(8-bit floating-point)

95.01%

(12-bit floating-point)

97.13%

(14-bit floating-point)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

58

Paper Variable type Technique Dataset Topology
Baseline

accuracy

Accuracy after
limitation

Pietrołaj and
Blok (2024)

[154]

8-bit floating-point

(4-bit exponent and
3-bit mantissa)

Asymmetric
exponent

Exponent
offset

Stochastic
rounding

MNIST LeNet

96.18% (10
epochs)

98.35% (30
epochs)

95.98% (10 epochs)

98.38% (30 epochs)

CIFAR10

AlexNet

74.39% (10
epochs)

79.53% (30
epochs)

74.5% (10 epochs)

80.06% (30 epochs)

ResNet-18

77.08% (10
epochs)

83.41% (30
epochs)

94.99% (200
epochs)

76.01% (10 epochs)

82.22% (30 epochs)

94.58% (200 epochs)

CIFAR100

AlexNet

38.93% (10
epochs)

51.82% (30
epochs)

38.69% (10 epochs)

51.91% (30 epochs)

ResNet-18

39.54% (10
epochs)

51.69% (10
epochs)

75.08% (200
epochs)

40.21% (10 epochs)

55.16% (30 epochs)

74.25% (200 epochs)

An additional conclusion that can be drawn from the above summary is that mixed-

precision proposals combining multiple bit count varying variables are especially popular in recent

years [148] [149] [141] [142] [151] [17]. The software advancements are also backed up by

innovation from the hardware side. Although such solutions provide satisfactory results, the

possible disadvantages may be caused by the overhead required for mixing multiple variable

types [15] [155]. The proposal presented in this dissertation, although the bit count of NN

parameters is constant, allows for mixed cross tensor, layer or epoch precision approach. The

mechanism used here is in the common domain with the FP8-SEB technique [8] or offset bias

[153] and leverages floating-point format manipulation, especially offset of exponent values.

3.2 Limitation framework

In order to conduct limitation experiments, a custom software framework had to be

created to support all required use cases. The implementation leveraged Python [156]

programming language and PyTorch [84] machine learning framework as a foundation for the

development of further features. The method used generally available CPU and GPU hardware

with 32-bit floating-point parameters as base variables. The limitation mechanism has been

implemented in a software layer in a similar manner to Ortiz et al. (2018) [6] and Micikevicius et

al. (2022) [152]. At each step of NN execution, layer by layer, all parameters such as weights,

biases, activations, and gradients were limited to the target bit count. Then, such a limited

numerical value has been temporarily stored in a regular 32-bit floating-point variable supported

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

59

by the hardware. Fig. 3.1 depicts an overview of the training environment provided by the

designed framework.

Fig. 3.1. An overview of the neural network training environment for floating-point limitation

The floating-point limitation method used in the following experiments assumed a custom

technique of fitting a variable into targeted, constrained bit count. During each limitation step, the

input 32-bit variable is split into sign, exponent and mantissa parts. Then the algorithm shortens

the mantissa based on the selected bit-width target. This is done by the selection of the most

significant mantissa’s bits. Due to the specification of the IEEE-754 floating-point format, the

exponent must first undergo a procedure of bias removal. Then based on the bit count target,

maximum and minimum boundaries for exponent values are calculated. If an exponent cannot be

contained in the selected range, its value is assigned respectively to the nearest maximum or

minimum representation. It is important to note that once the exponent’s limitation is completed,

the new bias value, adjusted to targeted bit count, is applied to the final exponent. Then, if

required, the mantissa’s value is adjusted to reduce the potential rounding error resulting from

operations conducted on the exponent. Once the described steps are finalized, the result of

combined exponent and mantissa is translated to a 32-bit floating-point format. Fig. 3.2 presents

a simplified pseudo code of the outlined limitation algorithm. To maintain clarity, the code snippet

omits some of the details used in the original algorithm’s implementation such as input

parameters, definition of constant and temporary variables, bit shift operations, tensor operations

and exponent bias handling.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

60

procedure limit_variable(x)

 sign = extract_sign(x)

mantissa = extract_mantissa(x)

 exponent = extract_exponent(x)

 limited_mantissa =

 cut_least_significant_bits(target_mantissa_bitcount)

 limited_exponent_max =

 get_max_limited_exponent_value(target_exponent_bitcount)

 limited_exponent_min =

 get_min_limited_exponent_value(target_exponent_bitcount)

 if exponent > limited_exponent_max:

 exponent = limited_exponent_max

 else if exponent < limited_exponent_min:

 exponent = limited_exponent_min

limited_mantissa =

adjust_mantissa_value(exponent, limited_mantissa)

 limited_variable = sign | exponent | limited_mantissa

 return limited_variable

Fig. 3.2. A simplified pseudocode depicting the algorithm used for the limitation of parameters used in the
neural network training

Fig. 3.3 gives an example of applying the algorithm to a 32-bit floating-point variable. The

targeted format consists of 4-bit exponent and 3-bit mantissa. Please note that in case of the

framework implementation, all limitation operations are done on the tensor level instead of a single

variable to improve operations efficiency.

Fig. 3.3. Representation of a 32-bit floating-point value with an 8-bit floating-point format

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

61

Due to the much larger range of the original exponent representation, it is often required

to truncate its value due to targeted bit count limitation. Fig. 3.4 gives an example of such a case.

It is important to remark that the sign of a limited floating-point number does not impact the method

in any form.

Fig. 3.4. Representation of a 32-bit floating-point value with an 8-bit floating-point format with exponent
truncation.

3.3 Limitation results

Limitation experiments have been conducted on three CNN architectures LeNet, AlexNet

and ResNet-18. The selection has been dictated by the popularity of these network designs in the

research community and relative easiness of experiments reproducibility by other peers. In

addition, the previously presented related study (Table 3.1) shows that similar NNs have been

used in several papers related to training with precision limitation. Hence, there is more data

available for results comparison.

The limitation conditions were applied in the same form to all tested NN topologies. Each

model has been trained multiple times in the range from 3 to 32 bits over 10 epochs. It includes

all possible exponent and mantissa configurations available in IEEE-754 32-bit floating-point

representation boundaries. Training environment’s configuration remained unchanged for each

of the topologies across varying bit count trainings. Comparison of results was done based on the

test set part of each of the used datasets. Table 3.2 presents targeted baseline IEEE-754 32-bit

accuracies achieved for the selected neural network topologies in the developed experimentation

environment after 10 training epochs.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

62

Table 3.2 Baseline IEEE-754 32-bit accuracies per neural network after 10 training epochs

Neural network topology Dataset Test accuracy

LeNet MNIST 96.18%

AlexNet

CIFAR10 74.39%

CIFAR100 38.93%

ResNet-18

CIFAR10 77.08%

CIFAR100 39.54%

3.3.1 LeNet

Although the current trend in the domain of NN architecture focuses on growing topologies

with millions of parameters, there are multiple low-level hardware use cases where smaller

topologies are still required, especially in case of embedded or edge devices [157]. LeNet-5 is

commonly treated as an introductory CNN used as a benchmark for various optimization

experiments [5] [147] [7] [14] [16]. The conducted training with limited precision combined LeNet

with MNIST dataset [143] as an input. MNIST is a dataset of hand-written digits often used for

CNN verification tasks. It consists of 60000 training and 10000 test examples. Implementation

details of LeNet architecture utilized in the experiment are summed up in Table 3.3. Additionally,

Table 3.4 presents hyper-parameters set for the training phase.

Table 3.3. Summary of the LeNet-5 architecture used in the experiment [55] [158]

Layer
Feature

Map
Size

Kernel
size

Stride Padding Activation

Input Image 1 28x28 - - - -

1
1st

Convolution
6 28x28 5x5 1 2 tanh

2
Average
Pooling

- 14x14 2x2 - - -

3
2nd

Convolution
16 10x10 5x5 1 - tanh

4
Average
Pooling

- 5x5 2x2 - - -

5
3rd

Convolution
120 1x1 5x5 1 - tanh

6
1st Fully

Connected
- 84 - - - tanh

Output
2nd Fully

Connected
- 10 - - - softmax

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

63

Table 3.4. Hyperparameters used during LeNet-5 training

Hyperparameter Value

Optimizer
Stochastic Gradient

Descent

Learning rate 0.01

Batch size 64

Loss function Cross entropy

Fig. 3.5 presents LeNet-5 training results with the use of the described limitation

algorithm. The evaluation has been conducted across exponent bit counts ranging from 1 to 8

and mantissa bit count from 1 to 23. It is worth highlighting that with 32-bit floating-point

parameters this network achieves accuracy of 96.18% over 10 epochs in the presented training

environment.

Fig. 3.5. LeNet-5 accuracy across various limited bit count configurations

The expected effect can be observed, the reduced number of bits dedicated to exponent

and mantissa has a negative impact on the network training and decreases the overall

classification accuracy. As already discussed, a lower number of bits narrows the dynamic range

that can be represented by a particular variable format [77] [95]. It is also vivid that 1-bit exponent

is insufficient for training this particular NN, giving around 10% accuracy over all possible

mantissa sizes. The results on 2-bit exponent are much better, however, as presented in previous

research [154], the accuracy achieved with such low exponent bit counts is often unstable and

can vary between following training executions. Exponents with 3 or higher bit counts provide

much better output along with the increasing mantissa bit width. The observed results vary in the

range from 90% to 98%. Surprisingly, the best result of 98.11% has been achieved for 4-bit

exponent, exceeding 32-bit floating-point baseline (Table 3.2). Such observations for low bit count

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

64

variables have been also confirmed by other researchers [141]. The common explanation of this

phenomenon is that limiting the number of available bits in a variable, same as learning rate

manipulation, can be treated as a form of an additional NN regularization which helps with

knowledge generalization based on previously learned data samples [142].

The important conclusion that can be drawn from this experiment is inability to train LeNet-

5 based on 8-bit floating-point parameters to match 32-bit accuracy. The lowest combined bit

count of sign, exponent and mantissa which allowed for achieving matching accuracy of 96.32%

was 16 bits. Such a format combines 1 bit to sign, 4 bits to exponent and 11 bits to mantissa.

Training neural networks on 16-bits variables is a common technique for reducing complexity of

a NN topology both in computation and memory domains. Such an option is available in most of

the popular machine learning frameworks as Pytorch or Tensorflow [26]. Although in this case the

author showed that 4-bit exponent with 11-bit mantissa gives the best results, the more common,

generally available type used by other frameworks leverages the IEEE-754 16-bit floating-point

with 5-bit exponent and 10-bit mantissa. In case of this experiment, such a type achieved

significantly lower accuracy of 89.09% over 10 epochs.

3.3.2 AlexNet

The analogous experiment has been conducted on another popular CNN topology,

AlexNet. It is commonly treated as a pivot point in terms of development of deep learning

architectures, especially in terms of image recognition. The training leveraged two benchmark

image datasets focusing on small image classification, CIFAR10 and CIFAR100 [144]. Both

datasets contain 50000 training and 10000 test 32x32 images divided into 10 and 100 classes

accordingly. In modern machine learning tasks AlexNet is often treated as a comparison point or

benchmark for various researchers [14] [146] [15] [149] [147]. Hence, it was selected for

investigation in this dissertation. Table 3.5 gives an overview of convolutional network architecture

used for the training. Table 3.6 summarizes its main hyper-parameters.

.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

65

Table 3.5. Summary of the AlexNet architecture used in the experiment [48]

Layer
Feature

map
Size

Kernel
size

Stride Padding Activation

Input Image 3 32x32 - - - -

1
1st

Convolution
64 34x34 3x3 1 2 ReLU

2 1st Max Pool 64 17x17 2x2 - - -

3
2nd

Convolution
192 19x19 3x3 - 2 ReLU

4
2nd Max

Pool
192 9x9 2x2 - - -

5
3rd

Convolution
384 9x9 3x3 - 1 ReLU

6
4th

Convolution
256 9x9 3x3 - 1 ReLU

7
5th

Convolution
256 9x9 3x3 - 1 ReLU

8
3rd Max

Pool
256 4x4 3x3 2 - -

9
1st Dropout

(rate = 0.6)
- 4096 - - - -

10
1st Fully

Connected
- 2048 - - - ReLU

11
2nd Dropout

(rate = 0.6)
- 2048 - - - -

12
2nd Fully

Connected
- 2046 - - - ReLU

13
3rd Fully

Connected
- 10/100 - - - softmax

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

66

Table 3.6. Hyperparameters used during AlexNet training

Hyperparameter Value

Optimizer Adam

Learning rate 0.0001

Batch size 128

Loss function Cross entropy

Similarly, to LeNet-5, AlexNet has been trained on various bit count configurations over

10 epochs. Baseline 32-bit floating-point accuracy of this network is equal to 74.39% on CIFAR10

and 38.39% on CIFAR100 (Table 3.2). Fig. 3.6 and Fig. 3.7 depict the results of the experiments

for both datasets.

Fig. 3.6. AlexNet accuracy across various limited bit count configurations on CIFAR10 dataset

As depicted by Fig. 3.6, 4- and lower-bit exponents are insufficient for AlexNet training on

CIFAR10 dataset without significant decrease in the model’s accuracy. Even 16-bit floating-point

composed of 5-bit exponent and 10-bit mantissa achieves only 67.83% of accuracy which is over

6 percentage points worse than the baseline (Table 3.2). First comparable results can be

observed for combined bit count of 18 bits with 5-bit exponent and 12-bit mantissa giving 75.02%

which slightly surpasses the previously calculated 32-bit baseline result (Table 3.2).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

67

Fig. 3.7. AlexNet accuracy across various limited bit count configurations on CIFAR100 dataset

A similar case can be observed with AlexNet results on CIFAR100 dataset (Fig. 3.7).

Again, 4- and lower-bit exponents do not provide sufficient range for the training process of this

topology. The minimum bit width of the required exponent is 5 bits which gives a comparable

accuracy of 37.23% for 18 bits of mantissa.

3.3.3 ResNet

In order to check limitation impact on more modern NN architecture, the last topology

selected for the experiment was ResNet. It was a winner of ImageNet Competition in 2015 and

has been established as the most cited neural network in the 21st century [159]. There are multiple

popular versions of ResNet implementation available based on the number of the network’s

layers, regularly used by researchers as a benchmark architecture [14] [146] [148] [17] [149] [141]

[8] [127]. In the case of this dissertation, the version with 18 layers has been used, also known as

ResNet-18. Table 3.7 and Table 3.8 summarize the architecture of ResNet-18 used in this

experiment along with ResNet Building Block details. Table 3.9 provides main hyper-parameters

used during the training process.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

68

Table 3.7. Summary of the ResNet-18 architecture used in the experiment

Layer
Feature

map
Size

Kernel
size

Stride Padding Activation

Input Image 3 32x32 - - - -

1
1st

Convolutional
Layer

64 32x32 3x3 - 1 -

2
Bach

Normalization
64 32x32 - - - ReLU

3
[2nd

Convolution
(Block)] x 2

64 32x32 3x3 1 1 ReLU

4
[3rd

Convolution
(Block)] x 2

128 16x16 3x3 2 1 ReLU

5
[4th

Convolution
(Block)] x 2

256 8x8 3x3 2 1 ReLU

6
[5th

Convolution
(Block)] x 2

512 4x4 3x3 2 1 ReLU

7
Average
Pooling

512 1x1 - - - -

8
1st Fully

Connected
- 10/100 - - - softmax

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

69

Table 3.8. Summary of the ResNet-18 Convolutional Basic Block architecture used in the experiment. The
values examples based on the first block of the network

Convolution Block Layer
Feature

map
Size

Kernel
size

Stride Padding Activation

Input
1st

Convolution
output

64 32x32 - - - -

1
1st

Convolution
layer

64 32x32 3x3 1 1 -

2
1st Batch

Normalization
64 32x32 - - - ReLU

3
2nd

Convolution
layer

64 32x32 3x3 1 1 -

4
2nd Batch

Normalization
64 32x32 - - - ReLU

5
(Optional)

3rd
Convolutional

layer
(shortcut)

64 32x32 1x1 1 1 -

6
(Optional)

3rd Batch
Normalization

(shortcut)
64 32x32 1x1 1 1

Output
4th layer

output + 6th
Layer output

64 32x32 - - - ReLU

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

70

Table 3.9. Hyperparameters used during ResNet-18 training

Hyperparameter Value

Optimizer Stochastic Gradient Descent

Learning rate 0.1

Momentum 0.9

Weight decay 5e-4

Learning rate
scheduler milestones

60, 120, 160

Learning rate
scheduler gamma

0.2

Batch size 128

Loss function Cross entropy

As in the previous trainings, ResNet-18 has been iterated over 10 epochs. The datasets

are the same as in the case of AlexNet and include CIFAR10 and CIFAR100. The baseline 10

epoch, 32-bit floating-point accuracies achieved for this network are equal to 77.08% for CIFAR10

and 39.54% for CIFAR100 (Table 3.2). Fig. 3.8 and Fig. 3.10 present the results of the

experiments.

Fig. 3.8. ResNet-18 accuracy across various limited bit count configurations on CIFAR10 dataset

Based on the results presented in Fig. 3.8, it can be noticed that 4-bit or lower exponent

bit counts are insufficient for training ResNet-18 on CIFAR10 dataset. For most of the mantissa

bit count values verified in this scenario, the accuracy line remains almost flat around 10%. The

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

71

improvement can be observed for higher exponent bit counts, however, the results appear to be

highly volatile even with increasing mantissa. This behavior may be caused by the fact that only

the tenth epoch’s result is presented on the chart in each case. In contrast to LeNet and AlexNet,

ResNet-18 may usually require more epochs to achieve its results convergence [160]. In order to

limit this side effect for presentation purposes, Fig. 3.9 shows results for the best of 10 epochs in

the exact same training process for each bit count variant.

Fig. 3.9. ResNet-18 accuracy across various limited bit count configurations on CIFAR10 dataset – the
best validation epoch results selected

It can be observed that accuracy achieved by the tested network grows with exponent

and mantissa bit counts. First results that can be compared to the 32-bit baseline are achieved

for 16-bit floating point consisting of 5-bit exponent and 10-bit mantissa giving 77.45% accuracy.

This result is consistent with observation of other researchers and ML framework developers

which frequently use this data type for more efficient NN training [161]. Results with higher bit

counts tend to maintain similar network’s accuracy with the deviation of a few percentage points.

These differences can be further reduced with a higher number of training epochs.

The analogous case appears in the ResNet-18 training on CIFAR100 dataset which is

presented in Fig. 3.10. Once again exponent bit counts below 5-bits do not provide enough range

for achieving accuracy close to the 32-bit baseline (Table 3.2). The volatility of the last epochs

results makes it difficult to observe the accuracy growth. Fig. 3.11 corrects this inconvenience

and focuses on best epochs results only.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

72

Fig. 3.10. ResNet-18 accuracy across various limited bit count configurations on CIFAR100 dataset

CIFAR100 states a more difficult training scenario for ResNet-18. The previously

sufficient 16-bit floating-point does not maintain the baseline accuracy (Table 3.2) for this dataset

achieving 36.15% of accuracy. Interestingly, higher bit counts tend to exceed the 32-bit baseline

with over 5 percentage points. An example of such a scenario is a 30-bit floating point with 6-bit

exponent and 23-bit mantissa. This behavior can be explained by a form of regularization that can

be introduced due to limited precision variables [142].

Fig. 3.11. ResNet-18 accuracy across various limited bit count configurations on CIFAR100 dataset – the
best validation epoch results selected

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

73

It is important to remark that all tested scenarios showed that 8-bit floating point variables

are not sufficient for training the presented NNs. Hence, a simple floating-point limitation cannot

be used for such a purpose. Accurate and efficient NN training with low precision variables

requires a more sophisticated approach presented in the later chapters of this dissertation.

3.4 Exponent utilization

Neural network’s ability to conduct a proper prediction is a major factor that dictates its

usability. However, besides focusing solely on accuracy, an interesting observation can be made

regarding bit count utilization. The described experiment, and various previous research [141]

[142] [8], showed that the full variable precision is not mandatory for NN convergence during the

training process. Hence, in a similar fashion to quantized inference [103] [104], it is important to

examine possible format and bit width optimizations when it comes to the NN learning process.

 An important factor of this research was the investigation of a bit count usage of 32-bit

floating-point variables during training of the selected NN architectures. The conducted analysis

showed that the majority of tested IEEE-754-based network parameters use negative exponent

values to store their numeric representation. This observation poses a question if exponent bits

in a regular 32-bit floating-point representation are optimally utilized during trainings of the

investigated NN topologies. As mentioned previously, the IEEE-754 exponent bias, with a value

of 127, splits its values range into negative and positive halves. Considering that most of the

positive portion is not utilized during a specific neural network architecture training, translates to

omitting a subset of the bits assigned to a 32-bit floating-point representation and therefore

partially wasting resources.

The analysis focused on the IEEE-745 32-bit floating-point based trainings of previously

presented networks, LeNet-5, AlexNet and ResNet-18. Each architecture has been trained over

10 epochs with continuous logging of their most important parameters. The scope included a

focus on the exponent values utilization for weights, gradients, biases and activations of each

network layer.

Fig. 3.12 gives a detailed summary of exponent values utilization for the main groups of

parameters used during neural network training including weights, gradients, activations and

biases. It can be observed that only a portion of the 8-bits exponent is utilized during the training.

Including special values, regular exponent provides 255 numeric representations in the range

from -126 to 127. The combined exponents of weights, gradients and activations in the presented

training can be situated in the narrow range from -17 to 1. This means that only around 8% of all

possible exponent representations have been used during the LeNet-5 training phase over 10

epochs with regular IEEE-754 32-bit floating point variables.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

74

a) weights

b) biases

c) activations

d) gradients

Fig. 3.12. LeNet-5 exponent utilization (normalized over layer) during training on MNIST dataset. The
darker the color the higher the utilization. Layers: conv – convolution, fc – fully connected

It should be noticed that the utilized range of exponent values varies by a parameter type.

The smallest one is represented by weights and biases which can be fitted between -9 and -2.

The situation is different for activations, which with the range of -9 to 1 tend to also use positive

values of the exponent. In the case of gradients, another behavior can be remarked in the form

of utilizing much lower values of the exponent ranging from -17 to -5. This observation is expected

as researchers have already stated that both gradients and activations may be problematic when

it comes to NN training with limited precision, hence, various methods tend to leverage a higher

bit count variables or their mix especially for those two types of parameters [7] [117] in

comparison to weights and biases where much lower bit count is often sufficient [157].

Similar analysis has been carried out for AlexNet. Fig. 3.13 presents results of exponent

values utilization for this network architecture trained with full precision variables on CIFAR10

dataset over 10 epochs.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

75

a) weights

b) biases

c) activations

d) gradients

Fig. 3.13. AlexNet exponent utilization (normalized over layer) during training on CIFAR10 dataset. The
darker the color the higher the utilization. Layers: conv – convolution, fc – fully connected

Although, in the case of AlexNet the utilization of exponent values is bigger than with

LeNet-5, it still uses around 10% of the available 8-bit range. The numeric values used during the

training can be contained between -22 and 3. The most common exponent values in this range

could be narrowed to a scope between -17 and 2 which makes it close to the observations of

LeNet-5. It is important to remark that a similar characteristic can be observed in the case of

AlexNet regarding weights and biases. The effective exponent range needed to represent these

parameters can be limited to values between -10 and -3. The move in the direction of positive

exponent values can be observed for activations in the range from -8 to 3. The wide area is utilized

by gradients which require exponent values from -22 to -4. Same as with LeNet both activations

and gradients tend to require higher precision for a NN training step.

Another test related to AlexNet has been conducted with the CIFAR100 dataset. The

gathered results are analogous to those achieved with CFIAR10. Fig. 3.14 presents exponent

utilization observed during this training.

The same procedure has been repeated for the ResNet-18 NN. Fig. 3.15 presents results

for a full precision training on CIFAR10 over 10 epochs. In order to improve readability of the

ResNet-18 related diagrams some of the layers and basic blocks details have been incorporated

into groups combining one or multiple basic blocks of the architecture. This is especially visible in

case of charts displaying the network’s activations.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

76

a) weights

b) biases

c) activations

d) gradients

Fig. 3.14. AlexNet exponent utilization (normalized over layer) during training on CIFAR100 dataset. The
darker the color the higher the utilization. Layers: conv – convolution, fc – fully connected

a) weights

b) biases

c) activations

d) gradients

Fig. 3.15. ResNet-18 exponent utilization (normalized over layer) during training on CIFAR10 dataset. The
darker the color the higher the utilization. Activations were grouped for clarity of the diagram. Layers: conv

(x) – convolution (basic block), fc – fully connected, b_layer – combined layers into basic blocks

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

77

Despite differences in NN architecture, it can be noticed that the utilization of exponent

values in ResNet-18 is similar to that in AlexNet and is equal to around 10%. The required range

can be estimated to values between -20 and 3. As expected, gradients and activations seem to

be the most precision-wise demanding parameters. In contrast to the previously tested networks,

this architecture implementation does not include biases for convolutional layers which can be

observed in Fig. 3.15 b) and Fig. 3.16 b).

The application of CIFAR100 does not impact ResNet-18 exponent utilization in a major

way. Nevertheless, the results of such analysis are presented in Fig. 3.16.

a) weights

b) biases

c) activations

d) gradients

Fig. 3.16. ResNet-18 exponent utilization (normalized over layer) during training on CIFAR100 dataset.
The darker the color the higher the utilization. Activations were grouped for clarity of the diagram. Layers:

conv (x) – convolution (basic block), fc – fully connected, b_layer – combined layers into basic blocks

The presented results clearly show that in case of the tested networks, the bit count

reserved for a regular IEEE-754 32-bit floating-point type is underutilized and causing some of

the exponent range to be wasted. According to Tong et al. (2000) [86] usage of 8-bit floating-point

representation requires up to 4 times less storage capacity and runtime memory in comparison

to 32-bit data type. Moreover, switching to 8-bit floating-point multiplications allows to reduce

power consumption to less than a third of a regular 32-bit based unit. Such observations give an

interesting ground for further experiments on floating-point precision limitation for NN training.

Besides possible mantissa bit count limitation, focusing on the efficient exponent representation

gives an additional room for computational and memory resource savings. As presented, in many

cases numeric values used during the training could be effectively stored in 4 or 5 bits. This poses

a question regarding new resource efficient floating-point formats for NN parameters. Modification

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

78

of parameters’ type and optimization of their bit count utilization would help to limit the cost of the

NN training process and maintain its regular 32-bit floating-point accuracy. The next chapter

presents the method’s proposal in this area.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

79

4 EXPERIMENTS AND RESULTS

The presented findings (section 3.3) clearly show that the straightforward limitation of

parameters’ bit count does not provide a solution for more efficient NN training. Although the

operations are less computationally complex, the decline of the model’s accuracy undermines

legitimacy of resource savings. Various research confirmed that more sophisticated methods are

necessary for NN training with limited precision [8] [141] [142]. However, the optimal method has

not been established yet, the areas with promising outcome include parameters’ format changes

[75], rounding techniques [5] [6] and quantization [7] [16].

This dissertation describes a new method of precision limitation for convolutional neural

network training with low bit count variables. It combines recent knowledge and techniques

verified by the research community as application of rounding with new proposals of floating-point

representation and exponent utilization. Moreover, the results of the extensive method’s

verification are presented based on commonly used, benchmark CNN architectures.

This chapter starts with a detailed explanation of the proposed method including key

elements in terms of incorporated techniques and implementation details. Then the conducted

experiments are discussed in a step-by-step manner. The last part presents a summary of the

results achieved for NN training with limited precision on the key target parameter representation

formats.

4.1 Method proposal

The proposed method provides a mechanism for training NN with limited precision,

floating-point variables. The regular neural topologies are based on the standard 32-bit IEEE-754

format. The technique developed in this thesis enables weights, biases, activations and gradient

limitation to custom floating-point representation in the range of an initial 32-bit variable. It includes

the following mechanisms:

• Introduction of asymmetric exponent representation.

• Support for exponent offset mechanism allowing for values range adjustment.

• Application of stochastic rounding during the process of variable limitation.

• Denormalized values utilization for a limited precision floating-point type.

Analogous to the previously presented floating-point limitation flow, the proposed

framework is executed solely in the software layer. This allows for direct comparison of the

previously used method of raw floating-point limitation presented in section 3.2 of this dissertation

and follows similar techniques for experimentation provided by utilities as QPytorch [162] or

CPFloat [163]. The proprietary, hardware independent implementation has been selected for this

research in order to avoid the limitations introduced by existing devices or software libraries when

it comes to specific bit ranges, custom data type formats or supported topologies. Fig. 4.1

presents an overview of the framework used for the experiments described in this chapter.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

80

Fig. 4.1. Overview of the proposed custom floating-point limitation method [154]

4.1.1 Asymmetric exponent

The exponent utilization experiments conducted in section 3.4 of this dissertation showed

that a significant portion of bit usage focuses on a limited range of its negative values. Hence, a

part of the available exponent’s bits is not utilized. Such a characteristic is especially inefficient in

the case of floating-point variables with limited precision. The proposed method addresses this

issue with the introduction of the asymmetric exponent representation which assigns all exponent

bits to its negative values only. This way the variable can represent a wider range of small values

required during the training and maintain an unchanged bit count. Although such an approach

significantly improves the availability of efficiently utilized exponent values, 8- or lower-bit count

variables may still not provide a sufficient range for NN training. In the case of 3- or 4-bit

exponents, it is crucial to support representation for most often occurring values in the network.

Hence, the proposed asymmetric exponent includes an additional offset which can shift available

exponent values by a scalar in order to adjust the parameters’ dynamic range to a particular

topology and dataset. This functionality can be treated as an additional hyper-parameter during

the training and then be flexibly adjusted across the following epochs or specific layers of the

network. Table 4.1 presents a comparison between different representations of 8-bit floating point

variables. It enlists details of IEEE-754-like data types with different exponent’s representation,

including variants with an asymmetric and asymmetric exponent with an offset.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

81

Table 4.1. Comparison of the proposed exponent representations with IEEE-754 types

 Total
bits

Exponent
bits

Exponent
bias

Exponent
min

Exponent
max

32-bit IEEE floating-
point

32 8 127 -126 127

16-bit IEEE floating-
point

16 5 15 -14 15

8-bit floating-point 8 4 7 -6 7

8-bit floating-point
with asymmetric

exponent
8 4 14 -13 0

8-bit floating-point
with asymmetric

exponent and offset
set to -2

8 4 16 -15 -2

An important limitation when it comes to implementation of the asymmetric exponent

format over a regular 32-bit floating-point type is the maximum exponent range available for 8

bits. In order to map the asymmetric exponent into a full precision variable, it is important to not

exceed the range between -126 and 127 defined by the IEEE-754 standard. Although this might

be a blocking issue for larger variables, it is negligible for the main focus of this dissertation which

revolves around low bit variables as 8-bit floating-point. In the case of higher exponent bit counts

investigated in this work, the exponent range was strictly limited within 32-bit IEEE-745 range

boundaries. Fig. 4.2 shows the difference between precision limitation with and without application

of the asymmetric exponent method. Although the final result is always mapped to a generally

available IEEE-754 32-bit floating-point variable, the range of the exponent changes. In case of 4

bits, it can contain values between -6 and 7, however, the value shift provided by both asymmetric

exponent and exponent offset techniques significantly modifies this range without any changes to

the constrained bit count. This way the final variable’s representation range from -15 to -2 is much

more aligned with the numeric range required by the chosen NN training.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

82

Fig. 4.2. IEEE-754 32-bit floating-point conversion to 8-bit format with and without an asymmetric exponent

As a part of the proposed limitation method, the asymmetric exponent functionality is

implemented in the software layer only. Thus, the final values of the limited variables are stored

in 32-bit floating-point format. The translation required for the 8- to 32-bit mapping is shown in

Fig. 4.3. Additionally, Fig. 4.4 presents a simplified pseudo code showing implementation details

related to this feature. The operations related to the mantissa, presented in Fig. 3.2, have been

omitted to improve readability of the code snippet.

Fig. 4.3. An example of 8-bit floating-point translation to a 32-bit floating-point variable

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

83

procedure apply_asymmetric_exponent(x, new_exponent_bit_count,

 exponent_offset)

 sign = extract_sign(x)

mantissa = extract_mantissa(x)

 exponent = extract_exponent(x)

 asymmetric_exponent_min =

 get_assymetric_exponent_min(new_exponent_bit_count)

asymmetric_exponent_max =

 get_assymetric_exponent_max(new_exponent_bit_count)

asymmetric_exponent_min_shifted =

 asymmetric_exponent_min + exponent_offset

asymmetric_exponent_max_shifted =

 asymmetric_exponent_max + exponent_offset

asymmetric_exponent_min_shifted_trimmed =

trim_to_ieee754_exponent_range(asymmetric_exponent_min_shifted)

asymmetric_exponent_max_shifted_trimmed =

trim_to_ieee754_exponent_range(asymmetric_exponent_max_shifted)

new_exponent_value =

 fit_into_assymetric_exponent_boundries(exponent,

 asymmetric_exponent_min_shifted_trimmed,

 asymmetric_exponent_max_shifted_trimmed)

 return asymmetric_variable = sign | new_exponent_value |

 mantissa

Fig. 4.4. Simplified pseudocode of asymmetric exponent transformation implementation

4.1.2 Stochastic rounding

Rounding or trimming of a numerical value is an inevitable part of its precision limitation.

Stochastic rounding is one of the techniques successfully adapted for NN training by multiple

researchers [6] [7]. According to recent studies, this method proved to be helpful for maintaining

the NN accuracy in case of both floating-point and fixed-point parameters limitation as it aims to

statistically preserve information about limited values which is a key factor while using it for NN

training [5] [92]. Thanks to this property, the expected error of rounding is zero [164]. Fig. 4.5

shows an example of the floating-point limitation with stochastic rounding.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

84

Fig. 4.5. Floating-point limitation results variants and their probabilities with stochastic rounding enabled

As already presented in section 2.3.2 with equations (2.3) and (2.4), the implementation

of stochastic rounding techniques may vary depending on how the probability of the rounding is

determined. In the case of the presented framework, it is based on the distance of the variable to

the limited counterparts. First, the upper and lower boundary of the limitation algorithm is

calculated for a 32-bit floating point input. Then the relative distances between the limited input

and the boundaries are measured. Based on that, the framework establishes the probability of

rounding direction which depends on the output of the software random number generator. Fig.

4.6 gives an overview of such an implementation in a form of pseudo code.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

85

procedure apply_stochastic_rounding(x, exponent_bitcount,

 mantissa_bitcount)

upper_boundry, lower_boundry = get_limitation_boundries(x,

 exponent_bitcount, mantissa_bitcount)

upper_distance = abs(abs(x) - upper_boundry)

lower_distance = abs(abs(x) - lower_boundry)

round_up_probability = upper_distance / (upper_distance +

 lower_distance)

random_float_number = get_random()

if random_float_number <= round_up_probability:

rounded_x = upper_boundry

else:

rounded_x = lower_boundry

 return rounded_x

Fig. 4.6. Simplified pseudocode of stochastic rounding implementation in the precision limitation framework

In order to increase readability of Fig. 4.6 the details of establishing limitation boundaries

have been hidden under a get_limitation_boundries method as it heavily depends on details

already presented in Fig. 3.2 and Fig. 4.4 which cover limitation internals. It is important to mention

that the limitation process must be executed only once for one of the boundaries as establishing

the other one is a simple operation of mantissa decrease or increase and exponent adjustment

in case of its under or overflow.

4.1.3 Denormalized values

An additional feature that can be enabled in the proposed method is a denormalization of

the limited values. As with the IEEE-754 approach presented in section 2.3.1, the variable format

proposed in the training optimization method introduces denormalized range that covers a wider

range of values close to zero. It has been introduced in order to reduce the rounding error between

original and limited value. Analogously to IEEE-754, the leading bit of mantissa is interpreted as

zero for denormalized values which results in a wider exponent range at the expense of mantissa

bits. Fig. 4.7 shows the results of this mechanism based on the proposed framework calculations.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

86

Fig. 4.7. Limited 8-bit floating-point denormalization (without mantissa rounding). The hidden leading
mantissa bit is marked in red.

The software framework implementation of a denormalization feature is achieved by

extending limited exponent range based on available mantissa bits. With the usage of right bit

shift on mantissa’s value, it is possible to gradually divide it by 2 as long as there is at least one

significant bit left in the mantissa’s representation. Such a limited mantissa value can be then

once again translated to normalized floating-point representation with analogous left bit shift

operations and adjustment of exponent’s value in order to match the same number in a standard

IEEE-754 format. Fig. 4.8 considers an example of simple software layer implementation of

denormalization.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

87

procedure apply_denormalization(x, exponent_bitcount,

 mantissa_bitcount)

sign = extract_sign(x)

 mantissa = extract_mantissa(x)

exponent = extract_exponent(x)

lowest_exponent_value =

 get_lowest_exponent_value(exponent_bitcount)

 exponents_difference = exponent – lowest_exponent_value

if exponents_difference <= mantissa_bitcount

 limited_mantissa = limited_mantissa >>

 exponents_difference

 limited_mantissa = limited_mantissa <<

 exponent_difference

 denormalized_x = sign | lowest_exponent_value |

 limited_mantissa

 return denormalized_x

 else

 return 0

Fig. 4.8. Simplified pseudocode of a custom denormalization implementation in the precision limitation
framework

4.1.4 Method’s application

Although all code representations in this chapter had been focused on a single value

method application to avoid presentation complexity, the real-life implementation focuses solely

on tensor-based operations for efficiency purposes. The productization of the proposed technique

may strictly depend on the training hardware capabilities and should be focused on its optimal

utilization. It is especially important in case of stochastic rounding and denormalization where

simplified implementation may highly limit the complexity and computational power required for

additional steps such as random number generation or denormalization enablement.

The presented technique aims to provide a consistent precision limitation method for

training NN with low bit count variables. It is important to highlight that applicability to various NN

architectures may vary, thus establishing an optimal bit count of limited floating-point variables

can differ per chosen architecture. Selection of proper bit count should be perceived as a hyper-

parameterization in a training stage. Although the initial experiments used constant values of

these hyper-parameters during the whole training process, they can be dynamically modified for

specific epochs, layers or parameter types. This is often the case with recent NN limitation studies

[146] [142]. A similar approach can be applied to the asymmetric exponent with offset or

denormalization. Dynamic modification of these parameters can be used to achieve a mixed-

precision approach without variable’s bit count modification, which creates an advantage when

simplification of hardware design requirements is needed.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

88

4.2 Conducted trainings

The proposed method has been validated on the same set of NN architectures and

datasets as presented in section 3.2. This includes LeNet with MNIST, AlexNet and ResNet-18

with CIFAR10 and CIFAR100. Such an approach allows a straightforward, one to one comparison

and measurements of accuracy gains achieved with the use of the proposed precision limitation

method for low bit count variables. In order to ensure that the training environment is the same,

all hyper-parameters remain unchanged, and no stop-loss mechanism has been enabled. The

only difference introduced during the process was the enablement of the features vital to the

proposed method as asymmetric exponent with offset, stochastic rounding and denormalization

mechanism as presented in Table 4.2. It is important to highlight that activations are the only

parameters that do not leverage asymmetric exponent and exponent offset features. The reason

behind it is a different range of exponent values required by these parameters’ values, as

explained in section 3.4.

Table 4.2. Features of the proposed method per neural network's parameter type

Feature / Parameter Weights Biases Activations Gradients

Bit count limitation

Asymmetric exponent

Exponent offset

Denormalization

Stochastic rounding

4.2.1 LeNet

LeNet architecture provides the simplest test case scenario for the proposed precision

limitation method in terms of both parameters’ count and classification task complexity. Hence, a

considerably lower number of bits is required in order to achieve the 32-bit baseline set to 96.18%

of the network’s accuracy. Fig. 4.9 provides classification results for LeNet architecture trained

across a wide range of bit count variants with asymmetric exponent offset set to -2.

 D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

89

Fig. 4.9. LeNet (MNIST) training results with the proposed limitation method

Both 1- and 2-bit exponents do not provide a stable base for LeNet training with MNIST

dataset. The network cannot achieve the baseline accuracy with such exponents no matter how

many mantissa bits are available during the training. The only exception, close to the baseline

result, can be observed with 2-bit exponent and 23-bit mantissa. It is important to remark that in

case of such low exponent bit counts the training appears to be unstable and introduces a lot of

accuracy variations between repetitive iterations which may be also reinforced by randomization

of initial model’s weights for each training scenario. Although 2-bit exponent proved to be

insufficient for this training example, there is a clear improvement for variables with 3- and larger

bit exponents. In case of this network topology, even 3-bit exponent and 1-bit mantissa floating

point provides close to baseline accuracy of 94.58%. Even better results can be observed for the

targeted 8-bit floating-point variable with 4-bit exponent. This type provides the ability to train the

network to the accuracy of 95.98%. The best accuracy of 96.15% is achieved for 8-bit floating-

point type with 3-bit exponent and 4-bit mantissa. It is important to remark that it provides above

20 percentage points improvement in comparison to the previously proposed method, utilizing a

solely asymmetric exponent feature with a result of 75.89% [36]. As presented in Fig. 4.9, the

further increase of both exponent and mantissa bit counts does not provide any significant

improvement in comparison to the proposed 8-bit floating point parameters which is represented

by flattened accuracy lines for the trainings with exponents above 2-bits.

4.2.2 AlexNet

The next experiment involved AlexNet with CIFAR10 dataset. The targeted 32-bit

baseline amounted to 74.39% of accuracy. As previously mentioned, in comparison to LeNet

training an additional parameterization change of asymmetric exponent offset has been

introduced for AlexNet and ResNet networks by decreasing this parameter value from -2 to -3.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

90

The change was dictated by different exponent utilization observed during FP32 trainings (section

3.4). Fig. 4.10 presents training results achieved with the use of the proposed limitation method

across multiple bit counts variants over 10 epochs.

Fig. 4.10. AlexNet (CIFAR10) training results with the proposed limitation method

Based on the cross-validation results conducted on AlexNet with CIFAR10 it can be

observed that the proposed technique allows to train this network without accuracy degradation

on 8-bit floating-point type. As expected, 1-bit and 2-bit exponents could not provide a sufficient

dynamic range for AlexNet training, which is understandable based on the poor results of LeNet

trainings with such low bit count types. The convergence of training results can be observed for

3-bit and higher exponent bit counts. Although 5-bit floating point does not provide satisfactory

accuracy with the result of 61.09%, the 3-bit exponent and 4-bit mantissa type achieves much

better accuracy of 72.94%. It should be noticed that along the increasing bit count the results

fluctuation is higher than in case of the flattened LeNet chart, which can be explained by increased

size of the topology and complexity of the classification problem. Nevertheless, 4-bit exponent

and 3-bit mantissa type provide a satisfactory result of 74.5% which surpasses the 10 epochs

baseline result of 74.39%.

The same network has been also validated on CIFAR100 dataset providing a bit more

complex classification scenario. Both parameterization and experiment settings remained

unchanged. The results of such cross validation are presented in Fig. 4.11.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

91

Fig. 4.11. AlexNet (CIFAR100) training results with the proposed limitation method

Application of a more demanding dataset for the AlexNet based classification had a clear

influence on its accuracy across lower bit counts. In comparison to CIFAR10 classification, the

degradation can be observed for 2-bit exponent, which provides much worse results across all

mantissa bit counts. Similar cases can be observed for 5-bit type with 3-bit exponent. It is vivid

that such parameters are unable to train the network. The first satisfactory results can be observed

for 6-bit floating-point type with accuracy of 33.98%, still showing a significant degradation from

the baseline of 38.93%. Unsurprisingly, the 8-bit floating-point type with 4-bit exponent surpassed

the 3-bit one with an accuracy of 38.69% versus 38.59%, both slightly underperformed in

comparison to the 32-bit baseline of 38.93%.

4.2.3 ResNet

ResNet-18 topology with CIFAR dataset was the last neural architecture used for the

validation of the proposed method. The CIFAR10 32-bit baseline for the presented environment

for this model has been established to 77.08%. Fig. 4.12 shows training results for the ResNet-

18 network with the use of the proposed limitation method on multiple bit count variants across

10 training epochs. It is important to remark that both the environment and parameterization of

the training scenarios remained unchanged in comparison to previously presented AlexNet

trainings.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

92

Fig. 4.12. ResNet-18 (CIFAR10) training results with the proposed limitation method

Based on the cross-validation results, it can be observed that limitation of the network’s

parameters bit count has a much larger influence on the ResNet-18 classification in comparison

to AlexNet, even though the training dataset remains unchanged. In this case, not only 1- and 2-

bit exponents are unable to provide sufficient range for training the network, similar cases can be

observed for 3-bit exponent limitation across the full range of mantissa bit counts. The network is

able to converge classification results for 4-bit and higher exponents. The best 76.01% accuracy

comparable to the baseline is achieved for 4-bit exponent and 3-bit mantissa type with

degradation of around 1 percentage point. Interestingly, the best low bit count accuracy for

ResNet-18 on CIFAR10 has been achieved for 7-bit type with 4-bit exponent and 2-bit mantissa

surpassing the baseline with 79.65% of accuracy.

It had to be mentioned that much higher accuracy fluctuation can be observed for all

tested scenarios. This behavior may be the result of a too short training period for a ResNet-18

network resulting with volatile 10 epoch results. Such a negative effect is greatly reduced when

we consider best epochs for ResNet-18 trainings presented in Fig. 4.13. In this case the

fluctuations are much lower and the overall shape of the chart lines for higher bit counts correlates

with those seen for LeNet and Alexnet.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

93

Fig. 4.13. ResNet-18 (CIFAR10) training results with the proposed limitation method – best validation
epoch results selected

Even higher fluctuation of results can be observed for ResNet-18 training with the

CIFAR100 dataset presented in Fig. 4.14. The baseline 32-bit accuracy for ResNet-18 on

CIFAR100 in the present experimental environment has been established at 39.54% of accuracy.

Fig. 4.14. ResNet-18 (CIFAR100) training results with the proposed limitation method

Similarly to CIFAR10, 3-bit and lower exponents do not provide enough range for neural

network results convergence. Fig. 4.15 shows the best accuracy across 10 epochs in order to

present a better picture of the training results. Although training on 8-bit floating-point types

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

94

provides range accuracy of 40.21%, much better results are observed in the case of 5-bit

exponent. The 5-bit exponent and 2-bit mantissa type achieves a surpassing accuracy of 42.62%.

Fig. 4.15. ResNet-18 (CIFAR100) training results with the proposed limitation method – best validation
epoch results selected

Although the main focus of the conducted experiments was 8-bit floating-point accuracy,

it is clear that, similarly to training hyper-parameterization and the proposed method configuration,

the selection of the optimal bit count and parameters type has a key role in efficient utilization of

NN training with limited precision. Multiple factors such as NN parameters count, classification

task complexity or the epochs number may influence the variables range required by the training

procedure. Hence, the proposed method should be considered as an optimization technique

rather than the one-fits-all solution.

The experiments outlined in the previous section proved that it is possible to train tested

NN architectures with custom 8-bit floating-point parameters without significant accuracy

degradation. In less complex cases such as LeNet with MNIST or AlexNet with CIFAR10 it was

possible to achieve satisfactory results with only a 5-bit range for utilized variables. Moreover, the

experiment’s outcome showed that a proper assignment of bits to exponent and mantissa parts

may noticeably influence the final accuracy of the tested NN. As confirmed by multiple research,

the popularly used 4-bit exponent and 3-bit mantissa 8-bit floating-point type is not always the

optimal solution while training the neural topology with limited precision [8] [152] [153]. Hence,

additional factors such as topology size, complexity or dataset must be considered. Table 4.3

summarizes the accuracy of the tested networks across all investigated custom 8-bit floating-point

variants during 10 epochs. Additionally, results exceeding regular 32-bit training procedures have

been underlined in the table.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

95

Table 4.3. Accuracy results of the proposed limitation method across several 8-bit floating-point formats
during 10 epochs, the last row presents the IEE-754 32-bit baseline results.

Floating-point variant LeNet AlexNet ResNet-18

Sign bit
count

Exponent
bit count

Mantissa
bit count

MNIST CIFAR10 CIFAR100 CIFAR10 CIFAR100

1 1 6 54.84% 22.23% 1.98% 8.02% 0.91%

1 2 5 77.81% 62.93% 1.46% 9.97% 1.02%

1 3 4 96.15% 72.94% 38.59% 7.34% 1.17%

1 4 3 95.98% 74.50% 38.69% 76.01% 40.21%

1 5 2 95.78% 71.10% 36.02% 62.85% 42.62%

1 6 1 94.66% 66.11% 30.00% 63.39% 39.68%

IEEE-754 32-bit baseline

1 8 23 96.18% 74.39% 38.93% 77.08% 39.54%

The presented dissertation focuses largely on 8-bit floating-point representation of limited

NN parameters because handling of such types is much more efficient from the hardware

perspective due to the binary representation. Nevertheless, further limitation of variables used for

NN training is possible. The conducted experiments have shown that 5-bit parameters are

sufficient for LeNet training with MNIST dataset. Both AlexNet and ResNet required at least 6-bit

parameters to converge without significant degradation of classification accuracy for CIFAR10

and CIFAR100 datasets. It is important to remark that in all cases a decrease of the network’s

accuracy is still noticeable and varies depending on the topology and the dataset used. Table 4.4.

presents the bit count variants for each of the tested scenarios that were selected by the author

as minimal parameter size for training a particular network topology in the experimentation

environment. Although the majority of the results are not at the level of the 32-bit floating-point

baseline, there should be a possibility of improving below 8-bit floating-point accuracy for selected

networks by further training parameterization or modification of the proposed limitation method.

An interesting case is presented by ResNet-18 with CIFAR10 dataset in case of which the

achieved result is better than the targeted 8-bit type with 4-bit exponent.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

96

Table 4.4. Accuracy results of the proposed limitation method with minimal usable floating-point bit counts
(compared to the 32-bit baseline)

Neural
network

Dataset
Total

bit
count

Exponent
bit count

Mantissa
bit count

Accuracy

Accuracy
change (in
percentage

points)

LeNet MNIST 5 3 1 94.58% -1.68

AlexNet

CIFAR10 6 3 2 73.42% -0.97

CIFAR100 6 3 2 33.98% -4.95

ResNet

CIFAR10 6 4 1 77.37% 0.29

CIFAR100 6 4 1 38.54% -1.0

4.3 Method’s features impact analysis

The proposed method incorporates multiple techniques as denormalization, stochastic

rounding and modification of exponent representation in order to train selected NN architectures

with 8-bit floating-point variables at the accuracy level represented by common 32-bit trainings. It

is important to analyse how the proposed method’s elements impact the network’s classification

quality. All comparisons presented in this chapter were conducted based on 8-bit floating point-

type with 4-bit exponent and 3-bit mantissa.

4.3.1 Exponent shift analysis

Stochastic rounding proved to be a vital solution in terms of NN training with limited

precision as it allows to minimize rounding errors impact on the network’s quality [5] [6] [7] [92].

The conducted experiment aims to compare the influence of exponent representation change on

trainings with 8-bit floating-point and stochastic rounding. The analysis involved trainings on

various representations of shifted exponent, including asymmetric exponent representation,

regular symmetric exponent and intermediate shifts that can be achieved by exponent’s bias

modification. In the same manner as with other experiments presented in the dissertation, the

analysis has been conducted on LeNet, AlexNet and ResNet models. Fig. 4.16 presents results

of such an experiment on the LeNet network with the MNIST dataset.

As presented in Fig. 4.16, a representation of the exponent has a marginal impact when

it comes to LeNet accuracy on MNIST dataset. Both regular exponent with a range from -6 to 7

and asymmetric exponent with a range from -13 to 0, achieve high results with a slight advantage

for the regular exponent representation. Additional shifts do not significantly modify the accuracy

until as far as an asymmetric exponent with offset -6 which represents values range from -6 to -

19 and notably degrades accuracy of the network. In order to enable an easier comparison of the

proposed method with its previous version proposed by Pietrołaj and Blok (2022) [36], the red line

has been marked in Fig. 4.16 to show the 8-bit floating-point LeNet accuracy. The mentioned

method did not include denormalization or stochastic rounding implementation, hence accuracy

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

97

difference can be seen as a scale of improvement achieved thanks to newly introduced method’s

techniques. Such a comparison shows that stochastic rounding is a vital element of the method

and without its application the network would not be able to achieve 32-bit baseline results with

an 8-bit floating-point precision limitation.

Fig. 4.16. Accuracy of 8-bit LeNet (MNIST) across various exponent shift scenarios

The following analysis involved a more complex convolutional neural network AlexNet.

Although with a small model as LeNet the influence of an asymmetric exponent with offset is

negligible, it is much more beneficial in this case. The accuracy of AlexNet on CIFAR10 dataset

in various exponent representation scenarios is presented in Fig. 4.17.

The AlexNet case shows that the asymmetric exponent has a significant advantage of

above 15 percentage points over a regular exponent. Additional shift of -2 of asymmetric exponent

allows to tune the training and gain a few additional percentage points of accuracy. Such case

noticeably exceeds the previously selected result in section 4.2 for offset of -3 with over 2

percentage points. As with LeNet there is a visible degradation of results once the offset is set

below -5 which interferes with the network’s ability to converge.

The same analysis of AlexNet results has been conducted on CIFAR100 to verify the

impact of a slightly more complex dataset. Fig. 4.18 sums up the results achieved during this

experiment.

Both with CIFAR10 and CIFAR100 training variants, the positive influence of asymmetric

exponent on AlexNet training accuracy can be noticed. The offset of -3 provides almost 6

percentage points of accuracy improvement in comparison to asymmetric exponent. Similarly to

CIFAR10, the regular exponent does not provide enough range to train the network on par with

the 32-bit baseline.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

98

Fig. 4.17. Accuracy of 8-bit AlexNet (CIFAR10) across various exponent shift scenarios

Fig. 4.18. Accuracy of 8-bit AlexNet (CIFAR100) across various exponent shift scenarios

ResNet was the last network tested in terms of various exponent representation variants.

The verification involved both CIFAR10 and CIFAR100 datasets. Fig. 4.19 presents ResNet

results on the CIFAR10 dataset.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

99

Fig. 4.19. Accuracy of 8-bit ResNet-18 (CIFAR10) across various exponent shift scenarios

As presented in Fig. 4.19, ResNet-18, in contrast to LeNet and AlexNet, could not be trained on

CIFAR10 dataset with a regular exponent representation. The best result can be observed for an

asymmetric exponent with an offset equal to -2. A similar case can be observed in the case of

ResNet and CIFAR100 dataset (Fig. 4.20), although in this case the exponent offsets of 1 and -1

show a clear advantage with the accuracy above 43%.

Fig. 4.20. Accuracy of 8-bit ResNet-18 (CIFAR100) across various exponent shift scenarios

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

100

The presented results show that an asymmetric exponent with offset is a vital technique

for improving accuracy of CNN training with limited precision. Its influence is especially noticeable

in the case of more complex architecture and datasets where requirements regarding exponent

range are more demanding.

4.3.2 Denormalization

 Although stochastic rounding and asymmetric exponent representation can be stated as

the most impactful features of the presented method, the influence of IEEE-754-like

denormalization mechanism cannot be overlooked. In order to provide 32-bit baseline accuracy

on 8-bit floating-point, an additional values range is crucial, especially for more complex NN

architectures. The extended margin of supported values provided by the denormalization feature

enables the proposed method to limit possible decrease of accuracy on a low-precision floating-

point type. The influence of denormalization feature on the presented experiments can be

assessed based on Table 4.5.

Table 4.5. Comparison of experiment results with and without denormalization feature

Neural
network

Dataset
Accuracy without
denormalization

Accuracy with
denormalization

Improve
ment

(percenta
ge

points)

LeNet MNIST 95.59% 95.98% 0.39

AlexNet

CIFAR10 73.79% 74.50% 0.71

CIFAR100 29.28% 38.69% 9.41

ResNet

CIFAR10 67.07% 76.01% 8.94

CIFAR100 40.41% 40.21% -0.2

It can be observed that in almost all training scenarios the denormalization feature

provides improvement when it comes to the final accuracy of the network. The difference is

especially vivid in the case of more complex networks. The highest improvement is visible for

AlexNet on CIFAR10 which achieves over 9 percentage point better accuracy. Similar scenarios

can be observed for the ResNet network on CIFAR10 and with almost 9 percentage points of

improvement. The smallest difference is reported for the less complex training scenarios as LeNet

and AlexNet on CIFAR10. Interestingly, in the case of ResNet-18 and CIFAR100 the

denormalization does not provide any improvement to the accuracy result.

4.3.3 Approach to activations

As described in section 4.2 the approach applied to activations limitation was different

from the one used for weights, biases and gradients. In case of activations both asymmetric

exponent and asymmetric offset features were disabled. This decision was dictated by a different

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

101

range of exponent values utilized specifically by activations based on previously conducted 32-

bit trainings for all tested NN architectures. In order to confirm this decision, the author conducted

trainings with and without exponent-related features as presented in Table 4.6.

Table 4.6. Asymmetric exponent influence on activations

Neural network Dataset
Activations with

asymmetric exponent
Activation without

asymmetric exponent

LeNet MNIST 19.50% 95.98%

AlexNet

CIFAR10 15.42% 74.50%

CIFAR100 1.75% 38.69%

ResNet

CIFAR10 10.02% 76.01%

CIFAR100 1.00% 40.21%

The presented results show that using the asymmetric exponent feature for activations

significantly degrades training accuracy of each of the presented architectures. The range of

values used by activation parameters includes numbers with positive values of exponent which

are not represented by variables with asymmetric exponent. In order to apply the asymmetric

exponent in this scenario, additional experiments would be required with exponent offset that

includes most commonly used positive exponent values for a particular neural network topology

and dataset.

The analysis presented in this chapter shows that none of the method’s features from the

proposed method can be used as a standalone technique when it comes to training NN with

limited precision. Only a precise combination of these features with appropriate tuning allows to

achieve the 32-bit baseline results on a limited number of bits.

4.4 Results convergence

The number of epochs required to train a specific NN architecture is crucial when it comes

to resource consumption. The more time is required, the longer is the utilization of a given

computational unit. Moreover, additional memory may be needed to store logs or temporary

epoch results for the final accuracy selection. Due to these concerns, it is crucial that the proposed

limitation method does not negatively affect the time of the training convergence. In order to verify

this scenario and confirm that there is no such negative impact on a presented method, a

comparison of IEEE-754 32-bit floating-point and the proposed 8-bit floating-point training results

has been conducted for each NN architecture investigated in this dissertation. The verification of

the results’ convergence of networks such as LeNet and AlexNet has been checked over 30

epochs. In case of ResNet-18, to ensure that there is enough time for the network to converge,

the training length has been extended to 200 epochs.

Fig. 4.21 shows a comparison of LeNet training accuracy on 32-bit IEEE-754 floating-

point and the proposed 8-bit floating-point over 30 epochs. It can be observed that starting from

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

102

seventh epoch both accuracy lines tend to follow the same path with minor deviations of no more

than 0.2 of a percentage point, giving consistent results above 98% for both trainings. An

interesting behavior can be noticed during initial epochs of the training where the proposed 8-bit

floating-point type provides slightly better results over 6 epochs. This observation is consistent

with the assumption of Yu et al. (2022) [142] where limited precision tends to provide a

regularization mechanism and faster convergence similarly to manipulation of learning rate hyper-

parameter.

Fig. 4.21. Comparison of LeNet (MNIST) 32-bit IEEE-754 and proposed 8-bit floating point trainings
convergence

The comparison of training results between 8-bit and 32-bit floating-point AlexNet

architectures on CIFAR10 is presented in Fig. 4.22. Although the 8-bit validation accuracy of the

training closely follows the baseline across all 30 epochs, there is a noticeable degradation of

results visible across the whole chart, giving 1 percentage point of difference in the results for the

30th epoch. An additional tuning or more training epochs may be required in order to minimize this

phenomenon. Nevertheless, it is visible that both convergence trends follow the same path

without significant irregularities. It is important to remark that the achieved results for both 32-bit

and 8-bit scenarios exceed the previously presented results [154], most likely due to favorable

random weights initialization.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

103

Fig. 4.22. Comparison of AlexNet (CIFAR10) 32-bit IEEE-754 and proposed 8-bit floating point trainings
convergence

Much better results can be observed for the same topology trained with the CIFAR100

database (Fig. 4.23). From the initial epochs, both 8-bit and 32-bit accuracies follow almost

identical convergence paths. The small accuracy differences can be spotted for epochs between

11 and 22. Although final epochs of the training show a more significant difference between the

baseline, the end result during the 30th epoch gives a better accuracy in the case of 8-bit training

with around 0.5 percentage point of advantage.

Fig. 4.23. Comparison of AlexNet (CIFAR100) 32-bit IEEE-754 and proposed 8-bit floating point trainings
convergence

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

104

Fig. 4.24 presents validation accuracy for each of 200 training epochs with ResNet-18 on

CIFAR10 dataset. In case of this topology, the number of epochs has been increased for better

presentation of the convergence process. It can be observed that accuracy achieved on the

proposed 8-bit floating-point follows the 32-bit IEEE-754 baseline, however, the same as with

previous charts related to ResNet-18, the accuracy lines behave irregularly during initial epochs.

The steep changes in accuracy can be attributed to learning rate scheduler’s milestones which

were set to 60, 120 and 160 epochs. The chart shows smooth results starting from the 120th epoch

once the second scheduler milestone is hit. From this point the baseline slightly exceeds the

proposed limitation method result till the end of the training with a difference below 0.5 of

percentage point.

Fig. 4.24. Comparison of ResNet-18 (CIFAR10) 32-bit IEEE-754 and proposed 8-bit floating point trainings
convergence

The same situation can be observed while feeding the ResNet-18 network with a bit more

complex CIFAR100 dataset (Fig. 4.25). Similar irregularity for initial epochs can be observed

along with steep changes due to learning rate scheduler milestones. Although accuracy achieved

with limited precision closely follows the baseline, it can be noticed that a small degradation of

results is visible during the last 40 epochs. In order to resolve this issue, an additional training

tuning may be required.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

105

Fig. 4.25. Comparison of ResNet-18 (CIFAR100) 32-bit IEEE-754 and proposed 8-bit floating point
trainings convergence

As already discussed in this dissertation, preparation of an optimal machine learning

solution to a particular problem is a repetitive task which often includes multiple iterations.

Moreover, NN solutions highly depend on the provided training and test datasets. Extensive

hyper-parameterization stands for another factor which is often investigated with multi-training

procedures as grid search or custom tuning [30]. The provided training convergence examples

for LeNet, AlexNet and ResNet-18 show that there is no negative impact of the presented method

across multiple neural topologies and datasets. Achieving comparable results for a similar number

of epochs confirms that bit count limitation of network architecture’s parameters can be done

without prolongation of the training time which would hinder the possible power and memory

savings.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

106

5 SUMMARY

The dissertation broadly presents results of the performed investigation of NN training

with limited precision variables. The author proposed a new precision limitation method for neural

network training with an extensive verification on commonly used benchmark convolutional

models. Based on a broad literature review, the presented method has been compared to existing

techniques of limitation, mixed-precision and hardware approaches.

The presented research can be divided into two general sections. The first one covers

experiments on commonly used convolutional benchmark NNs in order to investigate the impact

of the proposed limitation of the IEEE-754 32-bit floating-point bit count on their classification

accuracy. A wide comparison of bit count variants is validated with detailed description of the

gathered results for each of the topologies and the datasets used. Moreover, a deep dive insight

on exponent utilization during NN training is featured, showing a suboptimal exponent’s bit count

usage during training of the selected neural models. Such an observation not only showed a room

for data type related improvements when it comes to NN training but also provided a brief

introduction to the efficiency related features established by a presented, proprietary training

method. The second section of the dissertation was focused on explanation of the proposed NN

training method with limited precision. Besides the method itself, its components are described

with a relation to its applicability to ML experiments. Analogously to the previous research section,

a wide range of bit count variants has been tested in order to validate the method’s influence on

selected CNNs. The gathered results have been presented to the reader to allow an easy

comparison of enhancements provided by the proposed technique.

The conducted experiments allowed the author to validate the theses introduced at the

beginning of this dissertation. Firstly, multiple trainings with the use of the proposed method

confirmed that it is possible to train popular convolutional neural networks as LeNet,

AlexNet, and ResNet-18 with a custom 8-bit floating-point variable’s type without

significant classification accuracy degradation in comparison to regular IEEE-754 32-bit

floating-point. This statement has been directly proven by NN training results, especially ones

with variables containing 1-bit sign, 4-bit exponent and 3-bit mantissa. In addition to data type

changes, a stochastic rounding technique and denormalization have been introduced for

achieving the presented results. Secondly, the author was able to indirectly prove the thesis that

application of the proposed arithmetic precision limitation method for convolutional neural

networks training with low level bit count floating-point variables allows to decrease

computational power and memory requirements. The relation between lowering bit-count and

resource requirements has been showcased based on multiple domain related research and

hardware designs. Hence, limiting data type bit count required for NN training would greatly lower

resource consumption during that process. Additionally, the method has not increased the number

of epochs required for convergence to the results similar to full precision training which could spoil

the benefits of the proposed optimization. Finally, the stochastic rounding technique leveraged for

the training limitation does not enforce a significant computational overhead to the presented

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

107

method. This rounding technique has been frequently used by other researchers and industry

leaders providing specific AI hardware accelerators adjusted for stochastic rounding in order to

efficiently manage limited resources.

The dissertation presents original achievements of the author in terms of

presented method and conducted experiments:

▪ In-depth analysis of exponent values utilization during convolutional neural network

training.

▪ Investigation of bit count limitation influence to convolutional neural network accuracy.

▪ Proposition of a new low-precision floating-point format with multiple variants of exponent

and mantissa configurations, including a custom approach to exponent range

representation.

▪ Proposition of an original method focusing on low-precision floating-point arithmetic for

neural network training combining techniques such as asymmetric exponent, stochastic

rounding and denormalization of low-precision variables.

▪ Extensive experiments on the proposed method impact on selected neural network

architectures training accuracy, proving the method’s achievements.

▪ Experiments on asymmetric exponent and its possible offset variants.

▪ Verification of the convergence between regular 32-bit floating-point training and the

proposed 8-bit floating-point technique.

Although the presented research was highly focused on 8-bit floating-point utilization for

neural network training, it is important to remark that the method introduces much wider

possibilities for future optimizations. As stated in the experiments’ overview, it is important to treat

the provided mechanism as a form of training hyper-parameterization including the selected bit

count and format of the exponent characteristic chosen in this process. Focusing on more directly

shaped appliance of the proposed method to a specific topology or training data may greatly

influence further outcomes of the proposed method.

5.1 Future directions

The mentioned flexibility of the proposed method introduces a variety of directions for its

further development. One of the factors that should be investigated is a much broader application

of the mixed precision approach to NN training. At this point, only a single data type has been

used for the whole training process of a selected NN training with an exception of activations.

Based on the insights of other researchers publishing their results, it may be beneficial to modify

the precision along the training process. Three aspects are considered by the author of the

dissertation:

• Increasing the bit count and exponent’s capacity along with following epochs of the

training process. This should allow for NN regularization during the initial epochs. Finding

a closest training loss minimum at the early training stage may accelerate the search for

the optimal solution.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

108

• Further analysis of neural network training requirements for specific data type formats

across single layers of the topology. This way a specific per layer approach can be applied

to a given NN model by selecting bit count or floating-point format.

• Applying varying bit counts to specific topology parameters as weights, biases or

activations based on their utilization in a specific NN topology. Such an approach might

be especially beneficial for activations and biases which, as shown in the dissertation,

tend to use a bit different range of exponent values in a floating-point type.

Naturally, along with experimentation progress the proposed variants could be mixed and

matched in a form of grid-search-like approach to achieve the best method’s variant.

Nevertheless, the author does not state that those are the only possible customization that could

additionally enhance the proposed training’s limitation technique.

Another crucial direction of the presented research is the preparation of a custom

hardware design with full support of the presented method’s features. In contrast to software

simulation techniques, a hardware acceleration would allow for much better power and memory

savings measurements during NN trainings. Based on that, it would be also possible to

approximate costs and requirements for future productization of such NN training accelerators.

Moreover, efficient hardware design opens new ways for power effective implementation of

stochastic rounding or the application of mixed-precision. The initial step in this direction has been

already made by research done by Aleksiuk et al. (2023) [20]. The work involved the design and

implementation of the FPGA based 8-bit floating-point multiplier proposed in this dissertation,

required for the support of the presented method.

Usage of full software simulation for utilization and verification of the presented method

significantly limits the validation scope that can be executed on broadly available common use

hardware. The emulation of limited bit count and additional rounding introduce additional

operations during the training which is both time and resource consuming. Once custom hardware

is available, validation of the proposed method on much larger NN topologies and datasets would

be more approachable. This direction should also include training and verification of other network

topologies such as recurrent networks or transformers.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

109

6 REFERENCES

[1] Y. Duan, J. S. Edwards and Y. K. Dwivedi, "Artificial intelligence for decision making in the

era of Big Data–evolution, challenges and research agenda," International journal of

information management, vol. 48, pp. 63-71, 2019.

[2] R. M. Amir, A. Elham, A. Saqib, M. Mokhtar, A. H. Omed, G. Y. Marwan, A. H. Sarkar and

H. Mehdi, "Artificial intelligence approaches and mechanisms for big data analytics: a

systematic study.," PeerJ Computer Science, no. 7, p. e488, 2021.

[3] S. Bianco, R. Cadene, L. Celona and P. Napoletano, "Benchmark analysis of

representative deep neural network architectures," IEEE access, vol. 6, pp. 64270-64277,

2018.

[4] Y. Hu, Y. Liu and Z. Liu, "A survey on convolutional neural network accelerators: GPU,

FPGA and ASIC.," in 2022 14th International Conference on Computer Research and

Development (ICCRD), 2022.

[5] S. Gupta, A. Agrawal, K. Gopalakrishnan and P. Narayanan, "Deep Learning with Limited

Numerical Precision," in International conference on machine learning, 2015.

[6] M. Ortiz, A. Cristal, E. Ayguadé and M. Casas, "Low-Precision Floating-Point Schemes for

Neural Network Training," arXiv:180405267, 2018.

[7] I. Taras and D. M. Stuart, "Quantization Error as a Metric for Dynamic Precision Scaling in

Neural Net Training," arXiv:180108621, 2018.

[8] J. Park, S. Lee and D. Jeon, "A neural network training processor with 8-bit shared

exponent bias floating point and multiple-way fused multiply-add trees," IEEE Journal of

Solid-State Circuits, vol. 57, no. 3, pp. 965-977, 2021.

[9] R. Mishra, H. P. Gupta and T. Dutta, "A survey on deep neural network compression:

Challenges, overview, and solutions," arXiv:2010.03954, 2020.

[10] "Cloud TPU," Google, 2023. [Online]. Available: https://cloud.google.com/tpu. [Accessed

12 March 2023].

[11] "Deep Learning Accelerator," Nvidia, 2023. [Online]. Available:

https://developer.nvidia.com/deep-learning-accelerator. [Accessed 12 March 2023].

[12] Y. Chen, Y. Xie, L. Song, F. Chen and T. Tang, "A survey of accelerator architectures for

deep neural networks," Engineering, vol. 6, no. 3, pp. 264-274, 2020.

[13] X. Zhang, S. Liu, R. Zhang, C. Liu, D. Huang, S. Zhou, J. Guo, Q. Guo, Z. Du and T. Zhi,

"Fixed-point back-propagation training," in Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, 2020.

[14] H. Park, J. H. Lee, Y. Oh, S. Ha and S. Lee, "Training Deep Neural Network in Limited

Precision," arXiv:1810.05486, 2018.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

110

[15] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim and H.-J. Yoo, "UNPU: A 50.6TOPS/W unified

deep neural network accelerator with 1b-to-16b fully-variable weight bit-precision," 2018.

[16] K. Onishi and M. Hashimoto, "Memory Efficient Training using Lookup-Table-based

Quantization for Neural Network," in 2020 2nd IEEE International Conference on Artificial

Intelligence Circuits and Systems (AICAS), 2020.

[17] B. Kim, S. H. Lee, H. Kim, D.-T. Nguyen, M.-S. Le, I. J. Chang, D. Kwon, J. H. Yoo, J. W.

Choi and H.-J. Lee, "PCM: precision-controlled memory system for energy efficient deep

neural network training," in 2020 Design, Automation & Test in Europe Conference &

Exhibition (DATE), 2020.

[18] C. S. Wallace, "A suggestion for a fast multiplier," IEEE Transactions on electronic

Computers, no. 1, pp. 14-17, 1964.

[19] T. Ryszard and M. Szaleniec, Leksykon sieci neuronowych, Projekt Nauka. Fundacja na

rzecz promocji nauki polskiej, 2015.

[20] H. Aleksiuk, A. Bogucki and K. Repiński, "8-bitowy mnożnik i sumator

zmiennoprzecinkowy, Projekt grupowy pod opieką prof. Marka Bloka," Politechnika

Gdańska, Gdańsk, 2023. Available at: https://git.pg.edu.pl/5-ksti-2023

[21] L. Yu, S. Wang and K. K. Lai, "Data preparation in neural network data analysis," Foreign-

Exchange-Rate Forecasting With Artificial Neural Networks, pp. 36-62, 2007.

[22] P. Henderson, J. Hu, J. Romoff, E. Brunskill, D. Jurafsky and J. Pineau, "Towards the

systematic reporting of the energy and carbon footprints of machine learning," The Journal

of Machine Learning Research, vol. 21, no. 1, pp. 10039-10081, 2020.

[23] T. Fredriksson, D. I. Mattos, J. Bosch and H. H. Olsson, "Data Labeling: An Empirical

Investigation into Industrial Challenges and Mitigation Strategies," in International

Conference on Product-Focused Software Process Improvement, 2020.

[24] Y. Roh, G. Heo and S. E. Whang, "A survey on data collection for machine learning: a big

data-ai integration perspective," IEEE Transactions on Knowledge and Data Engineering,

vol. 33, no. 4, pp. 1328-1347, 2019.

[25] K. Y. Chan, B. Abu-Salih, R. Qaddoura, A. M. Al-Zoubi, V. Palade, D.-S. Pham, J. Del Ser

and K. Muhammad, "Deep neural networks in the cloud: Review, applications, challenges

and research directions," Neurocomputing, p. 126327, 2023.

[26] R. David, J. Duke, A. Jain, V. Janapa Reddi, N. Jeffries, J. Li, N. Kreeger, I. Nappier, M.

Natraj and T. Wang, "Tensorflow lite micro: Embedded machine learning for tinyml

systems," Proceedings of Machine Learning and Systems, vol. 3, pp. 800-811, 2021.

[27] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi and J. Kepner, "AI and ML

Accelerator Survey and Trends," in 2022 IEEE High Performance Extreme Computing

Conference (HPEC), 2022.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

111

[28] G. Alexandru-Lucian, P. Alessandro, C. Horia and B. Michaela, "Performance vs. hardware

requirements in state-of-the-art automatic speech recognition," EURASIP Journal on

Audio, Speech, and Music Processing, vol. 2021, no. 1, 2021.

[29] S. Han, H. Mao and W. J. Dally, "Deep compression: Compressing deep neural networks

with pruning, trained quantization and huffman coding," arXiv:1510.00149, 2015.

[30] X. Zhang, X. Chen, L. Yao, C. Ge and M. Dong, "Deep Neural Network Hyperparameter

Optimization with Orthogonal Array Tuning," in Neural Information Processing: 26th

International Conference, ICONIP 2019, Sydney, NSW, Australia, December 12-15, 2019,

Proceedings, Part IV 26, 2019.

[31] J. Lee, N. C. Ignasheva, Y. Pisarchyk, M. Shieh, F. Riccardi, R. Sarokin, A. Kulik and M.

Grundmann, "On-Device Neural Net Inference with Mobile GPUs," arXiv:1907.01989,

2019.

[32] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh and D. Bacon, "Federated

learning: Strategies for improving communication efficiency," arXiv:1610.05492, 2016.

[33] S. A. Osia, A. S. Shamsabadi, S. Sajadmanesh, A. Taheri, K. Katevas, H. R. Rabiee, N.

D. Lane and H. Haddadi, "A hybrid deep learning architecture for privacy-preserving mobile

analytics," IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4505-4518, 2020.

[34] M. C. Nwadiugwu, "Neural networks, artificial intelligence and the computational brain,"

arXiv:2101.08635, 2020.

[35] F. Rosenblatt, "The perceptron: a probabilistic model for information storage and

organization in the brain," Psychological review, vol. 65, no. 6, p. 386, 1958.

[36] M. Pietrołaj and M. Blok, "Neural network training with limited precision and asymmetric

exponent," Journal of Big Data, vol. 9, no. 1, p. 63, 2022.

[37] D. E. Rumelhart, G. E. Hinton and R. J. Williams, "Learning representations by back-

propagating errors," nature, vol. 323, no. 6088, pp. 533-536, 1986.

[38] R. Hecht-Nielsen, "Theory of the backpropagation neural network," Neural networks for

perception, pp. 65-93, 1992.

[39] D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison and G. E. Dahl, "On Empirical

Comparisons of Optimizers for Deep Learning," arXiv:1910.05446, 2020.

[40] V. Sze, Y.-H. Chen, T.-J. Yang and J. S. Emer, "Efficient processing of deep neural

networks: A tutorial and survey," Proceedings of the IEEE, vol. 105, no. 12, pp. 2295-2329,

2017.

[41] B. Hanin, "Which neural net architectures give rise to exploding and vanishing gradients?,"

Advances in neural information processing systems, vol. 31, 2018.

[42] L. Xia, M. E. Hochstenbach and S. Massei, "On the Convergence of the Gradient Descent

Method with Stochastic Fixed-point Rounding Errors under the Polyak-Lojasiewicz

Inequality," arXiv:2301.09511, 2023.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

112

[43] F. Rosenblatt, Principles of neurodynamics. perceptrons and the theory of brain

mechanisms, vol. 55, Spartan books Washington, DC, 1962.

[44] H. Schulz and S. Behnke, "Deep learning: Layer-wise learning of feature hierarchies," KI-

Künstliche Intelligenz, vol. 26, pp. 357-363, 2012.

[45] A. Canziani, A. Paszke and E. Culurciello, "An analysis of deep neural network models for

practical applications," arXiv:1605.07678, 2016.

[46] A. LeNail, "NN-SVG: Publication-Ready Neural Network Architecture Schematics," J. Open

Source Softw., vol. 4, no. 33, p. 747, 2019.

[47] Y. LeCun, Y. Bengio and G. Hinton, "Deep learning," nature, vol. 521, no. 7553, pp. 436-

444, 2015.

[48] A. Krizhevsky, I. Sutskever and G. E. Hinton, "Imagenet classification with deep

convolutional neural networks," Advances in neural, vol. 25, 2012.

[49] S. Ma, X. Zhang, C. Jia, Z. Zhao, S. Wang and S. Wang, "Image and Video Compression

With Neural Networks: A Review," IEEE Transactions on Circuits and Systems for Video

Technology, vol. 30, no. 6, pp. 1683-1698, 2019.

[50] B. Alshemali and K. Jugal, "Improving the Reliability of Deep Neural Networks in NLP: A

Review," Knowledge-Based Systems, no. 191, p. 105210, 2020.

[51] K. O'Shea and R. Nash, "An introduction to convolutional neural networks,"

arXiv:1511.08458, 2015.

[52] Z. Li, F. Liu, W. Yang, S. Peng and J. Zhou, "A Survey of Convolutional Neural Networks:

Analysis, Applications, and Prospects," IEEE transactions on neural networks and learning

systems, 2021.

[53] H. Salehinejad, S. Sankar, J. Barfett, E. Colak and S. Valaee, "Recent advances in

recurrent neural networks," arXiv:1801.01078, 2017.

[54] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard and L. Jackel,

"Handwritten digit recognition with a back-propagation network," Advances in neural

information processing systems, vol. 2, 1989.

[55] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to

document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

[56] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, Karpathy, rej,

A. Khosla and M. Bernstein, "Imagenet large scale visual recognition challenge,"

International journal of computer vision, vol. 115, pp. 211-252, 2015.

[57] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image

recognition," arXiv:1409.1556, 2014.

[58] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke

and A. Rabinovich, "Going Deeper With Convolutions," in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2015.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

113

[59] X. Glorot and Y. Bengio, "Understanding the difficulty of training deep feedforward neural

networks," in Proceedings of the thirteenth international conference on artificial intelligence

and statistics, 2010.

[60] H. H. Tan and K. H. Lim, "Vanishing Gradient Mitigation with Deep Learning Neural

Network Optimization," in 2019 7th international conference on smart computing \&

communications (ICSCC), 2019.

[61] K. He, X. Zhang, S. Ren and J. Sun, "Deep residual learning for image recognition," in

Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.

[62] P. J. Werbos, "Backpropagation through time: what it does and how to do it," Proceedings

of the IEEE, vol. 78, no. 10, pp. 1550-1560, 1990.

[63] R. C. Staudemeyer and E. R. Morris, "Understanding LSTM - a tutorial into long short-term

memory recurrent neural networks," arXiv:1909.09586, 2019.

[64] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural computation, vol. 9,

no. 8, pp. 1735-1780, 1997.

[65] Y. Yu, X. Si, C. Hu and J. Zhang, "A review of recurrent neural networks: LSTM cells and

network architectures," Neural computation, vol. 31, no. 7, pp. 1235-1270, 2019.

[66] K. Cho, B. Van Merriënboer, D. Bahdanau and Y. Bengio, "On the properties of neural

machine translation: Encoder-decoder approaches," arXiv preprint arXiv:1409.1259, 2014.

[67] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser and I.

Polosukhin, "Attention is all you need," Advances in neural information processing

systems, vol. 30, 2017.

[68] Y. LeCun, "1.1 deep learning hardware: past, present, and future," in 2019 IEEE

International Solid-State Circuits Conference-(ISSCC), 2019.

[69] W. Kahan, "IEEE standard 754 for binary floating-point arithmetic," Lecture Notes on the

Status of IEEE, vol. 754, no. 94720-1776, p. 11, 1996.

[70] E. Strubell, A. Ganesh and A. McCallum, "Energy and policy considerations for deep

learning in NLP," arXiv:1906.02243, 2019.

[71] N. D. Lane, S. Bhattacharya, A. Mathur, P. Georgiev, C. Forlivesi and F. Kawsar,

"Squeezing deep learning into mobile and embedded devices," IEEE Pervasive

Computing, vol. 16, no. 3, pp. 82-88, 2017.

[72] M. J. Flynn and S. F. Oberman, "Advanced Computer Arithmetic Design," 2001.

[73] E. E. Swartzlander and C. E. Lemonds, Computer Arithmetic: Volume III, World Scientific,

2015.

[74] E. L. Oberstar, "Fixed-point representation & fractional math," Oberstar Consulting, vol. 9,

no. 19, 2007.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

114

[75] B. Barrois and O. Sentieys, "Customizing fixed-point and floating-point arithmetic—a case

study in k-means clustering," in 2017 IEEE International Workshop on Signal Processing

Systems (SiPS), 2017.

[76] D. Goldberg, "What every computer scientist should know about floating-point arithmetic,"

ACM computing surveys, vol. 23, no. 1, pp. 5-48, 1991.

[77] Y. Zhang, L. Zhao, S. Cao, W. Wang, T. Cao, F. Yang, M. Yang, S. Zhang and N. Xu,

"Integer or Floating Point? New Outlooks for Low-Bit Quantization on Large Language

Models," arXiv:2305.12356, 2023.

[78] "IEEE Standard for Floating-Point Arithmetic," In IEEE Std 754-2019 (Revision of IEEE

754-2008), pp. 1-84, 2019.

[79] D. G. Hough, "The IEEE standard 754: One for the history books," Computer, vol. 52, no.

12, pp. 109-112, 2019.

[80] M. P. Connolly, N. J. Higham and T. Mary, "Stochastic rounding and its probabilistic

backward error analysis," SIAM Journal on Scientific Computing, vol. 43, no. 1, pp. A566-

A585, 2021.

[81] G. Frantz and R. Simar, "Comparing fixed-and floating-point DSPs," Texas Instruments,

Dallas, TX, USA, 2004.

[82] C. Inacio and D. Ombres, "The DSP decision: Fixed point or floating?," IEEE Spectrum,

vol. 33, no. 9, pp. 72-74, 1996.

[83] "TensorFlow," 2023. [Online]. Available: https://www.tensorflow.org/. [Accessed 21

January 2023].

[84] "PyTorch," 2023. [Online]. Available: https://pytorch.org/. [Accessed 21 January 2023].

[85] C. Luo, X. He, J. Zhan, L. Wang, W. Gao and J. Dai, "Comparison and benchmarking of ai

models and frameworks on mobile devices," arXiv:2005.05085, 2020.

[86] J. Y. F. Tong, D. Nagle and R. A. Rutenbar, "Reducing power by optimizing the necessary

precision/range of floating-point arithmetic," IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 8, no. 3, pp. 273-286, 2000.

[87] M. C. Pascal, R. A. Rutenbar and R. L. Carley, "Exploring multiplier architecture and layout

for low power," in Proceedings of Custom Integrated Circuits Conference, 1996.

[88] T. K. Callaway and E. E. Swartzlander, "Power-delay characteristics of CMOS multipliers,"

in Proceedings 13th IEEE Sympsoium on Computer Arithmetic, 1997.

[89] H. Choi, W. Burleson and D. Phatak, "Fixed-point roundoff error analysis of large

feedforward neural networks," 1993.

[90] K. Jia and M. Rinard, "Exploiting verified neural networks via floating point numerical error,"

in Static Analysis: 28th International Symposium, SAS 2021, Chicago, IL, USA, October

17-19, 2021, Proceedings 28, 2021.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

115

[91] G. E. Forsythe, "Round-off errors in numerical integration on automatic machinery-

preliminary report," In Bulletin of the American Mathematical Society, vol. 56, pp. 61-62,

1950.

[92] M. Croci, M. Fasi, N. J. Higham, T. Mary and M. Mikaitis, "Stochastic rounding:

implementation, error analysis and applications," Royal Society Open Science, vol. 9, no.

3, p. 211631, 2022.

[93] C. M. Barnes R., E. H. Cooke-Yarborough and G. A. Thomas D, "An electronic digital

computor using cold cathode counting tubes for storage," Electron, vol. 23, pp. 286-291,

1951.

[94] M. Mikaitis, "Stochastic rounding: algorithms and hardware accelerator," in 2021

International Joint Conference on Neural Networks (IJCNN), 2021.

[95] S. Felix, M. Gore and A. G. Alexander, "Converting floating point numbers to reduce the

precision". Washington, DC: U.S. Patent 11,169,778, 9 November 2021.

[96] J. D. Bradbury, S. R. Carlough, B. R. Prasky and E. M. Schwarz, “Stochastic rounding

floating-point multiply instruction using entropy from a register”. Washington, DC: U.S.

Patent 10,445,066, 15 October 2019.

[97] G. H. Loh, "Stochastic rounding logic". Washington, DC: U.S. Patent 10,628,124, 18 March

2019.

[98] J. M. Alben, P. Micikevicius, H. Wu and M. Y. Siu, "Stochastic Rounding of Numerical

Values". Washington, DC: U.S. Patent 10,684,824, 12 12 2019.

[99] D. Amodei and D. Hernandez, "AI and compute," OpenAI, 16 May 2018. [Online].

Available: https://openai.com/blog/ai-and-compute/. [Accessed 8 April 2023].

[100] S. Dhar, J. Guo, J. Liu, S. Tripathi, U. Kurup and M. Shah, "A survey of on-device machine

learning An algorithms and learning theory perspective," ACM Transactions on Internet of

Things, vol. 2, no. 3, pp. 1-49, 2021.

[101] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle and J. Guttag, "What is the state of neural

network pruning?," in Proceedings of machine learning and systems, 2020.

[102] A. Renda, J. Frankle and M. Carbin, "Comparing rewinding and fine-tuning in neural

network pruning," arXiv:2003.02389, 2020.

[103] Y. Guo, "A survey on methods and theories of quantized neural networks,"

arXiv:1808.04752, 2018.

[104] N. Zmora, W. Hao and J. Rodge, "Achieving FP32 Accuracy for INT8 Inference Using

Quantization Aware Training with NVIDIA TensorRT," Nvidia, 20 July 2021. [Online].

Available: https://developer.nvidia.com/blog/achieving-fp32-accuracy-for-int8-inference-

using-quantization-aware-training-with-tensorrt/. [Accessed 15 June 2023].

[105] H. Qin, R. Gong, X. Liu, X. Bai, J. Song and N. Sebe, "Binary neural networks: A survey,"

Pattern Recognition, vol. 105, p. 107281, 2020.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

116

[106] K. Ullrich, E. Meeds and M. Welling, "Soft weight-sharing for neural network compression,"

arXiv:1702.04008, 2017.

[107] R. Schwartz, J. Dodge, N. A. Smith and O. Etzioni, "Green AI," Communications of the

ACM, vol. 63, no. 12, pp. 54-63, 2020.

[108] T. Furlanello, Z. Lipton, M. Tschannen, L. Itti and A. Anandkumar, "Born again neural

networks," in International Conference on Machine Learning, 2018.

[109] F. Tung and G. Mori, "Deep neural network compression by in-parallel pruning-

quantization," IEEE transactions on pattern analysis and machine intelligence, vol. 42, no.

3, pp. 568-579, 2018.

[110] H. Esmaeilzadeh, A. Sampson, L. Ceze and D. Burger, "Neural acceleration for general-

purpose approximate programs," in 2012 45th annual IEEE/ACM international symposium

on microarchitecture, 2012.

[111] X. Liu, M. Mao, B. Liu, H. Li, Y. Chen, B. Li, Y. Wang, H. Jiang, M. Barnell and Q. Wu,

"RENO: A high-efficient reconfigurable neuromorphic computing accelerator design," in

Proceedings of the 52nd Annual Design Automation Conference, 2015.

[112] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen and O. Temam, "Diannao: A small-

footprint high-throughput accelerator for ubiquitous machine-learning," ACM SIGARCH

Computer Architecture News, vol. 42, no. 1, pp. 269-284, 2014.

[113] Y. E. Wang, G.-Y. Wei and D. Brooks, "Benchmarking TPU, GPU, and CPU platforms for

deep learning," arXiv:1907.10701, 2019.

[114] L. Baischer, M. Wess and N. TaheriNejad, "Learning on hardware: A tutorial on neural

network accelerators and co-processors," arXiv:2104.09252, 2021.

[115] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao and J. Cong, "Optimizing FPGA-based

accelerator design for deep convolutional neural networks," in Proceedings of the 2015

ACM/SIGDA international symposium on field-programmable gate arrays, 2015.

[116] K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han, Y. Wang and H. Yang, "Angel-eye:

A complete design flow for mapping CNN onto embedded FPGA," IEEE transactions on

computer-aided design of integrated circuits and systems, vol. 37, no. 1, pp. 35-47, 2017.

[117] D. T. Nguyen, T. N. Nguyen, H. Kim and H.-J. Lee, "A high-throughput and power-efficient

FPGA implementation of YOLO CNN for object detection," IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 27, no. 8, pp. 1861-1873, 2019.

[118] J. Yao, S. Zhang, Y. Yao, F. Wang, J. Ma, J. Zhang, Y. Chu, L. Ji, K. Jia and T. Shen,

"Edge-cloud polarization and collaboration: A comprehensive survey for ai," IEEE

Transactions on Knowledge and Data Engineering, vol. 35, no. 7, pp. 6866-6886, 2022.

[119] N. C. Thompson, K. Greenewald, K. Lee and G. F. Manso, "The computational limits of

deep learning," arXiv:2007.05558, 2020.

[120] T. Yu and H. Zhu, "Hyper-parameter optimization: A review of algorithms and applications,"

arXiv:2003.05689, 2020.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

117

[121] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong and Q. He, "A comprehensive

survey on transfer learning," Proceedings of the IEEE, vol. 109, no. 1, pp. 43-76, 2020.

[122] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, B. Ginsburg, M.

Houston, O. Kuchaiev and G. Venkatesh, "Mixed precision training," arXiv:1710.03740,

2017.

[123] "Apex (A PyTorch Extension)," Nvidia, 2018. [Online]. Available:

https://nvidia.github.io/apex/. [Accessed 17 July 2023].

[124] X. Xu, Y. Ding, S. X. Hu, M. Niemier, J. Cong, Y. Hu and Y. Shi, "Scaling for edge inference

of deep neural networks," Nature Electronics, vol. 1, no. 4, pp. 216-222, 2018.

[125] "XLA: Optimizing Compiler for Machine Learning," Google, 30 March 2023. [Online].

Available: https://www.tensorflow.org/xla. [Accessed 19 August 2023].

[126] "NVIDIA H100 Tensor Core GPU Architecture," Nvidia, 2023. [Online]. Available:

https://resources.nvidia.com/en-us-tensor-core. [Accessed 19 August 2023].

[127] J. Yu, Z. Wang, V. Vasudevan, L. Yeung, M. Seyedhosseini and Y. Wu, "Coca: Contrastive

captioners are image-text foundation models," arXiv:2205.01917, 2022.

[128] "ChatGPT: Optimizing Language Models for Dialogue," OpenAI, 30 11 2022. [Online].

Available: https://openai.com/blog/chatgpt/. [Accessed 10 February 2023].

[129] "OpenAI’s ChatGPT Reportedly Costs $100,000 a Day to Run," CIOCoverage, 2023.

[Online]. Available: https://www.ciocoverage.com/openais-chatgpt-reportedly-costs-

100000-a-day-to-run/. [Accessed 10 February 2023].

[130] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative approach,

Elsevier, 2011.

[131] N. Thompson, "The economic impact of moore's law: Evidence from when it faltered,"

SSRN Electronic Journal, 2017.

[132] N. C. Thompson, S. Ge and G. F. Manso, "The importance of (exponentially more)

computing power," arXiv:2206.14007, 2020.

[133] A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli and S. Woerner, "The power of quantum

neural networks," Nature Computational Science, vol. 1, no. 6, pp. 403-409, 2021.

[134] F. Martínez-Plumed, S. Avin, M. Brundage, A. Dafoe, S. Ó. hÉigeartaigh and J. Hernández-

Orallo, "Between Progress and Potential Impact of AI: the Neglected Dimensions," arxXiv

preprint, 2018.

[135] A. Gholami, Z. Yao, S. Kim and M. W. Mahoney, "AI and Memory Wall," Medium, 29 March

2021. [Online]. Available: https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8.

[Accessed 16 09 2023].

[136] P. Jain, A. Jain, A. Nrusimha, A. Gholami, P. Abbeel, J. Gonzalez, K. Keutzer and I. Stoica,

"Checkmate: Breaking the memory wall with optimal tensor rematerialization," Proceedings

of Machine Learning and Systems, vol. 2, pp. 497-511, 2020.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

118

[137] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto and

H. Adam, "Mobilenets: Efficient convolutional neural networks for mobile vision

applications," arXiv:1704.04861, 2017.

[138] M. Tan and Q. Le, "Efficientnet: Rethinking model scaling for convolutional neural

networks," 2019.

[139] S. A. Budennyy, V. D. Lazarev, N. N. Zakharenko, A. N. Korovin, O. Plosskaya, D. V.

Dimitrov, V. Akhripkin, I. Pavlov, I. V. Oseledets and I. S. Barsola, "Eco2AI: carbon

emissions tracking of machine learning models as the first step towards sustainable AI," in

Doklady Mathematics, 2022.

[140] D. Patterson, J. Gonzalez, Q. Le, C. Liang, L.-M. Munguia, D. Rothchild, D. So, M. Texier

and J. Dean, "Carbon emissions and large neural network training," arXiv:2104.10350,

2021.

[141] Y. Fu, H. Guo, M. Li, X. Yang, Y. Ding, V. Chandra and Y. Lin, "CPT: Efficient deep neural

network training via cyclic precision," arXiv:2101.09868, 2021.

[142] Z. Yu, Y. Fu, S. Wu, M. Li, H. You and Y. Lin, "LDP: Learnable Dynamic Precision for

Efficient Deep Neural Network Training and Inference," arXiv:2203.07713, 2022.

[143] Y. LeCun, C. Cortes and C. J. C. Burges, "The MNIST database of handwritten digits,"

2010. [Online]. Available: http://yann.lecun.com/exdb/mnist/. [Accessed 14 October 2022].

[144] A. Krizhevsky and G. Hinton, "Learning multiple layers of features from tiny images," 2009.

[145] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu and A. Y. Ng, "Reading Digits in Natural

Images with Unsupervised Feature Learning," in Proceedings of the NIPS Workshop on

Deep Learning and Unsupervised Feature Learning, 2011.

[146] H. Fuketa, T. Ikegami, W. Nogami, T. Matsukawa, T. Kudoh and R. Takano, "Image-

Classifier Deep Convolutional Neural Network Training by 9-bit Dedicated Hardware to

Realize Validation Accuracy and Energy Efficiency Superior to the Half Precision Floating

Point Format," in 2018 IEEE International Symposium on Circuits and Systems (ISCAS),

2018.

[147] T. Na and S. Mukhopadhyay, "Speeding up Convolutional Neural Network Training with

Dynamic Precision Scaling and Flexible Multiplier-Accumulator," 2016.

[148] J. Lee, "Energy-efficient deep-neural-network training processor with fine-grained mixed

precision," 2020.

[149] J. O. Ríos, A. Armejach, E. Petit, G. Henry and M. Casas, "Dynamically Adapting Floating-

Point Precision to Accelerate Deep Neural Network Training," in 2021 20th IEEE

International Conference on Machine Learning and Applications (ICMLA), 2021.

[150] R. Banner, I. Hubara, E. Hoffer and D. Soudry, "Scalable methods for 8-bit training of neural

networks," Advances in neural information processing systems, vol. 31, 2018.

[151] M. Junaid, S. Arslan, T. Lee and H. Kim, "Optimal Architecture of Floating-Point Arithmetic

for Neural Network Training Processors," Sensors, vol. 22, no. 3, p. 1230, 2022.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

119

[152] P. Micikevicius, D. Stosic, N. Burgess, M. Cornea, P. Dubey, R. Grisenthwaite, S. Ha, A.

Heinecke, P. Judd and J. Kamalu, "FP8 formats for deep learning," arXiv:2209.05433,

2022.

[153] B. Noune, P. Jones, D. Justus, D. Masters and C. Luschi, "8-bit numerical formats for deep

neural networks," arXiv:2206.02915, 2022.

[154] M. Pietrołaj and M. Blok, "Resource constrained neural network training," Scientific

Reports, vol. 14, no. 1, pp. 1-13, 2024.

Available at: https://github.com/MariuszPPP/resource_constrained_nn_training

[155] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, J. K. Kim, V. Chandra and H. Esmaeilzadeh,

"Bit fusion: Bit-level dynamically composable architecture for accelerating deep neural

network," in 2018 ACM/IEEE 45th Annual International Symposium on Computer

Architecture (ISCA), 2018.

[156] "Python," Python Software Foundation, 2023. [Online]. Available: https://www.python.org/.

[Accessed 12 August 2023].

[157] M. Rüb and A. Sikora, "A Practical View on Training Neural Networks in the Edge," IFAC-

PapersOnLine, vol. 55, no. 4, pp. 272-279, 2022.

[158] M. Rizwan, "LeNet-5 - A Classic CNN Architecture," Data Science Central, 16 October

2018. [Online]. Available: https://www.datasciencecentral.com/lenet-5-a-classic-cnn-

architecture/. [Accessed 20 January 2022].

[159] J. Schmidhuber, "The most cited neural networks all build on work done in my labs," AI

Blog, pp. 4-30, 2022.

[160] L. N. Smith and N. Topin, "Super-Convergence: Very Fast Training of Neural Networks

Using Large Learning Rates," in Artificial intelligence and machine learning for multi-

domain operations applications, 2019.

[161] J. Yun, B. Kang, F. Rameau and Z. Fu, "In Defense of Pure 16-bit Floating-Point Neural

Networks," arXiv:2305.10947, 2023.

[162] "QPyTorch," 15 March 2023. [Online]. Available: https://github.com/Tiiiger/QPyTorch.

[Accessed 24 August 2023].

[163] "CPFloat: Custom-Precision Floating-point numbers," 13 April 2023. [Online]. Available:

https://github.com/north-numerical-computing/cpfloat. [Accessed 20 August 2023].

[164] L. Xia, M. Anthonissen, M. Hochstenbach and B. Koren, "A Simple and Efficient Stochastic

Rounding Method for Training Neural Networks in Low Precision," arXiv:2103.13445,

2021.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

120

7 LIST OF FIGURES

Fig. 1.1. Top-1 accuracy compared to the computational complexity of NN models in floating-point

operations (FLOPs) required for a single forward pass. The size of each ball corresponds to the

model’s complexity (required memory in MB) [3] .. 20

Fig. 1.2. Simplified overview of NN training and inference processes .. 21

Fig. 1.3. An overview of the dissertation’s structure .. 23

Fig. 2.1. Single artificial neuron with two inputs [36] ... 24

Fig. 2.2. Backpropagation chain rule example - gradient calculation with respect to a single weight

parameter (biases excluded) ... 25

Fig. 2.3. Deep Neural Network with two hidden layers [46]... 26

Fig. 2.4. Example of a simple 1 channel 2d convolution ... 27

Fig. 2.5. Example of a simple 1 channel max pooling ... 27

Fig. 2.6. Original LeNet-5 architecture [55] ... 28

Fig. 2.7. Original AlexNet architecture [48] .. 28

Fig. 2.8. An example of a residual building block with a shortcut connection [61] 29

Fig. 2.9. Comparison of a building block (left) and a bottleneck block (right) used in ResNet

topology [61] .. 29

Fig. 2.10. Example of a simple Recurrent Neural Network ... 30

Fig. 2.11. An example of a single LSTM memory cell ... 30

Fig. 2.12. The number 6.75 represented in a) 8-bit fixed-point with 4-bits integral and 3 bits

fractional part b) IEEE-754 32-bit floating-point .. 32

Fig. 2.13. Values distribution in 8-bit floating-point (FP8) and 8-bit fixed-point (INT8) variable [77]

 ... 33

Fig. 2.14. Required area size of fixed-point integer and floating-point operators across various bit

widths [77] ... 35

Fig. 2.15. Performance of the digital multiplier across selected floating-point variables bit-widths

[86] ... 36

Fig. 2.16. Stochastic rounding with distance-based probability [92] ... 38

Fig. 2.17. Comparison of average error after multiplication of two vectors with 64-bit floating-point

variables for various variable types and rounding techniques... 38

Fig. 2.18. Example of neural network pruning ... 41

Fig. 2.19. Example of neural network parameters quantization [104] ... 41

Fig. 2.20. Example of a teacher-learner training technique... 42

Fig. 2.21. Example of transfer learning.. 44

Fig. 2.22. ImageNet competition top-5 error in comparison to the number of operations required

by the NN [114] .. 46

Fig. 3.1. An overview of the neural network training environment for floating-point limitation 59

Fig. 3.2. A simplified pseudocode depicting the algorithm used for the limitation of parameters

used in the neural network training .. 60

Fig. 3.3. Representation of a 32-bit floating-point value with an 8-bit floating-point format 60

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

121

Fig. 3.4. Representation of a 32-bit floating-point value with an 8-bit floating-point format with

exponent truncation. .. 61

Fig. 3.5. LeNet-5 accuracy across various limited bit count configurations 63

Fig. 3.6. AlexNet accuracy across various limited bit count configurations on CIFAR10 dataset

... 66

Fig. 3.7. AlexNet accuracy across various limited bit count configurations on CIFAR100 dataset

... 67

Fig. 3.8. ResNet-18 accuracy across various limited bit count configurations on CIFAR10 dataset

... 70

Fig. 3.9. ResNet-18 accuracy across various limited bit count configurations on CIFAR10 dataset

– the best validation epoch results selected ... 71

Fig. 3.10. ResNet-18 accuracy across various limited bit count configurations on CIFAR100

dataset ... 72

Fig. 3.11. ResNet-18 accuracy across various limited bit count configurations on CIFAR100

dataset – the best validation epoch results selected .. 72

Fig. 3.12. LeNet-5 exponent utilization (normalized over layer) during training on MNIST dataset.

The darker the color the higher the utilization. Layers: conv – convolution, fc – fully connected 74

Fig. 3.13. AlexNet exponent utilization (normalized over layer) during training on CIFAR10

dataset. The darker the color the higher the utilization. Layers: conv – convolution, fc – fully

connected .. 75

Fig. 3.14. AlexNet exponent utilization (normalized over layer) during training on CIFAR100

dataset. The darker the color the higher the utilization. Layers: conv – convolution, fc – fully

connected .. 76

Fig. 3.15. ResNet-18 exponent utilization (normalized over layer) during training on CIFAR10

dataset. The darker the color the higher the utilization. Activations were grouped for clarity of the

diagram. Layers: conv (x) – convolution (basic block), fc – fully connected, b_layer – combined

layers into basic blocks ... 76

Fig. 3.16. ResNet-18 exponent utilization (normalized over layer) during training on CIFAR100

dataset. The darker the color the higher the utilization. Activations were grouped for clarity of the

diagram. Layers: conv (x) – convolution (basic block), fc – fully connected, b_layer – combined

layers into basic blocks ... 77

Fig. 4.1. Overview of the proposed custom floating-point limitation method [154] 80

Fig. 4.2. IEEE-754 32-bit floating-point conversion to 8-bit format with and without an asymmetric

exponent .. 82

Fig. 4.3. An example of 8-bit floating-point translation to a 32-bit floating-point variable 82

Fig. 4.4. Simplified pseudocode of asymmetric exponent transformation implementation 83

Fig. 4.5. Floating-point limitation results variants and their probabilities with stochastic rounding

enabled .. 84

Fig. 4.6. Simplified pseudocode of stochastic rounding implementation in the precision limitation

framework .. 85

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

122

Fig. 4.7. Limited 8-bit floating-point denormalization (without mantissa rounding). The hidden

leading mantissa bit is marked in red. ... 86

Fig. 4.8. Simplified pseudocode of a custom denormalization implementation in the precision

limitation framework ... 87

Fig. 4.9. LeNet (MNIST) training results with the proposed limitation method 89

Fig. 4.10. AlexNet (CIFAR10) training results with the proposed limitation method 90

Fig. 4.11. AlexNet (CIFAR100) training results with the proposed limitation method 91

Fig. 4.12. ResNet-18 (CIFAR10) training results with the proposed limitation method 92

Fig. 4.13. ResNet-18 (CIFAR10) training results with the proposed limitation method – best

validation epoch results selected ... 93

Fig. 4.14. ResNet-18 (CIFAR100) training results with the proposed limitation method 93

Fig. 4.15. ResNet-18 (CIFAR100) training results with the proposed limitation method – best

validation epoch results selected ... 94

Fig. 4.16. Accuracy of 8-bit LeNet (MNIST) across various exponent shift scenarios 97

Fig. 4.17. Accuracy of 8-bit AlexNet (CIFAR10) across various exponent shift scenarios 98

Fig. 4.18. Accuracy of 8-bit AlexNet (CIFAR100) across various exponent shift scenarios 98

Fig. 4.19. Accuracy of 8-bit ResNet-18 (CIFAR10) across various exponent shift scenarios 99

Fig. 4.20. Accuracy of 8-bit ResNet-18 (CIFAR100) across various exponent shift scenarios ... 99

Fig. 4.21. Comparison of LeNet (MNIST) 32-bit IEEE-754 and proposed 8-bit floating point

trainings convergence.. 102

Fig. 4.22. Comparison of AlexNet (CIFAR10) 32-bit IEEE-754 and proposed 8-bit floating point

trainings convergence.. 103

Fig. 4.23. Comparison of AlexNet (CIFAR100) 32-bit IEEE-754 and proposed 8-bit floating point

trainings convergence.. 103

Fig. 4.24. Comparison of ResNet-18 (CIFAR10) 32-bit IEEE-754 and proposed 8-bit floating point

trainings convergence.. 104

Fig. 4.25. Comparison of ResNet-18 (CIFAR100) 32-bit IEEE-754 and proposed 8-bit floating

point trainings convergence ... 105

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

123

8 LIST OF TABLES

Table 2.1. Comparison of several floating-point types [80] ... 34

Table 2.2. Power consumption of a single precision floating-point multiplier [86] 36

Table 2.3. Implication of achieving performance benchmarks on the computational requirements

from polynomial and exponential models’ projections [119] ... 47

Table 2.4. Selected neural network models comparison in terms of training hardware, time and

application type [107] .. 49

Table 3.1. Detailed summary of the related study with comparison to the proposed precision

limitation method for neural network training [36] [154] .. 54

Table 3.2 Baseline IEEE-754 32-bit accuracies per neural network after 10 training epochs 62

Table 3.3. Summary of the LeNet-5 architecture used in the experiment [55] [158] 62

Table 3.4. Hyperparameters used during LeNet-5 training ... 63

Table 3.5. Summary of the AlexNet architecture used in the experiment [48] 65

Table 3.6. Hyperparameters used during AlexNet training ... 66

Table 3.7. Summary of the ResNet-18 architecture used in the experiment 68

Table 3.8. Summary of the ResNet-18 Convolutional Basic Block architecture used in the

experiment. The values examples based on the first block of the network 69

Table 3.9. Hyperparameters used during ResNet-18 training .. 70

Table 4.1. Comparison of the proposed exponent representations with IEEE-754 types 81

Table 4.2. Features of the proposed method per neural network's parameter type 88

Table 4.3. Accuracy results of the proposed limitation method across several 8-bit floating-point

formats during 10 epochs, the last row presents the IEE-754 32-bit baseline results. 95

Table 4.4. Accuracy results of the proposed limitation method with minimal usable floating-point

bit counts (compared to the 32-bit baseline) ... 96

Table 4.5. Comparison of experiment results with and without denormalization feature 100

Table 4.6. Asymmetric exponent influence on activations .. 101

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

