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A B S T R A C T

The AISC 360-16 Specification recommends that the design shear force between parts of a composite column
in the load introduction area shall be calculated based on the force allocation at ultimate limit state.
Applicability of this straightforward method to the load levels that usually arise in slender composite columns
is questionable, as this capacity-based force allocation is only true when the axial force is equal to the plastic
resistance of the composite cross-section. Next, the number of required shear connectors is calculated as
a quotient of the design shear force and the strength of a single shear connector. We demonstrate that: first,
for the lower load levels, the stiffness-based force allocation gives a more accurate estimate of the shear
force; second, the number of shear connectors satisfying the strength requirement can lead to insufficient
force transfer between parts of the composite cross-section. To investigate the shear transfer mechanism in
composite columns, we derive an analytical model with linear elastic constitutive relations both for steel and
concrete and three types of shear force slip laws: elastic, elastic plastic, and rigid plastic. The case studies
carried out for different shear transfer scenarios demonstrate the importance of the shear connection stiffness
on the effectiveness of the load introduction. The remaining portion of the shear force is transferred outside
the load introduction area, which hampers the column’s ability to withstand shearing from varying bending
moments or incipient buckling. To control the shear force transfer efficiency by enhancing the shear connection
stiffness, we propose an original Stiffness Method and provide design charts as an aid in the design process.
. Introduction

In current editions of design guides in Europe [1] and the USA [2],
he capacity of the shear connection is the central concern in designing
hear transfer in composite columns. The shearing between the con-
rete and steel arises due to the column bending as a result of transverse
oading or unequal end moments, and when the axial load is introduced
o the column through one of the materials. In the latter case, the role of
he shear connection is to transfer the relative portion of the axial load
o the other components of the composite cross-section. The question
rises if the shear connection stiffness impacts the effectiveness of the
ransferring mechanism at much lower load levels than the design
esistance of the composite cross-section. In current editions of design
uides in Europe [1] and the USA [2], this problem is unaddressed. As
e will show in this paper, through analytical solutions of the axially

oaded composite columns with corresponding shear transfer models,
he effectiveness of the load transfer depends heavily on the stiffness
f the shear connection in the load introduction area.
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arcin.niedospial@pw.edu.pl (M. Niedośpiał).

The second issue concerns establishing the force to be transferred
between the materials. AISC [2] recommends calculating the shearing
force proportional to the plastic capacity of the part of the cross-section
to which the axial load is to be transferred. In the case of concrete-
filled composite members with slender cross-sections, which are prone
to local buckling, loaded through the concrete, the yield stress of the
steel portion should be reduced to the critical buckling stress of the steel
cross-section. This means that the design shear force is always related
to the axial force ratio in the ultimate limit state of the composite cross-
section driven by yield or local buckling critical stress. However, before
the yielding of the steel and for stress levels in concrete for which the
behavior is almost linear, the axial load is distributed proportionally
to the axial stiffness of the composite member components [3]. The
European standard [1] addresses this issue as it recommends taking
maximum shear force from the elastic or plastic theory, cf. [clause
6.7.4.2(1) in 1] and Johnson [4]. In the spectrum between the stiffness-
based and capacity-based solutions, the nonlinearity of the concrete and
141-0296/© 2023 The Authors. Published by Elsevier Ltd. This is an open access ar
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the yielding of steel should be considered. We will investigate the force
distribution in the composite cross-section components with the aid of
material models according to European standards [5,6].

The vast majority of the previous research has been focused on push-
out tests evaluating the strength and stiffness of the shear connection
utilizing shear studs, e.g., [7–9] or bond strength for various composite
cross-sections [10–13]. The problem of force transfer from one material
to another in columns obtained significantly smaller attention in the
research community. The most notable contributions are those of Dun-
berry et al. [14] and Wium and Lebet [3], however both considered
only bond interaction.

Dunberry et al. [14] have considered load transfer in preloaded
concrete-filled tubes when the additional load is introduced through
shear tabs welded directly to the tube. However, the authors presented
forces in concrete and steel only for loads very close to the ultimate
load, where the force allocation according to plastic contributions is
applicable. Interestingly, the authors established the load transfer area
as not exceeding two times the minimum transverse direction of the
composite cross-section both above and below the force introduction
in the ultimate limit state, which is recommended by the AISC Spec-
ification [2]. The European standard [1] is more conservative as it
limits the load transfer length to two times the minimum transverse
direction or a third of the column’s length, whichever gives a smaller
transfer length. Mollazadeh and Wang [15] built a numerical model
of the aforementioned experiment and obtained very good agreement
between the FE results and experiments. However, again the focus
of the paper was on load introduction at the ultimate cross-section
capacity load level. Next, the authors considered a setting where the
whole load is applied through the shear tab connections at the same
height, which resulted in the local buckling of the steel tube just
below the shear plates. In a follow-up study, Mollazadeh and Wang
[16] performed a series of experiments on relatively short columns
with and without shear studs below the shear plates. The shear studs
significantly improved the force transfer from steel to concrete, but the
composite action is not achieved at a distance two times the composite
cross-section dimension below the shear tabs connection as strains
in the concrete core and steel tube differ [Fig. 18(c-d) in 16]. This
observation prompted us to examine closely the parameters influencing
the effectiveness of load transfer.

In a study investigating the bond behavior of short composite
columns loaded through steel and consisting of a wide flange I-section
encased in concrete, Wium and Lebet [3] have considered the influence
of chosen parameters on chemical bond strength and maximum shear
stress on the concrete-steel interface after debonding. It is worth noting
that it is one of the very few papers that deal with short columns
in examining the bond behavior and, more importantly, the authors
analyze the force distribution at load levels below the ultimate load.
Wium and Lebet [3] argue that such an allocation should be propor-
tional to the axial stiffness of the composite member parts, and not
to the relative cross-sectional strength contributions. As stated above,
the exact force distribution for axial force levels between the onset of
loading and the ultimate load has to consider concrete nonlinearity
and the yielding of steel. Furthermore, Wium and Lebet [3] report
that in the previous study of Wium [17], the author established the
bond modulus between the steel and concrete prior to debonding as
500N∕mm3. However, there is no consensus in the literature if the bond
modulus is a real interface property or if it serves as a model parameter
regularizing the rigid plastic or frictional contact model [18]. The
approach adopted in the current design guides [1,2,19] leans towards
the latter and disregards the stiffness of the bond interface. Similarly,
in reinforced concrete structures the interaction between the concrete
and rebar modeled with the rigid plastic bond law is considered a rough
but sound simplification [20].

The purpose of this study is to explore the relationship between the
shear connection stiffness and the effectiveness of the force transferring
2

mechanism for the load levels found in service or the ultimate limit
state of columns for which stresses are lower than plastic, i.e., driven
by global or local buckling. To achieve this goal, in Section 2, we
investigate the axial force distribution in composite cross-sections with
the aid of material models allowed by European standards [5,6]. We
prove that for a wide range of applications, the nonlinearity of concrete
on the onset of the loading path might be neglected in establishing
the force distribution. In Section 3, a brief overview of the allowed
force transfer mechanisms according to the current design guides [1,2]
is given. In Section 4, we present closed-form analytical solutions for
a load introduction problem with the elastic, elastic plastic, and rigid
plastic shear interface model within and outside of the transfer length.
The applicability of the shear transfer models in considered scenarios
is discussed. The high point of the research is the introduction of the
original Stiffness Method in Section 5 intended to ensure acceptable
axial force transfer along the load introduction area. We present design
charts for assessing the stiffness of the shear connection to fulfill
this requirement. Additionally, we compare results obtained with the
EN 1994-1-1 [1] and with the proposed Stiffness Method regarding the
force transfer achieved. The design for strength confirms that the force
transfer might be unsatisfactory. Finally, in Section 6, we summarize
our work and propose to include in the existing design guides the shear
demand in the load transfer area.

2. Allocation of sectional forces

To design the load transfer mechanism, first and foremost, one
needs to know the portion of the axial force which needs to be con-
veyed from the loaded component to other parts of the composite
cross-section. The ratio of the axial force carried by the composite cross-
section components to the total axial force depends on the considered
stress level. At the ultimate load, when all parts of the composite cross-
section reach the maximum stress driven by the yield of steel 𝑓 a, and
concrete 𝑓 c, the capacity-based force allocation of the introduced load
𝑁Ed is proportional to the strength contributions of the cross-section’s
parts [2,14],

𝑁a,cb =
𝐴a𝑓 a
𝑁pl,Rd

𝑁Ed,

𝑁c,cb =
(

1 −
𝐴a𝑓 a
𝑁pl,Rd

)

𝑁Ed,
(1)

where 𝐴a denotes the area of the steel part and 𝑁pl,Rd design resistance
of the cross-section. Note, that 𝑁pl,Rd factors in reductions of concrete
strength for concrete-encased cross-sections (0.85𝑓 c), and local buckling
of steel tubes in concrete-filled composites [1,2]. In the latter case, 𝑓 a
in Eq. (1) should be replaced with the critical local buckling stress of
the steel tube wall. For the sake of clarity, we will consider the simplest
case: concrete without reinforcement and the full yield stress of steel
and concrete. Yet, these simplifications do not invalidate the general
conclusions drawn from the presented considerations.

On the onset of the loading path, the stiffness-based force allocation
holds, which is proportional to the axial stiffness of the composite
cross-section constituents [3],

𝑁a,sb = 𝐴a𝜎a =
𝛼𝜔

1 + 𝛼𝜔
𝑁Ed,

𝑁c,sb = 𝐴c𝜎c =
1

1 + 𝛼𝜔
𝑁Ed,

(2)

where 𝜔 = 𝐴a∕𝐴c, 𝜎𝑖 denotes the axial stress of cross-section part 𝑖, and
𝛼 = 𝐸a∕𝐸c with 𝐸𝑖 being Young’s modulus. Note that subscripts ‘‘a’’ and
‘‘c’’ refer to the steel and concrete parts of the cross-section throughout
this paper.

The European standard [1] recommends taking as a design shear
force a maximum difference from the introduced load and the fi-
nal value resulting from allocation using the stiffness-based (2) and
capacity-based (1) approach. For example, for a stress free column
loaded through concrete with the load 𝑁Ed, the design shear force is

𝑉 Ed = max(𝑁a,sb, 𝑁a,cb). However, as stated before, the stiffness-based
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Fig. 1. Stress–strain relation assumed for: (a) concrete and (b) steel.

force allocation is true only on the onset of the loading path, and the
capacity-based force allocation holds only for an ultimate axial load.
The AISC Specification [2] considers only the capacity-based allocation
of forces, which is inadequate for lower load levels.

For slender composite columns, where buckling limits axial loads, or
considering service load levels, one deals with axial forces significantly
lower than 𝑁pl,Rd. In this range of load levels, the nonlinearity of the
concrete, the yielding of the steel, and the ratio of the concrete and
steel cross-section areas, play their role in a resulting force distribution.
Therefore, the actual force distribution for intermediate load levels is
not given by Eq. (1) nor Eq. (2). To illustrate the force distribution for
any load level, we will adopt one-dimensional idealized stress–strain
relationships allowed in European standards [5,6]. For the concrete in
compression, in nonlinear analysis, EN 1992-1-1 [5] recommends the
following stress–strain relationship (Fig. 1a):

𝜎c
(

𝜀c
)

= 𝑓 c

𝑘c
(

𝜀c
𝜀c1

)

−
(

𝜀c
𝜀c1

)2

1 +
(

𝑘c − 2
)

(

𝜀c
𝜀c1

) (3)

where: 𝑘c = 1.05𝐸c𝜀c1∕𝑓 c, 𝜀c1 = min(0.7(𝑓 c0)0.31, 2.8) in ‰; 𝑓 c in
MPa; 𝜀c current axial strain. In Eq. (3), 𝑓 c denotes a mean compressive
strength of the cylindrical specimen 𝑓 cm, and 𝐸c is a mean secant
Young’s modulus 𝐸cm calculated at 𝜎c = 0.4𝑓 c. Note that Eq. (3)
compressive stress and strain are positive. This is the convention we
will adopt only to establish force allocation with nonlinear models in
this section.

We emphasize that compressive strength in (3) is significantly
higher than the design compressive strength 𝑓 cd, which is utilized
in the design resistance 𝑁pl,Rd. The design compressive strength fac-
tors in the statistical scatter of the compression tests’ results and an
additional safety factor in the spirit of the partial factors method
in European standards [1] or Load and Resistance Factor Design in
AISC 360-16 [2]. However, the concrete behavior is rather described
by the mean values, e.g., when comparing experimental results with the
resistance calculated according to standards [16,21]. Therefore, in the
following analysis we will use axial ultimate load 𝑁U = 𝑓 c𝐴c+𝑓 a𝐴a as
a reference load in a nonlinear analysis of the composite cross-section.
Note that numerous other models have been proposed to describe
unconfined [22,23] and confined concrete behavior [24,25], which will
not be pursued in this paper.

The advantage of the stress–strain relation (3) is that it is a nonlin-
ear elastic relation that mimics a complicated nonlinear elastic plastic
relation with damage in monotonic loading conditions. Thus, one can
invert the relation (3) for strains up to 𝜀c1,

𝜀c =
1
2

[

𝑘c𝜀c1 + (2 − 𝑘c)𝜀c1
𝜎c
𝑓 c

−

√

𝜀2c1

(

1 −
𝜎c
𝑓 c

)(

𝑘2c − (𝑘 − 2)2
𝜎c
𝑓 c

)

]

for 𝜎c ≤ 𝑓 c. (4)

For steel, we assume the standard elastic plastic constitutive relation-
ship without hardening [6] (Fig. 1b).
3

𝜆

The final values of the stress in steel and concrete after the desired
load transfer can be derived considering the composite action, thus,
𝜀a = 𝜀c, and 𝜎a𝐴a + 𝜎c𝐴c = 𝑁Ed. Typically, the steel yields before
he concrete stress reaches 𝑓 c as the yield strain of steel 𝑓 a∕𝐸a < 𝜀c1

for all grades of concrete and steel up to S355 included. Only for
the combination of very weak concrete (≤C25/30) and high strength
steel (≥S460) the converse situation arises. After yielding of steel the
excessive axial load is carried out solely by the concrete portion of the
cross-section and the equilibrium takes the form 𝑓 a𝐴a + 𝜎c𝐴c = 𝑁Ed.
Solving this system of equations leads to stresses in steel and concrete
for a given load level 𝑛 = 𝑁Ed∕𝑁U,

𝜎a =

⎧

⎪

⎨

⎪

⎩

𝑛c1(𝑛c𝑘c−(𝑘c−2)𝑛)+𝑛2c1−𝛺
𝑛c−𝑛c1(𝑘c−2)

𝑁U
2𝐴a

, 0 ≤ 𝑛 ≤ 𝑛𝜆,

𝑓 a, 𝑛𝜆 ≤ 𝑛 ≤ 1,
(5)

𝜎c =

⎧

⎪

⎨

⎪

⎩

𝑛c(2𝑛−𝑛c1𝑘c)−𝑛c1(𝑘c−2)𝑛+𝑛2c1+𝛺
𝑛c−𝑛c1(𝑘c−2)

𝑁U
2𝐴c

, 0 ≤ 𝑛 ≤ 𝑛𝜆,
𝑁U𝑛−𝐴a𝑓 a

𝐴c
, 𝑛𝜆 ≤ 𝑛 ≤ 1,

(6)

where 𝛺 = 𝑛c1
√

(𝑛c𝑘c − (𝑘c − 2)𝑛 + 𝑛c1)2 + 4𝑛(𝑛c1(𝑘c − 2) − 𝑛c), 𝑛c1 =
a𝐸a𝜀c1∕𝑁U, 𝑛c = 𝐴c𝑓 c∕𝑁U, and 𝑛𝜆 is the normalized force for which

teel yields,

𝜆 =
𝑛c𝑘c + 𝑛c1 − 𝑛a(𝑛c∕𝑛c1 − 𝑘c + 2)

𝑘c − 2 + 𝑛c1∕𝑛a
, (7)

with 𝑛a = 𝐴a𝑓 a∕𝑁U. Solving 𝑛𝜆 = 1 for 𝑓 a produces the formula for the
maximum yield strength of steel, which should be taken in the cross-
sectional analysis for a given concrete strength, so that the steel yields
before peak stress in concrete is achieved and Eqs. (5) and (6) hold:
𝑓 a,max = 𝐸a𝜀c1.

Now, let us consider a stress distribution function 𝜆(𝑛) = 𝜎a(𝑛)∕𝜎c(𝑛)
that illustrates the portion of the axial load carried by the steel and
concrete parts of the composite cross-section for a given load level 𝑛.
We can distinguish two characteristic values: the stiffness-based stress
allocation 𝜆sb = 𝛼 resulting from the linear elastic analysis for force
allocation, Eq. (2), and capacity-based stress allocation 𝜆cb = 𝑓 a∕𝑓 c
for 𝑛 = 1. Note, that 𝜆(0) < 𝛼 as in the linear analysis a secant
stiffness modulus 𝐸cm is used, whereas on the onset of the loading
path the initial tangent modulus of the concrete, 𝑘c = 1.05𝐸cm, drives
the stress distribution function, cf. Fig. 1a. Also, both stiffness-based
and capacity-based stress allocation values do not depend on 𝜔, thus it
makes it easier to contemplate the influence of the concrete nonlinear-
ity, yielding of the steel, and aforementioned 𝜔 on the portion of the
axial load carried by parts of the composite cross-section.

Until 𝑛 reaches 𝑛𝜆, the stress distribution curve is ascending because
of the softening of concrete and for 𝑛𝜆 < 𝑛 ≤ 1 the curve reverses
since after the steel yields, only the concrete bears the additional axial
load (Fig. 2). Finally, as 𝑛 approaches unity, the stress distribution
function 𝜆 tends to 𝜆cb = 𝑓 a∕𝑓 c. The results suggest that for load levels
𝑛 < 0.4, the stiffness-based allocation of sectional forces is closer to
the actual force distribution than the capacity-based force allocation.
Therefore, for loads 𝑁Ed lower than 0.4𝑁U, which corresponds to
columns designed for global or local buckling (𝜎𝑖 < 𝑓𝑖) or at service
loads, the stiffness-based force allocation (2) should be utilized for
establishing the design shear force. Note that 𝑁U is significantly higher
than 𝑁pl,Rd, thus the applicable ratio for which the stiffness-based
solution (2) holds is even higher. The correspondence of the linear
solution with the nonlinear model is better, the stronger the concrete
and the weaker the steel used.

The effect of 𝜔 on 𝜆(𝑛) is modest and amplified for larger values of 𝑛
(Fig. 2). Therefore, the value of the ratio 𝜔 does not alter the previously
ormulated general condition that for 𝑛 < 0.4 a stiffness-based solution
olds.

Even more disturbing are the stress distribution values for higher
oad levels, which are way beyond the bounds of the stiffness-based

and capacity-based 𝜆 solutions. It is more concerning that, as
sb cb

http://mostwiedzy.pl
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Fig. 2. Influence of 𝜔 = 𝐴a∕𝐴c on the stress distribution curve 𝜆(𝑛) for (a) S235, (b) S355 steel.
Fig. 3. Capacity-based force allocation underestimation error, calculated for (a) 𝑓 a = 235MPa, (b) 𝑓 a = 355MPa and 𝜔 = 0.1.
stated above, 𝑁U in nonlinear analysis of the cross-section is much
higher than the assumed plastic resistance of the cross-section 𝑁pl,Rd.
Therefore, there is a risk that for the design resistance 𝑁pl,Rd of the
cross-section in the ultimate limit state design scenario, the design
shear force might be over or, even worse, underestimated depending
on how the load is introduced to the composite cross-section. Especially
the AISC Specification [2] requires designing the shear interface accord-
ing to the capacity-based force allocation (1). The question arises, what
error does this approach produce, and under what circumstances?

Let us consider, for the sake of argument, an initially stress-free
column loaded through either concrete or steel. If the column is loaded
through steel, a certain portion of the force has to be transferred to
the concrete. Then, the shear force is equal to 𝑉 Ed = 𝑁c − 0 = 𝐴c𝜎c.
In that case, if 𝜆 < 𝜆cb, the capacity-based force allocation gives an
unsafe estimation of the shear force. Similarly, if the force is transferred
from concrete to steel, 𝑉 Ed = 𝐴a𝜎a, and for 𝜆 > 𝜆cb the plastic solution
gives an unsafe estimation of the shear force compared to the nonlinear
method. The values of the force distribution from the nonlinear models,
𝑁a,nl and 𝑁c,nl, can be calculated by multiplying the stresses 𝜎a and 𝜎c
(Eqs. (5) and (6)) by 𝐴a and 𝐴c, respectively.

Fig. 3 shows the underestimation error of shear force when capacity-
based force allocation is used for various load levels and 𝜆cb, corre-
sponding to concrete grades as steel grade is fixed. Warm and cold
colors characterize underrated shear force for loading through concrete
and steel, respectively. The red contour line indicates the case when
𝜆 = 𝜆 , thus the force distribution calculated with a nonlinear solution
4

cb
and capacity-based method is exactly the same. The underestimation
error for composite columns loaded through steel, calculated with
respect to capacity-based force allocation (1) is,

𝛥𝑁a→c,cb =
𝑁c,nl −𝑁c,cb

𝑁c,cb
=

𝜔(𝜆cb − 𝜆)
1 + 𝜆𝜔

, (8)

and similarly, for loading through concrete,

𝛥𝑁c→a,cb =
𝑁a,nl −𝑁a,cb

𝑁a,cb
=

𝜆 − 𝜆cb
𝜆cb (1 + 𝜆𝜔)

. (9)

The major error, up to 35%, arises for weak steel and strong
concrete when the load is introduced through concrete for 𝜔 = 0.1 and
𝑛 up to 0.4; conversely, when the load is introduced through steel to
the composite cross-section, one should avoid a combination of higher
steel grades and weak concrete, cf. Fig. 3a and b, respectively. As
stated above, the change of 𝜔 does not alter the general conclusion
that calculating the design shear force via the capacity-based force
allocation may result in significant underestimation error, cf. Fig. 2.
This is especially true for the load levels observed in slender columns
and for service loads. However, we want to reiterate that also in the
ultimate limit state we may be far from the actual force distribution
because of the reduced value of the design concrete strength compared
to the mean value of concrete strength.

Accordingly, let us investigate the underestimation error when the
stiffness-based force allocation is adopted. Now, we compare the dif-
ference of the force in part of the composite cross-section obtained

http://mostwiedzy.pl
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Fig. 4. Stiffness-based force allocation underestimation error, calculated for (a) 𝑓 a = 235MPa, (b) 𝑓 a = 355MPa and 𝜔 = 0.1.
with the nonlinear model of concrete and steel with the stiffness-
based force allocation (2) with respect to the latter. Fig. 4 presents the
underestimation errors both for loading through steel,

𝛥𝑁a→c,sb =
𝑁c,nl −𝑁c,sb

𝑁c,sb
=

𝜔(𝛼 − 𝜆)
1 + 𝜆𝜔

, (10)

and concrete,

𝛥𝑁c→a,sb =
𝑁a,nl −𝑁a,sb

𝑁a,sb
= 𝜆 − 𝛼

𝛼 (1 + 𝜆𝜔)
, (11)

for fixed steel grades, varying concrete grades, and for the same 𝜔 = 0.1
as in Fig. 3. Again, the same convention applies as in capacity-based
force allocation underestimation error: warm and cold colors denote
loading through concrete and steel, respectively. The red contour line
indicates the case when 𝜆 = 𝜆sb, thus the force distribution calcu-
lated with the nonlinear solution and stiffness-based force allocation is
exactly the same. For loads 𝑛 up to 0.4, the error between the stiffness-
based force allocation and more precise nonlinear model is less than
5%, which is within the range of the engineering error. This proves that
for the majority of design scenarios concerning slender columns and for
service loads, rather the stiffness-based force allocation should be used
instead of the capacity-based force allocation, which is recommended
by AISC [2], to establish the design shear force.

The above deliberations tacitly disregard the long-term effects such
as concrete creep. To include them in the analysis, one has to consider
linear or nonlinear viscoelastic effects in concrete behavior, depending
on the stress level in concrete [5]. Such analysis is out of scope of this
paper, as we rather focus on the importance of stiffness of the shear
connection in the load transfer area, for the sake of argument, in the
transient design scenario and at low load levels. For persistent design
situations, the concrete creep will affect the stiffness of the concrete
component of the composite cross-section [26], thus impacting both
stiffness-based force allocation (2) and the nonlinear solution, Eqs. (5)
and (6).

3. Current rules for design of shear connectors

In Section 2 we have established the proper value of the design shear
force for slender columns or at service loads. Following, we briefly
review the current design rules [1,2] regarding the shear connection.
In both design guides the strength of the shear connection is of central
interest, while the stiffness demand is entirely neglected. This, in
our opinion, is a major drawback considering that the shear connec-
tion should, apart from withstanding the load, be able to effectively
5

distribute the introduced load between the composite cross-section
components to attain the composite action of the column.

The first mechanism used to transfer the load is the natural bond
between the steel and concrete. However, the AISC Specification [2]
restrains the utilization of the natural bond to concrete-filled tubes,
whereas the European standard [1] allows the natural bond mechanism
both for concrete-filled and concrete-encased cross-sections. The maxi-
mal shear force transferred through the natural bond is limited by the
transfer length 𝐿t

𝑉 Rd = 𝜏Rd𝐿t𝜌, (12)

where 𝜌 denotes the perimeter of the steel-concrete interface and the
natural bond strength 𝜏Rd depends on the type of composite cross-
section. The Eq. (12) is a result of a very simple rigid plastic model
of the shear transferring mechanism, where the stiffness does not
affect the result. Due to infinite stiffness the force is fully transferred
provided that 𝑉 Ed < 𝑉 Rd. When the introduced load exceeds the shear
connection strength 𝑉 Rd, or the natural bond is prohibited due to
the cross-section type [2] or improper interface preparation [1], shear
connectors are needed in a form of headed studs, welded channels,
cold-formed angles, or other. Both standards [1,2] forbid superimpos-
ing the natural bond and shear connectors in the load transferring
mechanism as the interaction of these two mechanisms is not fully
understood and is a subject of ongoing research [27]. The experimental
data [27] suggests that closely spaced shear connectors, as in the case
of the load introduction area, are the main load bearer, which justifies
the ban.

The design of the shear connectors stems from the same very simple
rigid plastic model, where the design strength of the shear connection
is a product of the strength of the connector 𝑃Rd and the number of
connectors 𝑚p. This model is true as long as the shear connectors are
ductile to enable the redistribution of the shear force [28]. The ductility
requirement is fulfilled if the shear connector possesses the slip capacity
of at least 6 mm [1], or the length to diameter ratio and other detailing
requirements are met in the case of headed studs [2]. We will refer
to this normative method of designing the shear connection as the
Strength Method (StrM) for the obvious reason. Also, we will explore
the shear connectors in a form of headed studs with the strength as
specified by European standard [1],

𝑃Rd =
1 min

(

0.8𝑓 u
𝜋𝑑2 ; 0.29𝛼𝑑2

√

𝑓 ck𝐸cm

)

, (13)

𝛾v 4
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where 𝛾V = 1.25 is a partial safety factor and 𝛼 depends on the ratio of
the stud nominal height ℎsc to diameter 𝑑,

𝛼 =

⎧

⎪

⎨

⎪

⎩

0.2
(

ℎsc
𝑑 + 1

)

for 3 ≤ ℎsc
𝑑 ≤ 4,

1.0 for ℎsc
𝑑 > 4.

(14)

Eq. (13) holds for studs having diameter 16mm ≤ 𝑑 ≤ 25mm and
ultimate tensile strength 𝑓 u ≤ 500MPa. In other cases, the characteristic
strength 𝑃Rk of the shear connector should be established experimen-
tally, see Annex B EN 1994-1-1 [1] or the relevant European Technical
Assessment.

The AISC Specification [2] additionally provides the strength of
steel channel connectors

𝑃Rk = 0.3
(

𝑡f + 0.5𝑡w
)

𝑙a
√

𝑓 c𝐸c, (15)

here 𝑡f , 𝑡w, denote channel’s flange and web thickness, and 𝑙a is the
onnector length.

The shear studs before yielding possess a certain stiffness, which
s a well-established fact [29–31]. The influence of the shear studs’
tiffness on the composite beams’ behavior has been studied exten-
ively [e.g., 32–34] with a focus on slip demand of studs and ultimate
ending moment of the composite beams. However, applying the same
esign rules to the load transferring mechanisms in composite columns
eglects the influence of the shear connection stiffness on the effective-
ess of the introduced load distribution in the composite cross-section
omponents, which we will investigate in the following section.

. Analytical shear transfer models

To investigate the influence of the shear connection stiffness on
he effectiveness of load transferring between the composite cross-
ection parts, we will employ a simple uniaxial bar model as our
hief interest lays in load transferring and we do not consider bending
ffects. As proven in Section 2, for service loads or slender columns,
he linear elastic relations for steel and concrete parts of the composite
ross-section are adequate and will be assumed in this section.

The fundamental relation to solve the load transfer problem of the
omposite column is the balance of the forces in the infinitesimal slice
f the column, cf. Fig. 5a,
d𝑁𝑖(𝑥)
d𝑥

∓ 𝑡(𝑥) = 0, (16)

where 𝑡(𝑥) is the unit shear force acting between the cross-section
parts. For the part of the cross-section through which the load is
introduced, the shear force decreases the axial force, thus the negative
sign in Eq. (16). Conversely, the shear force increases the axial force
in the part to which the load is transferred, leading to the plus sign
in Eq. (16).

The solution to the Eqs. (16) depends on the assumed shear force
slip law 𝑡(𝑠). In this paper we will consider three shear force slip
laws: elastic, elastic plastic, and rigid plastic, cf. Fig. 5b. We con-
sider only monotonic loading scenarios, thus we use a simplified ver-
sion of deformation plasticity in the analytical solutions instead of
the classic plasticity formulation with the typical loading/unloading
conditions [35].

Let us discuss the applicability of the considered shear force slip
laws. The rigid plastic like law, 𝑡(𝑠) = 𝑡Rd, represents the default model
assumed in the current design guides [1,2] both for the natural bond
and shear connectors as discussed extensively in Section 3. In this
paper, we will consider this model only to represent the natural bond
behavior both inside and outside of the load introduction area [19].

The elastic plastic like shear force slip law, 𝑡(𝑠) = min
(

𝑘𝑠; 𝑡Rd
)

,
where 𝑠 denotes slip, describes the behavior of the shear connection
with ductile shear studs. Both the stiffness 𝑘sc and resistance 𝑃Rd of the
individual shear studs is transformed into smeared equivalents 𝑘, and
6

s

𝑡Rd, respectively. Also, we neglect the increase of 𝑡Rd stemming from the
interaction of studs welded to the web with flanges of the I-section [1].

Lastly, we will adopt the linear elastic shear force slip law as
a reference solution and, more significantly, a departure point for the
construction of design charts ensuring assumed effectiveness of the
design shear force transfer.

4.1. Closed form solutions

For definiteness, let us consider the shear transfer from the steel to
the concrete part of the cross-section. Eqs. (16) with the linear elastic
shear force slip model 𝑡(𝑥) = 𝑘𝑠(𝑥) and exploiting the linear constitutive
relationships for both materials, 𝑁𝑖 = 𝐴𝑖𝜎𝑖, where 𝜎𝑖 = 𝐸𝑖𝑢′𝑖 , become

d2𝑢c(𝑥)
d𝑥2

+ 𝑘
𝐸c𝐴c

(

𝑢a(𝑥) − 𝑢c(𝑥)
)

= 0,

d2𝑢a(𝑥)
d𝑥2

− 𝑘
𝐸a𝐴a

(

𝑢a(𝑥) − 𝑢c(𝑥)
)

= 0.
(17)

The same set of equations arises for transfer in the opposite direction:
from the concrete to steel part of the cross-section as the sign of unit
shear force 𝑡(𝑥) changes and simultaneously the slip definition changes
to 𝑠(𝑥) = 𝑢c(𝑥) − 𝑢a(𝑥). Accordingly, the elastic branch of the elastic
plastic model is governed by Eqs. (17). In general, the interface stiffness
𝑘 might be a function of 𝑥, e.g., when shear studs are not spaced
uniformly on the considered interval, but this case will not be pursued
in this paper.

The homogeneous solution of Eqs. (17) is given as

𝑢c0,el(𝑥) =𝐸a𝐴a𝛽
[

1
𝛼𝜔

(𝐵1 + 𝐵2𝑥) + (𝐵3 + 𝐵4𝑥)

+ (𝐵1 − 𝐵3)cosh(𝛽𝑥) +
1
𝛽
(𝐵2 − 𝐵4)sinh(𝛽𝑥)

]

,
(18)

𝑢a0,el(𝑥) =𝐸c𝐴c𝛽
[

(𝐵1 + 𝐵2𝑥) + 𝛼𝜔(𝐵3 + 𝐵4𝑥)

+ (𝐵3 − 𝐵1)cosh(𝛽𝑥) +
1
𝛽
(𝐵4 − 𝐵2)sinh(𝛽𝑥)

]

,
(19)

where relative stiffness

𝛽 =

√

𝑘
(

1
𝐸a𝐴a

+ 1
𝐸c𝐴c

)

(20)

and constants 𝐵𝑖 are determined from the appropriate boundary and
continuity conditions. Hegemier et al. [18] derived a similar set of dif-
ferential equations to analyze the tension stiffening effect in reinforced
concrete structures.

The solution of Eq. (16) for 𝑡 reaching the limit value 𝑡Rd in the rigid
lastic model or in the plastic branch of the elastic plastic model is the
ame as for an uniaxial bar loaded with distributed load,

c0,pl(𝑥) = −
𝑡Rd

2𝐸c𝐴c
𝑥2 + 𝐶1𝑥 + 𝐶2, (21)

a0,pl(𝑥) =
𝑡Rd

2𝐸a𝐴a
𝑥2 + 𝐶3𝑥 + 𝐶4. (22)

Finally, the last part needed to compose the composite column prob-
ems’ solutions is the case when 𝑡 = 0, which corresponds to the rigid

plastic solution below the yielded interface front. The homogeneous
solution has the same form as in Eqs. (21) and (22) without the 𝑡Rd
term,

𝑢c0,0(𝑥) =𝐷1𝑥 +𝐷2, (23)

a0,0(𝑥) =𝐷3𝑥 +𝐷4. (24)

ne readily recognizes the classic elastic solution of the uniaxial bar
roblem without distributed load. We will refer to this solution as
‘‘bar solution’’ throughout this paper to distinguish from the elastic

hear force slip law solution given by Eqs. (18) and (19).
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Fig. 5. Scheme of the force transfer problem (a) and considered shear force slip laws (b).
Table 1
Parameters of the composite column assumed in case studies.
Profile Grade 𝐸𝑖 [GPa] 𝐴𝑖 [cm2] 𝑓𝑖,k [MPa] 𝑓𝑖,d [MPa] 𝜔 𝛼 𝜌 [cm] 𝜏Rd [MPa]

HEA280 S355 210 97.3 355 355
5.84% 6.162 160.0 0.3042 × 42 cm C35/45 34.08 1666.7 35 23.33
,
w
t
𝑉

𝑁

b
s
b
b

𝐸

s
d

a
s
d
o
c
e
f
w

The last missing part needed for the analysis of the load transfer
roblem is the stiffness of the shear studs. According to EN 1994-1-1 [1]
he stiffness of the shear connector may be taken as 0.7𝑃Rk∕𝑠, where
is the slip determined from push-out tests in accordance with Annex
[1] at load 0.7𝑃Rk . EN 1994-1-1 [1] provides an approximate value

f shear connector stiffness, 𝑘sc = 100 kN∕mm for headed studs of
9mm in diameter and 𝑘sc = 70 kN∕mm for cold formed angles. In the
iterature, different formulae for the stiffness of shear studs based on
he experimental and FEM results can be found [e.g. 29,36–38]. In this
aper, for the sake of the argument, we assume the headed studs have
sc = 19mm, ℎsc = 60mm, and stiffness 𝑘sc = 100 kN∕mm.

.2. Case studies

Let us consider a concrete encased HEA280 profile of height 𝐻 = 3m
oaded through steel in a different design scenarios with material
arameters (Table 1) according to European standards [1,5,6]. Adopted
eometrical properties, materials parameters, and a maximum axial
oad of 𝑁Ed,max = 3400 kN ≈ 0.32𝑁U ≈ 0.5𝑁pl,Rd considered en-
ure that the steel part does not yield when loaded (𝑁Ed,max∕𝐴a =
49.4MPa < 𝑓 a) and the stress in concrete calculated via stiffness-based
orce allocation (2) is at a relatively low level (∼ 15MPa). For the sake
f clarity, the reinforcement is disregarded.

The European standard [1] limits the transfer length 𝐿t to a mini-
um of 𝐻∕3 = 1m and 2𝐷 = 84 cm, thus, 𝐿t = 2𝐷 = 0.28𝐻 = 84 cm is

ssumed. The design resistance of the load introduction area exploiting
he natural bond (12) is equal to
7

Rd = 𝑡Rd𝐿t = 403.2 kN, (25) d
here 𝑡Rd = 𝜏Rd𝜌 = 4.80 kN∕cm. Let us consider an axial load for which
he design shear force per stiffness-based force allocation (2) equals
Rd, thus

c,sb = 𝑉 Rd → 𝑁V,Rd = (1 + 𝛼𝜔)𝑉 Rd = 548.3 kN. (26)

We assume a rigid plastic shear force slip model for the natural
ond mechanism. Therefore, the solution is a combination of the plastic
olution (Eqs. (21) and (22)) in the load introduction area and the
ar solution (Eqs. (23) and (24)) otherwise. Applying the following
oundary and continuity conditions

𝐸a𝐴a𝑢
′
a0,pl(0) = −𝑁Ed,

𝑢a0,0(𝐻) = 0,

𝑢a0,pl(𝑥A) = 𝑢a0,0(𝑥A),

a𝐴a𝑢
′
a0,pl(𝑥A) = 𝐸a𝐴a𝑢

′
a0,0(𝑥A),

𝐸c𝐴c𝑢
′
c0,pl(0) = 0,

𝑢c0,0(𝐻) = 0,

𝑢c0,pl(𝑥A) = 𝑢c0,0(𝑥A),

𝐸c𝐴c𝑢
′
c0,pl(𝑥A) = 𝐸c𝐴c𝑢

′
c0,0(𝑥A),

(27)

olves the problem at hand, where 𝑥A = min
(

𝑁Ed∕
(

𝑡Rd(1 + 𝛼𝜔)
)

;𝐿t
)

,
enotes the extent of the yielded interface.

The assumed rigid plastic model in the introduction length guar-
ntees that the axial load is properly distributed (Fig. 6) for any load
maller than 𝑁V,Rd given by Eq. (26). When the axial load exceeds the
esign resistance of the load introduction area, e.g., 𝑁Ed = 2𝑁V,Rd,
nly the portion of the load equal to the resistance is transferred to the
oncrete part. This results in partial force transfer (Fig. 6a, 𝜂 = 2). The
xtent of the load transfer area is rather arbitrary, therefore the shear
orce would surpass the load transfer area and the full composite action
ould be achieved if the column is tall enough. However, this would

eprive the interface of its capacity to withstand additional shearing
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Fig. 6. Rigid plastic model solutions describing natural bond mechanism in the load introduction area: cross-sectional forces (a) and unit shear force 𝑡(𝑥) distribution (b).
Fig. 7. Elastic plastic model solutions describing shear studs behavior in the load introduction area: cross-sectional forces (a) and shear force 𝑡(𝑥) distribution (b) with different
tiffness 𝑘 and constant design shear resistance 𝑡Rd.
esulting from the bending of the column or incipient buckling, and is
enerally not desired [1].

Now, let us assume that for the same load 𝑁V,Rd the designer
ecides to use shear studs grade S235 to transfer shear force 𝑉 Ed.
he design resistance of the shear stud, (13), yields 𝑃Rd = 65.3 kN.
ollowing the Strength Method (StrM), the required number of studs
p is,

p = 𝑛p𝑟p >
𝑉 Ed
𝑃Rd

= 6.17. (28)

Arranging the studs pairwise (𝑛p = 2) results in 𝑟p = 4 layers, thus the
layers’ spacing is 𝐿p = 𝐿t∕𝑟p = 21 cm. The averaged value of stiffness
and design resistance of the interface are equal to, cf. Fig. 5,

𝑘 =
𝑛p𝑘sc
𝐿p

=
𝑚p𝑘sc
𝐿t

= 95.24 kN∕cm2,

Rd =
𝑛p𝑃Rd

𝐿p
=

𝑚p𝑃Rd

𝐿t
= 6.22 kN∕cm.

(29)

The smeared design resistance of the interface 𝑡Rd is ≈ 9% higher
han in the case of the natural bond mechanism but now the shear con-
ection has a certain stiffness. This means that only after mobilization
f enough slip, the interface will reach the design resistance. In the
oad transfer problem, the slip is a function of the axial stiffness of the
omposite cross-section parts and interface stiffness. This distinguishes
he composite columns from the composite beams, where the slip is
result of bending and its mobilization is fairly easy.

It is not known from the onset, if for a given load the design
esistance would be achieved. However, for a given column, shear con-
ection stiffness, and design resistance 𝑡Rd, one can calculate the axial
oad 𝑁 initiating yielding of the interface (𝑡(0) = 𝑡 ) combining
8

Ed,el Rd
elastic shear force slip (Eqs. (18) and (19)) and bar solutions (Eqs. (23)
and (24)):
𝐸a𝐴a𝑢

′
a0,el(0) = −𝑁Ed,

𝑢a0,0(𝐻) = 0,

𝑢a0,el(𝐿t ) = 𝑢a0,0(𝐿t ),

𝐸a𝐴a𝑢
′
a0,el(𝐿t ) = 𝐸a𝐴a𝑢

′
a0,0(𝐿t ),

𝐸c𝐴c𝑢
′
c0,el(0) = 0,

𝑢c0,0(𝐻) = 0,

𝑢c0,el(𝐿t ) = 𝑢c0,0(𝐿t ),

𝐸c𝐴c𝑢
′
c0,el(𝐿t ) = 𝐸c𝐴c𝑢

′
c0,0(𝐿t ),

(30)

and

𝑡(0) = 𝑘𝑠(0) = 𝑘
(

𝑢a0,el(0) − 𝑢c0,el(0)
)

= 𝑡Rd. (31)

Solving Eqs. (30) and (31) gives

𝑁Ed,el,a = −𝑁a(0) =
(𝐻 − 𝐿t )𝛽 + coth(𝛽𝐿t )
1 + (𝐻 − 𝐿t )𝛽coth(𝛽𝐿t )

𝑡Rd
𝑘

𝛽𝐸a𝐴a

= 924.23 kN > 𝑁V,Rd.
(32)

Thus, the considered axial load 𝑁V,Rd is insufficient to mobilize the
design resistance of the interface with shear studs, cf. Fig. 7b.

Moreover, the number of studs resulting from the StrM allow only
to transfer shear force 𝑉 = −𝑁c(𝐿t ) = 239.94 kN. The portion of
the shear force that the shear connection failed to transfer reaches
(𝑉 Ed − 𝑉 )∕𝑉 Ed ≈ 40%. Comparing this result with the effectiveness of
the natural bond mechanism is concerning.

The reason for the apparent paradox that enhancing the shear con-
nection with shear studs deteriorates the load transferring mechanism
is twofold. Apparently, as the spacing of the studs is significant, the
interaction between the natural bond and studs occurs [27], but this
utilization is forbidden in the design guides [1,2]. Also, we assume
that the natural bond interface is perfectly rigid up to reaching its
design resistance. The limited data is available in the literature re-

garding the pure shear behavior of the steel-concrete interface. The
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Fig. 8. The effect of increasing the number of studs in the load introduction area for load 𝑁V,Rd: cross-sectional forces (a) and unit shear force 𝑡(𝑥) distribution normalized by
he corresponding 𝑡Rd = 𝑚p𝑃 Rd∕𝐿t (b).
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nly contribution we are aware of is that of Wium [17] reported
n Wium and Lebet [3], where the author established the natural bond
odulus 𝑆 = 500N∕mm3. The equivalent interface stiffness of the
atural bond equals 𝑘nb = 𝑆𝜌 = 80MN∕cm2, which is a thousandfold
imes higher than smeared shear studs interface stiffness 𝑘 but still

finite value which would affect the axial load transferring. Never-
heless, because of the considerable difference between the stiffnesses,
e believe that the rigid plastic model for the natural bond may be
n adequate assumption, cf. [19], at least until more experimental
vidence accumulates. Also, the experimental results for axially loaded
olumns [39] indicates that that debonding progresses along the col-
mn with increasing load. The discussion regarding the fluctuations
f the 𝜏Rd during slippage, resulting from the change in mechanism at
icroscale (micro/macro-locking) and frictional effects, is out of scope

f this paper. We assume a constant, lower bound value of 𝜏Rd given
y the European standard [1].

Increasing the stiffness of the shear connection changes the shear
orce distribution in the load introduction area (Fig. 7b). Quadrupling
he stiffness and keeping the design shear resistance initiates yielding
f the shear interface. Now, the solution is a combination of the plastic
hear force slip model (Eqs. (21) and (22)) up to the end of the yielded
nterface (𝑥A < 𝐿t), the elastic shear force slip model for the remainder
f the load introduction area (Eqs. (18) and (19)), and the bar solution
utside the load introduction area (Eqs. (23) and (24)). The boundary
nd continuity conditions yield the following set of equations,

𝐸a𝐴a𝑢
′
a0,pl(0) = −𝑁Ed,

𝑢a0,0(𝐻) = 0,

𝑢a0,pl(𝑥A) = 𝑢a0,el(𝑥A),

𝐸a𝐴a𝑢
′
a0,pl(𝑥A) = 𝐸a𝐴a𝑢

′
a0,el(𝑥A),

𝑢a0,el(𝐿t ) = 𝑢a0,0(𝐿t ),

𝐸a𝐴a𝑢
′
a0,el(𝐿t ) = 𝐸a𝐴a𝑢

′
a0,0(𝐿t ),

𝐸c𝐴c𝑢
′
c0,pl(0) = 0,

𝑢c0,0(𝐻) = 0,

𝑢c0,pl(𝑥A) = 𝑢c0,el(𝑥A),

𝐸c𝐴c𝑢
′
c0,pl(𝑥A) = 𝐸c𝐴c𝑢

′
c0,el(𝑥A),

𝑢c0,el(𝐿t ) = 𝑢c0,0(𝐿t ),

𝐸c𝐴c𝑢
′
c0,el(𝐿t ) = 𝐸c𝐴c𝑢

′
c0,0(𝐿t ),

(33)

where 𝑥A has to be calculated numerically from

𝑘
(

𝑢a0,el(𝑥A) − 𝑢c0,el(𝑥A)
)

= 𝑡Rd, (34)

which produces

𝑘
𝛽(𝐻 − 𝐿t ) coth

(

𝛽(𝐿t − 𝑥A)
)

+ 1

coth
(

𝛽(𝐿t − 𝑥A)
)

+ 𝛽(𝐻 − 𝐿t )
=

𝐸a𝐴a𝑡Rd𝛽
𝑁Ed − 𝑡Rd𝑥A(1 + 𝛼𝜔)

. (35)

A further increase in stiffness, e.g., tenfold allows more effective
utilization of the shear connection capacity. In general, the greater the
stiffness of the connection the better the axial load distribution among
the composite cross-section parts, cf. Fig. 7a.

However, the change of the stiffness usually entails the change of
the design resistance of the shear connection. For a given shear stud’s
type, increasing the number of studs 𝑚 leads to a proportional increase
9

p c
of the interface stiffness 𝑘 and design resistance 𝑡Rd, cf. Eq. (29). On
the other hand, the shear force 𝑉 = −𝑁c(𝐿t ) cannot surpass the
value when the full shear transfer is attained 𝑁Ed∕(1 + 𝛼𝜔) for loading
through steel. Therefore, d𝑉 ∕d𝑚P → 0 as 𝑚p → ∞, while the load
introduction area capacity d(𝑡Rd𝐿t )∕d𝑚P = 𝑃Rd = const, which leads
to conclusion that with increasing number of studs the shear force
transfer improves (Fig. 8a), yet the utilization of the shear interface
capacity decreases (Fig. 8b). This observation encourages utilizing the
elastic shear force slip law to establish a guideline for required shear
connection stiffness to effectively transfer the shear force between the
composite cross-section parts, cf. Section 5.2.

Now, let us investigate the shear connection behavior at much
higher axial load, 𝑁Ed = 𝑁Ed,max = 3400 kN. The design shear force
rom the stiffness-based force allocation (2) equals 𝑉 Ed = 2500.3 kN.
herefore, the required number of studs 𝑚p per StrM has to be greater
han 𝑉 Ed∕𝑃Rd ≈ 38.3. Assuming 𝑚p = 40 studs, the smeared stiffness
and design resistance 𝑡Rd are equal to 476.19 kN∕cm2 and 31.10 kN∕cm,

espectively.
For higher axial load, the load transfer is more effective because of

he higher stiffness of the shear connection resulting from the capacity
emand of the StrM, cf. Fig. 9a. Also, the partial utilization of the shear
onnection occurs (Fig. 9b). However, there is still a portion of the
esign shear force 𝑉 Ed that was not conveyed in the load introduction
rea, (𝑉 Ed − 𝑉 )∕𝑉 Ed ≈ 10.9%.

The design guides [1,2] forbid to transfer shear force outside the
oad introduction area. Nevertheless for finite stiffness of the shear
onnection, the full transfer is hardly attainable. In the real-world,
owever, one expects that either the natural bond or loosely spaced
hear studs will take part in the force transferring mechanism. The goal
s to limit the unconveyed part of the shear force, so that the column
cts as a composite member and other mechanisms (natural bond or
hear connectors) allow the column to withstand shearing from other
ources.

Accordingly, let us consider how far, for the given axial load
Ed,max, the natural bond mechanism has to be mobilized to transfer

he remaining part of the shear force. It appears that exploiting of
he natural bond diminishes the utilization of the shear connection in
he load introduction area (Fig. 10b). Moreover, around 40% of the
olumn height outside of the load introduction area is used to transfer
he remaining shear force, cf. Fig. 10, thus, effectively, the column loses
he ability to transfer any additional shear loads either from the column
ending or incipient buckling.

Further, we analyzed how the assumed simplification of the lin-
ar elastic constitutive relations for steel and concrete affects the
oad transferring mechanism. The nonlinear stress–strain concrete law,
q. (3), and elastic plastic model for steel (Fig. 1b) together with

onsidered shear force slip laws (Fig. 5b) require resorting to numerical
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Fig. 9. The resulting cross-sectional forces (a) and unit shear force 𝑡(𝑥) (b) from StrM shear studs design for different load levels: 𝑁V,Rd (𝑚p = 8) and 𝑁Ed,max (𝑚p = 40).
Fig. 10. The exploiting of the natural bond influence on the cross-sectional forces (a) and shear force 𝑡(𝑥) (b) and comparison with the nonlinear FEM results for 𝑁Ed,max. The
every tenth point of the FEM results is shown for clarity.
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methods, e.g., the Finite Element Method (FEM). The necessary finite
elements of 1D rods with quadratic shape functions were implemented
in the AceGen/AceFEM system [40] following the standard approach.
To represent the concrete and steel parts of the cross-section we used
300 finite elements for each part. The interaction between the cross-
section components was enforced nodewise via the following methods.
For elastic shear force slip law, the penalty-like potential was used
𝛱pen = 𝑘(𝑢a − 𝑢c)2∕2, where the penalty parameter is interpreted as
the interface stiffness 𝑘. Adding plasticity to the elastic shear force slip
law results in the typical trial and radial return scheme for unit shear
𝑡. Lastly, for rigid plastic shear force slip law, the slip-stick conditions
were enforced with the augmented Lagrangian method [41], similar as
in the contact problems [42,43].

The difference between the analytical solutions obtained with lin-
ear elastic constitutive relations and the nonlinear FEM results is al-
most indistinguishable for the considered column loaded through steel
(Fig. 10). The relatively low stress in the concrete after the full shear
force transfer (≈15MPa) does not affect the solution. The most pro-
nounced difference emerges in the ratio −𝑁𝑖∕𝑁Ed after the full shear
force transfer in the case of natural bond usage, which is slightly
different from 𝑁𝑖,sb∕𝑁Ed. This is a result of the nonlinearity of the
concrete model, which was discussed extensively in Section 2.

The more pronounced difference is expected in the case when the
column is loaded through concrete. The axial load 𝑁Ed,max produces
c = 𝑁Ed,max∕𝐴c ≈ 20.4MPa ≈ 0.87𝑓 cd. Now, the designer following

the StrM would calculate only 14 studs to transfer the design shear
force 𝑉 Ed = 𝑁Ed,max𝛼𝜔∕(1 + 𝛼𝜔) = 899.7 kN. This results in the smeared
tiffness 𝑘 = 166.7 kN∕cm2 and design resistance 𝑡Rd = 10.88 kN∕cm,
hich are significantly lower values than in the case of loading through

teel.
10
The discrepancy between the results obtained with the linear elastic
nd non linear constitutive relations for the composite cross-section
arts increased, yet still is not significant from the engineering point
f view (Fig. 11). The difference is especially visible in the shear force
istribution, cf. Fig. 11b. The closer the stress in the concrete from the
xial load 𝑁Ed is to the mean compressive strength of the concrete 𝑓 cm,
sed in Eq. (3), the more noticeable the difference between the two
olutions. However, as the concrete usually is the main bearer of the
oad in the composite cross-section, we will approach the regime closer
o the ultimate axial load 𝑁U, which is rarely attainable in slender
olumns or at service loads.

In the considered loading through the concrete, without including
he natural bond outside the load introduction area, we obtain the
nconveyed shear force portion of (𝑉 Ed − 𝑉 )∕𝑉 Ed = 27%. We want to
eiterate that designing the studs per StrM leads to insufficient load
ransfer in the load introduction area. In the following section, we
ropose a novel Stiffness Method (StiffM) to circumvent this issue.

. Stiffness method

.1. Shear demand condition

It is important to note that using the elastic plastic model for the
hear force slip mechanism, either utilizing only the elastic branch or
oth elastic and plastic branches, the full composite action is never
eached. The full shear force transfer is an asymptote of the elastic
lastic model solution. As mentioned before, the remaining part of the
hear force will be transferred through natural bond or loosely spaced
hear studs outside the load introduction area. In derivation of the shear
emand condition, we focus only on the shear force transferred in the
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Fig. 11. The influence of the concrete nonlinearity when the column is loaded through concrete on the cross-sectional forces (a) and shear force 𝑡(𝑥) (b) for 𝑁Ed = 4400 kN. The
every tenth point of the FEM results is shown for clarity.
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load introduction area. Thus, in the following considerations 𝑘 and 𝑡Rd
utside the load introduction area are equal to zero.

To limit the unconveyed force by the shear connection, we propose
o introduce the shear demand ratio,

= 𝑉
𝑉 Ed

, (36)

describing the ratio of the shear force transferred in the load in-
troduction area 𝑉 to the design shear force 𝑉 Ed resulting from the
stiffness-based force allocation, cf. Eq. (2). In the case of the initially
unloaded column, 𝑉 Ed equals 𝑁c,sb and 𝑁a,sb for the load introduction
through steel and concrete, respectively. Likewise, the actually con-
veyed shear force 𝑉 equals to the axial force in the corresponding part
of the cross-section, 𝑁𝑖(𝑥), where 𝑥 ≥ 𝐿t as the axial force is constant
outside the load introduction area.

Let us calculate the aforementioned axial force outside the load
introduction area with the elastic shear force slip law. Thus, exploiting
the fact that the elastic shear force slip model solution (Eqs. (18) and
(19)) does not depend on to which part of the cross-section the load in
introduced, one can solve the Eqs. (30), which correspond to loading
through steel. Then, the transferred shear force,

𝑉 = −𝑁c(𝐿t ) =
𝑁Ed

1 + 𝛼𝜔

(

1 − 1
cosh(𝛽𝐿t ) + (𝐻 − 𝐿t )sinh(𝛽𝐿t )

)

, (37)

where one readily recognizes factor 𝑁Ed∕(1 + 𝛼𝜔) as the stiffness-
based force allocation 𝑁c,sb = 𝑉 Ed. Consequently, the shear demand
condition (36) becomes

𝜅 =
−𝑁c(𝐿t )
𝑁c,sb

= 1 − 1
cosh(𝛽𝐿t ) + (𝐻 − 𝐿t )sinh(𝛽𝐿t )

. (38)

emarkably, Eq. (38) does not depend on the considered axial load
evel and, as stated above, the direction of the load introduction.

For a given column height 𝐻 , transfer length 𝐿t and desired shear
emand 𝜅, one can calculate from Eq. (38) the relative stiffness 𝛽 = 𝛽min

using numerical methods, as Eq. (38) is of the transcendental type.
Then, from the required relative stiffness 𝛽min, using material parame-
ters (𝐸𝑖, 𝐴𝑖) and Eq. (20), one can establish the required minimal shear
connection stiffness

𝑘min = 𝛽2min
𝐸a𝐴a𝐸c𝐴c

𝐸a𝐴a + 𝐸c𝐴c
, (39)

which for given shear connectors stiffness 𝑘sc results in the required
number of studs

𝑚p ≥
𝑘min
𝑘sc

𝐿t . (40)

Then, following Eq. (29)1 the actual smeared shear connection stiffness
is established and 𝑘 > 𝑘min. This novel approach, we denote as the
Stiffness Method (StiffM).
11

c

We provide design charts for the shear demand 𝜅 = 0.90, 0.925,
.95, and 0.975 presenting the required relative stiffness 𝛽 for a given
olumn height 𝐻 and ratio 𝐿t∕𝐻 (Fig. 12). The remainder of the shear
orce may be transferred via natural bond between steel and concrete
ssuming 𝑡Rd = 𝜏Rd𝜌 or other means, e.g., properly designed shear
onnectors outside the load introduction area. Using the shear demand,
he designer can make an informed choice whether the extent of natural
ond mobilization, which can be estimated as

nb ≈
(1 − 𝜅)𝑉 Ed

𝜏Rd𝜌
, (41)

is acceptable. It is a rough estimate as the natural bond utilization
outside the load introduction area slightly decreases the shear force
transferred in it, cf. Figs. 10b and 11b, thus, the actual extent is greater.
Nevertheless, if the designer decides that the extent of 𝐿nb is not
acceptable, one can resort to higher shear demand.

The required relative stiffness 𝛽 for a given ratio 𝐿t∕𝐻 is lower
for taller columns. This demonstrates the influence of the axial stiff-
ness of the composite cross-section parts. For taller columns, the top
displacement is greater than for the shorter ones, thus, the more slip.
Since the shear force depends on the slip, consequently there is better
shear force transfer. As a result, more force will be transferred for
a taller, more axially compliant column, with the same absolute transfer
length and interface stiffness. On the other hand, reducing the stiffness
of the interface in proportion to the increased length of the column,
e.g., doubling the column height and halving the interface stiffness,
results in significantly different slips in both columns, but similar force
transfer for the considered parameters.

It might raise concerns if establishing the relative stiffness 𝛽, and in
effect the smeared shear connection stiffness 𝑘, from the elastic shear
force slip law model is feasible. One can readily check if for established
𝑘 and 𝑡Rd (through Eqs. (29)) from the required 𝛽, the elastic shear
force slip law in the load introduction area holds by comparing the
introduced axial load 𝑁Ed with the axial load initiating yielding of the
interface 𝑁Ed,el, via Eq. (32) for loading through steel, and

𝑁Ed,el,c =
(𝐻 − 𝐿t )𝛽 + coth(𝛽𝐿t )
1 + (𝐻 − 𝐿t )𝛽coth(𝛽𝐿t )

𝑡Rd
𝑘

𝛽𝐸c𝐴c (42)

for loading through concrete.
If 𝑁Ed ≤ 𝑁Ed,el, the interface works in the elastic domain and the

esign is complete. On the other hand, when 𝑁Ed > 𝑁Ed,el the designer
as two alternatives. First (StiffM fast), to increase the number of studs,
hus 𝑘 and 𝑡Rd, until 𝑁Ed ≤ 𝑁Ed,el. Second (StiffM detailed), find the
lastic plastic solution, Eqs. (33) and (35), for loading through steel
nd corresponding set of equations for loading through concrete. The
omparison of these two alternatives is presented in Section 5.2 for the
onsidered design example.
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Fig. 12. The design charts for the column head stiffness according to StiffM calculated for 𝜅 = 0.90 (a), 0.925 (b), 0.95 (c), and 0.975 (d).
For the sake of completeness, we provide the shear demand ratio for
artially yielded interface, 𝜅ep, for the load introduction through steel,

ep,a→c =
𝑁c(𝐿t )
𝑁c,sb

=

1 −
1 − 𝑡Rd𝑥A(1 + 𝛼𝜔)∕𝑁Ed

cosh
(

(𝐿t − 𝑥A)𝛽
)

+ (𝐻 − 𝐿t )𝛽 sinh
(

(𝐿t − 𝑥A)𝛽
) ,

(43)

and concrete

𝜅ep,c→a =
𝑁a(𝐿t )
𝑁a,sb

=

1 −
1 − 𝑡Rd𝑥A(1 + 𝛼𝜔)∕

(

𝑁Ed𝛼𝜔
)

cosh
(

(𝐿t − 𝑥A)𝛽
)

+ (𝐻 − 𝐿t )𝛽 sinh
(

(𝐿t − 𝑥A)𝛽
) ,

(44)

where 𝑥A denotes the extent of the yielded interface, cf. Fig. 5. For
loading through steel, 𝑥A has to be calculated from Eq. (35) after
solving Eqs. (33), and their counterparts for loading through concrete.
In that case, in the right hand side of Eq. (35) 𝐸a𝐴A changes to 𝐸c𝐴c
and (1 + 𝛼𝜔) has to be replaced with (1 + 𝛼𝜔)∕(𝛼𝜔). The solution is
challenging, but finishing the design without checking 𝜅ep may lead to
unsatisfactory shear transfer as 𝜅ep is always lower than 𝜅 for given
𝛽 and 𝑁Ed > 𝑁Ed,el.

5.2. Application to load introduction design

Let us compare the results obtained with the proposed stiffness
and standard strength method for the column from Section 4.2 for
𝑁Ed = 𝑁Ed,max = 3400 kN. The StrM method required a minimum 38.3
studs, and we adopted 𝑚p = 40 with entailing shear interface stiffness
𝑘 and resistance 𝑡Rd through Eqs. (29). As the calculated number of
studs involve a partial yielding of the interface (Fig. 9b), one can
calculate the shear demand and estimate of the length of the natural
bond mobilization through Eqs. (41) and (43), respectively.

Now, let us assume we want to attain the shear demand 𝜅 = 0.95.
Using the design chart (Fig. 12c) for 𝐻 = 3m and 𝐿 ∕𝐻 = 0.28, we
12

t

estimate the minimum relative stiffness 𝛽min = 0.023 1∕cm. For the given
studs, hence stiffness 𝑘sc and capacity 𝑃Rd, one can readily transform
𝛽min into the required minimum number of studs (Eqs. (39) and (40)),
which yields 66.8. Assuming 𝑚p = 68, with the aid of Eqs. (29) and
(32) we calculate 𝑁Ed,el = 3014.2 kN < 𝑁Ed. Thus, the required relative
stiffness 𝛽min read from the design chart is too low for the considered
𝑁Ed to attain exactly the desired shear demand. Moreover, to calculate
the obtained shear demand 𝜅ep, one has to solve the set of Eqs. (33)
and (35).

The indicator if the shear demand 𝜅ep might differ substantially
from the desired value is the considerable difference between 𝑁Ed,el and
𝑁Ed. In the considered case 𝑁Ed,el is close to 𝑁Ed, hence the expected
extent of yielded interface is not significant and 𝜅ep should not differ
considerably from the desired value 0.95. In fact, in the design process
one usually adopts a number of studs greater than what is required by
𝛽min (here 𝑚p = 68 > 66.8) which produces 𝜅ep = 0.952 and satisfies the
initial requirement 𝜅 = 0.95. However, note that this is a particularity
for the considered example.

The alternative to solving Eqs. (33) and (34) is to increase the
number of studs to achieve 𝑁Ed,el > 𝑁Ed. Adding another 18 studs,
𝑚p = 86 in total, results in 𝑁Ed,el = 3422.6 kN > 𝑁Ed and guarantees
that shear demand is greater than the desired 0.95. In fact, now the
exact value of the shear demand can be computed through Eq. (38), cf.
Table 2.

Adopting the stiffness method improves the shear demand, which is
neglected in the strength method required by current design guides [1,
2]. Thus, the StiffM limits the ratio 𝐿nb to 𝐻 which ensures the
composite column’s ability to transfer longitudinal shear force resulting
from bending or incipient buckling. In a considered case, the number
of studs calculated directly from 𝛽min read from the design chart results
in a sufficient shear demand despite 𝑁Ed > 𝑁Ed,el. Adding another 18
studs does not improve the shear demand substantially (Fig. 13), yet it
is rather a particularity for the given column. In general, the increase of
studs to attain 𝑁 ≥ 𝑁 is recommended if one pursues fast design
Ed,el Ed
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Fig. 13. Comparison of cross-sectional forces (a) and unit shear force 𝑡(𝑥) (b) for studs calculated with StrM, StiffM without (𝑁Ed > 𝑁Ed,el), and with (𝑁Ed < 𝑁Ed,el) adjusting the
umber of studs for the column loaded through steel.
Fig. 14. Comparison of cross-sectional forces (a) and unit shear force 𝑡(𝑥) (b) for studs calculated with StrM and StiffM for the column loaded through concrete.
Table 2
Summary of attained shear demand 𝜅 and relative extent of the natural bond mobilization 𝐿nb∕𝐻 with StrM and StiffM.
Transfer 𝑉 Ed [kN] StrM StiffM detailed (𝑁Ed > 𝑁Ed,el) StiffM fast (𝑁Ed < 𝑁Ed,el)

𝑚p 𝜅 𝐿nb∕𝐻 𝑚p 𝜅ep 𝐿nb∕𝐻 𝑚p 𝜅 𝐿nb∕𝐻

a → c 2500.3 40 0.891 0.19 68 0.952 0.08 86 0.966 0.06
c → a 899.7 14 0.730 0.17 – 68 0.952 0.03
𝐸
instead of a more detailed and economical one which requires solving
Eqs. (33) and (34).

For completeness, we provide the results of StrM and StiffM applied
to the same composite column loaded through concrete by the same
𝑁Ed. The design shear force 𝑉 Ed is much lower as the concrete part of
he cross-section is the main bearer of the axial force (Table 2). Hence,
he StrM produces only 14 studs and shear demand 0.730. Yet, the ratio
nb to 𝐻 is lower than in the loading through steel scenario because of

he lesser 𝑉 Ed.
In addition, the StiffM results in exactly the same number of studs

egardless of the load introduction direction for 𝛽min read from the
esign chart. However in the case of loading through concrete, 𝑚p = 68
esults in 𝑁Ed,el,c = 8379.2 kN > 𝑁Ed and calculation stops. Yet without
onsidering the extent of the natural bond mobilization, the same shear
emand for much lower 𝑉 Ed produces limited utilization of the shear
onnection, cf. Fig. 14. The lower shear demand, e.g., 𝜅 = 0.90 would
ead to a more economical design for the considered column, axial load,
nd loading direction.

The StiffM is especially useful for composite columns loaded
hrough the cross-section part which is the main load bearer. As
iscussed extensively in Section 2, for typical columns where the
uckling drives the maximal load, the axial stiffness is the key factor
o establish the main load bearer. In the considered column the ratio
13
c𝐴c∕(𝐸a𝐴a) = 1∕(𝛼𝜔) = 2.78, hence for loading through concrete the
design charts (Fig. 12) are readily applicable.

Also, note that the considerations presented assumed relatively
weak studs: grade S235 and ℎsc∕𝑑sc ≈ 3.16, cf. Eqs. (13) and (14).
The disproportion between the results obtained with StrM and StiffM
would be even more pronounced for studs with higher design resistance
𝑃Rd and the same stiffness 𝑘sc as is the case for 𝑑sc = 19mm where
recommended by EN 1994-1-1 [1] 𝑘sc = 100 kN∕mm, regardless of the
studs grade and proportions. Moreover, the range of applicability of the
design charts would be wider as 𝑁Ed,el depends linearly on the ratio
𝑡Rd∕𝑘 = 𝑃Rd∕𝑘sc for given load introduction length 𝐿t , cf. Eqs. (32) and
(42).

6. Conclusions

The key takeaways from the presented study are as follows:

1. The stiffness-based force allocation (2) is more adequate than the
capacity-based force allocation (1) for the axial loads typically
arising in the design of composite columns.

2. For the considered load levels (𝑛 ≤ 0.4), the results from the
stiffness-based force allocation differed from the actual force
distribution concerning the nonlinear model of concrete [1] no
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more than 5%, while the discrepancy between the capacity-
based force allocation and the actual force distribution, in some
cases, might reach 35%.

3. The stiffness of the shear connection in the load introduction
area is essential to properly transfer the shear force between the
cross-section parts, which has not received a due consideration
to date.

4. We have proposed a new Stiffness Method, which aims to ensure
the effective transfer of shear and thus limit the extent of the
natural bond mobilization outside the load introduction area.

5. Design charts for four levels of the shear demand has been pro-
vided and applied to the design example, which has shown the
difference between the proposed Stiffness and currently adopted
in standards [1,2] Strength Methods.
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