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r. – Prawo o szkolnictwie wyższym i nauce, mogą na potrzeby zilustrowania treści przekazywanych w celach 
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osób uczących się, nauczających lub prowadzących badania naukowe, zidentyfikowanych przez podmioty wymienione 
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ograniczenia precyzji treningu nie wpływa negatywnie na jego zbieżność i nie jest wymagane 

kosztowne wydłużanie treningu poprzez zwiększoną liczbę epok. 

Streszczenie rozprawy w języku angielskim: 

Insufficient availability of computational power and runtime memory is a major concern when it 

comes to experiments in the field of artificial intelligence. One of the promising solutions for this 

problem is an optimization of internal neural network’s calculations and its parameters’ 

representation. This work focuses on the mentioned issue by the application of neural network 

training with limited precision. Based on this research, the author proposes a new method of 

precision limitation for neural network training leveraging a custom, constrained floating-point 

representation with additional rounding mechanism. Its application allows to limit the resources 

required during neural network training thanks to the reduction of computational complexity and 

memory usage. The work shows that the proposed procedure allows to train commonly used 

benchmark networks such as LeNet, AlexNet and ResNet without significant accuracy 

degradation while using only 8-bit custom floating-point variables. It has also been proven that 

the proposed method of precision limitation does not negatively affect the network’s convergence, 

therefore, it is not required to extend the training by increasing the number of costly training 

epochs. 
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STRESZCZENIE ROZSZERZONE W J. POLSKIM 

W dzisiejszych czasach informacja stała się jednym z najcenniejszych zasobów. Wzrost 

liczby urządzeń komunikujących się ze sobą oraz zbierających informacje na temat swoich 

użytkowników sprawił, że dostęp do obszernych źródeł danych z wielu dziedzin jest większy niż 

kiedykolwiek wcześniej. W wielu przypadkach analiza lub określanie zależności pomiędzy dużymi 

zbiorami danych stanowią realną przeszkodę w ich efektywnym wykorzystaniu [1]. Odpowiedzią 

na ten problem mają być algorytmy sztucznej inteligencji, w tym szeroko rozumiane sieci 

neuronowe [2]. 

Rosnąca złożoność problemów i wymagania jakościowe stawiane przed współczesnymi 

architekturami sieci neuronowych zapoczątkowały gwałtowny wzrost zapotrzebowania na moc 

obliczeniową i zasoby sprzętowe wymagane do ich inferencji oraz znacznie bardziej złożonego 

treningu [3]. Wraz ze wzrostem wymagań, wykorzystanie ogólnodostępnych procesorów okazało 

się niewystarczające, co skłoniło badaczy do poszukiwania alternatywnych rozwiązań 

sprzętowych takich jak karty graficzne lub niestandardowe architektury oparte na bezpośrednio 

programowalnej macierzy bramek [4]. Rosnący koszt energii i sprzętu niezbędnego do 

wytrenowania współczesnych sieci neuronowych był naturalnym następstwem wykorzystywania 

coraz większej mocy obliczeniowej i złożonych architektur docelowych modeli. Czynniki te skłoniły 

badaczy do zgłębienia tematu możliwego ograniczenia wymagań zasobów stawianych przez 

standardowe procedury wykorzystania sieci neuronowych [5] [6] [7] [8]. 

Początkowe badania dotyczące optymalizacji sieci neuronowych skupiały się głównie na 

mniej skomplikowanej, lecz znacznie częściej wykonywanej fazie inferencji. Techniki takie jak 

kwantyzacja, pruning czy uwspólnianie wag pozwalają na znaczne zmniejszenie rozmiaru jak i 

złożoności obliczeniowej modelu [9]. W ślad za tym pojawiły się rozwiązania sprzętowe, w tym 

akceleratory, pozwalające na efektywne wykorzystanie zoptymalizowanych topologii modeli [10] 

[11] [12]. Pomimo iż wymienione metody zostały na stałe ugruntowane w rozwiązaniach 

wdrażanych produkcyjnie oraz bibliotekach programistycznych, temat optymalizacji treningu jest 

nadal otwartym zagadnieniem [13]. 

W rozprawie przedstawiony jest przegląd propozycji i rozwiązań opracowany na bazie 

dostępnej literatury. Techniki obejmują zarówno rozwiązania programistyczne [5] [6] [14] jak i 

czysto sprzętowe [15] [16] [17]. Ze względu na kierunek przedstawionej pracy i skupieniu się na 

zagadnieniu treningu sieci neuronowych z wykorzystaniem liczb o ograniczonej precyzji, 

szczególnej uwadze poddano rozwiązania dotyczące kwantyzacji, ograniczonej i mieszanej 

precyzji liczb zmiennoprzecinkowych oraz wspierające je rozwiązania sprzętowe. 

Po zarysowaniu teorii dotyczącej wybranych architektur sieci neuronowych oraz ich 

optymalizacji, przedstawiony został cel pracy, którym było opracowanie nowej metody 

ograniczenia arytmetyki na potrzeby treningu konwolucyjnych sieci neuronowych przy 

wykorzystaniu zmniejszonej precyzji liczb zmiennoprzecinkowych. Dodatkowo przyjęto założenie 
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braku znaczącej utraty jakości wytrenowanych w ten sposób modeli. W ramach tego zagadnienia 

postawione i udowodnione zostały dwie tezy: 

1. Możliwe jest wytrenowanie referencyjnych sieci neuronowych takich jak LeNet, 

AlexNet i ResNet-18 przy użyciu niestandardowych 8-bitowych liczb 

zmiennoprzecinkowych bez znaczącej utraty dokładności w porównaniu do treningu z 

użyciem 32-bitowych liczb zmiennoprzecinkowych opisanych w standardzie IEEE-754. 

2. Zastosowanie zaproponowanej metody ograniczenia precyzji arytmetyki do treningu 

konwolucyjnych sieci neuronowych przy zmniejszonej precyzji liczb 

zmiennoprzecinkowych pozwala na ograniczenie wymaganej do realizacji treningu 

mocy obliczeniowej oraz pamięci.  

Autor rozprawy przeprowadza analizę wykorzystania wykładnika 32-bitowych liczb 

zmiennoprzecinkowych podczas treningu wybranych sieci neuronowych na publicznie 

dostępnych zbiorach treningowych. W ramach tej analizy zaobserwowana została 

nieefektywność wykorzystania bitów wykładnika dostępnych w 32-bitowym typie IEEE-754. 

Przedstawione zjawisko wskazuje, że z dużym prawdopodobieństwem użycie liczb 

zmiennoprzecinkowych o mniejszym zakresie bitowym do treningu wskazanych architektur sieci 

neuronowych nie spowoduje pogorszenia skuteczności tego treningu. 

Następnie zaprezentowana została autorska metoda ograniczonej arytmetyki na 

potrzeby treningu sieci neuronowych opierająca się na wykorzystaniu niestandardowego, 

ograniczonego bitowo typu danych zmiennoprzecinkowych. Wskazana technika, oprócz 

ograniczenia pamięci wymaganej przez poszczególne parametry sieci neuronowej, wprowadza 

również modyfikację interpretacji wykładnika poprzez zastosowanie jej asymetrycznej 

reprezentacji z przesunięciem. Oznacza to, że wszystkie bity przeznaczone na wykładnik 

reprezentują tylko wybrany zakres jej ujemnych wartości. Dodatkowe przesunięcie pozwala na 

odpowiednie dopasowanie zakresu wartości reprezentowanych przez wykładnik do wybranej 

architektury sieci. Oprócz wymienionych elementów, metoda uwzględnia również 

zdenormalizowaną reprezentację wartości oraz zaokrąglanie stochastyczne niwelujące 

ograniczenia wynikające z dostępnego podczas treningu bardzo zawężonego zbioru wartości 

zmiennoprzecinkowych. W celu zastosowania przedstawionej metody opracowano środowisko 

programistyczne wspierające wymienione techniki, co zostało przedstawiona na Rys. 1. 
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Rys. 1. Środowisko programistyczne proponowanej metody ograniczenia arytmetyki treningu sieci 
neuronowych z użyciem liczb zmiennoprzecinkowych o zmniejszonej precyzji 

W celu sprawdzenia efektywności zaprezentowanej metody przeprowadzono liczne 

treningi referencyjnych sieci neuronowych. Jako punkt odniesienia prezentowanych wyników 

przyjęto rezultaty referencyjnych sieci neuronowych trenowanych z użyciem wielu wariantów 

długości bitowej liczb zmiennoprzecinkowych. Następnie przeprowadzono analogiczne treningi 

wraz z zastosowaniem przedstawionej metody w pełnym zakresie dostępnych kombinacji liczby 

bitów wykładnika i mantysy. We wszystkich przypadkach ograniczenie precyzji było realizowane 

programowo i wykonywane na ogólnodostępnych procesorach z wykorzystanie tymczasowej 

translacji limitowanych zmiennych do typu 32-bitowego. Tabela 1 przedstawia rezultaty 

porównania wyników treningu sieci neuronowych przy użyciu proponowanej metody z 

uwzględnieniem różnych wariantów reprezentacji 8-bitowego typu zmiennoprzecinkowego. 

Dodatkowo Tabela 1 przedstawia porównanie dokładności trenowanych sieci 

neuronowych z ograniczoną precyzją ze standardowym treningiem 32-bitowym. Podkreślone 

wartości wskazują konfiguracje w których proponowana metoda pozwoliła na uzyskanie 

dokładności powyżej standardowego podejścia 32-bitowego. Wyniki te wskazują również, że 

użycie proponowanej metody nie wymaga zwiększenia liczby epok treningowych, co mogłoby 

negatywnie wpłynąć na zakres zużytej energii i czasu wykorzystania zasobów obliczeniowych. 

Uzyskane rezultaty pozwoliły na potwierdzenie obu postawionych tez. Pierwsza teza: 

„Możliwe jest wytrenowanie referencyjnych sieci neuronowych takich jak LeNet, AlexNet i 

ResNet-18 przy użyciu niestandardowych 8-bitowych liczb zmiennoprzecinkowych bez 

znaczącej utraty dokładności w porównaniu do treningu z użyciem 32-bitowych liczb 

zmiennoprzecinkowych opisanych w standardzie IEEE-754” została bezpośrednio 

potwierdzona licznymi treningami sieci neuronowych nie tylko w zakresie liczb 8-bitowych, ale 

również typów danych o mniejszej liczbie bitów. W przypadku wszystkich weryfikowanych sieci 

udało się uzyskać wyniki na poziome standardowych treningów z użyciem 32-bitowych liczb 

zmiennoprzecinkowych. 
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Tabela 1. Porównanie wyników 10-tej epoki treningów z użyciem zaprezentowanej metody na różnych 8-
bitowych wariantach danych zmiennoprzecinkowych, ostatni wiersz przedstawia wyniki dla bazowego 32-

bitowego formatu IEEE-754 

Liczba zmiennoprzecinkowa LeNet  AlexNet  ResNet-18  

Liczba 
bitów 
znaku 

Liczba 
bitów 

wykładnika 

Liczba 
bitów 

mantysy 
MNIST  CIFAR10 CIFAR100 CIFAR10  CIFAR100 

1  1  6  54.84  22.23%  1.98%  8.02%  0.91%  

1  2  5  77.81  62.93%  1.46%  9.97%  1.02%  

1  3  4  96.15% 72.94%  38.59%  7.34%  1.17%  

1  4  3  95.98% 74.50%  38.69%  76.01%  40.21%  

1  5  2  95.78% 71.10%  36.02%  62.85%  42.62%  

1  6  1  94.66% 66.11%  30.00%  63.39%  39.68%  

Bazowy format zmiennoprzecinkowy IEEE-754 32-bit  

1 8 23 96.18% 74.39%  38.93%  77.08%  39.54%  

 

Druga teza stawiana w rozprawie: „Zastosowanie zaproponowanej metody 

ograniczenia arytmetyki do treningu konwolucyjnych sieci neuronowych przy 

zmniejszonej precyzji liczb zmiennoprzecinkowych pozwala na ograniczenie wymaganej 

do realizacji treningu mocy obliczeniowej oraz pamięci” została udowodniona pośrednio. 

Wykorzystanie typów danych o 75% mniejszej liczbie bitów pozwala na jednoznaczne 

zaoszczędzenie zarówno cykli procesora niezbędnych na przeprowadzenia operacji mnożenia i 

dodawania liczb zmiennoprzecinkowych oraz składowanie ich wyników w pamięci operacyjnej 

[18]. Dodatkowo zmniejszone typy danych jednoznacznie przyczyniają się do ograniczenia 

pamięci wymaganej do zapisywania i przechowywania współczynników wytrenowanego modelu. 

Osiągnięcie zakładanych rezultatów i udowodnienie tez pracy nie oznacza jednak, że 

analizowany problem został ostatecznie rozwiązany. Zaprezentowana metoda otwiera wiele 

kierunków dalszych badań i optymalizacji. Oprócz weryfikacji przedstawionych technik na 

większej grupie architektur sieci neuronowych, kluczowa jest dalsza optymalizacja samej metody 

i jej elementów do poszczególnych parametrów sieci. Dzięki zastosowanej technice przesunięcia 

asymetrycznego wykładnika, przedstawiona metoda może zostać użyta w realizacjach o 

mieszanej precyzji, wraz ze zmianą przesunięcia istnieje możliwość określenia różnych zakresów 

precyzji dla: 

• Kolejnych epok treningowych, wprowadzając możliwość regularyzacji uczenia 

sieci wraz z postępem procesu treningu, 

• poszczególnych warstw danej architektury sieci neuronowej, 
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• parametrów sieci neuronowych z rozróżnieniem na wagi, bias [19], gradient i 

aktywacje. 

Dodatkowym krokiem mającym na celu dokładniejsze określenie oszczędności zasobów 

stawianych przez zaprezentowaną metodę jest jej implementacja przy pomocy bezpośrednio 

programowalnej macierzy bramek. Prace w tym kierunku zostały już zapoczątkowane przez 

Aleksiuk et al. (2023) [20] w ramach implementacji 8-bitowego mnożnika wspierającego założenia 

prezentowanej metody. 
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ASIC  - Application Specific Integration Circuits 

BPTT  - Backpropagation Through Time 
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CPT  - Cyclic Precision Training 

CPU  - Common Processing Unit 

DLA  - Deep Learning Accelerator 

DNN  - Deep Neural Network 
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FGMP  - Fined-grained Mixed Precision 

FLOP  - Floating-point Operation 

FP  - Floating-point 

FP32  - 32-bit Floating-point 

FP8  - 8-bit Floating-point 

FP8-SEB  - 8-bit Floating-point Type with a Shared Exponent Bias 

FPGA  - Field Programmable Gate Array 

FPU  - Floating Point Unit 

GD  - Gradient Descent 

GPU  - Graphical Processing Units 

GRU  - Gated Recurrent Units 

IEEE  - Institute of Electrical and Electronics Engineers 

ILSVRC  - International Large Scale Visual Recognition Challenge 

INT  - Integer 

INT32  - 32-bit Integer 

INT8  - 8-bit Integer 

IoT  - Internet of Things 

LDP  - Learnable Dynamic Precision 

LNPU  - Learning Processing Unit 

LSTM  - Long-Short Term Memory 

LUT  - Lookup Table 

MAC  - Multiply-accumulate 

MB  - Megabyte 

ML  - Machine Learning 

MNIST  - Modified National Institute of Standards and Technology 

MoFQ  - Mixture-of-Formats Quantization 

NaN  - Not a Number 

NLP  - Natural Language Processing 
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NN  - Neural Network 

NPU  - Neural Processing Unit 

PCM  - Precision-Controlled Memory 

PE  - Processing Engine 

PTQ  - Post Training Quantization 

QAT  - Quantization Aware Training 

R&D  - Research and Development 

ResNet  - Residual Neural Network 

RNN  - Recurrent Neural Network 

TPU  - Tensorflow Processing Unit 

UNPU  - Unified Neural Processing Unit 

VGG  - Visual Geometry Group 

XLA  - Tensorflow Accelerated Linear Algebra 
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1 INTRODUCTION 

Nowadays, information can be treated as one of the most precious resources. The 

continuing expansion of Internet of Things (IoT) along with an increasing number of various mobile 

devices, sensors and smart utilities produces an unprecedented amount of data every day. The 

ability to efficiently process, analyze, and filter data is one of the main challenges facing the big 

data domain [1]. Application of Artificial Intelligence (AI) is often presented as a viable solution for 

this problem, especially in case of extremely large, differentiated datasets [2]. Unfortunately, 

increasing complexity and abundance of incoming data requires more resources for effective 

processing. This issue is especially vivid in the case of neural networks (NN) evolution and its 

adaptation by the industry [21]. Along with the difficulty of the problems that need to be solved, 

there can be observed a growth of NN architectures size and complexity [3]. Many recent 

improvements have been implemented at the cost of additional computational power, runtime 

memory and storage required by NN designs which poses a question of both financial and 

environmental profitability in terms of NN applications if such a trend remains unchanged [22]. 

Although big data is much more accessible today for the industry and researchers, its 

applicability to machine learning is not always straightforward. Lack of accurately labeled data is 

still a relevant concern for many classification tasks, especially in case of supervised learning 

[23]. Continuous improvement of NN models, depending on training data accessibility, was 

followed by increasing storage and computational requirements [24]. Leveraging Graphical 

Processing Units (GPU), Field Programmable Gate Array (FPGA) and Application Specific 

Integrated Circuits (ASIC) was a common response from the research community to overcome 

high computational demands [4]. Further development started a rapid increase of neurons in 

broadly used NN architectures and shifted researchers focus to deep neural network (DNN) 

topologies. Fig. 1.1 gives a good perspective on a growing computational and memory complexity 

as an aim to achieve better classification accuracy. 
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Fig. 1.1. Top-1 accuracy compared to the computational complexity of NN models in floating-point 
operations (FLOPs) required for a single forward pass. The size of each ball corresponds to the model’s 

complexity (required memory in MB) [3] 

Utilization of deeper NN topologies brought a disadvantage of a significant number of 

power-consuming floating-point operations. Additionally, the growing size of neural network 

architectures translated to bigger memory footprint [3]. These problems were apparent in the case 

of both training and inference. Over recent years, many researchers pursued the subject of 

resource efficiency of neural networks [5] [6] [7] [8]. The utilization of less resource demanding 

operations was one of the paths which showed satisfactory results. Focusing on restraining 

power-hungry floating-point operations proved to be an effective way for limiting both 

computational and memory requirements. Multiple techniques such as pruning or quantization of 

regular IEEE-754 32-bit floating-point parameters have been successfully adapted by the industry 

to improve resource efficiency of the inference process [9]. Nevertheless, this technique is not 

always easily applicable to the training phase of neural models which requires much more time 

and resources. 

Modern machine learning domain relies on high performance GPUs and cloud computing 

with robust datacenter backends [25]. Nevertheless, plenty of neural network-based solutions are 

developed and deployed on mobile and low-power devices [26]. Software optimization is not 

always sufficient for running AI applications in such a constrained environment. Hence, innovation 

on the hardware side of the machine learning (ML) applicability is crucial for broader 

productization of modern AI [15] [16] [17]. The most vivid response from the market in the 

hardware field are dedicated chips and accelerators, often integrated into common processing 
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units (CPU). Market leaders such as Nvidia, Google, Intel and Qualcomm continue development 

on this path as general purpose hardware is not always efficiently utilized in the case of NN 

processing [27]. The influence of AI specific hardware is especially visible in the case of 

functionalities that need to be continuously enabled on the device such as phrase recognition, 

voice translation or image augmentation [28]. Offloading such computation to low-power neural 

accelerators significantly increases energy efficiency of the device and related user experience. 

However multiple effective methods of neural network optimization have been proposed, 

the aspect of low-resource training process is still an open issue [13]. The initial focus on the 

inference is understandable as the network, once it is trained, can be used and deployed on 

multiple devices. Additionally, experiments showed that inference is much more resilient to 

parameters precision limitation [29]. The training phase, required for NN model preparation, 

requires much more resources and a significant amount of input data. Although in theory this 

process can be done only once, in practice creating a good quality model requires extensive 

experimentation and hyper-parameterization [30]. Limiting the time and resources required for 

such a model preparation would allow for a broader experimentation phase within the research 

community and faster productization of less resource demanding products [22]. Fig. 1.2 presents 

an overview of the inference and training comparison. 

 

Fig. 1.2. Simplified overview of NN training and inference processes 

Although resource utilization and efficiency of neural network-based solutions is an 

extremely important aspect, factors of privacy and security cannot be overlooked, especially in 

terms of low-power devices. A growing number of mobile applications base their functionalities 

on various forms of NN architectures. Such a model can be inferred on the device itself or 

offloaded to a cloud backend [31]. Inference on a user’s device requires usage of a memory 

constrained neural network model which is usually trained before the deployment into the device 

takes place [32]. Such an approach often limits the performance of the model and requires re-

deployment of a new instance in case there is an update of the functionality. Usage of a cloud 

infrastructure for NN related computations resolves issues related to the device’s hardware 

limitations as long as there is a stable network connection available. However, transferring user 
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data to an external server can be treated as a potential privacy and security risk [33]. Ideally, the 

model should be able to continuously adapt to users’ private data without transferring it outside 

the device. Optimization of the training process may be a promising solution for these problems. 

In the face of the contradictory relation between AI solutions and scarcity of available 

resources, the aim of the study considers the following subjects: 

1. Verification of influence of limited precision variables to the training quality of popular 

benchmark convolutional neural networks. 

2. Consideration of limited precision influence on resource consumption of neural network 

training process. 

3. Proposition of neural network training process with limited precision floating-point variables, 

including new data type parameters format. 

Based on the aims set for this dissertation, the following theses are to be proven by the 

conducted studies: 

1. It is possible to train popular convolutional neural networks as LeNet, AlexNet and 

ResNet-18 with custom 8-bit floating-point variable’s type without significant 

classification accuracy degradation in comparison to regular IEEE-754 32-bit floating-

point. 

2. Application of the proposed arithmetic precision limitation method for convolutional 

neural networks training with low level bit count floating-point variables allows to 

decrease computational power and memory requirements. 

This dissertation is organized in a form of 5 separate chapters. The following, chapter 2, 

starts with a concise presentation of the theory behind NN training with a major focus on several 

common neural topologies used in this area. Afterwards, it outlines a background behind floating-

point representation with a perspective on its limitations and popular rounding techniques that are 

also applicable to the ML domain. The wide area of NN optimization and acceleration is covered 

at the end of chapter 2 including software and hardware-based solutions. The next, 3rd chapter, 

is solely focused on neural network precision limitation. It opens with a related study section 

containing a wide presentation of the dissertation’s results in comparison to other researchers’ 

outcomes. Subsequently starts the description of experiments on NN limitations conducted by the 

author, giving an insight into the influence of limited precision parameters to the network’s 

classification accuracy. Additionally, the exponent utilization results are presented and 

commented as an introduction to the proposed limitation method. Chapter 4 depicts the proposed 

method along with an explanation of the techniques incorporated into the training process. 

Moreover, details of the conducted experiments are presented for several neural network 

architectures. The impact of incorporated method’s features is also discussed with a strong focus 

on neural network training convergence. The last, 5th chapter, closes the dissertation with a 

summary and directions for the future work on the presented method of NN training with limited 

precision. Fig. 1.3 gives a detailed overview of the dissertation’s structure. 
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Fig. 1.3. An overview of the dissertation’s structure 
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2 NEURAL NETWORKS 

The foundation of NN creation lies in the attempt to model a human brain behavior with a 

mathematical algorithm [34]. In general, this structure aims to approximate the relation between 

input and output data during the process of training. As in the case of a human brain, neurons are 

core building elements of the whole network entity. In the initial proposal in 1958, a single artificial 

neuron, also known as perceptron, includes three basic features as weights, bias, and activation 

[35]. Based on its state, a neuron can react accordingly to the input data and fire with a response 

providing output for other elements of the network. The mechanics behind this functionality can 

be described by the following equation. 

𝑦 = ƒ𝑎((∑ 𝑥𝑖 ∙ 𝑤𝑖
𝑛
𝑖=1 ) + 𝑏) (2.1)

where: 

𝑦 – output of the neuron, 

ƒ𝑎(⋅) – activation function,  

𝑥𝑖 – i-th input of the neuron, 

𝑤𝑖 – weight assigned to the i-th input of the neuron, 

𝑏 – bias. 

Although a single neuron cannot be used for any complicated task, it proves to be 

extremely useful when scaled into a form of a larger structure. Modern NN architectures consist 

of millions of artificial neurons connected with each other. In most cases those neurons are 

grouped in the form of layers which output is then passed as an input to other deeper parts of the 

structure forming a deep neural network [3]. Fig. 2.1 depicts a single artificial neuron. 

 

 

Fig. 2.1. Single artificial neuron with two inputs [36] 

2.1 Training  

The procedure of neural network training is a heavily time and resource consuming 

process. In order to adapt the network to a particular problem, weights and biases of each neuron 

have to be tediously adjusted based on the training input and the current network’s predictions. 

This issue is especially vivid in the case of deep neural networks where mentioned adjustments 
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need to be continuously applied to millions of neurons grouped in hundreds of layers. In fact, this 

problem was the reason behind the longtime lack of interest for NN in the field of AI [37]. 

The mechanism of backpropagation proved to be a solution for deep neural network 

training. It leverages chain rule for derivatives calculation in order to establish a gradient of a loss 

function with respect to the parameters of the models [38]. Thanks to this mechanism it is possible 

to establish the influence of a single parameter on a final error of the network. Along with the 

application of optimizers such as Gradient Descent (GD), and its variations like Stochastic GD, 

Batch GD, Mini-Batch GD [39], it enables deep neural network training by adjusting trainable 

parameters. Additional hyper-parameters such as learning rate and batch size enable the 

algorithm to define the size of the update steps or frequency of gradient calculation in relation to 

input data samples. Fig. 2.2 presents a simple one-layer neural network structure with a single 

backpropagation example for one of the paths in a network. 

 

Fig. 2.2. Backpropagation chain rule example - gradient calculation with respect to a single weight 
parameter (biases excluded) 

Frequent gradient calculation and parameters adjustment requires many floating-point 

based multiplications which are one of the most power-hungry operations. Hence, gradient 

calculation and update of the network’s parameters are the most computationally expensive parts 

of the neural network training [40]. It needs to be mentioned that there are several issues 

connected with gradient calculation such as gradient explosion or gradient vanishing [41]. The 

latter one is especially important in case of using limited precision parameters for NN training. 

Additional reduction of precision increases the vanishing effect of small floating-point numbers 

that require high negative exponent values [42]. Those are only a few reasons why researchers 

still pursue a more efficient way for DNN training. 

2.2 Topologies 

The transition from a perceptron to a multilayer perceptron can be treated as the 

beginning of deeper NN architectures [43]. The ability to stack neurons in layers enabled 

researchers to touch much more complex problems that led to the growing size of proposed 

architectures. It is generally accepted that a structure with more than two layers can be called a 
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DNN, however, modern architectures often significantly exceed this minimum [44] [45].  Fig. 2.3 

gives an example of a simple multilayer perceptron with input layer, output layer and two hidden 

layers. 

 

Fig. 2.3. Deep Neural Network with two hidden layers [46] 

The evolution of robust deep learning architectures enabled neural networks to represent 

multiple levels of abstraction in the scope of available training data [47]. Easier access to large 

amounts of data and high computational power led to multiple breakthroughs in image, video [48] 

[49] and natural language processing [50], making this domain a main ML solution when it comes 

to solving complex problems. The input data format was an additional factor that influenced neural 

topology designs. In general, initial artificial NNs treated input as a vector of correlated numbers. 

However, such an approach proved to be insufficient for multi-dimensional data such as images 

[51]. Additionally, in many cases the time relation between input data is crucial for its 

understanding and proper classification or new data generation. Those, among many, factors 

highly contributed to the evolution of convolutional [52] and recurrent [53] neural networks that 

are known today and were used as a starting point for further architectural improvements in the 

field. 

2.2.1 Convolutional NN 

Convolutional Neural Networks (CNN), which are a focus of this dissertation, are one of 

the architectures which have been highly adopted by the industry. They proved to be especially 

useful in case of image and audio pattern processing [52]. The key element differentiating CNNs 

from regular NN is the ability to efficiently handle spatial dimensionality of the input. A batch of 

images is a good example of such data [51]. We can distinguish two basic dimensions as height 

and width, the third dimension based on the number of samples can be treated as the depth of 

the input. It needs to be mentioned that we could still use a multilayer perceptron for processing 

such data, but it would be much more complex and require additional data preparations such as 

flattening. Although regular fully connected layers are still used by CNN architectures, there are 

two main additional mechanisms that differ from this architecture: convolution and pooling. The 

combination of multiple instances of these layer types is the reason behind such appreciated 

effectiveness of CNNs. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

27 
 

Convolution layer treats its 1D or 2D input as a map of features. This map is scanned by 

a filter which is applied to the whole input including its depth which is perceived as input channels. 

The result of the filter operation creates an output features map. After applying activation, it can 

be used as an input for deeper layers of the network, commonly this structure is called an 

activation map. The number of filters used for the convolution layer defines output channels which 

state for the depth of the output. Fig. 2.4 depicts an example of a convolution with one channel 

4x4 input, single 2x2 filter, stride equal to 1 and no padding. 

 

Fig. 2.4. Example of a simple 1 channel 2d convolution 

In case of high-resolution input, applying multiple convolutions might be a computationally 

heavy procedure. In order to reduce dimensionality of feature maps, neural network models 

leverage pooling layers which allow for limiting the number of operations in a model. Max and 

average pooling are the two most commonly used layers for this purpose. In a similar fashion to 

convolutions, there are multiple parameters that can be adjusted in case of pooling such as kernel 

size or overlapping. Fig. 2.5 gives an example of 2x2 max pooling with stride 2, applied to a one 

channel 4x4 input. 

 

Fig. 2.5. Example of a simple 1 channel max pooling 

Fully connected layers are usually applied at the end of convolutional network topology. 

A meaningful showcase of abilities of such CNN architecture was LeNet-5 designed for zip codes 
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reading in the US postal offices [54]. The originally presented neural network consisted of three 

convolutional layers, two pooling layers followed by two fully connected layers and a softmax 

classifier. The overall number of trainable parameters of this network totals to 60000. Fig. 2.6 

presents the original LeNet-5 network as proposed by (LeCun et al 1998) [55]. 

 

Fig. 2.6. Original LeNet-5 architecture [55] 

The modern interest in deep CNN topologies has been restored by the winner of the 2012 

ImageNet competition AlexNet. The challenge involved a trainset of 1.2 million images split into 

1000 categories. Evaluation of models was done on a separate classification test data that has 

not been previously seen by the competing models [56]. The AlexNet architecture outperformed 

other competitors by almost over 10 percentage points of accuracy [48]. The results have been 

achieved thanks to a large CNN topology which was executed on GPU instead of, popular at this 

time, CPU. This event initiated a rapid shift to GPU NN training, which is confirmed by the change 

in ImageNet challenge submissions. In 2012 four entrants used GPUs, when in 2014 almost all 

110 were using such devices [40]. Fig. 2.7 depicts the original topology of AlexNet architecture. 

The size of the network was so big for current standards that it had to be trained on two GPU 

cards due to hardware memory constraints [48]. 

 

Fig. 2.7. Original AlexNet architecture [48] 

The success of AlexNet started the pursuit of continuously growing network architectures 

as VGG [57] and GoogLeNet [58], where improved accuracy of the model has been achieved at 

the cost of increasing the number of layers and computational complexity. Although, in theory, 

more robust neural networks should provide better prediction accuracy, it became apparent that 

increasing the number of layers enhances the problem of exploding and vanishing gradient [59] 

[60]. The novel architecture change proposed by Zhang et al. (2016) [61] addressed this problem 

by introducing ResNet (Residual Network) which won the 2015 ImageNet competition. The key 
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idea behind ResNet revolves around shortcut connections which skip one or more layers in the 

network’s topology providing an identity mapping by adding the output of such a layer to the output 

of skipped layers. An example building block of a residual connection is presented in Fig. 2.8. 

 

Fig. 2.8. An example of a residual building block with a shortcut connection [61] 

ResNet provides a scalable architecture for building a deep neural network topology. 

Although in order to lower training time and the complexity of the model bottleneck blocks with 

1x1 convolutions are introduced as a replacement for standard building blocks. Fig. 2.9 gives an 

example of a building block used for ResNet with 18 and 34 layers, and a bottleneck block 

introduced for 40, 101 and 152 layers ResNet versions. 

 

Fig. 2.9. Comparison of a building block (left) and a bottleneck block (right) used in ResNet topology [61] 

The proposed approach of building blocks enabled further increases of neural network 

depth without degradation of the prediction quality. According to the authors, the presented 

architecture allowed to train a ResNet architecture with over 1000 layers with no optimization 

difficulty on the method’s side. 

2.2.2 Recurrent NN 

Another path in the neural network development domain has been directed by the data 

which contains a strict time relation between the following input samples. In many input formats 

such as audio, video or time labeled statistical data, the sequential characteristic is crucial for its 

understanding. Recurrent neural networks (RNN) were developed to address this issue [53]. The 

architecture of RNN strongly depends on maintaining a hidden state of a neuron and is based on 

the previous output. Such functionality is possible due to recurrent connections in the network, 
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allowing for applying information from the previously seen information to a present input. Fig. 2.10 

presents an example of simple RNN architecture with one hidden layer. 

 

Fig. 2.10. Example of a simple Recurrent Neural Network 

Although powerful, RNN often struggles with learning long-term connections in the 

provided data. Moreover, due to sequence dependent characteristics, backpropagation for RNN 

networks needs to be extended, this mechanism is known as backpropagation through time 

(BPTT) [62]. The RNN design also struggles with problems of vanishing and exploding gradient 

due to a fact that a back-propagated error either grows or shrinks in every calculated time step 

[63]. 

The mentioned RNN related issues and the need for more flexible adaptation to 

sequential data lies at the architecture of Long-Short Term Memory (LSTM) network. Although 

this topology provides additional complexity on the design itself, it proved to be extremely efficient 

for sequence data where crucial information is widely spread through time as in natural language 

processing [63]. The basic building block of an LSTM layer is a memory block which stores two 

states of the unit. The first one called cell states plays a role of long-term memory, the second 

one called hidden state is treated as short-term memory. Such a mechanism is achieved with the 

application of three gates responsible for forgetting data, storing information in memory, and 

adapting the output based on the cell’s memory [64]. The implementation of gates is commonly 

accomplished by using a sigmoid function. Fig. 2.11 gives an example of a single LSTM memory 

cell. 

 

Fig. 2.11. An example of a single LSTM memory cell 
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There are multiple implementation variants when it comes to LSTM architecture [65]. 

Moreover, a simplified version of the gating mechanism has been proposed in the Gated 

Recurrent Unit (GRU), which gained popularity in the research community [66]. The domain of 

NN architecture is still evolving, often new designs are proposed and experimented on. The one 

that gathers much of the attention in the context of processing sequential data is transformer [67]. 

2.2.3 NN parameters 

Regardless of the size or topology leveraged by a particular NN architecture, the core 

implementation depends on simple mathematical operations. Matrix addition and multiplications 

stand for the majority of calculations required for both forward and backward passes through the 

network [68]. To achieve a sufficient dynamic range of variables for weights, biases and 

activations most current implementations depend on IEEE-754 32-bit floating-point representation 

available in general purpose hardware [69]. This case is especially important during NN training 

where a vanishing gradient problem might be intensified with lower precision variables. 

The need for a high number of floating-point multiplications has a direct impact on 

computational requirements during neural network training. Floating-point operations are one of 

the most power demanding hardware operations. This not only translates to high computational 

demands while training large architectures but also the time required for finishing such a process. 

These two factors create difficulties not only related to financial effectiveness but also impose a 

long time of experimentation and tuning for research and development tasks [70]. 

Computational requirements are not the only issue related to the usage of 32-bit variables 

for NN. In the scale of million parameters, reserving 4 bytes for each parameter can create 

problems with storing the network itself, especially in case of low-power devices or chipset’s 

internal memory. Even if the instance of the network is stored in the backend it usually takes more 

than hundreds of megabytes. VGG-19 with a size of 550MB is a good example of such a case 

[57]. Memory issue is much more crucial in terms of runtime memory requirements, in the majority 

of cases inferring the network requires loading the trained topology to a runtime memory which is 

much scarcer than the regular storage [71]. This is often a blocking constraint for deploying larger 

topologies on edge and mobile devices. 

2.3 Floating-point representation 

Digital systems enforce a binary format for representation of numeric values. Storing them 

in a form of ones and zeroes hardly ever easily translates into a commonly used decimal system. 

Moreover, due to limited variable’s bit count there are strict constraints when it comes to storing 

numerical data in digital memory. Over the years, engineers came up with multiple formats for 

addressing this issue [72] [73]. Although, translation of integers to binary system is 

straightforward, complications appear in the case of real numbers. 

There are two common ways for storing real numbers in digital variables, floating-point 

and fixed-point [74]. The first one dedicates a specific number of bits for integers and factorial 
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parts of the number, which makes the implementation less complicated. This translates to 

economical savings due to lower hardware cost, power and time of computation [75]. Such an 

approach, however, not computationally complex, limits the dynamic range of numeric values that 

could be stored on a particular number of bits. The answer to this issue, coming at a cost of 

additional complexity, was a floating-point representation which stores a number in a form of the 

exponent and mantissa. This format can be depicted in the form of the following equation. 

𝑥 = 𝑆 ∙ 𝑀 ∙ 𝐵𝐸 (2.2) 

where: 

 𝑥 – floating-point numeric value, 

𝑆 – sign of the value, 

𝑀 – mantissa, 

𝐵 – base of the number system, two for binary, 

𝐸 − exponent. 

Fig. 2.12 shows a bit level comparison between an 8-bit fixed-point and 32-bit floating-

point formats representations for numeric value 6.75. 

 

Fig. 2.12. The number 6.75 represented in a) 8-bit fixed-point with 4-bits integral and 3 bits fractional part 
b) IEEE-754 32-bit floating-point 

Values distribution is another important factor when it comes to a number format type 

applicability to an optimized NN training algorithm. As presented in Fig. 2.13 fixed-point type 

uniformly distributes its values, the difference between adjacent numbers is always equal to one. 

In contrast, floating-point values are distributed non-uniformly providing more representations of 

values closer to zero. Moreover, a denormalized range of values specific for floating-point 

implementations provides an additional numbers’ representation that otherwise would be rounded 

to zero [76]. Such characteristic may be especially important in case where NN training requires 

multiple low-value gradient updates. 
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Fig. 2.13. Values distribution in 8-bit floating-point (FP8) and 8-bit fixed-point (INT8) variable [77] 

2.3.1 IEEE-754 

The common standard for general purpose computing is IEEE-754 floating-point 

providing definitions for 16-, 32-, 64- and 128-bit formats. Higher bit counts which are a 

multiplication of 32-bits are also included in the standard [78]. It is mostly appreciated for its high 

dynamic range and ease of use when it comes to software implementation. Due to wide global 

adaptation, most modern processors contain floating-point processing units (FPU). 

The format of a single-precision 32-bit floating-point variable contains: 

• 1-bit sign (set to 1 if the number is negative), 

• 8-bit exponent with a base of 2, 

• 23-bit mantissa. 

The 8-bit exponent is split into a range of < −126, 127 > with a bias equal to 127. The 

format includes special representations for zero, infinity and “not a number” (NaN) values. In order 

to support a wider range of close to zero numbers it introduces denormalized values, also known 

as subnormal values, which interpret the leading hidden bit of mantissa as 0. Thanks to this 

feature, which is achieved at the expense of significant mantissa’s bits, it is possible to limit 

underflow cases as limited exponent range could be easily exceeded during floating-point 

arithmetic. 

The standard had its beginning in 1985. It specified formats, rounding, exceptions and 

operations for floating-point arithmetic. Before then, multiple available hardware architectures 

defined their own arithmetic, forcing engineers to support and maintain cumbersome conversion 

mechanisms. The IEEE-1987 revision introduced radix-independent floating-point arithmetic. 

Other important updates were submitted in 2008 covering binary and floating-point arithmetic, 

extensions of types, supplementary functions and attributes. The latest changes were included in 

the IEEE-754 2019 providing among others optional augmented arithmetic calculations. It is 

argued that future revisions may provide more machine learning focused updates allowing for 

sacrificing precision over pure accuracy [79]. Table 2.1 gives an example of several bit variants 

of floating-point types.  
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Table 2.1. Comparison of several floating-point types [80] 

Type 
Bit count 

details 
Min (normalized) Max Unit roundoff 

16-bit brain 
float (bfloat) 

8-bit exponent 

8-bit mantissa 
1.18 × 10−38 3.39 × 1038 3.91 × 10−3 

16-bit floating-
point 

5-bit exponent 

11-bit mantissa 
6.10 × 10−5 6.55 × 104 4.88 × 10−4 

32-bit floating-
point 

8-bit exponent 

24-bit mantissa 
1.18 × 10−38 3.40 × 1038 5.96 × 10−8 

64-bit floating-
point 

11-bit exponent 

53-bit mantissa 
2.22 × 10−308 1.80 × 10308 1.11 × 10−16 

Selecting a specific variable type for neural network representation has a direct impact 

on its resource requirements. This trend has been especially important in case of inference 

optimization when quantization to smaller, often fixed-point, formats enabled minimization of 

latency or output size of the model [29]. Although FPUs are commonly available in modern 

processors for both GPUs and CPUs, there are still devices that can benefit from using fixed-point 

arithmetic, digital signal processing (DSP) units are a good example of that [81]. In case of small 

low-power devices, various factors such as speed, power consumption or chip’s area are crucial 

requirements for the final productization. 

Consideration of pros and cons regarding usage of floating- and fixed-point 

representation is not a new problem. Over 25 years ago (Inacio & Ombres 1996) [82] described 

their point of view for selecting one of these numeric types to DSP implementations. The domains 

that were considered are not so different from those investigated today. The major factors 

included cost of the mathematical unit, number of cycles required for computation, ease of use 

and software support. Today we consider the same aspects in order to efficiently execute ML 

specific computations [77]. 

Binary representation of a real number format is not the only factor that impacts 

calculations’ precision and performance. Besides accessibility to hardware computation units that 

can be optimized to support chosen formats of numeric operations, a crucial role is played by the 

size of variables that are used. Despite the precision-wise disadvantages of this solution, limiting 

bit count of variables is a straightforward method to limit both computational complexity and 

memory consumption when it comes to neural network training and inference [40]. Even modern 

neural network frameworks such as Tensorflow [83] or Pytorch [84] introduced similar 

mechanisms to enable neural network training on 16-bit half-precision or lower floating-point 

variables [26] [85]. 

Considering the bit-width of used variables, interesting research on custom floating- and 

regular fixed-point usage has been conducted by (Barrois & Sentieys 2017) [75] in a relation to k-
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means clustering. The proposed custom floating-point format loosens some IEEE-754 restrictions 

on normalization or special values. Their comparison showed a significant overhead in case of 

floating-point energy consumption which needs 5-12x more energy for adders and 2-10x in case 

of multipliers. However, when both numeric types were applied to k-mean clustering task, the 8-

bit floating-point algorithm was 80% more accurate than the 8-bit fixed-point with only a 1.6 energy 

increase. As the increased accuracy enabled the algorithm to converge faster, the overall energy 

cost of using fixed-point was higher. It is important to highlight that the advantage of floating-point 

variables was not observed for higher bit counts than 16-bit. In such scenarios 16-bit fixed point 

was a more efficient choice. The authors see such a scenario as an opportunity for development 

of energy-efficient microcontrollers with small bit-width floating-point variables as a compromise 

between accuracy and energy consumption. 

A few years later Zhang et al. (2023) presented research in the same domain as Barrois 

& Sentieys (2017) [75] with focus on low-bit fixed-point and floating-point comparison in relation 

to large language models quantization. In their proposal of Mixture-of-Formats Quantization 

(MoFQ), the authors proved that although floating-point support translates to higher hardware 

cost due to required area size, the difference between fixed-point and floating-point decreases 

along with the limited bit count of the supported variables (Fig. 2.14). In terms of 8-bit variables, 

the overall required multiply–accumulate (MAC) area is comparable for both types. 

 

Fig. 2.14. Required area size of fixed-point integer and floating-point operators across various bit widths  
[77] 

When it comes to power efficiency, an interesting study conducted by (Tong et al 2000) 

[86] verified the idea of floating-point variables limitation with an aim of energy savings. Their 

implementation of optimized floating-point representation included the change of the implied radix, 

simplification of rounding modes and most importantly a reduction in mantissa and exponent bit-

width. The presented work confirmed that energy per operation increases linearly with growing 

bit count of operands. As presented in Fig. 2.15, an 8-bit multiplication consumes 78% less energy 

in comparison to 24 x 24 Wallace tree multiplier [18] used as a baseline. Even in the case of 

limiting mantissa to 16-bit, the energy consumption was 32% lower. 
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Fig. 2.15. Performance of the digital multiplier across selected floating-point variables bit-widths [86] 

The above results should be interpreted along with power consumption per functional 

block in a single precision multiplier. As presented in Table 2.2, the authors measured that over 

80% of power is used by the unit responsible for mantissa multiplication. These results show that 

limiting mantissa bit count may be especially important in terms of power efficiency for precision 

limited NN training. Even earlier studies of (Meier et al. 1996) [87] and (Callaway et al. 1997) [88] 

confirm that limitation of variables’ bit count translates to a significant reduction of the multiplier’s 

power consumption. 

Table 2.2. Power consumption of a single precision floating-point multiplier [86] 

Functional Block Power consumption (% of total) 

Mantissa Multiplier 81.2 

Rounding Unit 17.9 

Exponent Unit 0.833 

Others (exception handling etc.) 0.066 

2.3.2 Precision and rounding 

The uniform placement of a decimal point in a fixed-point format allows for more natural 

translation of real numeric values to binary representation. Although such simplified 

representation may require less complicated hardware arithmetic, it significantly reduces the 

dynamic range of a numeric variable [69] . Leveraging fixed-point representation may also create 

more complication on the software development side when it comes to handling overflow and 

underflow scenarios. Additionally, fitting real values into fixed-point arithmetic may especially 

suffer due to quantization noise caused by enforced rounding. Such a problem has been already 

investigated as early as in 1993 by (Choi et al 1993) [89] who signaled the issue of accumulating 

arithmetic rounding and quantization errors with large feedforward neural networks. 
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It is worth mentioning that rounding related issues may be a vital problem in case of 

several aspects of neural network applications, especially in domains where correctness of 

inference results is an aspect of security. The work presented by (Jia & Rinard 2021) [90] states 

that floating-point error might be used to exploit real-valued neural network verifiers. Such cases 

are especially important where space of the input of the model is not constrained or limited. 

The necessity of allocating analog numerical values into a limited number of bits, forced 

engineers to apply various rounding techniques on digital numeric representations [5]. Although, 

rounding to nearest is sufficient for most common use cases, it may pose a significant problem in 

the case of neural network training where rounding errors tend to accumulate over time. Hence, 

stochastic rounding rose in popularity in recent years around deep learning researchers. 

Wide application of quantization and precision limitation in the ML field pushed 

researchers in the direction of better ways of handling rounding and truncation errors. The 

standard to-nearest method, which is a default for IEEE-754 floating-point arithmetic, introduced 

many issues due to accumulating errors over the time of training or inferencing the network, 

especially in case of low bit-width variables. This reinstated interest in the stochastic rounding 

method that was initially proposed in the 1950s [91]. 

Stochastic rounding, in contrast to the to-nearest technique, proposes a non-deterministic 

approach to rounding numbers. In general, two flavors of the method can be distinguished. The 

first one randomly rounds the number up or down with 50% probability. The other one, more 

commonly used in low-precision machine learning computations, determines the direction of 

rounding based on the number’s relative distance to the nearest upper or lower boundary [80]. 

The following equation sums up the second version of the stochastic rounding algorithm, 

which is also presented in Fig. 2.16. 

𝑟(𝑥) = ⌊𝑥⌋ + 𝑝, 𝑤ℎ𝑒𝑟𝑒 𝑝 = {
0   𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦:    1 − (𝑥 −  ⌊𝑥⌋)

1   𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦:                    𝑥 − ⌊𝑥⌋
(2.3) 

The following alternative of this equation can be considered: 

𝑟(𝑥) = ⌊𝑥 + 𝑢⌋, 𝑤ℎ𝑒𝑟𝑒 𝑢 ∈ [0,1) 𝑤𝑖𝑡ℎ  𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (2.4) 

which emphasize hardware design efficiency improvement relying on the possibility of using a 

random bit stream generator for the generation of binary representation of the stochastic 

parameter 𝑢. 
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Fig. 2.16. Stochastic rounding with distance-based probability [92] 

Although the error with this approach can be larger in a singular case than with to-nearest 

rounding, the statistical characteristic enables the reduction of accumulated error on a larger 

scale. Fig. 2.17 provides a comparison of accumulated error between 16- and 32-bit IEEE-754 

floating-point, and 8-bit floating-point with stochastic and to-nearest rounding. The experiment 

involved multiplication of two randomly generated vectors containing one hundred 64-bit floating-

point elements each. The average limitation and rounding error have been calculated for each 

iteration. 

 

Fig. 2.17. Comparison of average error after multiplication of two vectors with 64-bit floating-point variables 
for various variable types and rounding techniques  

Based on Fig. 2.17 it can be observed that along with increasing test iterations the 

average error of 8-bit floating-point with stochastic rounding is decreasing and after 100000 

iterations gets lower than the one for 16-bit IEEE-754 floating-point. On the other hand, types with 

to-nearest rounding maintain a constant level of error. As explained by (Connolly et al 2021) [80] 

rounding errors produced by stochastic rounding are mean independent. Additionally, it allows to 
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avoid stagnation which is especially important for tiny parameters updated in NN. Random based 

rounding increases a chance for error cancellation, especially in case of low precision numbers 

where mantissa bit count is highly limited. 

An important aspect that needs to be considered when it comes to the application of 

additional rounding techniques is their overhead on the overall algorithm. Although accuracy 

results may improve due to the rounding, it is important to not sacrifice possible efficiency gains. 

This opens a subject of hardware support for efficient stochastic rounding. First hardware 

implementation of stochastic rounding was presented in the 1950s [93]. Researchers continue 

the work on this subject with dedicated stochastic rounding accelerators which may make 

software implementations redundant in the highly efficient implementations. For example, the 

proposal presented by (Mikaitis 2021) [94] focuses on algorithms and hardware-based 

acceleration for various fixed-point types commonly used in ML. The solution includes mixing of 

the used formats and, as the authors suggest, it should be applicable to floating-point arithmetic 

adders and multipliers. 

The review of patents and devices done by (Croci et al 2022) [92] shows that multiple 

major hardware manufacturers own patents or products supporting stochastic rounding. 

Graphcore IPU parallel machine learning accelerators include stochastic rounding of 32-bit values 

to 16 bits [95]. IBM patents include using stochastic rounding for floating-point adders and 

multipliers [96]. AMD depicts methods for using stochastic rounding for integer adders and 

accumulators for 32- and 16- bit mixed precision [97]. Similar methods are presented by NVIDIA 

for 64-, 32- and 16- binary and floating-point types [98]. 

The number of published papers using stochastic rounding with limited precision confirms 

its advantages for neural network training. The method includes experiments on 12- and 14-bit 

fixed point variables [5], 12-bit floating- and fixed-point with additional context representation [6] 

or dynamic precision scaling for 14- and 16-bit fixed-point [7].   

2.4 Neural Network Acceleration 

Regular purpose hardware rarely provides optimal performance when it comes to specific 

calculation tasks. Modern NN architectures give good examples of structures that require 

significant computational power and large amounts of high-speed memory. These constraints 

were the major reason behind the rapid shift of researchers and industry from standard CPUs to 

more efficient GPUs [68]. The parallel computation provided by GPUs proved to be a perfect fit 

for huge amounts of multi-add floating-point operations required for neural networks training. 

Although such a change usually results in an order of magnitude improvement, the necessity of 

having a powerful GPU on the device limits the possible productization use cases especially when 

AI models have doubled the usage of computational power every 3.4 months since 2012 [99]. 

Recent years have shown increasing interest in neural network-based solutions for low-

power devices. The growing domain of mobile and edge devices enforced researchers to avoid 

pursuing the best possible classification accuracy at any cost. From now on, computational and 
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memory requirements became an important factor in terms of NN architecture’s productization 

potential. As presented by Dhar et al. (2020) [100] it applied not only to the hardware design but 

also algorithms, software ML libraries and general NN learning theory. New factors, closely 

related to mobile devices, as battery life and cost of additional hardware components had to be 

considered in the perspective of AI-based features introduction. 

In the face of new requirements, both researchers and hardware designers responded 

with new ideas. Multiple software techniques focusing on trimming or compressing existing neural 

network architectures have been proposed and rapidly adapted by the industry. The same is true 

for the hardware side, where the era of AI accelerators has already begun [40]. 

2.4.1 Inference acceleration 

The inference is the most common, user faced functionality provided by a neural network. 

Once the network is trained, it can be deployed on a variety of devices as a part of a larger 

software application or cloud-based solution. Then the results, for a specific input data, can be 

generated with a feedforward mechanism. Such scale of adoption was followed by multiple 

software and hardware acceleration techniques for the inference, this section presents a few of 

the most popular methods.  

Most software techniques for neural network acceleration depend on modifications of an 

already trained full-precision model. The aim is to generalize or remove non indispensable 

information from the network without heavy impact on the final classification accuracy. The most 

common approaches include: 

Pruning is aimed to reduce the size of the network by its parameters removal. There are 

various ways on how it can be applied to an already trained neural network. Two most common 

techniques focus on weights and neurons [101]. The idea is that connections with weights below 

a particular threshold have a smaller influence on the final network’s prediction, hence they can 

be removed. Similar approach applies to nodes, if the resulting activations are low or close to zero 

then there is a big chance that a particular neuron has a minor role in the inference outcome. It is 

worth highlighting that the fine-tuning approach can be also applied to pruning. The pruned 

network can be retrained to recover some of the lost accuracy [102]. In many cases, removal of 

weights or nodes produce a sparse network (Fig. 2.18) which may result in computational 

inefficiencies with the usage of general-purpose hardware or modern machine learning libraries. 
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Fig. 2.18. Example of neural network pruning 

Quantization is one of the most common inference acceleration techniques (Fig. 2.19). 

The method relies on replacing regular 32-bit floating-point parameters with low-bit integer 

variables, however floating-point variants are also considered. It leverages the fact that, in 

general, fixed-point operations are much more efficient on general purpose hardware. Post 

Training Quantization (PTQ) is a common technique that modifies an already trained neural 

network, which no longer requires a high dynamic range for backpropagation steps [103]. In order 

to limit quantization error, many frameworks already provide an option of Quantization Aware 

Training (QAT) that emulates quantized inference during training time in order to prepare the 

model for the quantization step [104]. The usual target for quantization is 8-bit integer but there 

are several studies showing ways to compress a network to 4- or lower-bit fixed-point variables 

[103]. The extreme case in terms of quantization is represented by binary neural networks which 

store parameters values on a single bit [105]. Such architectures enforce changing the regular 

neural network mechanisms to bit level operations. 

 

Fig. 2.19. Example of neural network parameters quantization [104] 

Weight sharing is another technique focusing on limiting the number of parameters in 

the neural network and reducing redundancy. As the name suggests, it relies on reducing 

trainable parameters in the network by sharing them between multiple nodes [106]. The most 

common scenario for weight sharing applications is using the same weights across convolutional 

filters. The other case may include sharing weights between initial layers of single or multiple 

neural networks.  
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Knowledge distillation aims to improve resource efficiency of inference at the cost of 

more complicated training steps [107]. It uses a large neural network to supervise and train 

smaller topology with similar accuracy results. This technique is commonly referred to as the 

teacher-learner approach [108]. It provides a utility to train a smaller neural topology that could 

not be trained from scratch on the same dataset as the teacher model. The main advantage of 

this method is minimizing entropy and the distance between probabilistic estimates of the network 

and in result compressing the final NN model. Fig. 2.20 gives an example of this technique. 

 

Fig. 2.20. Example of a teacher-learner training technique 

In the pursuit for the best accuracy to efficiency ratio for neural network inference, a lot of 

the above methods are used jointly. There are various examples of such approaches as Han et 

al. (2015) [29] where pruning, quantization and Huffman coding are combined to compress CNNs. 

In another example Tung et al. (2018) [109] presents CLIP-Q method that leverages in-parallel 

pruning and quantization for networks such as AlexNet, VGGNet, GoogleNet and ResNet. 

Along with the software proposals, there has been continuous development on the 

hardware side of NN acceleration. Using more efficient general-purpose devices was not always 

an option to limit the latency or energy consumption of a particular model. This opened an 

opportunity for custom neural accelerators and hardware optimizations aiming for better 

computational parallelism and memory access reduction. 

Such a trend is already visible on the market and supported by major corporations 

dedicated to AI development. A few years ago, Google introduced its TensorFlow Processing Unit 

(TPU) [10] and Nvidia followed with Deep Learning Accelerator (DLA) [11]. Other vendors as Intel, 

Samsung or Qualcomm provide specialized Neural Processing Units (NPU) for AI related 

workloads [27]. The key idea is to provide specialized, highly efficient hardware for common ML 
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tasks as convolutions, matrix multiplications or activations. Depending on the hardware 

placement, ML accelerators can be briefly divided into the following groups. 

On-chip accelerators which aim to offload ML related computation from the main CPU. 

With the use of multiple Processing Engines (PE), such devices can speed up repetitive matrix-

based computations [12]. This is especially important in case of edge and mobile devices where 

inference needs to be done on the device itself. Often the network is stored on the chip memory, 

hence there might be a strong limitation when it comes to supported network topologies [100]. 

Another constraint can be posed by operations supported by a given accelerator which may limit 

the use of newer topologies or network layers. Various NPUs [110] or a NN specific accelerator 

RENO [111] are good examples of on-chip accelerators. 

Standalone accelerators present a domain of often highly specific powerful devices for 

ML tasks. Such architecture is not limited by the constraints related to CPU or GPU chip designs 

and can be used in separation to general purpose hardware architecture. Additionally, standalone 

accelerators are often designed to support both training and inference use cases. The family of 

DianNao devices [112] or TPUs [113] shows benefits of such architectures in terms of deep 

learning acceleration. Many standalone accelerators leverage field programmable array gates 

(FPGA) or application specific integrated circuits (ASIC) for its designs, which manifest a better 

performance density than GPUs despite lower throughput [114]. Zhang et al (2015) [115], Guo et 

al (2017) [116], Nguyen et al (2019) [117] provide examples of such an approach. 

Hardware acceleration can have a significant impact on efficient execution of ML 

algorithms. This is especially important in case of on-device inference or algorithms that had to 

be close to the data source or sensors such as smart cameras or smartphones [71]. In many 

situations, the network throughput is limited, and algorithms response time is crucial for the 

application use cases. Nevertheless, in general the common way to provide AI based functionality 

is a cloud base backend leveraging powerful datacenters [33] [100]. This scenario combines a 

wide range of CPUs, GPUs and ML accelerators that handle ML tasks on a large scale. Many 

cloud market leaders such as Amazon, Google, Microsoft support AI cloud acceleration [118]. 

The infrastructure is used for providing computational power behind common AI applications 

leveraging natural language processing, image recognition or risk identification. 

2.4.2 Training acceleration 

In contrast to the inference, training acceleration is a much less examined subject. Up to 

recently, spending days or even weeks on training a particular model was acceptable as long as 

proper computational power was available [119]. The continuously growing domain of IoT and 

environment related consequences of energy consumption, put into question the rapidly growing 

neural network resource requirements. Additionally, usability and privacy aspects force the 

industry to focus on on-device NN training [33]. 

Reducing computational complexity of an algorithm has been often a much cheaper way 

to improve overall efficiency. Upgrading the hardware in order to get additional computational 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

44 
 

power can be costly and does not always scale appropriately along with growing input data or 

topology sizes [100]. The same goes for custom hardware designs which are usually much more 

expensive and require a long research and development (R&D) phase before entering the market 

[70]. Due to these reasons, researchers pursue multiple ways of NN training acceleration on 

existing general-purpose hardware including the following: 

Topology and hyper-parameters tuning are common approaches when looking for 

reduction in NN resource consumption. Selecting a smaller topology is an obvious choice to limit 

the number of parameters that need to be trained, however, it usually comes at the cost of 

decreased performance of the final network. Applying additional normalization and regularization 

techniques may also impact the time required for the network to efficiently converge for a given 

problem. Tweaking with batch-size or input data size may be an additional factor in speeding up 

the training process [120]. 

Transfer learning is an interesting technique which decreases the time and resources 

required for training the neural network. The key element of this method revolves around using 

already trained weights of an existing network to solve a different problem, as presented in Fig. 

2.21. It has been proved that even if the network has been trained for a different task, the training 

time required for adjusting the network to other problems is much shorter than starting the process 

from random weights [121]. Unfortunately, this method has its limitations when it comes to training 

completely new architectures. 

 

Fig. 2.21. Example of transfer learning 
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Usage of half precision variables is a common optimization technique that focuses on 

the format of network parameters. IEEE-754 32-bit floating-point is a standard type used for neural 

network training. The bit count of parameters used in this process has a direct impact on energy 

consumption and memory required for loading and storing the model [86]. Leveraging half 

precision 16-bit floating point format for all or part of model parameters is a simple way for 

resource savings. A vivid disadvantage of this solution is the limitation of available precision and 

dynamic range of the variable. In case of 16-bit floating-point overflow and underflow scenarios 

may be much more common, especially during gradient calculations where values can be 

extremely low. The response to this problem has been proposed by NVIDIA in a form of mixed 

precision training [122]. The method chooses half precision types for parameters where it does 

not impact the final accuracy of the network. Additionally, a tool for mixed precision training called 

“A Pytorch Extension” (Apex) has been developed in order to support this technique in modern 

ML training frameworks [123]. 

In a similar way to inference, using specific hardware accelerators can have an enormous 

impact on NN training optimization. Progressive parallelization and increasing computational 

power of available GPUs allowed for training big modern architectures in a reasonable time. 

Nevertheless, resource constraints and long training time limit the ability to experimentation, 

debugging or touching complex problems in an efficient manner. Increasing the gap between the 

continuous growth of modern deep neural models and general-purpose hardware brings concerns 

in terms of future scalability of edge-based AI solutions [124]. There are two main paths when it 

comes to hardware-based advancements for NN training. The first one revolves around 

optimization of currently executed ML operations in relation to memory access, caching and data 

throughput. The other one focuses on allowing network designers for more flexibility in terms of 

parameters bit count and its precision which often requires specialized software support.  

NN accelerators are much less common to support the training stage of the network as 

it is a much more complex task. However, there are examples of architectures which support this 

use case [27]. Google TPU [10] is one of them, providing its functionality via cloud infrastructure. 

Another one is presented by Tensorflow Accelerated Linear Algebra (XLA) which optimizes GPU 

operation for specific NVIDIA hardware [125]. 

Low precision operations support is a crucial advancement when it comes to supporting 

a power efficient NN architecture. Fixed point integer values are often not sufficient for inference 

of large topologies, the more for their training. Moreover, the general-purpose hardware usually 

supports 16-bit variables as the smallest floating-point format. IEEE-754 is not an ideal type for 

neural network training, hence enabling experiments on smaller and custom floating-point 

representation is an important step to low-power network architectures [122]. Several design 

proposals of custom precision accelerators have been presented in the literature, along with 

custom precision support as in (Lee et al 2018) [15]. Additionally, such research may enhance 

development on efficient binary neural networks. 
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In general AI hardware supports high-bit floating-point operations and low-bit fixed-point 

operations [77]. Nevertheless, the shift in this approach is noticeable as the global GPU 

manufacturers as NVIDIA does not stay behind custom NN accelerators. The recently introduced 

NVIDIA H100 Tensor Core GPU provides support for efficient 8-bit floating-point operations, 

considering the types with 4-bit and 5-bit exponents with comparable performance to the 8-bit 

fixed point [126]. Such products show that focusing on training algorithms for NN with low-bit 

floating-point variables may be especially fruitful when it comes to the future energy efficient ML 

development. 

2.4.3 Resource demand 

Despite hardware and software advancements in the field of NN acceleration, the rapid 

growth of future state-of-the-art models’ performance may be no longer sustainable due to the 

continuously growing computational demand [119]. Many novel breakthroughs in the field of 

image classification, voice recognition or text generation came from incremental growth of 

resources used for the model’s preparation. It is especially visible in the case of hardware applied 

to NN training. The advancements over the years were often related to faster CPUs availability 

and then overall switch to GPUs. Once using GPU was not enough, then the era of ML 

accelerators began with the additional increase of devices used in the process of multi-GPU 

training [68]. Finally, the largest, most complicated topologies were pushed out to the cloud due 

to their extreme resource requirements [127]. 

According to (Thompson et al. 2020) [119] over-parameterization of deep learning models 

is a key factor contributing to AI sustainability issues as it strictly depends on the growing number 

of network parameters and input data points. The cost of model training scales with the product 

of its parameters and data points in at least quadratic scaling, highly limiting performance 

improvement of existing deep learning architectures. ImageNet competition focused on image 

classification task can be a good example of this phenomenon [56]. Fig. 2.22 presents ImageNet 

state-of-the-art models along with their number of operations required. 

 

Fig. 2.22. ImageNet competition top-5 error in comparison to the number of operations required by the NN 
[114] 
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The continuous increase in the image classification accuracy is followed by the growth of 

the model itself. This is especially vivid in the case of the newest models as CoCa where the 

number of parameters almost doubles for a slight accuracy improvement [127]. This subject has 

been deeply investigated by Canziani et al. (2016) [45] in the analysis of practicality of deep neural 

network models based on the ImagNet competition submissions. The authors argue that key 

factors such as upper computational boundaries or inference time should be a part of 

benchmarking for real-life use case models. 

Optimization and proper acceleration are potential ways to increase profitability and 

market adaptation of cutting-edge AI solutions. Nevertheless, growing cost of developing and 

productization of modern AI solutions may become a possible issue for its adaptation by a broader 

market. According to recent online publications, keeping a novel ChatGPT [128] chatbot running 

costs around $100000 a day which may hinder the profitability of such applications in the future 

[129]. Moreover, the estimations suggested by Thompson et al. (2020) [119] based on their 

models say that achieving smaller error rates on ImageNet and other benchmark datasets may 

be financially and environmentally unprofitable. Reducing 4% percentage points of error on 

ImageNet dataset provides, at least, a major polynomial increase in required computation, CO2 

production and overall economic cost. Table 2.3 presents their summary for the ImageNet 

benchmark. 

Table 2.3. Implication of achieving performance benchmarks on the computational requirements from 
polynomial and exponential models’ projections [119] 

Benchmark Error Rate 

Polynomial Exponential 

Computation 
Required 

(flops) 

Environmental 
Cost (CO2) 

Economic 
Cost ($) 

Computation 
Required 

(flops) 

Environment
al Cost (CO2) 

Economi
c Cost ($) 

ImageNet 

Today: 
9.00% 

1023 105 106 1024 106 107 

Target 1: 
5% 

1026 108 109 1030 1013 1014 

Target 2: 
1% 

1033 1016 1016 1092 1074 1075 

In the past decades, we have observed an enormous growth in various processor 

improvements [130]. Deep learning is not the only field where computational power drives the 

increase in performance. In his work (Thompson 2017) [131] shows that modern computer chips 

and Moore’s Law had a direct impact on productivity growth in the mid-2000s. Similar observation 

has been made by Thompson et al (2020) [132] in terms of computational power influence on 

progress in the areas of weather prediction, oil exploration and protein folding. In order to maintain 

the continuous growth in deep learning and related areas, the computational requirements for 

new architectures need to be met by the hardware. One of the promising domains for providing 

such computational capacity is quantum computing, however, it is still an open domain for 

extensive research [133]. The other one is a possible breakthrough in terms of NN resource 

consumption, hence experiments in this area are especially important. 
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The issue of a narrow approach to deep learning development is also investigated by 

Martínez-Plumed et al. (2018) [134] who states that many advancements are not coming from the 

architecture or software improvements but are a side effect of computational hardware 

advancements. The proposal is to look at the AI advancements in a multi-dimensional way instead 

of following a specific task performance. These would include such aspects as economic value, 

social value, scientific progress, computer efficiency, data efficiency, automation, reproducibility 

and generality. In essence, the idea revolves around comparing the resources spent on preparing 

a particular solution as engineering effort, data preparation, implementation and deployment to 

the profitability of the outcome. 

Although the focus is often put on computational power, the memory limitations are also 

an important subject. As stated by Gholami et al. (2021) [135] NLP models have been increasing 

in size by 240x every 2 years, however, DRAM memory growth is only 2x over the same period. 

Such a situation creates a bottleneck for rapidly growing NN architectures. Similarly, other 

researchers state that exponential growth of resource consumption cannot be maintained and 

needs to be substituted with architectural, hardware and methodical advancements. The solution 

for this problem, depicted as a “memory wall”, was also investigated by Jain et al. (2020) [136] 

with a novel approach to tensor re-materialization. 

Fortunately, examples of more resource focused NN architectures are also present in the 

deep learning domain. The proposals of MobileNet topologies for vision use cases proves that 

resource efficiency improvements can be executed also at the architectural level of the model 

[137]. The family of EfficientNet designs, the successor of MobileNet, is another example of such 

resource constrained approach to the NN design [138]. Both mentioned architectures proved their 

strength by winning ImageNet competition. 

The global discussion about computational demand raised questions regarding 

environmental and social impacts of power-hungry deep learning developments. The carbon 

emission of the largest models seems to be noticed by researchers and loudly stated as a possible 

issue [107]. Energy consumed by the public cloud providers, and computational requirements of 

recent NLP models tend to raise questions about the overall profitability of such designs in terms 

of required resources [139]. According to Strubell et al. (2019) [70] the NLP BERT model training 

on a GPU is comparable to a trans-America flight in the matter of carbon emission. Patterson et 

al. (2021) [140] calculated energy use and carbon footprint for several modern deep neural 

models. The authors admit that not only the training step is a problematic factor. In case of leading 

AI companies as NVIDIA, Amazon or Google the overall inference cost states for approximately 

90% of energy consumed. 

Another important aspect of deep learning growth focuses on the financial requirements 

for developing new models. Along with larger, more computationally complex topologies comes 

an increased cost of energy and hardware utilization required for model preparation. Table 2.4 

provides a few examples of training resource required per model based on estimations of 

Schwartz et al. (2019) [107]: 
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Table 2.4. Selected neural network models comparison in terms of training hardware, time and application 
type [107] 

Model Device Time Type 

BERT-large 64 TPUs 4 days NLP 

Grover 256 TPUs 14 days 
Fake news 
detection 

XLNet 512 TPUs 2.5 days NLP 

AlphaGo 
1920 CPUs and 

280 GPUs 
N/A Playing GO 

However, the advancements in the field are important, the question arises if results 

provided by some of the new, extremely large neural network models are justifiable. Often a small 

benchmark improvement in specific classification task is achieved only with disproportional 

scaling of the network’s architecture [86]. Huge investments required for creation of the state-of-

the-art models might have a negative impact on the deep learning field in general. The ability to 

work on such topologies is currently limited by access to resources and can be continued only by 

the largest companies with their own cloud infrastructure. Such a situation can limit the possibility 

of scientific discoveries by smaller, independent companies or the academic community [22]. 

Future development directions of ML should take into consideration both environmental and 

financial overhead. As discussed by Patterson et al. (2021) [140], there are several aspects such 

as increased deep neural network model sparsity, geographic location of ML workloads based on 

an available energy mix or even improved datacenters infrastructure that can benefit 

environmental footprint and reduce the overall cost of AI development.  
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3 NUMERICAL PRECISION LIMITATION IN NEURAL NETWORKS 

As already discussed, floating-point multiplications, dominant in the process of NN 

training, are one of the most power-expensive low-level, digital operations [70]. Limiting the length 

of variables by reducing their bit count is one of the most effective methods to reduce 

computational overhead and hardware area required for such calculations [114]. Although plenty 

of architectures already leverage this approach for inference step [9] [29] [109], NN training with 

limited precision is still an open subject for the research community [8] [141] [142]. 

Once the literature review for this specific domain is introduced, then the presented 

chapter focuses on the impact of floating-point precision limitation on a selected, common 

convolutional neural networks’ prediction quality. The experiments consisted of numerous NN 

trainings, where parameters such as weights, gradients, biases and activations were constrained 

in order to fit into low-bit representations. The limitation operation was based on 32-bit IEEE-754 

floating-point format and included all possible bit count variants, starting with as low as 1-bit 

exponent and 1-bit mantissa, up to the total 32-bit limit of the baseline variable. 

3.1 Related study 

Based on high adaptation of precision limitation for NN inference, various researchers 

pursued a similar path to optimize the computationally demanding training procedure. The scope 

of work conducted in this field can be grouped into two general categories of software and 

hardware designs. According to available literature, training optimization experiments are 

concentrated on leveraging low bit count for fixed- and floating-point variables. Along with further 

advancements, the focus has been shifted to mixed-precision NN implementations for both 

inference and training. Hardware-based inventions and architectural proposals aim to efficiently 

support the mentioned arithmetic allowing engineers to overcome limitations of general-purpose 

processors. The inventions in these fields create a promising view for further advancements and 

overcoming resource related constraints associated with NN training. 

3.1.1 Fixed- and floating-point limitations 

Software approach to NN training optimization focuses on modified representation or bit 

count changes of the network’s parameters. The approach adopted by Gupta et al. (2015) [5] 

examined training NN using fixed-point variables with the limited bit count. Their experiments 

show that 12- and 14-bit fixed-point variables are sufficient for NN training as long as stochastic 

rounding is applied. The results have been verified on MNIST [143] and CIFAR [144] datasets 

achieving almost no accuracy degradation in comparison to the 32-bit floating-point baseline. 

Additionally, their work introduced a proposal of a low-precision fixed-point arithmetic hardware 

accelerator with support of stochastic rounding. 

In a similar way to Gupta et al. (2015), Ortiz et al. (2018) [6] followed experimentation on 

12-bit fixed-point parameters. Their work showed that such a limited CNN cannot be trained 

without accuracy degradation on the CIFAR10 dataset. The results have been improved with 
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application of stochastic rounding during the training process. This operation allowed to train the 

mentioned CNN with approximately two percentage points of accuracy degradation. Finally, the 

authors proposed a context-based float variable format which allowed to improve the 32-bit 

floating-point baseline results by two percentage points. The limitation has been emulated in the 

software layer while using 32-bit floating-point variables. It is worth mentioning that in addition to 

precision limitation experiments, Ortiz et al. (2018) proposed a power of two network which uses 

only bit level operations for limiting memory usage and computational requirements. 

Park et al. (2018) [14] proposed a variation of stochastic gradient descent leveraging 

Kahan summation to overcome issues with updating low precision parameters. The lazy update 

method used in this solution allowed the authors to achieve 32-bit baseline accuracy with 8-bit 

signed integer variables. The results have been validated with multiple datasets as MNIST, CIFAR 

and SVHN [145]. 

The work of Fuketa et al. (2018) [146] focused on floating-point variables limitation. The 

proposed 9-bit floating-point type included a 5-bits exponent, 3-bits mantissa with the hidden most 

significant bit. The authors were able to achieve accuracy on par with 16-bit floating-point 

variables. The solution has been verified on two network topologies AlexNet and ResNet-50. The 

ImageNet ILSVRC2012 dataset has been used as input training data. Along with the results, the 

authors proposed a hardware design required for supporting the method and its size estimations. 

Park et al. (2021) [8] approach to limited precision training is based on a custom 8-bit 

floating-point type with a shared exponent bias (FP8-SEB). The underlying hardware proposal for 

this method introduces multiple-way fuse multiply-add (FMA) trees. The FP8-SEB leverages 

tensor with variables consisting of 1-bit sign, 4-bit exponent and 3-bit mantissa. Each tensor can 

use a different bias depending on required dynamic range. According to the authors, their 

hardware proposal requires 78.1 times less power than standard GPU and overhead related to 

additional biasing is negligible. The provided data shows that results for ResNet-18 on ImageNet 

achieve 69% accuracy. 

3.1.2 Mixed-precision approaches 

Various experiments showed that searching for one fit all approach is not always the best 

path for finding an optimal solution. The precision required from NN parameters is often 

dependable on their role in the network’s topology or phase of the training process. In the spirit of 

this principle, the technique proposed by Na and Mukhopadhyay (2016) [147] touches both the 

software and hardware side of the optimization problem by introducing Dynamic Precision Scaling 

(DPS). The proposed mechanism allows for dynamic adjustment of parameter precision based 

on its value. In order to address the need for multiplication of variables with flexible sizes, the 

authors introduced multiplayer-accumulator (MAC) design. According to the experiments’ results, 

this solution allowed to shorten the training time of LeNet and AlexNet networks by a few times. 

Another approach on mix-precision floating-point utilization for NN training has been 

presented by Taras and Stuart (2018) [7]. In a similar fashion to Na and Mukhopadhyay (2016), 
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their work focused on leveraging DPS technique. The NN has been trained on the MNIST dataset 

with parameters limited to 14-bits for weights and 16-bits for activations. The achieved accuracy 

was at the level of 98.8%. 

Lee (2020) [148] in his research towards energy-efficient neural network training 

proposed a fine-grained mixed precision (FGMP) method. In contrast to applying one type of 

variable to a specific parameter, the author dynamically adjusts the ratio of 8- and 16-bit floating-

point types during the training. The aim is to achieve the lowest possible power and memory 

requirements without decreasing the final accuracy of the NN. Along with the limitation method, a 

deep learning neural processing unit (LNPU) is proposed, which aims to double the energy 

efficiency of the training process. The results provided by the author stated that this method 

allowed to reduce external memory accesses during ResNet-18 training by 38.9%. While tested 

on CIFAR10 and ImageNet datasets, the accuracy of the ResNet-18 network was on par with 16-

bit floating-point baseline. 

The path of dynamic adjustment of floating-point variable bit count has been also followed 

by Rios et al. (2021) [149]. In this case, the technique combines regular 32-bit floating-point type 

with brain floating-point half-precision type. The author claims that 16-bit type stands for up to 

96.4% of all computations required during the training. The method achieved results close to 32-

bit floating-point baseline on AlexNet, Inception and ResNet-50 architectures. 

The Cycling Precision Training (CPT) developed by Fu et al. (2021) [141] relies on 

initializing the training process with low precision variables and incrementation of their bit count 

along further iterations. The main idea behind this method states that a parameter’s precision can 

be treated as a hyper-parameter in a similar way to the learning rate. Low bit count of initial training 

epochs aims to improve generalization abilities of the trained NN. The results have been verified 

on multiple topologies as Transformer, LSTM, ResNet and MobilNet. According to the authors, 

the achieved accuracies were on par with 32-bit floating-point baseline. 

Another idea of dynamic precision adjustments for internal NN parameters has been 

established by Yu et al. (2022) [142]. The proposed Learnable Dynamic Precision (LDP) 

framework uses additional parameters for selecting optimal precision for each network layer. 

According to conducted evaluation on multiple ResNet models, their results surpass both SBM 

[150] and CPT [142]  methods. 

Junaid et al. (2022) [151] proposes a combination of 32-, 24- and 16-bits floating-point 

parameters for mixed precision neural network training. The research includes an additional 

hardware accelerator engine, which allows for reduction of energy consumption by 3.91 in 

comparison to regular 32-bit floating-point architecture. The results have been verified on a CNN 

with MNIST dataset providing 93.32% accuracy in comparison to 96% 32-bit baseline. 

In their work (Micikevicius et al. 2022) [152] investigate two 8-bit floating-point variants 

with 4-bit exponent and 3-bit mantissa, and 5-bit exponent and 2-bit mantissa. Although the 5-bit 

exponent type follows IEEE-754 convention, the 4-bit exponent type is modified by removal of 
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infinite representations and one of the mantissa patterns for NaN. The authors provide the results 

on a wide scope of NN topologies where their method’s accuracy is on par with the 16-bit training 

baseline. Both presented 8-bit floating-point types are used depending on the chosen network 

topology, but the proposed direction is to use 5-bit exponent for gradients and 4-bit exponent for 

weights and activations. The 8-bit tensors were simulated by clipping the original 16-bit values to 

a target type, including an additional scaling factor and saturation, and then once again converted 

to a 16-bit floating-point type. According to the authors, the output tensors were represented in 

higher precision. 

Another research on 8-bit floating-point utilization for NN training has been presented by 

(Noune et al. 2022) [153]. They consider multiple alternative formats including those with 3-, 4- 

and 5-bit exponents. In addition to precision limitation, the bias offset is considered as a 

replacement for a fixed scaling factor. Moreover, only one representation is used for Inf and Nan 

special values. According to the results presented by the authors, their method achieves the level 

of 32-bit float-point baseline with a mix of 8-bit floating-point types with 4- and 5-bit exponents. It 

is important to remark that the input to the first layer of the network must remain unquantized in 

order to avoid the network’s accuracy decrease. 

3.1.3 Hardware proposals 

However, the software level definition of new variable formats and training procedures is 

crucial for NN training optimization, there is a necessity of an efficient hardware that supports the 

mentioned advancements. A good example of such a step is the Unified Neural Processing Unit 

(UNPU) designed by Lee et al. (2018) [15]. The accelerator enables flexible precision variable 

definition in the range from 1 to 16 bits. The support includes convolutional, fully connected, and 

recurrent layers covering a wide spectrum of modern NN architectures. The key features include 

an additional speed up due to reduction of off-chip memory accesses. According to the authors, 

this architecture allows for a 50% reduction of energy consumption and external memory 

accesses for specific NN definitions. 

Another proposal that can be placed on the edge of hardware improvements is a 

quantization-based method introduced by Onishi et al. (2020) [16]. The proposal assumes the 

utilization of lookup tables (LUT) for optimization of memory and power usage. According to the 

authors, LUT allows to limit memory usage by up to 22% for a forward pass and 60% for a 

backward pass while training LeNet-5. The validation has been conducted with MNIST dataset 

and achieved accuracy with degradation of 1.41 percentage points in comparison to the baseline. 

It is worth mentioning that the overall number of multiplications has been reduced by 11.7%. 

Kim et al. (2020) [17] introduced a precision-controlled memory system (PCM) which aims 

to reduce power requirements for NN trained with limited precision parameters. The authors state 

that, in comparison to regular GPU architectures, their method provides 34% lower energy 

consumption and 20% speedup. The solution has been evaluated on ResNet-20 with CIFAR100 

dataset. 
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3.1.4 Results comparison 

In order to present a comparison of methods reviewed in this literature study, an overview 

of key aspects of each proposal has been prepared in a form of Table 3.1. The summary includes 

training optimization details including variable types and applied techniques. Due to the variety of 

evaluation methods, implementation details and topologies used during investigated research, it 

is extremely difficult to fully compare performance of each method. Hence, the provided details 

include information about the baseline and post limitation accuracy to give the reader a better 

view on improvements reported by each author. The results are provided along with NN 

architectures and datasets used for accuracy validation. 

Table 3.1. Detailed summary of the related study with comparison to the proposed precision limitation 
method for neural network training [36] [154] 

Paper Variable type Technique Dataset Topology 
Baseline 

accuracy 

Accuracy after 
limitation 

Gupta et al. 
(2015) [5] 

12-bit fixed-point 

 

14-bit fixed-point 

Stochastic 
rounding 

MNIST 

 

Custom 
LeNet 

99.23% 

99.17% 

(14-bit fixed-point) 

 
99.11% 

(12-bit fixed-point) 

 

CIFAR10 

 
3-layer CNN 

75.4% 

74.6% 

(14-bit fixed-point) 

 
71.2% 

(12-bit fixed-point) 

Na and 
Mukhopadhyay 

(2016) [147] 

16-bit fixed-point 

 

32-bit fixed-point 

Dynamic 
Precision 

Scaling (DPS) 

 

Flexible 
multiplier-

accumulator 
(MAC) 

MNIST 

 
LeNet 

Not given (only 
loss charts 
presented) 

32-bit fixed-point 
accuracy achieved on 
16-bit fixed point with 

DPS 

 
Flickr 

images 

AlexNet 
(pre-trained) 

64-bit fixed-point 
accuracy achieved on 
32-bit fixed point with 

DPS  

Ortiz et al. 
(2018) [6] 

12-bit floating-point 

 
12-bit fixed-point 

Stochastic 
rounding 

 

Context 
representation 

CIFAR10 
3-layer CNN 

 
75,6% 

63.03% 

(12-bit fixed-point) 

 

74.20% 

(12-bit floating-point) 

 
78.02% 

(12-bit context-float) 

 
76.32% 

(12-bit context-fixed) 

Taras and 
Stuart (2018) 

[7] 

14-bit fixed-point 
(weights) 

 
16-bit fixed-point 

(activations) 

Stochastic 
rounding 

 

Dynamic 
Precision 

Scaling (DPS) 

MNIST LeNet 98.80% 98.80% 
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Paper Variable type Technique Dataset Topology 
Baseline 

accuracy 

Accuracy after 
limitation 

Park et al. 
(2018) [14] 

Combination of 8-
bit and 16-bit 

integers 

Stochastic 
gradient 

descent with 
Kahan 

summation 

 

Lazy update 

MNIST 
LeNet-like 

CNN 
99.10% 99.24% 

SVHN 4-layer CNN 97.06% 96.99% 

CIFAR10 

3-layer CNN 81.56% 81.17% 

ResNet-20 90.16% 90.23% 

ImageNet AlexNet 80.81% 80.62% 

Fuketa et al. 
(2018) [146] 

9-bit floating point 
format with hidden 
most significant bit 

and sign bit 

Custom float 
representation 

 

Custom MAC 
unit 

ILSVRC 

AlexNet 48.27% 46.18% 

ResNet-50 68.84% 67.55% 

Lee et al. 
(2018) [15] 

Fully variable 
weight bit-precision 

from 1b to 16b 

Original 
hardware 

accelerator for 
CNN-RNN 
networks 

Not 
applicable 

AlexNet 
VGG-16 

Not applicable 
Operation based 
power savings 

presented 

Onishi et al. 
(2020) [16] 

No strict 
parameters 
limitation, 

factorization based 
on LUT is used for 

limiting memory 
consumption and 

multi-adds 
operations. 

Lookup-Table 
(LUT) based 
quantization 

 

Cluster swap 

MNIST LeNet 99.28% 

97.87% 
 

Memory consumption 
reduced: 
-22.2% 

(forward pass) 
 

-60% 

(backward pass) 

Lee (2020) 
[148] 

Mix of: 

16-bit floating-point 

 

8-bit floating-point 

Fine-Grained 
Mixed 

Precision 

CIFAR10 

ResNet-18 

72.48% 

(16-bit floating-
point) 

72.45% 

(up to 94% of 8-bit 
floating-point) 

ImageNet 

68.25% 

(16-bit floating-
point) 

99.11% 

(up to 90% of 8-bit 
floating-point) 

Kim et al. 
(2020) [17] 

Subset of 
results 

presented 

Mix of: 

7-bit floating-point 

 

9-bit floating-point 

Precision-
controlled 
memory 

system (PCM) 

CIFAR10 ResNet-200 

69% 

(16-bit floating-
point) 

~69% 

(9-bit floating-point) 

Rios et al. 
(2021) [149]  

 

Mix of: 

32-bit floating-point 

 

16-bit Brain 
floating-point 

Mixed 
precision 
training 

ImageNet 

AlexNet 

60.79% 

(32-bit floating-
point) 

60.32% 

(BF16FMA 94.60%) 

Inception 

74.01% 

(32-bit floating-
point) 

72.80% 

(BF16FMA 95.55%) 

ResNet-50 

75.69% 

(32-bit floating-
point) 

92.70% 

(BF16FMA 96.40%) 
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Paper Variable type Technique Dataset Topology 
Baseline 

accuracy 

Accuracy after 
limitation 

Fu et al. (2021) 
[141] 

Subset of 
results 

presented 

Dynamic range: 

From 2-bit floating-
point to 32-bit 
floating-point 

 

Cycling 
Precision 
Training 
(CPT) 

 

Last two 
stages trained 

with full 
precision 

CIFAR10 

ResNet-74 
91.15% 

(SBM 6 bit) 

92.4% 

(CPT 3-t o 6-bit, grad 
6 bit) 

MobileNetV2 
91.56% 

(SBM 6 bit) 

91.81% 

(CPT 4- to 6-bit, grad 
6 bit) 

CIFAR100 

ResNet-74 
70.31% 

(SBM 6 bit) 

70.83% 

(CPT 3- to 6-bit, grad 
6 bit) 

MobileNetV2 
72.31% 

(SBM 6 bit) 

73.18% 

(CPT 4– to 6-bit, grad 
6 bit) 

ImageNet ResNet-18 

69.76% 

(32-bit floating-
point) 

70.67% 

(CPT: 8- to 32- bit) 

Park et al. 
(2021) [8]  

8-bit floating-point 

Floating point 
with shared 

exponent bias 

 

multiple-way 
fuse multiply-

add trees 

ImageNet ResNet-18 Not defined 

69% 

(8-bit floating-point + 
SEB) 

Junaid et al. 
(2022) [151]  

Mix of: 

32-bit floating-point 

 

24-bit floating-point 

 

16-bit floating-point 

Mixed 
precision 
training 

MNIST 
Custom 

CNN 

96% 

(32-bit floating-
point) 

93.32% 

Yu et al. (2022) 
[142] 

Subset of 
results 

presented 

Dynamic range: 

From 3-bit floating-
point to 16-bit 
floating-point 

Learnable 
Dynamic 
Precision 

(LDP) 

CIFAR10 

ResNet-18 

91.86% 

(SBM 8 bit) 

92.08% 

(LDP 3- to 8- bit, grad 
8 bit) 

CIFAR100 
67.24% 

(SBM 8 bit) 

67.88% 

(LDP 3- to 8- bit, grad 
8 bit) 

ImageNet 
69.60% 

(SBM 8 bit) 

69.62% 

(LDP 4- to 8- bit, grad 
8 bit) 
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Paper Variable type Technique Dataset Topology 
Baseline 

accuracy 

Accuracy after 
limitation 

Micikevicius et 
al. (2022) [152] 

Subset of image 
classification 

results 
presented 

8-bit FP 

(4-bit exponent and 
3-bit mantissa for 

weights and 
activations 

5-bit exponent and 
2-bit mantissa for 

gradients) 

Scaling factor ImageNet 

VGG-16 

71.27% 

(16-bit floating-
point) 

71.11% 

Inception v3 

77.23% 

(16-bit floating-
point) 

77.06% 

ResNet-18 

70.58% 

(16-bit floating-
point) 

70.12% 

ResNeXt50 

77.68% 

(16-bit floating-
point) 

77.62% 

MobileNet 
v2 

71.65% 

(16-bit floating-
point) 

71.04% 

Noune et al. 
(2022) [153] 

Subset of image 
classification 

results 
presented 

8-bit FP 

(4-bit exponent and 
3-bit mantissa for 

weights and 
activations 

5-bit exponent and 
2-bit mantissa for 

gradients) 

 

32-bit FP input to 
the first layer of the 

network 

Bias offset 
(per 

parameter 
type) 

CIFAR100 ResNet-32 70.26% 

70.42% 

(32-bit floating-point 
used for first layer 

activations and 
activations gradients) 

ImageNet 

ResNet-18 70.35% 

70.29% 

(32-bit floating-point 
used for first layer 

activations and 
activations gradients) 

ResNet-50 76.61% 

76.57% 

(32-bit floating-point 

used for first layer 
activations and 

activations gradients) 

EfficientNet-
B4 

82.42% 

82.34% 

(16-bit floating-point 
used for first layer 

activations and 
activations gradients) 

Pietrołaj and 
Blok (2022) [36] 

8-bit floating-point 

 

12-bit floating-point 

 
14-bit floating-point 

Asymmetric 
exponent 

 

No additional 
rounding 

MNIST LeNet 96.04% 

75.89% 

(8-bit floating-point) 

 

95.01% 

(12-bit floating-point) 

 
97.13% 

(14-bit floating-point) 
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Paper Variable type Technique Dataset Topology 
Baseline 

accuracy 

Accuracy after 
limitation 

Pietrołaj and 
Blok (2024) 

[154] 

 

 

8-bit floating-point 

(4-bit exponent and 
3-bit mantissa) 

Asymmetric 
exponent 

 

Exponent 
offset 

 

Stochastic 
rounding 

MNIST LeNet 

96.18% (10 
epochs) 

98.35% (30 
epochs) 

95.98% (10 epochs) 

98.38% (30 epochs) 

CIFAR10 

AlexNet 

74.39% (10 
epochs) 

79.53% (30 
epochs) 

74.5% (10 epochs) 

80.06% (30 epochs) 

ResNet-18 

77.08% (10 
epochs) 

83.41% (30 
epochs) 

94.99% (200 
epochs) 

76.01% (10 epochs) 

82.22% (30 epochs) 

94.58% (200 epochs) 

CIFAR100 

AlexNet 

38.93% (10 
epochs) 

51.82% (30 
epochs) 

38.69% (10 epochs) 

51.91% (30 epochs) 

ResNet-18 

39.54% (10 
epochs) 

51.69% (10 
epochs) 

75.08% (200 
epochs) 

40.21% (10 epochs) 

55.16% (30 epochs) 

74.25% (200 epochs) 

An additional conclusion that can be drawn from the above summary is that mixed-

precision proposals combining multiple bit count varying variables are especially popular in recent 

years [148] [149] [141] [142] [151] [17]. The software advancements are also backed up by 

innovation from the hardware side. Although such solutions provide satisfactory results, the 

possible disadvantages may be caused by the overhead required for mixing multiple variable 

types [15] [155]. The proposal presented in this dissertation, although the bit count of NN 

parameters is constant, allows for mixed cross tensor, layer or epoch precision approach. The 

mechanism used here is in the common domain with the FP8-SEB technique [8] or offset bias 

[153] and leverages floating-point format manipulation, especially offset of exponent values. 

3.2 Limitation framework 

In order to conduct limitation experiments, a custom software framework had to be 

created to support all required use cases. The implementation leveraged Python [156] 

programming language and PyTorch [84] machine learning framework as a foundation for the 

development of further features. The method used generally available CPU and GPU hardware 

with 32-bit floating-point parameters as base variables. The limitation mechanism has been 

implemented in a software layer in a similar manner to Ortiz et al. (2018) [6] and Micikevicius et 

al. (2022) [152]. At each step of NN execution, layer by layer, all parameters such as weights, 

biases, activations, and gradients were limited to the target bit count. Then, such a limited 

numerical value has been temporarily stored in a regular 32-bit floating-point variable supported 
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by the hardware. Fig. 3.1 depicts an overview of the training environment provided by the 

designed framework. 

 

Fig. 3.1. An overview of the neural network training environment for floating-point limitation 

The floating-point limitation method used in the following experiments assumed a custom 

technique of fitting a variable into targeted, constrained bit count. During each limitation step, the 

input 32-bit variable is split into sign, exponent and mantissa parts. Then the algorithm shortens 

the mantissa based on the selected bit-width target. This is done by the selection of the most 

significant mantissa’s bits. Due to the specification of the IEEE-754 floating-point format, the 

exponent must first undergo a procedure of bias removal. Then based on the bit count target, 

maximum and minimum boundaries for exponent values are calculated. If an exponent cannot be 

contained in the selected range, its value is assigned respectively to the nearest maximum or 

minimum representation. It is important to note that once the exponent’s limitation is completed, 

the new bias value, adjusted to targeted bit count, is applied to the final exponent. Then, if 

required, the mantissa’s value is adjusted to reduce the potential rounding error resulting from 

operations conducted on the exponent. Once the described steps are finalized, the result of 

combined exponent and mantissa is translated to a 32-bit floating-point format. Fig. 3.2 presents 

a simplified pseudo code of the outlined limitation algorithm. To maintain clarity, the code snippet 

omits some of the details used in the original algorithm’s implementation such as input 

parameters, definition of constant and temporary variables, bit shift operations, tensor operations 

and exponent bias handling. 
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procedure limit_variable(x) 

 sign = extract_sign(x) 

mantissa = extract_mantissa(x) 

 exponent = extract_exponent(x) 

  

 limited_mantissa = 

             cut_least_significant_bits(target_mantissa_bitcount) 

 limited_exponent_max = 

             get_max_limited_exponent_value(target_exponent_bitcount) 

 limited_exponent_min = 

             get_min_limited_exponent_value(target_exponent_bitcount) 

 

 if exponent > limited_exponent_max: 

  exponent = limited_exponent_max 

 else if exponent < limited_exponent_min: 

  exponent = limited_exponent_min 

 

limited_mantissa = 

adjust_mantissa_value(exponent, limited_mantissa) 

 

 limited_variable = sign | exponent | limited_mantissa 

 

      return limited_variable 

Fig. 3.2. A simplified pseudocode depicting the algorithm used for the limitation of parameters used in the 
neural network training 

Fig. 3.3 gives an example of applying the algorithm to a 32-bit floating-point variable. The 

targeted format consists of 4-bit exponent and 3-bit mantissa. Please note that in case of the 

framework implementation, all limitation operations are done on the tensor level instead of a single 

variable to improve operations efficiency. 

 

Fig. 3.3. Representation of a 32-bit floating-point value with an 8-bit floating-point format 
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Due to the much larger range of the original exponent representation, it is often required 

to truncate its value due to targeted bit count limitation. Fig. 3.4 gives an example of such a case. 

It is important to remark that the sign of a limited floating-point number does not impact the method 

in any form. 

 

Fig. 3.4. Representation of a 32-bit floating-point value with an 8-bit floating-point format with exponent 
truncation. 

3.3 Limitation results 

Limitation experiments have been conducted on three CNN architectures LeNet, AlexNet 

and ResNet-18. The selection has been dictated by the popularity of these network designs in the 

research community and relative easiness of experiments reproducibility by other peers. In 

addition, the previously presented related study (Table 3.1) shows that similar NNs have been 

used in several papers related to training with precision limitation. Hence, there is more data 

available for results comparison. 

The limitation conditions were applied in the same form to all tested NN topologies. Each 

model has been trained multiple times in the range from 3 to 32 bits over 10 epochs. It includes 

all possible exponent and mantissa configurations available in IEEE-754 32-bit floating-point 

representation boundaries. Training environment’s configuration remained unchanged for each 

of the topologies across varying bit count trainings. Comparison of results was done based on the 

test set part of each of the used datasets. Table 3.2 presents targeted baseline IEEE-754 32-bit 

accuracies achieved for the selected neural network topologies in the developed experimentation 

environment after 10 training epochs. 
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Table 3.2 Baseline IEEE-754 32-bit accuracies per neural network after 10 training epochs 

Neural network topology Dataset Test accuracy 

LeNet MNIST 96.18% 

AlexNet 

CIFAR10 74.39% 

CIFAR100 38.93% 

ResNet-18 

CIFAR10 77.08% 

CIFAR100 39.54% 

3.3.1 LeNet 

Although the current trend in the domain of NN architecture focuses on growing topologies 

with millions of parameters, there are multiple low-level hardware use cases where smaller 

topologies are still required, especially in case of embedded or edge devices [157]. LeNet-5 is 

commonly treated as an introductory CNN used as a benchmark for various optimization 

experiments [5] [147] [7] [14] [16]. The conducted training with limited precision combined LeNet 

with MNIST dataset [143] as an input. MNIST is a dataset of hand-written digits often used for 

CNN verification tasks. It consists of 60000 training and 10000 test examples. Implementation 

details of LeNet architecture utilized in the experiment are summed up in Table 3.3. Additionally, 

Table 3.4 presents hyper-parameters set for the training phase. 

Table 3.3. Summary of the LeNet-5 architecture used in the experiment [55] [158] 

Layer 
Feature 

Map 
Size 

Kernel 
size 

Stride Padding Activation 

Input Image 1 28x28 - - - - 

1 
1st 

Convolution 
6 28x28 5x5 1 2 tanh 

2 
Average 
Pooling 

- 14x14 2x2 - - - 

3 
2nd 

Convolution 
16 10x10 5x5 1 - tanh 

4 
Average 
Pooling 

- 5x5 2x2 - - - 

5 
3rd 

Convolution 
120 1x1 5x5 1 - tanh 

6 
1st Fully 

Connected 
- 84 - - - tanh 

Output 
2nd Fully 

Connected 
- 10 - - - softmax 
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Table 3.4. Hyperparameters used during LeNet-5 training 

Hyperparameter Value 

Optimizer 
Stochastic Gradient 

Descent 

Learning rate 0.01 

Batch size 64 

Loss function Cross entropy 

Fig. 3.5 presents LeNet-5 training results with the use of the described limitation 

algorithm. The evaluation has been conducted across exponent bit counts ranging from 1 to 8 

and mantissa bit count from 1 to 23. It is worth highlighting that with 32-bit floating-point 

parameters this network achieves accuracy of 96.18% over 10 epochs in the presented training 

environment. 

 

Fig. 3.5. LeNet-5 accuracy across various limited bit count configurations 

The expected effect can be observed, the reduced number of bits dedicated to exponent 

and mantissa has a negative impact on the network training and decreases the overall 

classification accuracy. As already discussed, a lower number of bits narrows the dynamic range 

that can be represented by a particular variable format [77] [95]. It is also vivid that 1-bit exponent 

is insufficient for training this particular NN, giving around 10% accuracy over all possible 

mantissa sizes. The results on 2-bit exponent are much better, however, as presented in previous 

research [154], the accuracy achieved with such low exponent bit counts is often unstable and 

can vary between following training executions. Exponents with 3 or higher bit counts provide 

much better output along with the increasing mantissa bit width. The observed results vary in the 

range from 90% to 98%. Surprisingly, the best result of 98.11% has been achieved for 4-bit 

exponent, exceeding 32-bit floating-point baseline (Table 3.2). Such observations for low bit count 
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variables have been also confirmed by other researchers [141]. The common explanation of this 

phenomenon is that limiting the number of available bits in a variable, same as learning rate 

manipulation, can be treated as a form of an additional NN regularization which helps with 

knowledge generalization based on previously learned data samples [142]. 

The important conclusion that can be drawn from this experiment is inability to train LeNet-

5 based on 8-bit floating-point parameters to match 32-bit accuracy. The lowest combined bit 

count of sign, exponent and mantissa which allowed for achieving matching accuracy of 96.32% 

was 16 bits. Such a format combines 1 bit to sign, 4 bits to exponent and 11 bits to mantissa. 

Training neural networks on 16-bits variables is a common technique for reducing complexity of 

a NN topology both in computation and memory domains. Such an option is available in most of 

the popular machine learning frameworks as Pytorch or Tensorflow [26]. Although in this case the 

author showed that 4-bit exponent with 11-bit mantissa gives the best results, the more common, 

generally available type used by other frameworks leverages the IEEE-754 16-bit floating-point 

with 5-bit exponent and 10-bit mantissa. In case of this experiment, such a type achieved 

significantly lower accuracy of 89.09% over 10 epochs. 

3.3.2 AlexNet 

The analogous experiment has been conducted on another popular CNN topology, 

AlexNet. It is commonly treated as a pivot point in terms of development of deep learning 

architectures, especially in terms of image recognition. The training leveraged two benchmark 

image datasets focusing on small image classification, CIFAR10 and CIFAR100 [144]. Both 

datasets contain 50000 training and 10000 test 32x32 images divided into 10 and 100 classes 

accordingly. In modern machine learning tasks AlexNet is often treated as a comparison point or 

benchmark for various researchers [14] [146] [15] [149] [147]. Hence, it was selected for 

investigation in this dissertation. Table 3.5 gives an overview of convolutional network architecture 

used for the training. Table 3.6 summarizes its main hyper-parameters. 
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Table 3.5. Summary of the AlexNet architecture used in the experiment [48] 

Layer 
Feature 

map 
Size 

Kernel 
size 

Stride Padding Activation 

Input Image 3 32x32 - - - - 

1 
1st 

Convolution 
64 34x34 3x3 1 2 ReLU 

2 1st Max Pool 64 17x17 2x2 - - - 

3 
2nd 

Convolution 
192 19x19 3x3 - 2 ReLU 

4 
2nd Max 

Pool 
192 9x9 2x2 - - - 

5 
3rd 

Convolution 
384 9x9 3x3 - 1 ReLU 

6 
4th 

Convolution 
256 9x9 3x3 - 1 ReLU 

7 
5th 

Convolution 
256 9x9 3x3 - 1 ReLU 

8 
3rd Max 

Pool 
256 4x4 3x3 2 - - 

9 
1st Dropout 

(rate = 0.6) 
- 4096 - - - - 

10 
1st Fully 

Connected 
- 2048 - - - ReLU 

11 
2nd Dropout 

(rate = 0.6) 
- 2048 - - - - 

12 
2nd Fully 

Connected 
- 2046 - - - ReLU 

13 
3rd Fully 

Connected 
- 10/100 - - - softmax 
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Table 3.6. Hyperparameters used during AlexNet training 

Hyperparameter Value 

Optimizer Adam 

Learning rate 0.0001 

Batch size 128 

Loss function Cross entropy 

Similarly, to LeNet-5, AlexNet has been trained on various bit count configurations over 

10 epochs. Baseline 32-bit floating-point accuracy of this network is equal to 74.39% on CIFAR10 

and 38.39% on CIFAR100 (Table 3.2). Fig. 3.6 and Fig. 3.7 depict the results of the experiments 

for both datasets. 

 

Fig. 3.6. AlexNet accuracy across various limited bit count configurations on CIFAR10 dataset 

As depicted by Fig. 3.6, 4- and lower-bit exponents are insufficient for AlexNet training on 

CIFAR10 dataset without significant decrease in the model’s accuracy. Even 16-bit floating-point 

composed of 5-bit exponent and 10-bit mantissa achieves only 67.83% of accuracy which is over 

6 percentage points worse than the baseline (Table 3.2). First comparable results can be 

observed for combined bit count of 18 bits with 5-bit exponent and 12-bit mantissa giving 75.02% 

which slightly surpasses the previously calculated 32-bit baseline result (Table 3.2). 
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Fig. 3.7. AlexNet accuracy across various limited bit count configurations on CIFAR100 dataset 

A similar case can be observed with AlexNet results on CIFAR100 dataset (Fig. 3.7). 

Again, 4- and lower-bit exponents do not provide sufficient range for the training process of this 

topology. The minimum bit width of the required exponent is 5 bits which gives a comparable 

accuracy of 37.23% for 18 bits of mantissa. 

3.3.3 ResNet 

In order to check limitation impact on more modern NN architecture, the last topology 

selected for the experiment was ResNet. It was a winner of ImageNet Competition in 2015 and 

has been established as the most cited neural network in the 21st century [159]. There are multiple 

popular versions of ResNet implementation available based on the number of the network’s 

layers, regularly used by researchers as a benchmark architecture [14] [146] [148] [17] [149] [141] 

[8] [127]. In the case of this dissertation, the version with 18 layers has been used, also known as 

ResNet-18. Table 3.7 and Table 3.8 summarize the architecture of ResNet-18 used in this 

experiment along with ResNet Building Block details. Table 3.9 provides main hyper-parameters 

used during the training process. 
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Table 3.7. Summary of the ResNet-18 architecture used in the experiment 

Layer 
Feature 

map 
Size 

Kernel 
size 

Stride Padding Activation 

Input Image 3 32x32 - - - - 

1 
1st 

Convolutional 
Layer 

64 32x32 3x3 - 1 - 

2 
Bach 

Normalization 
64 32x32 - - - ReLU 

3 
[2nd 

Convolution 
(Block)] x 2 

64 32x32 3x3 1 1 ReLU 

4 
[3rd 

Convolution 
(Block)] x 2 

128 16x16 3x3 2 1 ReLU 

5 
[4th 

Convolution 
(Block)] x 2 

256 8x8 3x3 2 1 ReLU 

6 
[5th 

Convolution 
(Block)] x 2 

512 4x4 3x3 2 1 ReLU 

7 
Average 
Pooling 

512 1x1 - - - - 

8 
1st Fully 

Connected 
- 10/100 - - - softmax 
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Table 3.8. Summary of the ResNet-18 Convolutional Basic Block architecture used in the experiment. The 
values examples based on the first block of the network 

Convolution Block Layer 
Feature 

map 
Size 

Kernel 
size 

Stride Padding Activation 

Input 
1st 

Convolution 
output 

64 32x32 - - - - 

1 
1st 

Convolution 
layer 

64 32x32 3x3 1 1 - 

2 
1st Batch 

Normalization 
64 32x32 - - - ReLU 

3 
2nd 

Convolution 
layer 

64 32x32 3x3 1 1 - 

4 
2nd Batch 

Normalization 
64 32x32 - - - ReLU 

5 
(Optional) 

3rd 
Convolutional 

layer 
(shortcut) 

64 32x32 1x1 1 1 - 

6 
(Optional) 

3rd Batch 
Normalization 

(shortcut) 
64 32x32 1x1 1 1  

Output 
4th layer 

output + 6th 
Layer output 

64 32x32 - - - ReLU 
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Table 3.9. Hyperparameters used during ResNet-18 training 

Hyperparameter Value 

Optimizer Stochastic Gradient Descent 

Learning rate 0.1 

Momentum 0.9 

Weight decay 5e-4 

Learning rate 
scheduler milestones 

60, 120, 160 

Learning rate 
scheduler gamma 

0.2 

Batch size 128 

Loss function Cross entropy 

As in the previous trainings, ResNet-18 has been iterated over 10 epochs. The datasets 

are the same as in the case of AlexNet and include CIFAR10 and CIFAR100. The baseline 10 

epoch, 32-bit floating-point accuracies achieved for this network are equal to 77.08% for CIFAR10 

and 39.54% for CIFAR100 (Table 3.2). Fig. 3.8 and Fig. 3.10 present the results of the 

experiments. 

 

Fig. 3.8. ResNet-18 accuracy across various limited bit count configurations on CIFAR10 dataset 

Based on the results presented in Fig. 3.8, it can be noticed that 4-bit or lower exponent 

bit counts are insufficient for training ResNet-18 on CIFAR10 dataset. For most of the mantissa 

bit count values verified in this scenario, the accuracy line remains almost flat around 10%. The 
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improvement can be observed for higher exponent bit counts, however, the results appear to be 

highly volatile even with increasing mantissa. This behavior may be caused by the fact that only 

the tenth epoch’s result is presented on the chart in each case. In contrast to LeNet and AlexNet, 

ResNet-18 may usually require more epochs to achieve its results convergence [160]. In order to 

limit this side effect for presentation purposes, Fig. 3.9 shows results for the best of 10 epochs in 

the exact same training process for each bit count variant. 

 

Fig. 3.9. ResNet-18 accuracy across various limited bit count configurations on CIFAR10 dataset – the 
best validation epoch results selected 

It can be observed that accuracy achieved by the tested network grows with exponent 

and mantissa bit counts. First results that can be compared to the 32-bit baseline are achieved 

for 16-bit floating point consisting of 5-bit exponent and 10-bit mantissa giving 77.45% accuracy. 

This result is consistent with observation of other researchers and ML framework developers 

which frequently use this data type for more efficient NN training [161]. Results with higher bit 

counts tend to maintain similar network’s accuracy with the deviation of a few percentage points. 

These differences can be further reduced with a higher number of training epochs. 

The analogous case appears in the ResNet-18 training on CIFAR100 dataset which is 

presented in Fig. 3.10. Once again exponent bit counts below 5-bits do not provide enough range 

for achieving accuracy close to the 32-bit baseline (Table 3.2). The volatility of the last epochs 

results makes it difficult to observe the accuracy growth. Fig. 3.11 corrects this inconvenience 

and focuses on best epochs results only. 
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Fig. 3.10. ResNet-18 accuracy across various limited bit count configurations on CIFAR100 dataset 

CIFAR100 states a more difficult training scenario for ResNet-18. The previously 

sufficient 16-bit floating-point does not maintain the baseline accuracy (Table 3.2) for this dataset 

achieving 36.15% of accuracy. Interestingly, higher bit counts tend to exceed the 32-bit baseline 

with over 5 percentage points. An example of such a scenario is a 30-bit floating point with 6-bit 

exponent and 23-bit mantissa. This behavior can be explained by a form of regularization that can 

be introduced due to limited precision variables [142]. 

 

Fig. 3.11. ResNet-18 accuracy across various limited bit count configurations on CIFAR100 dataset – the 
best validation epoch results selected 
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It is important to remark that all tested scenarios showed that 8-bit floating point variables 

are not sufficient for training the presented NNs. Hence, a simple floating-point limitation cannot 

be used for such a purpose. Accurate and efficient NN training with low precision variables 

requires a more sophisticated approach presented in the later chapters of this dissertation. 

3.4 Exponent utilization 

Neural network’s ability to conduct a proper prediction is a major factor that dictates its 

usability. However, besides focusing solely on accuracy, an interesting observation can be made 

regarding bit count utilization. The described experiment, and various previous research [141] 

[142] [8], showed that the full variable precision is not mandatory for NN convergence during the 

training process. Hence, in a similar fashion to quantized inference [103] [104], it is important to 

examine possible format and bit width optimizations when it comes to the NN learning process. 

 An important factor of this research was the investigation of a bit count usage of 32-bit 

floating-point variables during training of the selected NN architectures. The conducted analysis 

showed that the majority of tested IEEE-754-based network parameters use negative exponent 

values to store their numeric representation. This observation poses a question if exponent bits 

in a regular 32-bit floating-point representation are optimally utilized during trainings of the 

investigated NN topologies. As mentioned previously, the IEEE-754 exponent bias, with a value 

of 127, splits its values range into negative and positive halves. Considering that most of the 

positive portion is not utilized during a specific neural network architecture training, translates to 

omitting a subset of the bits assigned to a 32-bit floating-point representation and therefore 

partially wasting resources. 

The analysis focused on the IEEE-745 32-bit floating-point based trainings of previously 

presented networks, LeNet-5, AlexNet and ResNet-18. Each architecture has been trained over 

10 epochs with continuous logging of their most important parameters. The scope included a 

focus on the exponent values utilization for weights, gradients, biases and activations of each 

network layer. 

Fig. 3.12 gives a detailed summary of exponent values utilization for the main groups of 

parameters used during neural network training including weights, gradients, activations and 

biases. It can be observed that only a portion of the 8-bits exponent is utilized during the training. 

Including special values, regular exponent provides 255 numeric representations in the range 

from -126 to 127. The combined exponents of weights, gradients and activations in the presented 

training can be situated in the narrow range from -17 to 1. This means that only around 8% of all 

possible exponent representations have been used during the LeNet-5 training phase over 10 

epochs with regular IEEE-754 32-bit floating point variables. 
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a) weights 

 

b) biases 

 

c) activations 

 

d) gradients 

 

Fig. 3.12. LeNet-5 exponent utilization (normalized over layer) during training on MNIST dataset. The 
darker the color the higher the utilization. Layers: conv – convolution, fc – fully connected 

It should be noticed that the utilized range of exponent values varies by a parameter type. 

The smallest one is represented by weights and biases which can be fitted between -9 and -2. 

The situation is different for activations, which with the range of -9 to 1 tend to also use positive 

values of the exponent. In the case of gradients, another behavior can be remarked in the form 

of utilizing much lower values of the exponent ranging from -17 to -5. This observation is expected 

as researchers have already stated that both gradients and activations may be problematic when 

it comes to NN training with limited precision, hence, various methods tend to leverage a higher 

bit count variables or their mix especially for those two types of parameters [7] [117]  in 

comparison to weights and biases where much lower bit count is often sufficient [157]. 

Similar analysis has been carried out for AlexNet. Fig. 3.13 presents results of exponent 

values utilization for this network architecture trained with full precision variables on CIFAR10 

dataset over 10 epochs. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

75 
 

a) weights 

 

b) biases 

 

c) activations 

 

d) gradients 

 

Fig. 3.13. AlexNet exponent utilization (normalized over layer) during training on CIFAR10 dataset. The 
darker the color the higher the utilization. Layers: conv – convolution, fc – fully connected 

Although, in the case of AlexNet the utilization of exponent values is bigger than with 

LeNet-5, it still uses around 10% of the available 8-bit range. The numeric values used during the 

training can be contained between -22 and 3. The most common exponent values in this range 

could be narrowed to a scope between -17 and 2 which makes it close to the observations of 

LeNet-5. It is important to remark that a similar characteristic can be observed in the case of 

AlexNet regarding weights and biases. The effective exponent range needed to represent these 

parameters can be limited to values between -10 and -3. The move in the direction of positive 

exponent values can be observed for activations in the range from -8 to 3. The wide area is utilized 

by gradients which require exponent values from -22 to -4. Same as with LeNet both activations 

and gradients tend to require higher precision for a NN training step. 

Another test related to AlexNet has been conducted with the CIFAR100 dataset. The 

gathered results are analogous to those achieved with CFIAR10. Fig. 3.14 presents exponent 

utilization observed during this training. 

The same procedure has been repeated for the ResNet-18 NN. Fig. 3.15 presents results 

for a full precision training on CIFAR10 over 10 epochs. In order to improve readability of the 

ResNet-18 related diagrams some of the layers and basic blocks details have been incorporated 

into groups combining one or multiple basic blocks of the architecture. This is especially visible in 

case of charts displaying the network’s activations. 

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

76 
 

a) weights 

 

b) biases 

 

c) activations 

 

d) gradients 

 

Fig. 3.14. AlexNet exponent utilization (normalized over layer) during training on CIFAR100 dataset. The 
darker the color the higher the utilization. Layers: conv – convolution, fc – fully connected 

a) weights 

 

b) biases 

 

c) activations 

 

d) gradients 

 

Fig. 3.15. ResNet-18 exponent utilization (normalized over layer) during training on CIFAR10 dataset. The 
darker the color the higher the utilization. Activations were grouped for clarity of the diagram. Layers: conv 

(x) – convolution (basic block), fc – fully connected, b_layer – combined layers into basic blocks 
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Despite differences in NN architecture, it can be noticed that the utilization of exponent 

values in ResNet-18 is similar to that in AlexNet and is equal to around 10%. The required range 

can be estimated to values between -20 and 3. As expected, gradients and activations seem to 

be the most precision-wise demanding parameters. In contrast to the previously tested networks, 

this architecture implementation does not include biases for convolutional layers which can be 

observed in Fig. 3.15 b) and Fig. 3.16 b). 

The application of CIFAR100 does not impact ResNet-18 exponent utilization in a major 

way. Nevertheless, the results of such analysis are presented in Fig. 3.16. 

a) weights 

 

b) biases 

 

c) activations 

 

d) gradients 

 

Fig. 3.16. ResNet-18 exponent utilization (normalized over layer) during training on CIFAR100 dataset. 
The darker the color the higher the utilization. Activations were grouped for clarity of the diagram. Layers: 

conv (x) – convolution (basic block), fc – fully connected, b_layer – combined layers into basic blocks 

The presented results clearly show that in case of the tested networks, the bit count 

reserved for a regular IEEE-754 32-bit floating-point type is underutilized and causing some of 

the exponent range to be wasted. According to Tong et al. (2000) [86] usage of 8-bit floating-point 

representation requires up to 4 times less storage capacity and runtime memory in comparison 

to 32-bit data type. Moreover, switching to 8-bit floating-point multiplications allows to reduce 

power consumption to less than a third of a regular 32-bit based unit. Such observations give an 

interesting ground for further experiments on floating-point precision limitation for NN training. 

Besides possible mantissa bit count limitation, focusing on the efficient exponent representation 

gives an additional room for computational and memory resource savings. As presented, in many 

cases numeric values used during the training could be effectively stored in 4 or 5 bits. This poses 

a question regarding new resource efficient floating-point formats for NN parameters. Modification 
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of parameters’ type and optimization of their bit count utilization would help to limit the cost of the 

NN training process and maintain its regular 32-bit floating-point accuracy. The next chapter 

presents the method’s proposal in this area. 
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4 EXPERIMENTS AND RESULTS 

The presented findings (section 3.3) clearly show that the straightforward limitation of 

parameters’ bit count does not provide a solution for more efficient NN training. Although the 

operations are less computationally complex, the decline of the model’s accuracy undermines 

legitimacy of resource savings. Various research confirmed that more sophisticated methods are 

necessary for NN training with limited precision [8] [141] [142]. However, the optimal method has 

not been established yet, the areas with promising outcome include parameters’ format changes 

[75], rounding techniques [5] [6] and quantization [7] [16]. 

This dissertation describes a new method of precision limitation for convolutional neural 

network training with low bit count variables. It combines recent knowledge and techniques 

verified by the research community as application of rounding with new proposals of floating-point 

representation and exponent utilization. Moreover, the results of the extensive method’s 

verification are presented based on commonly used, benchmark CNN architectures.   

This chapter starts with a detailed explanation of the proposed method including key 

elements in terms of incorporated techniques and implementation details. Then the conducted 

experiments are discussed in a step-by-step manner. The last part presents a summary of the 

results achieved for NN training with limited precision on the key target parameter representation 

formats. 

4.1 Method proposal 

The proposed method provides a mechanism for training NN with limited precision, 

floating-point variables. The regular neural topologies are based on the standard 32-bit IEEE-754 

format. The technique developed in this thesis enables weights, biases, activations and gradient 

limitation to custom floating-point representation in the range of an initial 32-bit variable. It includes 

the following mechanisms: 

• Introduction of asymmetric exponent representation. 

• Support for exponent offset mechanism allowing for values range adjustment. 

• Application of stochastic rounding during the process of variable limitation. 

• Denormalized values utilization for a limited precision floating-point type. 

Analogous to the previously presented floating-point limitation flow, the proposed 

framework is executed solely in the software layer. This allows for direct comparison of the 

previously used method of raw floating-point limitation presented in section 3.2 of this dissertation 

and follows similar techniques for experimentation provided by utilities as QPytorch [162] or 

CPFloat [163]. The proprietary, hardware independent implementation has been selected for this 

research in order to avoid the limitations introduced by existing devices or software libraries when 

it comes to specific bit ranges, custom data type formats or supported topologies. Fig. 4.1 

presents an overview of the framework used for the experiments described in this chapter. 
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Fig. 4.1. Overview of the proposed custom floating-point limitation method [154] 

4.1.1 Asymmetric exponent 

The exponent utilization experiments conducted in section 3.4 of this dissertation showed 

that a significant portion of bit usage focuses on a limited range of its negative values. Hence, a 

part of the available exponent’s bits is not utilized. Such a characteristic is especially inefficient in 

the case of floating-point variables with limited precision. The proposed method addresses this 

issue with the introduction of the asymmetric exponent representation which assigns all exponent 

bits to its negative values only. This way the variable can represent a wider range of small values 

required during the training and maintain an unchanged bit count. Although such an approach 

significantly improves the availability of efficiently utilized exponent values, 8- or lower-bit count 

variables may still not provide a sufficient range for NN training. In the case of 3- or 4-bit 

exponents, it is crucial to support representation for most often occurring values in the network. 

Hence, the proposed asymmetric exponent includes an additional offset which can shift available 

exponent values by a scalar in order to adjust the parameters’ dynamic range to a particular 

topology and dataset. This functionality can be treated as an additional hyper-parameter during 

the training and then be flexibly adjusted across the following epochs or specific layers of the 

network. Table 4.1 presents a comparison between different representations of 8-bit floating point 

variables. It enlists details of IEEE-754-like data types with different exponent’s representation, 

including variants with an asymmetric and asymmetric exponent with an offset. 
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Table 4.1. Comparison of the proposed exponent representations with IEEE-754 types 

 Total 
bits 

Exponent 
bits 

Exponent 
bias 

Exponent 
min 

Exponent 
max 

32-bit IEEE floating-
point 

32 8 127 -126 127 

16-bit IEEE floating-
point 

16 5 15 -14 15 

8-bit floating-point 8 4 7 -6 7 

8-bit floating-point 
with asymmetric 

exponent 
8 4 14 -13 0 

8-bit floating-point 
with asymmetric 

exponent and offset 
set to -2 

8 4 16 -15 -2 

An important limitation when it comes to implementation of the asymmetric exponent 

format over a regular 32-bit floating-point type is the maximum exponent range available for 8 

bits. In order to map the asymmetric exponent into a full precision variable, it is important to not 

exceed the range between -126 and 127 defined by the IEEE-754 standard. Although this might 

be a blocking issue for larger variables, it is negligible for the main focus of this dissertation which 

revolves around low bit variables as 8-bit floating-point. In the case of higher exponent bit counts 

investigated in this work, the exponent range was strictly limited within 32-bit IEEE-745 range 

boundaries. Fig. 4.2 shows the difference between precision limitation with and without application 

of the asymmetric exponent method. Although the final result is always mapped to a generally 

available IEEE-754 32-bit floating-point variable, the range of the exponent changes. In case of 4 

bits, it can contain values between -6 and 7, however, the value shift provided by both asymmetric 

exponent and exponent offset techniques significantly modifies this range without any changes to 

the constrained bit count. This way the final variable’s representation range from -15 to -2 is much 

more aligned with the numeric range required by the chosen NN training. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

82 
 

 

Fig. 4.2. IEEE-754 32-bit floating-point conversion to 8-bit format with and without an asymmetric exponent 

As a part of the proposed limitation method, the asymmetric exponent functionality is 

implemented in the software layer only. Thus, the final values of the limited variables are stored 

in 32-bit floating-point format. The translation required for the 8- to 32-bit mapping is shown in 

Fig. 4.3. Additionally, Fig. 4.4 presents a simplified pseudo code showing implementation details 

related to this feature. The operations related to the mantissa, presented in Fig. 3.2, have been 

omitted to improve readability of the code snippet. 

 

Fig. 4.3. An example of 8-bit floating-point translation to a 32-bit floating-point variable 
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procedure apply_asymmetric_exponent(x, new_exponent_bit_count, 

                                    exponent_offset) 

 sign = extract_sign(x) 

mantissa = extract_mantissa(x) 

 exponent = extract_exponent(x) 

  

 asymmetric_exponent_min = 

                  get_assymetric_exponent_min(new_exponent_bit_count) 

asymmetric_exponent_max = 

                  get_assymetric_exponent_max(new_exponent_bit_count) 

 

asymmetric_exponent_min_shifted =  

  asymmetric_exponent_min + exponent_offset 

asymmetric_exponent_max_shifted =  

  asymmetric_exponent_max + exponent_offset 

 

asymmetric_exponent_min_shifted_trimmed = 

trim_to_ieee754_exponent_range(asymmetric_exponent_min_shifted) 

asymmetric_exponent_max_shifted_trimmed = 

trim_to_ieee754_exponent_range(asymmetric_exponent_max_shifted) 

 

new_exponent_value = 

               fit_into_assymetric_exponent_boundries(exponent, 

               asymmetric_exponent_min_shifted_trimmed, 

               asymmetric_exponent_max_shifted_trimmed) 

 

 return asymmetric_variable = sign | new_exponent_value | 

             mantissa 

Fig. 4.4. Simplified pseudocode of asymmetric exponent transformation implementation 

4.1.2 Stochastic rounding 

Rounding or trimming of a numerical value is an inevitable part of its precision limitation. 

Stochastic rounding is one of the techniques successfully adapted for NN training by multiple 

researchers [6] [7]. According to recent studies, this method proved to be helpful for maintaining 

the NN accuracy in case of both floating-point and fixed-point parameters limitation as it aims to 

statistically preserve information about limited values which is a key factor while using it for NN 

training [5] [92]. Thanks to this property, the expected error of rounding is zero [164]. Fig. 4.5 

shows an example of the floating-point limitation with stochastic rounding. 
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Fig. 4.5. Floating-point limitation results variants and their probabilities with stochastic rounding enabled 

As already presented in section 2.3.2 with equations (2.3) and (2.4), the implementation 

of stochastic rounding techniques may vary depending on how the probability of the rounding is 

determined. In the case of the presented framework, it is based on the distance of the variable to 

the limited counterparts. First, the upper and lower boundary of the limitation algorithm is 

calculated for a 32-bit floating point input. Then the relative distances between the limited input 

and the boundaries are measured. Based on that, the framework establishes the probability of 

rounding direction which depends on the output of the software random number generator. Fig. 

4.6 gives an overview of such an implementation in a form of pseudo code. 
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procedure apply_stochastic_rounding(x, exponent_bitcount, 

                                    mantissa_bitcount) 

 

upper_boundry, lower_boundry = get_limitation_boundries(x, 

                          exponent_bitcount, mantissa_bitcount) 

 

upper_distance = abs(abs(x) - upper_boundry) 

lower_distance = abs(abs(x) - lower_boundry) 

 

round_up_probability = upper_distance / (upper_distance + 

                       lower_distance) 

random_float_number = get_random() 

 

if random_float_number <= round_up_probability: 

rounded_x = upper_boundry 

else: 

rounded_x = lower_boundry 

 

 return rounded_x 

Fig. 4.6. Simplified pseudocode of stochastic rounding implementation in the precision limitation framework 

In order to increase readability of Fig. 4.6 the details of establishing limitation boundaries 

have been hidden under a get_limitation_boundries method as it heavily depends on details 

already presented in Fig. 3.2 and Fig. 4.4 which cover limitation internals. It is important to mention 

that the limitation process must be executed only once for one of the boundaries as establishing 

the other one is a simple operation of mantissa decrease or increase and exponent adjustment 

in case of its under or overflow. 

4.1.3 Denormalized values 

An additional feature that can be enabled in the proposed method is a denormalization of 

the limited values. As with the IEEE-754 approach presented in section 2.3.1, the variable format 

proposed in the training optimization method introduces denormalized range that covers a wider 

range of values close to zero. It has been introduced in order to reduce the rounding error between 

original and limited value. Analogously to IEEE-754, the leading bit of mantissa is interpreted as 

zero for denormalized values which results in a wider exponent range at the expense of mantissa 

bits. Fig. 4.7 shows the results of this mechanism based on the proposed framework calculations. 
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Fig. 4.7. Limited 8-bit floating-point denormalization (without mantissa rounding). The hidden leading 
mantissa bit is marked in red. 

The software framework implementation of a denormalization feature is achieved by 

extending limited exponent range based on available mantissa bits. With the usage of right bit 

shift on mantissa’s value, it is possible to gradually divide it by 2 as long as there is at least one 

significant bit left in the mantissa’s representation. Such a limited mantissa value can be then 

once again translated to normalized floating-point representation with analogous left bit shift 

operations and adjustment of exponent’s value in order to match the same number in a standard 

IEEE-754 format. Fig. 4.8 considers an example of simple software layer implementation of 

denormalization. 
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procedure apply_denormalization(x, exponent_bitcount, 

                                mantissa_bitcount) 

sign = extract_sign(x) 

      mantissa = extract_mantissa(x) 

exponent = extract_exponent(x) 

 

lowest_exponent_value = 

                         get_lowest_exponent_value(exponent_bitcount) 

 

      exponents_difference = exponent – lowest_exponent_value 

       

if exponents_difference <= mantissa_bitcount 

            limited_mantissa = limited_mantissa >> 

                               exponents_difference 

            limited_mantissa = limited_mantissa << 

                               exponent_difference 

 

            denormalized_x = sign | lowest_exponent_value |  

                   limited_mantissa 

            return denormalized_x 

      else 

            return 0 

Fig. 4.8. Simplified pseudocode of a custom denormalization implementation in the precision limitation 
framework 

4.1.4 Method’s application 

Although all code representations in this chapter had been focused on a single value 

method application to avoid presentation complexity, the real-life implementation focuses solely 

on tensor-based operations for efficiency purposes. The productization of the proposed technique 

may strictly depend on the training hardware capabilities and should be focused on its optimal 

utilization. It is especially important in case of stochastic rounding and denormalization where 

simplified implementation may highly limit the complexity and computational power required for 

additional steps such as random number generation or denormalization enablement. 

The presented technique aims to provide a consistent precision limitation method for 

training NN with low bit count variables. It is important to highlight that applicability to various NN 

architectures may vary, thus establishing an optimal bit count of limited floating-point variables 

can differ per chosen architecture. Selection of proper bit count should be perceived as a hyper-

parameterization in a training stage. Although the initial experiments used constant values of 

these hyper-parameters during the whole training process, they can be dynamically modified for 

specific epochs, layers or parameter types. This is often the case with recent NN limitation studies 

[146] [142]. A similar approach can be applied to the asymmetric exponent with offset or 

denormalization. Dynamic modification of these parameters can be used to achieve a mixed-

precision approach without variable’s bit count modification, which creates an advantage when 

simplification of hardware design requirements is needed. 
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4.2 Conducted trainings 

The proposed method has been validated on the same set of NN architectures and 

datasets as presented in section 3.2. This includes LeNet with MNIST, AlexNet and ResNet-18 

with CIFAR10 and CIFAR100. Such an approach allows a straightforward, one to one comparison 

and measurements of accuracy gains achieved with the use of the proposed precision limitation 

method for low bit count variables. In order to ensure that the training environment is the same, 

all hyper-parameters remain unchanged, and no stop-loss mechanism has been enabled. The 

only difference introduced during the process was the enablement of the features vital to the 

proposed method as asymmetric exponent with offset, stochastic rounding and denormalization 

mechanism as presented in Table 4.2. It is important to highlight that activations are the only 

parameters that do not leverage asymmetric exponent and exponent offset features. The reason 

behind it is a different range of exponent values required by these parameters’ values, as 

explained in section 3.4. 

Table 4.2. Features of the proposed method per neural network's parameter type 

Feature / Parameter Weights Biases Activations Gradients 

Bit count limitation 
    

Asymmetric exponent 
    

Exponent offset 
    

Denormalization 
    

Stochastic rounding 
    

4.2.1 LeNet 

LeNet architecture provides the simplest test case scenario for the proposed precision 

limitation method in terms of both parameters’ count and classification task complexity. Hence, a 

considerably lower number of bits is required in order to achieve the 32-bit baseline set to 96.18% 

of the network’s accuracy. Fig. 4.9 provides classification results for LeNet architecture trained 

across a wide range of bit count variants with asymmetric exponent offset set to -2. 
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Fig. 4.9. LeNet (MNIST) training results with the proposed limitation method 

Both 1- and 2-bit exponents do not provide a stable base for LeNet training with MNIST 

dataset. The network cannot achieve the baseline accuracy with such exponents no matter how 

many mantissa bits are available during the training. The only exception, close to the baseline 

result, can be observed with 2-bit exponent and 23-bit mantissa. It is important to remark that in 

case of such low exponent bit counts the training appears to be unstable and introduces a lot of 

accuracy variations between repetitive iterations which may be also reinforced by randomization 

of initial model’s weights for each training scenario. Although 2-bit exponent proved to be 

insufficient for this training example, there is a clear improvement for variables with 3- and larger 

bit exponents. In case of this network topology, even 3-bit exponent and 1-bit mantissa floating 

point provides close to baseline accuracy of 94.58%. Even better results can be observed for the 

targeted 8-bit floating-point variable with 4-bit exponent. This type provides the ability to train the 

network to the accuracy of 95.98%. The best accuracy of 96.15% is achieved for 8-bit floating-

point type with 3-bit exponent and 4-bit mantissa. It is important to remark that it provides above 

20 percentage points improvement in comparison to the previously proposed method, utilizing a 

solely asymmetric exponent feature with a result of 75.89% [36]. As presented in Fig. 4.9, the 

further increase of both exponent and mantissa bit counts does not provide any significant 

improvement in comparison to the proposed 8-bit floating point parameters which is represented 

by flattened accuracy lines for the trainings with exponents above 2-bits. 

4.2.2 AlexNet 

The next experiment involved AlexNet with CIFAR10 dataset. The targeted 32-bit 

baseline amounted to 74.39% of accuracy. As previously mentioned, in comparison to LeNet 

training an additional parameterization change of asymmetric exponent offset has been 

introduced for AlexNet and ResNet networks by decreasing this parameter value from -2 to -3. 
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The change was dictated by different exponent utilization observed during FP32 trainings (section 

3.4). Fig. 4.10 presents training results achieved with the use of the proposed limitation method 

across multiple bit counts variants over 10 epochs. 

 

Fig. 4.10. AlexNet (CIFAR10) training results with the proposed limitation method  

Based on the cross-validation results conducted on AlexNet with CIFAR10 it can be 

observed that the proposed technique allows to train this network without accuracy degradation 

on 8-bit floating-point type. As expected, 1-bit and 2-bit exponents could not provide a sufficient 

dynamic range for AlexNet training, which is understandable based on the poor results of LeNet 

trainings with such low bit count types. The convergence of training results can be observed for 

3-bit and higher exponent bit counts. Although 5-bit floating point does not provide satisfactory 

accuracy with the result of 61.09%, the 3-bit exponent and 4-bit mantissa type achieves much 

better accuracy of 72.94%. It should be noticed that along the increasing bit count the results 

fluctuation is higher than in case of the flattened LeNet chart, which can be explained by increased 

size of the topology and complexity of the classification problem. Nevertheless, 4-bit exponent 

and 3-bit mantissa type provide a satisfactory result of 74.5% which surpasses the 10 epochs 

baseline result of 74.39%. 

The same network has been also validated on CIFAR100 dataset providing a bit more 

complex classification scenario. Both parameterization and experiment settings remained 

unchanged. The results of such cross validation are presented in Fig. 4.11. 
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Fig. 4.11. AlexNet (CIFAR100) training results with the proposed limitation method  

Application of a more demanding dataset for the AlexNet based classification had a clear 

influence on its accuracy across lower bit counts. In comparison to CIFAR10 classification, the 

degradation can be observed for 2-bit exponent, which provides much worse results across all 

mantissa bit counts. Similar cases can be observed for 5-bit type with 3-bit exponent. It is vivid 

that such parameters are unable to train the network. The first satisfactory results can be observed 

for 6-bit floating-point type with accuracy of 33.98%, still showing a significant degradation from 

the baseline of 38.93%. Unsurprisingly, the 8-bit floating-point type with 4-bit exponent surpassed 

the 3-bit one with an accuracy of 38.69% versus 38.59%, both slightly underperformed in 

comparison to the 32-bit baseline of 38.93%. 

4.2.3 ResNet 

ResNet-18 topology with CIFAR dataset was the last neural architecture used for the 

validation of the proposed method. The CIFAR10 32-bit baseline for the presented environment 

for this model has been established to 77.08%. Fig. 4.12 shows training results for the ResNet-

18 network with the use of the proposed limitation method on multiple bit count variants across 

10 training epochs. It is important to remark that both the environment and parameterization of 

the training scenarios remained unchanged in comparison to previously presented AlexNet 

trainings. 
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Fig. 4.12. ResNet-18 (CIFAR10) training results with the proposed limitation method  

Based on the cross-validation results, it can be observed that limitation of the network’s 

parameters bit count has a much larger influence on the ResNet-18 classification in comparison 

to AlexNet, even though the training dataset remains unchanged. In this case, not only 1- and 2- 

bit exponents are unable to provide sufficient range for training the network, similar cases can be 

observed for 3-bit exponent limitation across the full range of mantissa bit counts. The network is 

able to converge classification results for 4-bit and higher exponents. The best 76.01% accuracy 

comparable to the baseline is achieved for 4-bit exponent and 3-bit mantissa type with 

degradation of around 1 percentage point. Interestingly, the best low bit count accuracy for 

ResNet-18 on CIFAR10 has been achieved for 7-bit type with 4-bit exponent and 2-bit mantissa 

surpassing the baseline with 79.65% of accuracy. 

It had to be mentioned that much higher accuracy fluctuation can be observed for all 

tested scenarios. This behavior may be the result of a too short training period for a ResNet-18 

network resulting with volatile 10 epoch results. Such a negative effect is greatly reduced when 

we consider best epochs for ResNet-18 trainings presented in Fig. 4.13. In this case the 

fluctuations are much lower and the overall shape of the chart lines for higher bit counts correlates 

with those seen for LeNet and Alexnet. 
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Fig. 4.13. ResNet-18 (CIFAR10) training results with the proposed limitation method – best validation 
epoch results selected 

Even higher fluctuation of results can be observed for ResNet-18 training with the 

CIFAR100 dataset presented in Fig. 4.14. The baseline 32-bit accuracy for ResNet-18 on 

CIFAR100 in the present experimental environment has been established at 39.54% of accuracy. 

 

Fig. 4.14. ResNet-18 (CIFAR100) training results with the proposed limitation method  

Similarly to CIFAR10, 3-bit and lower exponents do not provide enough range for neural 

network results convergence. Fig. 4.15 shows the best accuracy across 10 epochs in order to 

present a better picture of the training results. Although training on 8-bit floating-point types 
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provides range accuracy of 40.21%, much better results are observed in the case of 5-bit 

exponent. The 5-bit exponent and 2-bit mantissa type achieves a surpassing accuracy of 42.62%. 

 

Fig. 4.15. ResNet-18 (CIFAR100) training results with the proposed limitation method – best validation 
epoch results selected 

Although the main focus of the conducted experiments was 8-bit floating-point accuracy, 

it is clear that, similarly to training hyper-parameterization and the proposed method configuration, 

the selection of the optimal bit count and parameters type has a key role in efficient utilization of 

NN training with limited precision. Multiple factors such as NN parameters count, classification 

task complexity or the epochs number may influence the variables range required by the training 

procedure. Hence, the proposed method should be considered as an optimization technique 

rather than the one-fits-all solution. 

The experiments outlined in the previous section proved that it is possible to train tested 

NN architectures with custom 8-bit floating-point parameters without significant accuracy 

degradation. In less complex cases such as LeNet with MNIST or AlexNet with CIFAR10 it was 

possible to achieve satisfactory results with only a 5-bit range for utilized variables. Moreover, the 

experiment’s outcome showed that a proper assignment of bits to exponent and mantissa parts 

may noticeably influence the final accuracy of the tested NN. As confirmed by multiple research, 

the popularly used 4-bit exponent and 3-bit mantissa 8-bit floating-point type is not always the 

optimal solution while training the neural topology with limited precision [8] [152] [153]. Hence, 

additional factors such as topology size, complexity or dataset must be considered. Table 4.3 

summarizes the accuracy of the tested networks across all investigated custom 8-bit floating-point 

variants during 10 epochs. Additionally, results exceeding regular 32-bit training procedures have 

been underlined in the table. 
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Table 4.3. Accuracy results of the proposed limitation method across several 8-bit floating-point formats 
during 10 epochs, the last row presents the IEE-754 32-bit baseline results. 

Floating-point variant  LeNet  AlexNet  ResNet-18  

Sign bit 
count  

Exponent 
bit count  

Mantissa 
bit count  

MNIST  CIFAR10  CIFAR100  CIFAR10  CIFAR100  

1  1  6  54.84%  22.23%  1.98%  8.02%  0.91%  

1  2  5  77.81%  62.93%  1.46%  9.97%  1.02%  

1  3  4  96.15%  72.94%  38.59%  7.34%  1.17%  

1  4  3  95.98%  74.50%  38.69%  76.01%  40.21%  

1  5  2  95.78%  71.10%  36.02%  62.85%  42.62%  

1  6  1  94.66%  66.11%  30.00%  63.39%  39.68%  

IEEE-754 32-bit baseline 

1 8 23 96.18%  74.39%  38.93%  77.08%  39.54%  

The presented dissertation focuses largely on 8-bit floating-point representation of limited 

NN parameters because handling of such types is much more efficient from the hardware 

perspective due to the binary representation. Nevertheless, further limitation of variables used for 

NN training is possible. The conducted experiments have shown that 5-bit parameters are 

sufficient for LeNet training with MNIST dataset. Both AlexNet and ResNet required at least 6-bit 

parameters to converge without significant degradation of classification accuracy for CIFAR10 

and CIFAR100 datasets. It is important to remark that in all cases a decrease of the network’s 

accuracy is still noticeable and varies depending on the topology and the dataset used. Table 4.4. 

presents the bit count variants for each of the tested scenarios that were selected by the author 

as minimal parameter size for training a particular network topology in the experimentation 

environment. Although the majority of the results are not at the level of the 32-bit floating-point 

baseline, there should be a possibility of improving below 8-bit floating-point accuracy for selected 

networks by further training parameterization or modification of the proposed limitation method. 

An interesting case is presented by ResNet-18 with CIFAR10 dataset in case of which the 

achieved result is better than the targeted 8-bit type with 4-bit exponent. 
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Table 4.4. Accuracy results of the proposed limitation method with minimal usable floating-point bit counts 
(compared to the 32-bit baseline) 

Neural 
network 

Dataset 
Total 

bit 
count 

Exponent 
bit count 

Mantissa 
bit count 

Accuracy 

Accuracy 
change (in 
percentage 

points) 

LeNet MNIST 5 3 1 94.58% -1.68 

AlexNet 

CIFAR10 6 3 2 73.42% -0.97 

CIFAR100 6 3 2 33.98% -4.95 

ResNet 

CIFAR10 6 4 1 77.37% 0.29 

CIFAR100 6 4 1 38.54% -1.0 

4.3 Method’s features impact analysis 

The proposed method incorporates multiple techniques as denormalization, stochastic 

rounding and modification of exponent representation in order to train selected NN architectures 

with 8-bit floating-point variables at the accuracy level represented by common 32-bit trainings. It 

is important to analyse how the proposed method’s elements impact the network’s classification 

quality. All comparisons presented in this chapter were conducted based on 8-bit floating point-

type with 4-bit exponent and 3-bit mantissa. 

4.3.1 Exponent shift analysis 

Stochastic rounding proved to be a vital solution in terms of NN training with limited 

precision as it allows to minimize rounding errors impact on the network’s quality [5] [6] [7] [92]. 

The conducted experiment aims to compare the influence of exponent representation change on 

trainings with 8-bit floating-point and stochastic rounding. The analysis involved trainings on 

various representations of shifted exponent, including asymmetric exponent representation, 

regular symmetric exponent and intermediate shifts that can be achieved by exponent’s bias 

modification. In the same manner as with other experiments presented in the dissertation, the 

analysis has been conducted on LeNet, AlexNet and ResNet models. Fig. 4.16 presents results 

of such an experiment on the LeNet network with the MNIST dataset. 

As presented in Fig. 4.16, a representation of the exponent has a marginal impact when 

it comes to LeNet accuracy on MNIST dataset. Both regular exponent with a range from -6 to 7 

and asymmetric exponent with a range from -13 to 0, achieve high results with a slight advantage 

for the regular exponent representation. Additional shifts do not significantly modify the accuracy 

until as far as an asymmetric exponent with offset -6 which represents values range from -6 to -

19 and notably degrades accuracy of the network. In order to enable an easier comparison of the 

proposed method with its previous version proposed by Pietrołaj and Blok (2022) [36], the red line 

has been marked in Fig. 4.16 to show the 8-bit floating-point LeNet accuracy. The mentioned 

method did not include denormalization or stochastic rounding implementation, hence accuracy 
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difference can be seen as a scale of improvement achieved thanks to newly introduced method’s 

techniques. Such a comparison shows that stochastic rounding is a vital element of the method 

and without its application the network would not be able to achieve 32-bit baseline results with 

an 8-bit floating-point precision limitation. 

 

Fig. 4.16. Accuracy of 8-bit LeNet (MNIST) across various exponent shift scenarios 

The following analysis involved a more complex convolutional neural network AlexNet. 

Although with a small model as LeNet the influence of an asymmetric exponent with offset is 

negligible, it is much more beneficial in this case. The accuracy of AlexNet on CIFAR10 dataset 

in various exponent representation scenarios is presented in Fig. 4.17. 

The AlexNet case shows that the asymmetric exponent has a significant advantage of 

above 15 percentage points over a regular exponent. Additional shift of -2 of asymmetric exponent 

allows to tune the training and gain a few additional percentage points of accuracy. Such case 

noticeably exceeds the previously selected result in section 4.2 for offset of -3 with over 2 

percentage points. As with LeNet there is a visible degradation of results once the offset is set 

below -5 which interferes with the network’s ability to converge. 

The same analysis of AlexNet results has been conducted on CIFAR100 to verify the 

impact of a slightly more complex dataset. Fig. 4.18 sums up the results achieved during this 

experiment. 

Both with CIFAR10 and CIFAR100 training variants, the positive influence of asymmetric 

exponent on AlexNet training accuracy can be noticed. The offset of -3 provides almost 6 

percentage points of accuracy improvement in comparison to asymmetric exponent. Similarly to 

CIFAR10, the regular exponent does not provide enough range to train the network on par with 

the 32-bit baseline. 
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Fig. 4.17. Accuracy of 8-bit AlexNet (CIFAR10) across various exponent shift scenarios 

 

Fig. 4.18. Accuracy of 8-bit AlexNet (CIFAR100) across various exponent shift scenarios 

ResNet was the last network tested in terms of various exponent representation variants. 

The verification involved both CIFAR10 and CIFAR100 datasets. Fig. 4.19 presents ResNet 

results on the CIFAR10 dataset. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

99 
 

 

Fig. 4.19. Accuracy of 8-bit ResNet-18 (CIFAR10) across various exponent shift scenarios 

As presented in Fig. 4.19, ResNet-18, in contrast to LeNet and AlexNet, could not be trained on 

CIFAR10 dataset with a regular exponent representation. The best result can be observed for an 

asymmetric exponent with an offset equal to -2. A similar case can be observed in the case of 

ResNet and CIFAR100 dataset (Fig. 4.20), although in this case the exponent offsets of 1 and -1 

show a clear advantage with the accuracy above 43%. 

 

Fig. 4.20. Accuracy of 8-bit ResNet-18 (CIFAR100) across various exponent shift scenarios 
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The presented results show that an asymmetric exponent with offset is a vital technique 

for improving accuracy of CNN training with limited precision. Its influence is especially noticeable 

in the case of more complex architecture and datasets where requirements regarding exponent 

range are more demanding. 

4.3.2 Denormalization 

 Although stochastic rounding and asymmetric exponent representation can be stated as 

the most impactful features of the presented method, the influence of IEEE-754-like 

denormalization mechanism cannot be overlooked. In order to provide 32-bit baseline accuracy 

on 8-bit floating-point, an additional values range is crucial, especially for more complex NN 

architectures. The extended margin of supported values provided by the denormalization feature 

enables the proposed method to limit possible decrease of accuracy on a low-precision floating-

point type. The influence of denormalization feature on the presented experiments can be 

assessed based on Table 4.5. 

Table 4.5. Comparison of experiment results with and without denormalization feature 

Neural 
network 

Dataset 
Accuracy without 
denormalization 

Accuracy with 
denormalization 

Improve
ment 

(percenta
ge 

points) 

LeNet MNIST 95.59% 95.98% 0.39 

AlexNet 

CIFAR10 73.79% 74.50% 0.71 

CIFAR100 29.28% 38.69% 9.41 

ResNet 

CIFAR10 67.07% 76.01% 8.94 

CIFAR100 40.41% 40.21% -0.2 

It can be observed that in almost all training scenarios the denormalization feature 

provides improvement when it comes to the final accuracy of the network. The difference is 

especially vivid in the case of more complex networks. The highest improvement is visible for 

AlexNet on CIFAR10 which achieves over 9 percentage point better accuracy. Similar scenarios 

can be observed for the ResNet network on CIFAR10 and with almost 9 percentage points of 

improvement. The smallest difference is reported for the less complex training scenarios as LeNet 

and AlexNet on CIFAR10. Interestingly, in the case of ResNet-18 and CIFAR100 the 

denormalization does not provide any improvement to the accuracy result. 

4.3.3 Approach to activations 

As described in section 4.2 the approach applied to activations limitation was different 

from the one used for weights, biases and gradients. In case of activations both asymmetric 

exponent and asymmetric offset features were disabled. This decision was dictated by a different 
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range of exponent values utilized specifically by activations based on previously conducted 32-

bit trainings for all tested NN architectures. In order to confirm this decision, the author conducted 

trainings with and without exponent-related features as presented in Table 4.6. 

Table 4.6. Asymmetric exponent influence on activations 

Neural network Dataset 
Activations with 

asymmetric exponent 
Activation without 

asymmetric exponent 

LeNet  MNIST 19.50% 95.98% 

AlexNet 

CIFAR10 15.42% 74.50% 

CIFAR100 1.75% 38.69% 

ResNet 

CIFAR10 10.02% 76.01% 

CIFAR100 1.00% 40.21% 

The presented results show that using the asymmetric exponent feature for activations 

significantly degrades training accuracy of each of the presented architectures. The range of 

values used by activation parameters includes numbers with positive values of exponent which 

are not represented by variables with asymmetric exponent. In order to apply the asymmetric 

exponent in this scenario, additional experiments would be required with exponent offset that 

includes most commonly used positive exponent values for a particular neural network topology 

and dataset. 

The analysis presented in this chapter shows that none of the method’s features from the 

proposed method can be used as a standalone technique when it comes to training NN with 

limited precision. Only a precise combination of these features with appropriate tuning allows to 

achieve the 32-bit baseline results on a limited number of bits.  

4.4 Results convergence 

The number of epochs required to train a specific NN architecture is crucial when it comes 

to resource consumption. The more time is required, the longer is the utilization of a given 

computational unit. Moreover, additional memory may be needed to store logs or temporary 

epoch results for the final accuracy selection. Due to these concerns, it is crucial that the proposed 

limitation method does not negatively affect the time of the training convergence. In order to verify 

this scenario and confirm that there is no such negative impact on a presented method, a 

comparison of IEEE-754 32-bit floating-point and the proposed 8-bit floating-point training results 

has been conducted for each NN architecture investigated in this dissertation. The verification of 

the results’ convergence of networks such as LeNet and AlexNet has been checked over 30 

epochs. In case of ResNet-18, to ensure that there is enough time for the network to converge, 

the training length has been extended to 200 epochs. 

Fig. 4.21 shows a comparison of LeNet training accuracy on 32-bit IEEE-754 floating-

point and the proposed 8-bit floating-point over 30 epochs. It can be observed that starting from 
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seventh epoch both accuracy lines tend to follow the same path with minor deviations of no more 

than 0.2 of a percentage point, giving consistent results above 98% for both trainings. An 

interesting behavior can be noticed during initial epochs of the training where the proposed 8-bit 

floating-point type provides slightly better results over 6 epochs. This observation is consistent 

with the assumption of Yu et al. (2022) [142] where limited precision tends to provide a 

regularization mechanism and faster convergence similarly to manipulation of learning rate hyper-

parameter. 

 

Fig. 4.21. Comparison of LeNet (MNIST) 32-bit IEEE-754 and proposed 8-bit floating point trainings 
convergence 

The comparison of training results between 8-bit and 32-bit floating-point AlexNet 

architectures on CIFAR10 is presented in Fig. 4.22. Although the 8-bit validation accuracy of the 

training closely follows the baseline across all 30 epochs, there is a noticeable degradation of 

results visible across the whole chart, giving 1 percentage point of difference in the results for the 

30th epoch. An additional tuning or more training epochs may be required in order to minimize this 

phenomenon. Nevertheless, it is visible that both convergence trends follow the same path 

without significant irregularities. It is important to remark that the achieved results for both 32-bit 

and 8-bit scenarios exceed the previously presented results [154], most likely due to favorable 

random weights initialization. 
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Fig. 4.22. Comparison of AlexNet (CIFAR10) 32-bit IEEE-754 and proposed 8-bit floating point trainings 
convergence 

Much better results can be observed for the same topology trained with the CIFAR100 

database (Fig. 4.23). From the initial epochs, both 8-bit and 32-bit accuracies follow almost 

identical convergence paths. The small accuracy differences can be spotted for epochs between 

11 and 22. Although final epochs of the training show a more significant difference between the 

baseline, the end result during the 30th epoch gives a better accuracy in the case of 8-bit training 

with around 0.5 percentage point of advantage. 

 

Fig. 4.23. Comparison of AlexNet (CIFAR100) 32-bit IEEE-754 and proposed 8-bit floating point trainings 
convergence  
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Fig. 4.24 presents validation accuracy for each of 200 training epochs with ResNet-18 on 

CIFAR10 dataset. In case of this topology, the number of epochs has been increased for better 

presentation of the convergence process. It can be observed that accuracy achieved on the 

proposed 8-bit floating-point follows the 32-bit IEEE-754 baseline, however, the same as with 

previous charts related to ResNet-18, the accuracy lines behave irregularly during initial epochs. 

The steep changes in accuracy can be attributed to learning rate scheduler’s milestones which 

were set to 60, 120 and 160 epochs. The chart shows smooth results starting from the 120th epoch 

once the second scheduler milestone is hit. From this point the baseline slightly exceeds the 

proposed limitation method result till the end of the training with a difference below 0.5 of 

percentage point. 

 

Fig. 4.24. Comparison of ResNet-18 (CIFAR10) 32-bit IEEE-754 and proposed 8-bit floating point trainings 
convergence  

The same situation can be observed while feeding the ResNet-18 network with a bit more 

complex CIFAR100 dataset (Fig. 4.25). Similar irregularity for initial epochs can be observed 

along with steep changes due to learning rate scheduler milestones. Although accuracy achieved 

with limited precision closely follows the baseline, it can be noticed that a small degradation of 

results is visible during the last 40 epochs. In order to resolve this issue, an additional training 

tuning may be required. 
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Fig. 4.25. Comparison of ResNet-18 (CIFAR100) 32-bit IEEE-754 and proposed 8-bit floating point 
trainings convergence  

As already discussed in this dissertation, preparation of an optimal machine learning 

solution to a particular problem is a repetitive task which often includes multiple iterations. 

Moreover, NN solutions highly depend on the provided training and test datasets. Extensive 

hyper-parameterization stands for another factor which is often investigated with multi-training 

procedures as grid search or custom tuning [30]. The provided training convergence examples 

for LeNet, AlexNet and ResNet-18 show that there is no negative impact of the presented method 

across multiple neural topologies and datasets. Achieving comparable results for a similar number 

of epochs confirms that bit count limitation of network architecture’s parameters can be done 

without prolongation of the training time which would hinder the possible power and memory 

savings. 
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5 SUMMARY 

The dissertation broadly presents results of the performed investigation of NN training 

with limited precision variables. The author proposed a new precision limitation method for neural 

network training with an extensive verification on commonly used benchmark convolutional 

models. Based on a broad literature review, the presented method has been compared to existing 

techniques of limitation, mixed-precision and hardware approaches. 

The presented research can be divided into two general sections. The first one covers 

experiments on commonly used convolutional benchmark NNs in order to investigate the impact 

of the proposed limitation of the IEEE-754 32-bit floating-point bit count on their classification 

accuracy. A wide comparison of bit count variants is validated with detailed description of the 

gathered results for each of the topologies and the datasets used. Moreover, a deep dive insight 

on exponent utilization during NN training is featured, showing a suboptimal exponent’s bit count 

usage during training of the selected neural models. Such an observation not only showed a room 

for data type related improvements when it comes to NN training but also provided a brief 

introduction to the efficiency related features established by a presented, proprietary training 

method. The second section of the dissertation was focused on explanation of the proposed NN 

training method with limited precision. Besides the method itself, its components are described 

with a relation to its applicability to ML experiments. Analogously to the previous research section, 

a wide range of bit count variants has been tested in order to validate the method’s influence on 

selected CNNs. The gathered results have been presented to the reader to allow an easy 

comparison of enhancements provided by the proposed technique. 

The conducted experiments allowed the author to validate the theses introduced at the 

beginning of this dissertation. Firstly, multiple trainings with the use of the proposed method 

confirmed that it is possible to train popular convolutional neural networks as LeNet, 

AlexNet, and ResNet-18 with a custom 8-bit floating-point variable’s type without 

significant classification accuracy degradation in comparison to regular IEEE-754 32-bit 

floating-point. This statement has been directly proven by NN training results, especially ones 

with variables containing 1-bit sign, 4-bit exponent and 3-bit mantissa. In addition to data type 

changes, a stochastic rounding technique and denormalization have been introduced for 

achieving the presented results. Secondly, the author was able to indirectly prove the thesis that 

application of the proposed arithmetic precision limitation method for convolutional neural 

networks training with low level bit count floating-point variables allows to decrease 

computational power and memory requirements. The relation between lowering bit-count and 

resource requirements has been showcased based on multiple domain related research and 

hardware designs. Hence, limiting data type bit count required for NN training would greatly lower 

resource consumption during that process. Additionally, the method has not increased the number 

of epochs required for convergence to the results similar to full precision training which could spoil 

the benefits of the proposed optimization. Finally, the stochastic rounding technique leveraged for 

the training limitation does not enforce a significant computational overhead to the presented 
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method. This rounding technique has been frequently used by other researchers and industry 

leaders providing specific AI hardware accelerators adjusted for stochastic rounding in order to 

efficiently manage limited resources.   

The dissertation presents original achievements of the author in terms of 

presented method and conducted experiments: 

▪ In-depth analysis of exponent values utilization during convolutional neural network 

training. 

▪ Investigation of bit count limitation influence to convolutional neural network accuracy. 

▪ Proposition of a new low-precision floating-point format with multiple variants of exponent 

and mantissa configurations, including a custom approach to exponent range 

representation. 

▪ Proposition of an original method focusing on low-precision floating-point arithmetic for 

neural network training combining techniques such as asymmetric exponent, stochastic 

rounding and denormalization of low-precision variables. 

▪ Extensive experiments on the proposed method impact on selected neural network 

architectures training accuracy, proving the method’s achievements. 

▪ Experiments on asymmetric exponent and its possible offset variants. 

▪ Verification of the convergence between regular 32-bit floating-point training and the 

proposed 8-bit floating-point technique.  

Although the presented research was highly focused on 8-bit floating-point utilization for 

neural network training, it is important to remark that the method introduces much wider 

possibilities for future optimizations. As stated in the experiments’ overview, it is important to treat 

the provided mechanism as a form of training hyper-parameterization including the selected bit 

count and format of the exponent characteristic chosen in this process. Focusing on more directly 

shaped appliance of the proposed method to a specific topology or training data may greatly 

influence further outcomes of the proposed method. 

5.1 Future directions 

The mentioned flexibility of the proposed method introduces a variety of directions for its 

further development.  One of the factors that should be investigated is a much broader application 

of the mixed precision approach to NN training. At this point, only a single data type has been 

used for the whole training process of a selected NN training with an exception of activations. 

Based on the insights of other researchers publishing their results, it may be beneficial to modify 

the precision along the training process. Three aspects are considered by the author of the 

dissertation: 

• Increasing the bit count and exponent’s capacity along with following epochs of the 

training process. This should allow for NN regularization during the initial epochs. Finding 

a closest training loss minimum at the early training stage may accelerate the search for 

the optimal solution. 
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• Further analysis of neural network training requirements for specific data type formats 

across single layers of the topology. This way a specific per layer approach can be applied 

to a given NN model by selecting bit count or floating-point format. 

• Applying varying bit counts to specific topology parameters as weights, biases or 

activations based on their utilization in a specific NN topology. Such an approach might 

be especially beneficial for activations and biases which, as shown in the dissertation, 

tend to use a bit different range of exponent values in a floating-point type. 

Naturally, along with experimentation progress the proposed variants could be mixed and 

matched in a form of grid-search-like approach to achieve the best method’s variant. 

Nevertheless, the author does not state that those are the only possible customization that could 

additionally enhance the proposed training’s limitation technique. 

Another crucial direction of the presented research is the preparation of a custom 

hardware design with full support of the presented method’s features. In contrast to software 

simulation techniques, a hardware acceleration would allow for much better power and memory 

savings measurements during NN trainings. Based on that, it would be also possible to 

approximate costs and requirements for future productization of such NN training accelerators. 

Moreover, efficient hardware design opens new ways for power effective implementation of 

stochastic rounding or the application of mixed-precision. The initial step in this direction has been 

already made by research done by Aleksiuk et al. (2023) [20]. The work involved the design and 

implementation of the FPGA based 8-bit floating-point multiplier proposed in this dissertation, 

required for the support of the presented method. 

Usage of full software simulation for utilization and verification of the presented method 

significantly limits the validation scope that can be executed on broadly available common use 

hardware. The emulation of limited bit count and additional rounding introduce additional 

operations during the training which is both time and resource consuming. Once custom hardware 

is available, validation of the proposed method on much larger NN topologies and datasets would 

be more approachable. This direction should also include training and verification of other network 

topologies such as recurrent networks or transformers. 
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