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Abstract

This thesis is focused on the basis function method for the identification of nonstationary processes.
The first chapter describes a group of models that can be identified using the basis function
method. The next chapter describes the basic version of the basis function method, including its
algebraic and statistical properties. The following section introduces the local basis function (LBF)
method: its properties are described and similarities and differences between LBF and the basic
basis function method are highlighted. The main difference lies in the approach to estimation. The
primary version of the basis function method provides estimates for the entire analysis interval.
The analysis window is then shifted so that estimates can be found for the next set of observations.
In the case of the LBF method, the data from the analysis window are used to find parameter
estimates for only one time instant within the analysis interval. The window is then moved to
the subsequent observation and the estimation process is repeated. As a result, one obtains more
accurate estimates at the expense of the increased computational burden.

This chapter also describes the methods of adaptive choice of hyperparameters crucial for
the accuracy of the estimates, i.e. the number of basis functions and the length of the analysis
window. The thesis concentrates on the parallel processing methods: one runs several algorithms
simultaneously and each one of them is equipped with different settings. At each time instant, the
estimator that minimizes a value of the local quality measure is chosen.

The following chapter describes the fast local basis function method (fLBF). It is a two-step
procedure, which transforms the identification problem into a filtration problem. In the first step,
one finds the so-called preestimates, which are approximately unbiased estimates of parameter
trajectories. Therefore, they can be seen as true parameter trajectories contaminated with a zero-
mean noise of finite variance. The next step is filtering, which yields final parameter estimates.
In this chapter, it is also shown that under certain conditions, the estimates obtained using the
fLBF method can be seen as a close approximation of estimates obtained using the LBF method.
Additionally, the properties of the fLBF method are described, emphasizing similarities and dif-
ferences between fLBF and LBF methods. Next, different preestimation methods are described,
and differences between preestimation errors and computational burden are pointed out. Finally,
the methods of adaptive choice of a number of basis functions and the length of the analysis win-
dow were described. It is also noted that the preestimates associated with different parameter
trajectories can be processed separately.

The next chapter describes the use of regularization in the LBF and fLBF methods. The four
critical questions to consider when applying regularization are: what is being constrained, what
penalty is used, what prior knowledge is available, and what optimization technique is used. The
chapter provides answers to these questions. First, the form of regularized estimators is derived.
Next, it is explained how to design the regularization matrix. Finally, it is described how to choose
the parameters defining the regularization matrix. The proposed methods are based on parallel
processing.

The second last chapter contains description of simulations and experiments along with their
results. This part of the thesis compares LBF estimators using different types of basis functions
and different weighting sequences. It also includes a comparison of results yielded by methods of
adaptive choice of hyperparameters. Lastly, the LBF method is compared with two other iden-
tification algorithms. The first algorithm was, until recently, regarded as the state-of-the-art in
channel estimation for underwater acoustic communication. The second one is a variation of the
basic basis function method, which employs wavelets as basis functions and incorporates an effec-
tive method for selecting the most important (from the modeling perspective) basis functions and
input signals. The next part of this chapter presents the results of applying the fLBF algorithm to
identification. It starts with the comparison of results obtained for different types of preestimates.
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4

Next, the results obtained with the optimized impulse response of the filter used at the second
stage, are presented. Next a comparison of methods with regularization is provided. The regu-
larization matrix is optimized under the assumption of full statistical knowledge about parameter
changes. The last part of this chapter describes results obtained for simulations performed using
the simulator of underwater acoustic communication, as well as for the results obtained for data
gathered in the lake experiment.

The thesis is concluded with a chapter containing a summary and general conclusions stemming
from the simulations and experiments.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Streszczenie

Niniejsza praca poświęcona jest metodzie funkcji bazowych w identyfikacji procesów niestacjonarnych.
W pierwszym rozdziale przedstawiono grupę modeli, których identyfikacja jest możliwa przy po-
mocy metod funkcji bazowych. W kolejnym rozdziale omówiona została podstawowa wersja metody
funkcji bazowych - opisano jej właściwości algebraiczne i statystyczne. Następnie wprowadzono
lokalną metodę funkcji bazowych (LBF), przedstawiono jej właściwości i wskazano na różnice, i
podobieństwa pomiędzy nią i podstawową wersją metody funkcji bazowych. Najważniejszą różnicę
stanowi podejście do estymacji. W podstawowej wersji metody funkcji bazowych uzyskuje się esty-
maty parametrów dla całego przedziału analizy. Następnie przesuwa się okno analizy w taki sposób
żeby móc znaleźć oszacownaia wartości parametrów odpowiadające kolejnej grupie obserwacji.
Natomiast w metodzie LBF dane pochodzące z lokalnego okna analizy służą do uzyskania estymat
jedynie dla jednej chwili czasu wewnątrz przedziału analizy. Następnie okno jest przesuwane i
precedura estymacji zostaje powtórzona dla kolejnej chwili czasu. Skutkuje to uzyskaniem dużo
dokładniejszych estymat parametrów, kosztem zwiększonych nakładów obliczeniowych.

Rozdział ten opisuje także metody adaptacyjnego wyboru parametrów kluczowych dla jakości
estymat, tj. liczby funkcji bazowych i szerokości okna analizy. W pracy skupiono się na meto-
dach opartych o przetwarzanie równoległe. Metody te zakładają, że estymaty są wyznaczane
jednocześnie przez kilka algorytmów pracujących z różnymi ustawieniami. W każdej chwili czasu
wybiera się jako ostateczne te oszacowania parametrów, dla których pewien wskaźnik błędu osiąga
najmniejszą wartość.

Kolejny rozdział skupia się na szybkiej lokalnej metodzie funkcji bazowych (fLBF). Jest to
dwustopniowa procedura, która sprowadza problem identyfikacji do problemu filtracji. W pier-
wszym kroku znajdowane są tzw. preestymaty, które są w przybliżeniu nieobciążonymi osza-
cowaniami zmian prametrów modelu. Mogą więc być postrzegane jako prawdziwe trajektorie
parametrów, zanieczyszczone szumem o zerowej wartości oczekiwanej i dużej wariancji. Kolejny
krok to filtracja, która pozwala uzyskać końcowe estymaty. W rozdziale tym pokazano, że w
określonych warunkach estymaty uzyskane za pomocą metody fLBF stanowią dobre przybliże-
nie estymat otrzymywanych przy pomocy metody LBF. Poza tym omówiono właściwości algo-
rytmu fLBF, zwracając uwagę na podobieństwa i różnice miedzy metodami LBF i fLBF. Następnie
opisano różne rodzaje preestymacji zwracając uwagę na różnice w błędach preestymacji oraz wyma-
ganych nakładach obliczeniowych. Na koniec opisano metody adaptacyjnego wyboru liczby funkcji
bazowych oraz szerokości okna analizy, zwracając uwagę na możliwość odrębnego przetwarzania
preestymat odpowiadających poszczególnym parametrom modelu.

W kolejnym rozdziale omówiono zastosowanie regularyzacji w połączeniu z dwoma wcześniej
wymienionymi metodami. Rozdział otwiera lista kluczowych pytań, na które należy odpowiedzieć
stosując regularyzację, tj. jak skonstruować funkcję kary, czy wiedza wstępna na temat parametrów
modelu jest dostęna i jeśli tak, to jak ją wykorzystać, i ostatecznie jak zaprojektować macierz reg-
ularyzacyjną i jak wybrać współczynnik regularyzacyjny. Kolejne części tego rozdziału stopniowo
odpowiadają na przedstawione pytania. W pierwszej kolejności podano postać estymatorów z
regularyzacją, następnie został opisany sposób wyboru macierzy regularyzacyjnej oraz jej znacze-
nie dla różnych właściwości chwilowej odpowiedzi impulsowej identyfikowanego systemu. W koń-
cowej części rozdziału opisano jak w praktyce można wybrać wartości parametrów definiujących
macierz regularyzacyjną. Przedstawione metody adaptacyjnego wyboru ponownie opierają się na
przetwarzaniu równoległym.

Przedostatni rozdział zawiera opis symulacji i eksperymentów oraz ich wyniki. Najpierw zostały
porównane wyniki uzyskane dla estymatorów LBF, korzystających z różnych rodzajów funkcji
bazowych i różnych ciągów ważących. Zamieszczono także porównanie wyników otrzymanych
przy zastosowaniu metod adaptacyjnego wyboru liczby funkcji bazowych i szerokości okna analizy.
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Porównano rezultaty otrzymywane przy użyciu metody LBF, z wynikami, które można uzyskać
stosując dwie inne metody identyfikacji. Pierwsza z nich była do niedawna uważana za wiodącą
w zadaniach identyfikacji, w zastosowaniach związanych z akustyczną komunikacją podwodną.
Druga z metod jest wariantem podstawowej metody funkcji bazowych, która wykorzystuje funkcje
falkowe o różnych rozdzielczościach oraz efektywny mechanizm wyboru takich funkcji, które są
najważniejsze z perspektywy modelowania. W kolejnej części rozdziału zaprezentowano wyniki
uzyskane dla algorytmu fLBF. Porównane zostały wyniki uzyskane przy zastosowaniu różnych
metod preestymacji, następnie zaprezentowano wyniki dla zoptymalizowanych odpowiedzi im-
pulsowych filtru stosowanego w drugim etapie przetwarzania. Przedostatnia część przedstawia
wyniki dla metod z regularyzacją i zoptymalizowaną macierzą regularyzacyjną (przy założeniu
pełnej wiedzy statystycznej o zmianach parametrów). Ostatnia część tego rozdziału opisuje wyniki
uzyskane dla symulacji wykonanych przy użyciu symulatora komunikacji podwodnej, a także rezul-
taty symulacji przeprowadzonych na danych zebranych w eksperymencie na jeziorze.

Pracę zamknięto rozdziałem podsumowującym i prezentującym ogólne wnioski płynące z symu-
lacji, eksperymentów i wcześniejszych rozważań.
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Abbreviations

AIC Akaike information criterion

AR autoregressive

ARX autoregressive with exogenous input

BF basis function

CV cross-validation

DCD dichotomous coordinate descent

DFT discrete Fourier transform

DPSS discrete prolate spheroidal sequences

EB empirical Bayes

EWLS exponentially weighted least squares

FD full-duplex

FIR finite impulse response

FPE final prediction error

fLBF fast local basis function

fRLBF fast regularized local basis function

GCV generalized cross-validation

i.i.d. independent and identically distributed

IIR infinite impulse response

KL Karhunen-Loéve

LASSO least absolute shrinkage and selection operator

LBF local basis faunction

LMS least mean squares

LOOCV leave-one-out cross-validation

LPV linear parameter-varying

LTI linear time-invariant

LTV linear time-varying

MA moving-average

MAC multiply and accumulate

MIMO multiple-input-multiple-output
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MSE mean squared estimation error

MW multi-wavelet

OLS orthogonal least squares

RLBF regularized local basis function

SI self-interference

SISO single-input-single-output

STLS sequential thresholded least squares

SNR singal-to-noise ratio

UAC underwater acoustic communication

UWA underwater acoustic

WLS weighted least squares
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List of Symbols

Operators

⊗ Kronecker product

xxxT transpose of xxx

xxxH complex-conjugate transpose (Hermitian adjoint) of xxx

111n,i n× 1 indicator vector - vector containing one on a position i and zeros elsewhere

xxx(i) i-th element of a vector x

XXX(ij) element from i-th row and j-th column of a matrix X

XXX(·i) i-th column of a matrix X

XXX(i·) i-th row of a matrix X

x∗ complex-conjugate of x

XXX−1 inverse of XXX

||xxx|| `2 norm of xxx

||xxx||1 `1 norm of xxx

det(XXX) determinant of a square matrix XXX

det+(XXX) pseudodeterminant of a square matrix XXX, i.e. the product of all nonzero eigenvalues of XXX

Tr(XXX) trace of XXX

diag{x1, . . . , xn} diagonal matrix with x1, . . . , xn on the main diagonal

λmax(XXX) the greatest eigenvalue of a square matrix XXX

λmin(XXX) the smallest eigenvalue of a square matrix XXX

λi(XXX) the i-th eigenvalue of a square matrix XXX

arg(x) phase of a complex number x

Re(xxx) real part of xxx

Im(xxx) imaginary part of xxx

E(xxx) expectation of xxx

cov(xxx) covariance matrix of xxx

var(x) variance of the random variable x

int(x) an integer closest to x

dxe an integer closest to x, but not smaller than x

xn
dist.−−−→ x a sequence of random variables {xn} converges in distribution to a random variable x
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q−1 backshift operator

δij Kronecker delta

N (µ, σ2) Gaussian distribution with mean equal to µ and variance equal to σ2

U(a, b) uniform distribution defined on a support [a, b]

O(∗) the big O notation (Landau’s symbol)

card(X ) cardinality of set X

arg minxxx{f(xxx)} argument xxx corresponding to the minimum value of a function f(xxx)

arg maxxxx{f(xxx)} argument xxx corresponding to the maximum value of a function f(xxx)

maxxxx∈Xn f(xxx) the maximum value of a function {f(xxx)} on a set Xn

P (X) Probability of an event X

Important variables and constants

i imaginary unit obeying i2 = −1

n the order of a nonstationary system (the number of system parameters)

m the number of chosen basis functions

k the half-width of the analysis window

K the length of the analysis window K = 2k + 1

t discrete normalized time, t ∈ Z

T the number of data samples

τ continous time, τ ∈ R

y(t) output signal of a nonstationary system

u(t) input signal of a nonstationary system

e(t) measurement noise

σ2
u the variance of the input signal

σ2
e the variance of the measurement noise

θj(t) j-th time-varying parameter of a nonstationary system

λ the forgetting constant λ ∈ (0, 1)

wk(i) the weighting function

fl|k(i) the l-th basis function

hLBF
m|k (i) the impulse response of a filter associated with the LBF method

hfLBF
m|k (i) the impulse response of a filter associated with the fLBF method

lLBF
m|k the equivalent number of observations for the LBF method

αlj,m|k(t) the l-th basis function coefficient for the j-th system parameter

θ̃j(t) the preestimate of j-th system parameter

ϕϕϕ(t) the n× 1 vector of regression variables
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θθθ(t) the n× 1 vector of time-varying system parameters

zzz(t) the n× 1 vector of preestimation noise

fffm|k(i) the m× 1 vector of basis functions

ψψψm|k(t, i) the mn× 1 generalized regression vector ψψψm|k(t, i) = ϕϕϕ(t)⊗ fffm|k(i)

αααj,m|k(t) the m× 1 vector of basis function coefficients for the j-th system parameter

αααm|k(t) the mn× 1 vector of basis function coefficients for all system parameters

α̂ααm|k(t) the mn× 1 vector of estimates of basis function coefficients for all system parameters

θ̂θθ(t) the n× 1 vector of estimates of time-varying system parameters

θ̃θθ(t) the n× 1 vector of preestimates

ΦΦΦ the n× n covariance matrix of the regression vector

PPPm|k(t) the mn×mn generalized regression matrix

IIIn the n× n identity matrix

Ik the domain of basis functions Ik = [−k, k]

Other

N+ set of all natural numbers without zero
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Chapter 1

Introduction and thesis overview

1.1 Nonstationary processes and their models
To understand the nature of nonstationary processes, one should start from the definition of a
stationary random process. There are two types of stationarity: strict-sense stationarity and wide-
sense stationarity. The definition of the first type is more restrictive. It states that a process is
stationary in a strict sense if the joint probability density function of any set of process samples
is time-shift invariant (does not depend on the time index). The second definition requires only
that the mean and the autocorrelation function of the process are time-invariant. A mathematical
formulation of these definitions can be found, e.g. in [57]. Obviously, strict-sense stationarity
implies wide-sense stationarity while the reverse does not necessarily hold true. This work considers
processes not obeying the wide-sense stationarity condition (and therefore also the strict-sense
stationarity condition). Such processes will be further called nonstationary and they will be further
divided into two categories, i.e. nonstationary signals, and nonstationary systems. In the first
case, the behavior of the analyzed sequence can be explained using just the previous values of
this sequence, and a purely stochastic component, whereas in nonstationary systems, the output
is also affected by some additional input signal. Nonstationarity of random processes is often
caused by intrinsic changes in the physical system that generates the signal, or by the change in
environmental conditions, like temperature, humidity, etc. An example of a nonstationary system
is a guided missile because its behavior changes with changing speed and altitude, due to the
different air pressure and airflow around its components. Also, its mass decreases with time, as
the missile burns its fuel.

Another “source” of nonstationarity is the linearization of nonlinear models. Nonlinear objects
are ubiquitous in practice, and to work with them one usually linearizes the model around some
operating point. When the operating point changes over time, linearization of the system must be
repeated which makes its linear approximating model time-varying.

In this thesis, we focus mainly on linear nonstationary systems, because only in this case the
analytical evaluation of the presented methods can be carried out. However, as remarked in [69],
local basis function methods can be successfully applied to the identification of nonstationary
systems and signals as well.

This thesis describes only noncausal methods of identification, which cannot be applied to real-
time processing. Nevertheless, when the application allows for some fixed decision delay (almost
real-time processing), the techniques presented here can be used. Later, an example of such an
application will be given with some experimental results.

1.1.1 Models of linear nonstationary systems
Methods presented in this thesis were developed for nonstationary systems which can be modelled
using linear regression model of a form

y(t) = θθθH(t)ϕϕϕ(t) + e(t), (1.1)

where t ∈ Z is a discrete time, {e(t)} denotes the measurement noise, {y(t)} is the complex-valued
output sequence, θθθ(t) = [θ1(t), . . . , θn(t)]T denotes the vector of time-varying, typically unknown
parameters, and ϕϕϕ(t) = [ϕ1(t), . . . , ϕn(t)]T denotes the regression vector, composed of potentially

12
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1.1. NONSTATIONARY PROCESSES AND THEIR MODELS 13

different input signals. The linear regression model can be used as a description of many different
systems, including some of the nonlinear ones, as long as they are linear in parameters. An example
of such could be the Hammerstein model [98]. For the discussion of what is, and what is not a
subject of this thesis, see the paragraph 1.2.

Probably the simplest, but still powerful model belonging to the class of linear regression models
is the finite impulse response model (FIR), defined by the equation

y(t) =
n∑
j=1

θ∗j (t)u(t− j + 1) + e(t) = θθθH(t)ϕϕϕ(t) + e(t), (1.2)

where in this example the regression vector ϕϕϕ(t) = [u(t), . . . , u(t − n + 1)]T consists of the past
samples of a complex-valued input signal {u(t)}.

The aforementioned description is widely used as a parsimonious model of linear time-varying
(LTV) communication channels, both terrestrial and underwater (see [99], [103] or [56] and refer-
ences therein). The potential time-variability of a wireless communication channel is due to the
movement of the transmitter/receiver or scatterers (objects reflecting or refracting the propagation
waves), and the delay profile is a consequence of the multipath propagation of the electromagnetic
or acoustic wave.

Most of the theoretical results described in this thesis were tested on data, either simulated
or real, that arise from the full-duplex (FD) underwater acoustic communication (UAC). In this
application, the transmitter and receiver are close to each other and use the same bandwidth. As
a result, the signal recorded by the receiver is a mixture of a signal from the far-end transmitter,
contaminated with a site-specific, or ambient noise, and the self-interference (SI) signal, which
can be modeled as a convolution of a signal from the near-end transmitter with the time-varying
impulse response of an underwater channel [92], [94]. The FIR structure of the model reflects
the multipath propagation of the signal coming from the nearby transmitter. In this application,
{y(t)} corresponds to the recorded mixture of signals, {u(t)} is a known signal, sent by the near-end
antenna, {e(t)} is a mixture of a far-end signal and the noise and, {θθθ(t)} is a vector of unknown,
time-varying coefficients of the channel impulse response. To secure the reliable performance of
communication devices, e(t) needs to be extracted from y(t), which can be done by subtracting
from y(t) the estimated self-interference signal θ̂θθ

H
(t)ϕϕϕ(t), where θ̂θθ(t) is the estimated vector of

channel parameters.
Interestingly, in this application a fixed decision delay is often acceptable, allowing one to use

the noncausal identification methods [92], [94]. Since the techniques investigated in this thesis are
based on the idea of fixed-lag smoothing, self-interference cancellation in UAC seems to be the
perfect application for the proposed algorithms.

It is worth pointing out that the time-varying FIR model can be also used to approximate the
infinite impulse response (IIR) system with a time-varying impulse response, provided that the
system of interest is exponentially stable. Such a system can be described by the following ARX
(autoregressive with exogenous input) model

y(t) =
r∑
i=1

a∗i (t)y(t− i) +
p∑
j=1

b∗j (t)u(t− j + 1) + e(t),

y(t) = B(t, q−1)
A(t, q−1)u(t) + 1

A(t, q−1)e(t),

(1.3)

where B(t, q−1) = b∗1(t) + . . .+ b∗p(t)q−p+1, A(t, q−1) = 1− a∗1(t)q−1 − . . .− a∗r(t)q−r and q−1 is a
time lag operator q−1u(t) = u(t− 1).

The stability of a system with an autoregressive (AR) part is guaranteed when at each time
instant t, the roots of a “frozen” polynomial A(t, q−1) stay strictly away from the unit disc and
trajectories of parameters ai(t), i = 1, . . . , r obey some additional smoothness constraints [58].

It is worth mentioning that some classes of nonstationary signals can be modeled using the
AR model, which is a special case of (1.3) when there is no observable input signal. For more
information about modeling of nonstationary systems and signals, check [29] and [66].

To briefly explain how different identification methods work, data from a simple two-tap FIR
system described by

y(t) = θ1(t)u(t) + θ2(t)u(t− 1) + e(t), (1.4)
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14 CHAPTER 1. INTRODUCTION AND THESIS OVERVIEW

was generated for parameter changes depicted in figure 1.1 and signal-to-noise ratio (SNR) equal
to 25 dB. The input signal is autoregressive u(t) = 0.8u(t − 1) + v(t), where v(t) ∼ N (0, 1). The
SNR is defined as follows

SNR = E[|θθθH(t)ϕϕϕ(t)|2]
σ2
e

. (1.5)

Figure 1.1: Parameter changes for the illustrative scenario.

This data set will be further used for illustrative purposes.

1.2 What this research is not about
The problem of identification of linear time-varying (LTV) systems, described in the previous
section, might look similar to the identification of linear parameter varying (LPV) systems (see e.g.
[7], [102]). In such systems, parameter changes are invoked by changes in some scheduling variables.
As remarked in [34] both LTV and LPV systems belong to the wider class of varying-coefficient
models, which can be identified using some general methods. However, the best performance can be
achieved with problem-specific solutions. Therefore, this research focuses only on the identification
of LTV systems.

All of the models introduced above describe single-input-single-output (SISO) systems. These
descriptions can be extended to multiple-input-multiple-output (MIMO) systems. In such extended
models, scalar variables have to be replaced by vector variables and vectors of time-varying pa-
rameters have to be substituted by matrices. This formulation poses multiple challenges and is
not covered in this dissertation.

It is worth emphasizing that the analysis is carried out only for nonstationary FIR systems
because some of the crucial assumptions, needed to obtain analytical results, are not met for
nonstationary ARX systems and nonstationary AR signals. This does not mean that the proposed
methods cannot be used for the identification of time-varying models in both cases mentioned
above. The results of such experiments are presented in the next chapters. Moreover, all systems
analyzed in this thesis are not reducible to stationary systems. For reducible processes, a global,
time-invariant “hypermodel” can be found, while systems analyzed in this dissertation can be only
locally approximated by a time-invariant description.

Another, wide class of systems is described by various types of nonlinear models. The problem
of identification of nonlinear systems is very general, and there exist various identification tech-
niques developed for specific nonlinear models. Some of these models can be expressed or at least
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1.3. OVERVIEW OF KNOWN IDENTIFICATION METOHDS 15

approximated by linear, with respect to parameters, and time-varying models, but this thread was
not covered in this thesis.

The subject of this research is the identification of time-varying parametric models of nonsta-
tionary systems. The obtained models can be further used e.g. for self-interference cancellation in
communication channels or detection of abrupt changes in an analysed system. Finally, this thesis
does not cover methods of spectral analysis of nonstationary signals.

1.3 Overview of known identification methods developed for
nonstationary systems/signals

Identification of LTV systems can be accomplished using one of two different approaches. If
parameters vary sufficiently slowly, one might assume that they are locally constant and for the
purpose of their estimation use the localized version of classical identification techniques such as
weighted least squares (WLS) or gradient-based least mean squares (LMS) [5], [66], [98]. However,
when parameter changes are faster, better results can be obtained by using an explicit model
of parameter changes, usually called a hypermodel. The hypermodel can be either stochastic or
deterministic.

1.3.1 Stochastic model of parameter changes
In the first case, one can use the integrated random walk (IRW) description of parameter changes.
Then the task of estimation of model parameters can be transformed to the problem of tracking of
a vector of properly defined state variables. In such a setup the Kalman filter is a commonly used
tool to solve this problem, as described in papers [41], [67], [80], and recently in the article [17]. The
bridge between the stochastic and deterministic approaches can be established when it is assumed
that parameter trajectories are realizations of some random process with a known correlation
matrix. In such a case, one can use functions resulting from the Karhunen-Loéve theorem [39]
(such functions will be further reffered to as KL functions) to locally model parameter changes.

1.3.2 Deterministic model of parameter changes
The alternative is to assume a deterministic model of parameter changes. In this approach, one
uses assumption that inside the analysis window of a finite length, parameter changes can be
described by linear combinations of some known functions of time, the so-called basis functions.
The origins of the basis function (BF) method can be traced down to the paper [87], where Taylor
approximation was used to model parameter changes of an AR process. Then the basis properties
were utilized to derive expressions for the bias and variance of this estimator, needed to evaluate
the mean squared parameter estimation error (MSE). The article proposed the method of weighted
least squares for parameter estimation and compared two different weighting sequences.

Later, the BF approach was further extended and used for identification of parameters of mod-
els of many different processes like speech, EEG signals or seismic activity records. An example
of an article describing application of the BF method to identification of an autoregressive model
of speech signal is [49]. In this article the high computational burden associated with large di-
mensions of the regression matrix was pointed out and as a solution, the algorithm based on the
Gram-Schmidt procedure to orthogonalize regressors and obtain estimates in an order-recursive
manner was proposed. This procedure also involves an order selection rule, based on the stability
assessment of the created AR model. The method of orthogonalization in the BF approach was
later rediscovered as the orthogonal least squares (OLS) method, and described in [14] for the
purpose of identification of nonlinear stationary processes. Later it was also successfully applied
to identification of LTV systems [47], [106], [107].

Soon, the other choices of basis functions (like cosinusoidal, prolate spheroidal wave func-
tions [97], or Daubechies wavelets) were investigated and the identification schemes for ARMA
(autoregressive-moving-average) models were proposed [29], [33], [104].

The article [64] provides the frequency and tracking performance analysis of BF estimator for
nonstationary FIR systems. In this article, it was shown that the expected trajectories of parameter
estimates can be seen as the effect of filtering of the true parameter trajectories with a linear filter
associated with the BF method. Of course, the impulse response of such a filter depends on the
chosen basis and the type of the weighting sequence (if weighted least squares algorithm is used).
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16 CHAPTER 1. INTRODUCTION AND THESIS OVERVIEW

In most applications, the basis in the BF method contains the constant function. This is typical
because when no prior knowledge about parameter changes is available then the first guess should
be that parameters are time-invariant. It can be shown [66] that when either the constant function
is one of the chosen functions, or it belongs to the subspace spanned by the basis functions, then
the filter associated with the BF method is a lowpass filter.

It is worth noting that BF methods are unbiased only if the design assumption is fulfilled,
namely if parameter trajectories belong to the subspace spanned by the chosen functions. Articles
[64] and [37] confirm that this subspace is in fact a crucial factor in estimation and two different
bases, spanning the same subspace will produce exactly the same estimator. This information is
the main clue when choosing the type of the basis functions. For example, if one expects some
periodicity in parameter changes, the Fourier basis will be more suitable than the Taylor basis.
Additionally, [37] discusses the conditional biases and variances of the BF method, provides the
assumptions needed for consistency, and provides the information about the convergence rate of
the algorithm.

An interesting approach was developed in a series of papers [47], [106] and [107]. These articles
describe parameter changes with wavelets, such an approach was first proposed in [104]. In the
papers cardinal B-splines were used. Using wavelets is the first step towards localized analysis
since the support of wavelets is limited and the basis typically contains wavelets of different res-
olutions. These facts make them well-suited for local modelling of parameter changes. The price
for sparseness and different resolutions of wavelet basis is a very high dimensionality. In [104] the
approach based on consecutive addition of regressors was proposed. To determine which wavelets
carry important information, Student’s t-test was used. In the aforementioned series of papers, the
OLS algorithm with AIC criterion [14] was used. This approach was successfully tested on EEG
signals.

All papers discussed so far present the framewise approach, in which the estimated basis func-
tion coefficients are used to obtain system parameter estimates for the entire analysis interval. The
next step in the development of BF methods was performed in [69], where the samples surround-
ing the observation at the current time instant are used to find basis function coefficients. These
coefficients are then used to obtain estimates of model parametrs for the current time instant only.
Next, the analysis window is shifted by one sample and the procedure is repeated for the new
position of the analysis window. The paper [69] also contains the analytical comparison between
the BF and the new LBF (local BF) approach including comparison of their tracking performance
and statistical properties. The BF method is computationally demanding because the number of
estimated coefficients is a product of the number of system parameters and the basis order. In the
new approach, the least squares (LS) procedure is carried out for every position of the analysis
window which additionally increases computational costs. This is why a lot of emphasis was put
on the use of recursively computable basis functions and weighting sequences, which allows one
to recursively update the regression matrix. Recently the dichotomous coordinate descent (DCD)
algorithm, firstly described in [111], was combined with the basis function method [93], which
allows one to substantially reduce the computational burden associated with the inversion of the
regression matrix.

An overview and detailed analysis of methods of identification of nonstationary processes can
be found in [66].

1.4 Research justification
The state-of-the-art LBF and multi-wavelet (MW) approaches (see [47], [106] and [107]), described
in the previous section, provide high-precision estimates of system trajectories. However, the
computational burden associated with these methods is quite high. This prevents their application
in many fields requiring almost real-time processing. This means that, in such applications, a fast
version of the LBF algorithm (fLBF), providing estimates of similar or higher accuracy, would be
very helpful. Therefore, the development of the new fLBF method is the main topic of the thesis.
The second topic is focused on the improvement of the accuracy of LBF and fLBF estimates. In
many applications, the accuracy of estimates is the most significant feature and even its slight
improvement can be of great practical importance, especially when the associated computational
cost remains low. As remarked in the next section, regularization can be a useful tool for increasing
estimation accuracy by achieving a better bias-variance trade-off. This dissertation also describes
the methods for adaptive choice of design parameters. As stated in the previous section, since
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1.5. OVERVIEW OF NEW RESULTS PRESENTED IN THE THESIS 17

Figure 1.2: LBF estimates (black lines) of the exemplary two-tap FIR system parameter trajectories
for m = 5, polynomial functions and window length equal to K = 101 (left and right upper plots),
m = 3 and K = 201 (left and right middle plots) and m = 1, and K = 400 (left and right lower
plots). All of the plots were obtained for polynomial basis functions (see Chapter 2.)

typically the ratio of system nonstationarity is unknown and can vary with time, the adaptive
methods for hyperparameters tuning are an important part of identification schemes.

1.5 Overview of new results presented in the thesis
Apart from providing some new analytical results for LBF estimators, the subject of this disser-
tation is developement of a new fast version of the LBF method (fast LBF - fLBF). This novel
approach consists of two steps - preestimation and postfiltering. The first part of this new ap-
proach produces raw estimates of system trajectories that are unbiased regardless of the type and
speed of parameter changes. However, the cost that one needs to pay for unbiasedness is a very
high variance of the preestimation noise (exemplary preestimates are shown in figure 1.3). This is
why preestimates cannot be used as final estimates and additional filtering is needed. It is easy
to show that when the impulse response of the filter used in the second step is the same as the
impulse response of the filter associated with the LBF method, then the fLBF estimates closely
approximate the LBF estimates.

1.5.1 Preestimation
Preestimates were introduced in [76] for the purpose of causal estimation and later used for non-
causal estimation in [70], [71] and [73]. In [71] the direct approximation of the expression for ideal
preestimates was presented and its connection to the LBF method was established.
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18 CHAPTER 1. INTRODUCTION AND THESIS OVERVIEW

Figure 1.3: Indirect preestimates (black lines) and the true parameter trajectories (red lines).

Later, in [70] the indirect preestimation method, introduced earlier in [76], was investigated.
It was also shown that the preestimation errors for the indirect method are smaller than for the
direct one. This article also provided the theoretical lower bound on the variance of preestimation
errors.

[73] provides the iterative procedure for improving the accuracy of preestimates by reducing
one of the two major components of preestimation errors.

In [74] the preestimation technique is extended to complex-valued systems and the new, com-
putationally cheaper variant of the indirect preestimates is presented.

The aforementioned articles describe causal preestimation techniques (except [71]) which are
later used in a noncausal estimation scheme. As noted in [77], preestimation can be also noncausal
(especially when the input-output sequences are prerecorded). It was demonstrated that the proper
design of bidirectional preestimates can be beneficial when some parameter trajectories are subject
to abrupt changes.

1.5.2 Postfiltering
The very first filtering technique adopted for the fLBf method in [71] and [70] was the Savitzky-
Golay filtering [90], [91], the reason being that when the basis functions in Savitzky-Golay filter
coincide with the basis functions in the LBF method, then the fLBF estimates can be seen as
tight approximations of LBF estimates (in such a case the impulse response of the filter used
in the postfiltering step is the same as the impulse response of the filter associated with the LBF
method). Obviously, any well-established filtering technique can be applied at this stage, which was
shown in [17] where the Kalman filter was used for this purpose, and in [77] where the windowing
technique was used to design a general purpose lowpass filter.

1.5.3 Hyperparameter tunning
The crucial design parameters for the BF methods are the length of the local analysis window K
and the number of basis functions m. Typically, when m increases, so does the model capacity
which results in a greater variance but the smaller bias of parameter estimates. The opposite
effect can be obtained by increasing K, because including more information in the identification
process clearly reduces the variance at the cost of increased bias. An example of such an effect is
depicted in figure 1.2. Therefore, when the speed and type of parameter changes are not known,
one should use some procedure for adaptive choice of m and K. It is worth noting that since
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1.5. OVERVIEW OF NEW RESULTS PRESENTED IN THE THESIS 19

the aforementioned parameters have the opposite effect on the bias-variance trade-off, one could
as well fix one of them and tune the other one. One of the known solutions to this problem is
model validation based on statistical tests [14], [49], [104]. Another approach would be to use the
modified Akaike’s final prediction error (FPE) criterion, [69], [68] or leave-one-out cross-validation
(LOOCV) statistic [6], [37], [69]. It is also worth noting that some regularization techniques can
be interpreted as mechanisms for rejecting the spurious parameters [13], [62], [100] and therefore
can be seen as model order selection methods.

In [69] the algorithm for adaptive choice of hyperparameters m and k was proposed. In this
scheme, several estimators, equipped with different settings, compete against each other. Finally,
at each time instant, the estimator minimising the local quality measure is chosen. [69] compares
two quality measures for the LBF algorithm - the sum of squared leave-one-out cross-validation
errors and generalized Akaike’s Final Prediction Error criterion.

The LOOCV criterion was also proposed for the fLBF method in the paper [70]. The same
strategy was proven useful also for choosing regularization gain [22] and regularization matrix [74],
[79].

1.5.4 Regularization
Suppose that {θθθ(t)} is a deterministic function. The mean squared parameter estimation error can
be decomposed into a bias and variance components

E{[θθθ(t)− θ̂θθ(t)]2} = ||θθθ(t)− θθθ(t)||2 + Tr
{

cov
[
θ̂θθ(t)

]}
(1.6)

where

θθθ(t) = E[θ̂θθ(t)]

and the expectation is taken over different realizations of measurement noise and input signal. The
improvement of the MSE score can be achieved by using biased estimators characterized by smaller
variance [18], [36]. This can be achieved by means of regularization. Originally regularization was
introduced as a way of imposing smoothness constraints on the solution of the least squares problem
[108] and later it was rediscovered as a way of solving ill-posed inverse problems [81], [101].

The idea of regularization was recently heavily exploited in the identification of time-invariant
systems. The new trend started from continuous-time systems [15], [82] and was later extended to
discrete-time systems [16], [51], [52], [60], [83]. The above-mentioned articles provide justification
for the regularization and demonstrate possible advantages of this technique when the FIR descrip-
tion of a system is used. They also compare different choices of regularization kernels [15], and
analyse their influence on the MSE score [60]. Also, several algorithms for choosing regularization
constants [16], [51] were compared and the Bayesian interpretation of regularization was provided.

As far as the identification of time-varying systems is concerned, regularization was present only
in methods assuming a stochastic model of parameter changes [41]. In this article, the empirical
Bayes procedure (earlier referred to as Type II Bayesian procedure [3]) was used to tune the
regularization method.

Inspired by these results, first attempts to introduce the regularization technique in the BF
method were made [22], [23], [24], [74], [79]. All of these were constructed by addressing four
fundamental questions about regularization

1. What is being constrained? - system parameters θθθ(t) or hypermodel coefficients ααα(t) (defined
later).

2. What penalty is being used? - `2, `1 or reweighted `2.

3. What prior knowledge is available? - no prior knowledge, partial prior knowledge (e.g. power
profile of the time-varying impulse response or degree of smoothness of the impulse response),
or full (statistical) prior knowledge.

4. What optimization technique is used? - cross-validation or empirical Bayes.

In [24] the formula for the optimal diagonal regularization matrix (in terms of the MSE) was
developed when no prior knowledge about parameter changes is available. In this early work on
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20 CHAPTER 1. INTRODUCTION AND THESIS OVERVIEW

regularization in LTV systems identification, the excessive values of coefficients ααα(t) were penalized.
It is worth mentioning that in this paper the FPE criterion was also proposed for choosing m and
K, and the results were compared with the approach based on LOOCV.

In [74] the extension of the aforementioned article was provided. Namely, the formula for
the optimal full regularization matrix was proposed when the penalty is applied to parameters
θθθ(t). Moreover, in this article, the adaptive technique for choosing the regularization matrix was
developed. It is worth mentioning that the optimal regularization matrix from this article requires
prior knowledge about the covariance matrix of parameters θθθ(t).

[79] presents the approach utilising partial prior knowledge to design the regularization matrix.
This article proposes two different ways of designing the regularization matrix. The first one relies
on the knowledge about the degree of smoothness of the time-varying impulse response of the
system. The second one uses the assumption about exponential stability of the impulse response
of a “frozen” system at each time instant t. To optimize the value of regularization gain, the
empirical Bayes approach was used.

[23] and [22] again use the assumption that no prior knowledge about parameter changes is
available. In the first paper, the regularization gain is chosen using generalized cross-validation
(GCV) [27] that already has been proven useful in regularized identification of LTI systems [59].
The second paper compares traditional ridge regression with reweighted `2 regularization which
can be interpreted as the approximation of `1 regression [100].

1.5.5 The author’s main contribution
The author considers the following achievements as his most important contributions to the research

• Development of the procedure for improving unidirectional preestimates, called enhanced
preestimation. The aforementioned technique is an iterative procedure of improving preesti-
mates based on the understanding of the source of preestimation errors. This algorithm was
included in the conference paper [C3], and enabled an analytical explanation of differences
between various types of preestimates.

• Derivation of the optimal in the mean squared sense, diagonal regularization matrix for iden-
tification of nonstationary FIR systems and development of suboptimal but feasible formula
for regularization matrix. This achievement was the main subject of the paper [J2] published
in IEEE Transactions on Signal Processing.

• Derivation of the closed-form solution of the generalized cross-validation optimization prob-
lem in identification of nonstationary FIR systems and statistical interpretation of the ob-
tained formula. This result was presented in the conference paper [C5]

• Development of reweighted `2 algorithm in the identification of time-varying systems with
its interpretation in terms of approximation of `1 regression. The proposal of leave-one-out
cross-validation based scheme for adaptive choice of the regularization gain. These results
became a part of the conference paper [C6]

• Development of an algorithm deciding adaptively whether the identified parameter is locally
constant or time-varying. This scheme is one of the main contributions of the article published
in Signal Processing [J7] and work presented during ICASSP 2022 [C7].

• Proposition of application of basis functions stemming from Karhunen-Loéve decomposition
to tracking of rapidly fading communication channels, and showing their connection to the
optimal basis functions. This results were gathered in a paper published in Signal Processing
[J8].

• Development of robustified version of the fast local basis function method, based on iterative
reweighting technique. This method was described in a conference paper [C10].
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1.6 Objectives of the thesis
The aim of this thesis is to describe the new methods for the identification of nonstationary systems
- the LBF and fLBF algorithms. Within the thesis one will find the answers to the following
questions, which did not have clear answers before this research:

1. What is the performance of the fLBF method compared to the LBF method?

2. How to adaptively choose the number of hyperparameters in investigated methods?

3. How to eliminate the delay that occurs in preestimates based on exponentially weighted least
squares estimates of system parameters?

4. What is the performance of the fLBF algorithm with different preestimation techniques?

5. What is the role of regularization in LBF and fLBF methods?

6. How to design the regularization matrix and how to optimize its hyperparameters?

Note that the answers to these questions are not gathered in one place, they unfold gradually
throughout the thesis.
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Chapter 2

Basis function method

2.1 Introduction
In the first part of this chapter, the traditional BF estimator is characterized and its statistical
properties are derived. Later, it is pointed out that the LBF method can be obtained by a simple
change in estimation strategy and that the statistical properties of this estimator follow directly
from the properties of a traditional BF method.

The starting point of a BF method and its essential part is an assumption

(A2.1) Inside the local analysis window Tk(t) = [t−k, t+k] of lengthK = 2k+1, centered at
t, parameter trajectories can be expressed as a linear combination ofm linearly independent
functions of time

θj(t+ i) =
m∑
l=1

f∗l|k(i)αj,l(t), j = 1, . . . , n; i ∈ [−k, k] ∩ Z = Ik, (2.1)

where αj,l(t) is a basis function coefficient and {fl(i)} represents a known function of time.

Note, that it is assumed, that coefficients αj,l(t) are constant inside the analysis window.
However, since their values might change with the position of the analysis window, they are written
down as functions of time.

It is worth noting that this assumption, although crucial for derivation, is not needed to be
fulfilled in practice. In most real-life applications, no prior knowledge about parameter changes is
available, and BF methods can be still applied and they produce satisfactory results.

This work presents all methods for odd values of K. This is not a requirement for the BF
method and all of the derivations remain true also for even lengths of the analysis interval. This
notation was adopted only because the LBF and fLBF methods are defined in this particular way,
hence the author wanted to avoid any possible confusion stemming from changes in notation.

Remark

Since, for now, we do not specify the way the next position of the analysis window depends on the
previous position, the more precise notation would be αj,l[Tk(t)], which for the sake of brevity is
replaced from now on by simplified notation αj,l(t).

2.1.1 Basis functions
Basis functions are bounded deterministic sequences defined on Ik. For the majority of the time,
the only requirement for them will be that the vectors of basis functions have to constitute a basis
in the m-dimensional space. Only for the purpose of derivation of statistical properties of basis
function methods, we will need to impose some restrictions on the way the basis functions are
generated, however, the aforementioned restrictions are not very limiting and can be easily fulfilled
in practice.

The ideal basis should of course span the subspace that contains the true parameter trajectories.
Moreover, it is often required that the basis is sparse, guaranteeing computational advantages. If

23

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


24 CHAPTER 2. BASIS FUNCTION METHOD

there is available a certain prior knowledge about the type of parameter changes, the basis can
be chosen so as to reflect dominant patterns present in parameter trajectories, e.g. for piecewise
constant parameter trajectories, the Haar wavelets could be applied successfully. When parameter
trajectories are known to have limited bandwidth, then a certain number of prolate spheroidal
wave functions are guaranteed to provide the best local approximation in the mean squared sense
[44]. One can also assume that parameter trajectories are realizations of a random process with a
known correlation matrix. In this case, the functions originating from the Karhunen-Loéve theorem
[39] (further referred to as KL functions) are proven to provide an optimal reconstruction of the
unknown trajectory. Note that the last approach can be seen as a bridge between stochastic and
deterministic modelling of parameter variations.

When no prior knowledge is available (which is typical), basis functions of a high generalization
capability should be used. Examples of such general-purpose basis functions, that are frequently
used, are

• polynomial basis, which allows one for the local Taylor approximation of parameter trajec-
tories

fl|k(i) =
(
i

k

)l−1
, i ∈ Ik, l = 1, . . . ,m

The shape of first five Legendre polynomials (orthonormal polynomial basis functions) was
presented in figure 2.1.

• sine-cosine basis, which allows one for the the local Fourier approximation of parameter
trajectories

fl|k(i) =
{

cos πi(l−1)
2k , l ≡ 0 (mod2)

sin πi(l−1)
2k , l ≡ 1 (mod2)

, i ∈ Ik, l = 1, . . . ,m

• complex exponential basis

fl|k(i) = 1√
K
e
ωli
K , i ∈ Ik, l = 1, . . . ,m,

where ωl = (−1)l−12πd l2e and dxe denotes the smallest integer larger than x (the so-called
ceil function).

Note that, both polynomial and sine-cosine functions are already presented in a normalized
(but not orthogonal) form and complex exponential basis functions are already orthonormal.

2.1.2 BF estimator
If the vector notation is incorporated, assumption (A2.1) can be expressed as follows

θj(t+ i) = fffH
m|k(i)αααj,m|k(t), j = 1, . . . , n; i ∈ Ik, (2.2)

where

fffm|k(i) = [f1|k(i), . . . , fm|k(i)]T

αααj,m|k(t) = [α1
j,m|k(t), . . . , αmj,m|k(t)]T,

or even in a more compact form

θθθ(t+ i) = FFFm|k(i)αααm|k(t), i ∈ Ik, (2.3)

where

αααm|k(t) = [αααT
1,m|k(t), . . . ,αααT

n,m|k(t)]T

FFFm|k(i) = IIIn ⊗ fffH
m|k(i),

and ⊗ denotes the Kronecker product of corresponding vectors/matrices. The subscript m|k was
added to indicate that the shape and properties of basis functions, as well as the properties of the
BF estimator, depend on the choice of these two hyperparameters.
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2.1. INTRODUCTION 25

Figure 2.1: Five first Legendre polynomials for k = 200.

Under (A2.1) the system (1.2) can be locally described using a higher-order, but time-invariant
model

y(t+ i) = αααH
m|k(t)ψψψm|k(t, i) + e(t+ i), i ∈ Ik, (2.4)

where ψψψm|k(t, i) = ϕϕϕ(t) ⊗ fffm|k(i) denotes the generalized regression vector. The estimates of
coefficients αααm|k(t) can be found using the WLS method

α̂ααm|k(t) = arg min
ααα

k∑
i=−k

wk(i)|y(t+ i)−αααHψψψm|k(t, i)|2, (2.5)

where {wk(i) ∈ R+, i ∈ Ik} denotes a symmetrical, nonnegative weighting sequence, which is
nonincreasing for i ≥ 0 and wk(0) = 1. It is worth mentioning that the most reasonable choice of a
weighting function for the BF approach is a uniform (nonpreferential) weighting wk(i) ≡ 1, i ∈ Ik.
However, other (especially bell-shaped) weighting sequences are frequently used in the LBF method
since they can substantially increase the estimation accuracy by applying more emphasis on data
closer to the centre of the analysis window. Two important examples of such weighting sequences
are

• cosinusoidal window
wk(i) = cos πi2k , i ∈ Ik.

• Hann window
wk(i) = 0.5

(
1 + cos πi

k

)
.

Note that the cost function optimized in (2.5) is a scalar, real-valued function of a multidimen-
sional complex-valued variable, which makes the gradient-based optimization less straightforward.
This can be done using the so-called Wirtinger derivative (also known as the CR-calculus) [21],
[109]. For the explicit solution to this problem and additional information on this topic see ap-
pendix A of this dissertation. Although the optimization procedure is more challenging than for
real numbers, the result remains very similar

α̂ααm|k(t) = PPP−1
m|k(t)pppm|k(t), (2.6)
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26 CHAPTER 2. BASIS FUNCTION METHOD

PPPm|k(t) =
k∑

i=−k
wk(i)ψψψm|k(t, i)ψψψH

m|k(t, i) > 0

pppm|k(t) =
k∑

i=−k
wk(i)y∗(t+ i)ψψψm|k(t, i),

(2.7)

provided that the generalized regression matrix PPPm|k(t) is nonsingular.
The parameter estimates can be obtained using

θ̂θθ
BF
m|k(t+ i|t) = FFFm|k(i)α̂ααm|k(t), i ∈ Ik. (2.8)

The notation θ̂θθ
BF
m|k(t + i|t) is used to emphasize, that the estimates are obtained for the analysis

window, centered around t.

Remark - numerical well-conditioning
It is clearly visible that the solution to (2.6) depends on the well-conditioning of the matrix PPPm|k(t).
For m = 1, in which case the basis function method reduces down to the WLS method, the
stochastic conditions for invertibility of the generalized regression matrix PPPm|k(t) were given in
[75]. However, in general when m ≥ 1 the invertibility conditions are unknown. Nevertheless,
in practice, the generalized regression matrix could only be ill-conditioned when the ratio K/mn
becomes close to 1.

Remark - segmentation
It would be rather naive to assume that coefficients ααα(t) and the set of chosen basis functions can
characterize parameter trajectories in the entire time domain. This would mean that the time-
varying model of a nonstationary process is in fact reducible to the time-invatiant model, and that
the methods of identification of stationary systems could be used for such process. In practice,
some segmentation of the available data is performed firstly (see [66] or [45] for a discussion on
this topic), and then the BF method is applied to each segment. This approach, however, might
invoke discontinuities in parameters’ estimates on the frame borders. Additionally, the accuracy
of estimates usually deteriorates at the borders of the analysis window, because the estimates at
the end of a frame are functions of the past or “future” data only. This problem can be alleviated
by applying a simple “clipping” technique [65]. At the cost of a slight increase of computational
complexity (since it requires using overlapping frames), it allows one to obtain higher accuracy
estimates.

2.2 Algebraic properties of the basis function method
For brevity and clarity of analytical results, the following assumption is adopted hereafter

(A2.2) The chosen basis functions are wk-orthonormal, namely

k∑
i=−k

wk(i)fffm|k(i)fffH
m|k(i) = IIIm

From an analytical standpoint (A2.2) is by no means critical. Moreover, any set of linearly
independent basis functions can be wk-orthonormalized, e.g. using the modified Gram-Schmidt
method [28].

2.2.1 Change of coordinates
Suppose that the originally chosen functions are transformed using a nonsingular matrix AAA which
does not change the subspace spanned by the basis functions but only transforms the coordinates
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2.3. STATISTICAL PROPERTIES OF THE BF METHOD 27

f̃ffm|k(i) = AAAfffm|k(i). The estimates obtained with the new basis functions have the form

α̃ααm|k(t) = arg min
ααα

k∑
i=−k

wk(i)|y(t+ i)−αααHϕϕϕ(t+ i)⊗AAAfffm|k(i)|2 = P̃PP
−1
m|k(t)p̃ppm|k(t), (2.9)

where

P̃PPm|k(t) =
k∑

i=−k
wk(i)ψ̃ψψm|k(t, i)ψ̃ψψ

H
m|k(t, i) =

k∑
i=−k

wk(i)
[
ϕϕϕ(t+ i)⊗AAAfffm|k(i)

] [
ϕϕϕH(t+ i)⊗ fffH

m|k(i)AAAH
]

= (IIIn ⊗AAA)PPPm|k(t)(IIIn ⊗AAAH),
(2.10)

p̃ppm|k(t) =
k∑

i=−k
wk(i)ψ̃ψψm|k(t, i)y∗(t+i) =

k∑
i=−k

wk(i)
[
ϕϕϕ(t+ i)⊗AAAfffm|k(i)

]
y∗(t+i) = (IIIn⊗AAA)pppm|k(t).

(2.11)
Note that since

α̃ααm|k(t) = (IIIn ⊗AAAH)−1α̂ααm|k(t), (2.12)

and
θ̃θθm|k(t+ i|t) = F̃FFm|k(i)α̃ααm|k(t), (2.13)

where F̃FFm|k(i) = IIIn ⊗ f̃ff
H
m|k(i), it holds that

θ̃θθm|k(t+ i|t) = [IIIn ⊗ fffH
m|k(i)AAAH](IIIn ⊗AAAH)−1α̂ααm|k(t) = θ̂θθm|k(t+ i|t), (2.14)

where
The transitions follow from the well-known property of the Kronecker product (AAA⊗BBB)(CCC⊗DDD) =

(AAACCC⊗BBBDDD) which holds provided that dimensions of corresponding matrices match. According to
(2.14), as long as the functions span the same subspace, the result of estimation remains unchanged.
Since wk-orthonormalization is a linear transformation, orthonormal and not orthonormal functions
spanning the same subspace produce exactly the same estimation results.

2.3 Statistical properties of the BF method
2.3.1 Introduction
Before we derive the statistical properties of the BF estimator, some results regarding the conver-
gence of the generalized regression matrix to its expected value will be needed. All derivations
require the assumption that the input signal {u(t)} is a zero-mean wide-sense stationary random
process with autocorrelation function ru(s) = E[u(t)u∗(t− s)], s ∈ Z.

To prove the convergence, one needs to ensure that the basis functions are well defined for k
growing to infinity and one also needs to establish some bounds for them. Thus far we have not
been specifying how the sequences {fl|k(i), i ∈ Ik, l = 1, . . . ,m, m, k ∈ N+} can be generated. For
the sake of this proof we will assume that they are obtained by wk-orthonormalization of sequences
{gl|k(i), i ∈ Ik, l = 1, . . . ,m, m, k ∈ N+} obtained by sampling some continuous-time integrable
functions gl : [−1, 1]→ C

gl|k(i) = gl

(
i

k

)
, i ∈ Ik.

We will also assume that functions gl(τ), l = 1, . . . ,m are bounded, namely

∃Ml>0∀τ∈[−1,1] |gl(τ)| < Ml, l = 1, . . . ,m,

and that wk(i), i ∈ Ik was obtained by sampling the positive-valued continuous-time function
w : [−1, 1]→ (0, 1]:

wk(i) = w

(
i

k

)
, i ∈ Ik.

Under these assumptions the following lemma can be proved:
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28 CHAPTER 2. BASIS FUNCTION METHOD

Lemma 2.1
∃c1>0∃k0>0∀k>k0∀i∈Ik |fl|k(i)| < c1√

k
, l = 1, . . . ,m. (2.15)

Proof
The wk-orthonormalization can be written down as a linear transform

fffm|k(i) = GGG−1
m|kgggm|k(i), i ∈ Ik, (2.16)

where gggm|k(i) = [g1|k(i), . . . , gm|k(i)]T,

QQQm|k =
k∑

i=−k
wk(i)gggm|k(i)gggH

m|k(i),

and GGGm|k is a square, nonsingular matrix, such that QQQm|k = GGGm|kGGGH
m|k. Note that this is not a

matrix square root in general [28], however, for a positive semidefinite Hermitian matrix, there
exists a unique Hermitian positive semidefinite matrix GGGm|k which is also a matrix square root of
QQQm|k, namely QQQm|k = GGGm|kGGGH

m|k = GGGm|kGGGm|k. Nonetheless, the decomposition QQQm|k = GGGm|kGGGH
m|k

is also nonunique, since, having GGGm|k, a new matrix G̃GGm|k which also obeys the decomposition
QQQm|k = G̃GGm|kG̃GG

H
m|k can be easily found as G̃GGm|k = GGGm|kUUU, where UUU is an m×m unitary matrix.

Note that

lim
k→∞

1
k

QQQm|k = lim
k→∞

1
k

k∑
i=−k

wk(i)gggm|k(i)gggH
m|k(i) = lim

k→∞

1
k

k∑
i=−k

w

(
i

k

)
ggg
(
i

k

)
gggH
(
i

k

)

=
∫ 1

−1
w(τ)ggg(τ)gggH(τ)dτ = QQQ > 0,

(2.17)

where ggg(τ) = [g1(τ), . . . , gm(τ)]T. This means that any element qijm|k = [QQQm|k](ij), i, j = 1, . . . ,m
of the matrix QQQm|k obeys

lim
k→∞

1
k
qijm|k = qij , i, j = 1, . . . ,m, (2.18)

where qij = QQQ(ij) is an element of the matrix QQQ. Consequently, any element of a matrix GGG−1
m|k:

g̃ijm|k = [GGG−1
m|k](ij) obeys

g̃ijm|k = O
(

1√
k

)
. (2.19)

Combining this result with (2.16), one obtains that

∃c1>0∃k0>0∀k>k0∀i∈Ik |fl|k(i)| < c1√
k
, l = 1, . . . ,m. � (2.20)

Having this result, one can start proving that

lim
k→∞

PPPm|k(t) = E[PPPm|k(t)] = PPP0 = ΦΦΦ⊗ IIIm, (2.21)

in a mean squared sense, where

ΦΦΦ = E[ϕϕϕ(t)ϕϕϕH(t)] =

 ru(0) . . . ru(n− 1)
... . . . ...

r∗u(n− 1) . . . ru(0)

 . (2.22)

Since the matrices PPPm|k(t) and PPP0 are by definition Hermitian block matrices with Hermitian
blocks, one can choose any element from the upper triangle of any block of matrix PPPm|k(t) and
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2.3. STATISTICAL PROPERTIES OF THE BF METHOD 29

prove its convergence to the corresponding element of PPP0. Define

dn1n2m1m2(t, k) =
k∑

i=−k
wk(i)fm1|k(i)f∗m2|k(i)[u(t− n1 + i)u∗(t− n2 + i)− ru(n2 − n1)],

n1, n2 = 1, . . . , n, n1 ≤ n2

m1,m2 = 1, . . . ,m, m1 ≤ m2

(2.23)

the element from the [m(n1 − 1) + m1]-th row and [m(n2 − 1) + m2]-th column of a Hermitian
matrix

DDDm|k(t) = PPPm|k(t)−PPP0. (2.24)

The essence of the proof is to show that

lim
k→∞

E[|dn1n2m1m2(t, k)|2] = 0. (2.25)

One should start from

E[|dn1n2m1m2(t, k)|2] = E
{ k∑
i=−k

k∑
j=−k

wk(i)wk(j)fm1|k(i)f∗m1|k(j)f∗m2|k(i)fm2|k(j)×

× [u(t− n1 + i)u∗(t− n2 + i)− ru(n2 − n1)]×

× [u∗(t− n1 + j)u(t− n2 + j)− r∗u(n2 − n1)]
}

=
k∑

i=−k

k∑
j=−k

ζk(i, j)E[u(t− n1 + i)u∗(t− n2 + i)u∗(t− n1 + j)u(t− n2 + j)

− ru(n2 − n1)u∗(t− n1 + j)u(t− n2 + j)
− r∗u(n2 − n1)u(t− n1 + i)u∗(t− n2 + i) + |ru(n2 − n1)|2],

(2.26)

where ζk(i, j) = wk(i)wk(j)fm1|k(i)f∗m1|k(j)f∗m2|k(i)fm2|k(j), i, j ∈ Ik. Note that

E[ru(n2 − n1)u∗(t− n1 + j)u(t− n2 + j)] = ru(n2 − n1)r∗u(n2 − n1) = |ru(n2 − n1)|2,

and analogically

E[r∗u(n2 − n1)u(t− n1 + i)u∗(t− n2 + i)] = r∗u(n2 − n1)ru(n2 − n1) = |ru(n2 − n1)|2.

Hence

E[|dn1n2m1m2(t, k)|2] =
k∑

i=−k

k∑
j=−k

ζk(i, j)
{

E[u(t− n1 + i)u∗(t− n2 + i)×

× u∗(t− n1 + j)u(t− n2 + j)]− |ru(n2 − n1)|2
}
.

(2.27)
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30 CHAPTER 2. BASIS FUNCTION METHOD

Because E[|dn1n2m1m2(t, k)|2] is real and nonnegative, one may write down the following expression

E[|dn1n2m1m2(t, k)|2] = |E[|dn1n2m1m2(t, k)|2]| =

∣∣∣∣∣∣
k∑

i=−k

k∑
j=−k

ζk(i, j)
{

E[u(t− n1 + i)u∗(t− n2 + i)×

× u∗(t− n1 + j)u(t− n2 + j)]− |ru(n2 − n1)|2
}∣∣∣∣

≤
k∑

i=−k

k∑
j=−k

∣∣∣∣ζk(i, j)
{

E[u(t− n1 + i)u∗(t− n2 + i)×

× u∗(t− n1 + j)u(t− n2 + j)]− |ru(n2 − n1)|2
}∣∣∣∣

=
k∑

i=−k

k∑
j=−k

|ζk(i, j)|
∣∣∣∣{E[u(t− n1 + i)u∗(t− n2 + i)×

× u∗(t− n1 + j)u(t− n2 + j)]− |ru(n2 − n1)|2
}∣∣∣∣ .

(2.28)

The first element of the double sum can be upper-bounded using lemma 2.1. and the fact that
∀i∈Ik wk(i) ≤ 1

∃c1>0∃k0>0∀k>k0∀i,j∈Ik |ζk(i, j)| ≤ c41
k2 . (2.29)

To proceed with the proof, one needs to restrict the second modulus inside the double sum. This
is why, one needs an additional assumption about the mixing (asymptotic independence) conditions
for {u(t)}. We will start with the one that is usually met in telecommunication applications.

(A2.3) The input signal {u(t)} is a zero-mean N -dependent sequence of circular complex
random variables with finite statistical moments up to the fourth order moment
E[|u(t)4|] = c4u <∞.

Formally, a circularity of a complex random variable x means that for any real a, x and xeai

have the same distribution [21]. For the purpose of this proof only the following properties of a
complex circular random variable x are important E(x) = 0, E[Re(x)2] = E[Im(x)2] = 1

2var(x)
and E[Re(x)Im(x)] = 0. Complex random variables obeying the conditions above are sometimes
called “proper” [1], [61].

Under this assumption, for some combination of indexes i and j in a double sum, the expectation
of a product of random variables can be replaced by the product of expectation. More precisely,
when |i − j| > N , |i − n1 + j − n2| > N and |i − n2 + j − n1| > N , each one of the random
variables u(t−n1 + i) and u(t−n2 + i) is independent from each one of the pair u(t−n1 + j) and
u(t− n2 + j). In such a case

E[u(t− n1 + i)u∗(t− n2 + i)u∗(t− n1 + j)u(t− n2 + j)] =
E[u(t− n1 + i)u∗(t− n2 + i)]E[u∗(t− n1 + j)u(t− n2 + j)] = ru(n2 − n1)r∗u(n2 − n1) =
|ru(n2 − n1)|2,

(2.30)

and as a consequence nonzero elements will occur in the second modulus of (2.28) only when the
aforementioned conditions for i and j are not met. It is worth noting, that these three conditions
can be replaced by one, which is more restrictive: |i − j| > N + |n2 − n1|, which can be further
majorized by |i− j| > N + n.

For i = j there are exactly K nonzero elements, for i = j±1, one has K−1 nonzero quantities,
and so on. Summarizing, the double sum contains less than K + 2[K − 1 + K − 2 + . . . + K −
(N + |n2 − n1|)] nonzero elements, and this is smaller than (2N + 2n+ 1)(2k + 1). Regarding the
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2.3. STATISTICAL PROPERTIES OF THE BF METHOD 31

nonzero quantities, they can be upper-bounded

E[|dn1n2m1m2(t, k)|2] ≤
k∑

i=−k

k∑
j=−k

|i−j|≤N+n

|ζk(i, j)|
∣∣∣∣{E[u(t− n1 + i)u∗(t− n2 + i)×

× u∗(t− n1 + j)u(t− n2 + j)]− |ru(n2 − n1)|2
}∣∣∣∣

≤
k∑

i=−k

k∑
j=−k

|i−j|≤N+n

|ζk(i, j)|
{
|E[u(t− n1 + i)u∗(t− n2 + i)×

× u∗(t− n1 + j)u(t− n2 + j)]|+ |ru(n2 − n1)|2
}
.

(2.31)

Using the version of Cauchy-Schwarz inequality

|E(xy)|2 ≤ E(|x|2)E(|y|2),

one obtains

|E[u(t− n1 + i)u∗(t− n2 + i)u∗(t− n1 + j)u(t− n2 + j)]|
≤
√
|E[|u(t− n1 + i)|2|u(t− n2 + i)|2]E[|u(t− n1 + j)|2|u(t− n2 + j)|2]|

≤ 4
√
E[|u(t− n1 + i)|4]E[|u(t− n2 + i)|4]E[|u(t− n1 + j)|4]E[|u(t− n2 + j)|4] = c4u.

(2.32)

Note also that |ru(n2 − n1)|2 ≤ σ4
u, where σ2

u is a variance of the input signal.
Combining (2.29) with (2.31) and (2.32), one finally obtains

∃c1>0∃k0>0∀k>k0∀i∈Ik E[|dn1n2m1m2(t, k)|2] ≤ (2N + 2n+ 1)(2k + 1)c41
k2 [c4u + σ4

u] = O
(

1
k

)
,

(2.33)

which results in
lim
k→∞

E[|dn1n2m1m2(t, k)|2] = 0, q.e.d. (2.34)

If needed, the mixing condition from (A2.3) can be relaxed if one assumes that {u(t)} is a
sequence of Gaussian random variables.

(A2.4) {u(t)} is a zero-mean wide-sense stationary sequence of complex Gaussian random
variables with exponentially decaying autocorrelation function ru(s) = E[u(t)u∗(t −
s)], s ∈ Z:

∃c2>0, β∈(0,1)∀s∈Z |ru(s)| ≤ c2β|s|.

Under (A2.4) and using the well-known extension of the Isserlis’ theorem for the zero-mean
complex Gaussian processes [88], which takes the form

E[x1x2x
∗
3x
∗
4] = E[x1x

∗
3]E[x2x

∗
4] + E[x1x

∗
4]E[x2x

∗
3], (2.35)

one obtains

E[u(t− n1 + i)u∗(t− n2 + i)u∗(t− n1 + j)u(t− n2 + j)] = |ru(j − i)|2 + |ru(n2 − n1)|2. (2.36)

Combining this with (2.28), one arrives at

E[|dn1n2m1m2(t, k)|2] ≤
k∑

i=−k

k∑
j=−k

|ζk(i, j)||[|ru(j − i)|2 + |ru(n2 − n1)|2 − |ru(n2 − n1)|2]| (2.37)

=
k∑

i=−k

k∑
j=−k

|ζk(i, j)||ru(j − i)|2. (2.38)
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32 CHAPTER 2. BASIS FUNCTION METHOD

Hence, for sufficiently large k, this expression can be bounded by

E[|dn1n2m1m2(t, k)|2] ≤ c41
k2

k∑
i=−k

k∑
j=−k

|ru(j − i)|2 ≤ c41c
2
2

k2

k∑
i=−k

k∑
j=−k

β2|j−i|. (2.39)

The closed-form formula for
∑k
i=−k

∑k
j=−k β

2|j−i| can be easily found, however, for this proof the
following upper bound is sufficient

∀k>0∀β∈(0,1)

k∑
i=−k

k∑
j=−k

β2|j−i| ≤ 4k + 1
1− β2 , (2.40)

which means that
∃c3>0∃k0>0∀k>k0 E[|dn1n2m1m2(t, k)|2] ≤ c3

k
, (2.41)

and consequently
lim
k→∞

E[|dn1n2m1m2(t, k)|2] = 0. (2.42)

The rate of convergence is of order O
( 1
k

)
.

Remark
Even though the assumptions (A2.3) and (A2.4) may look restrictive, numerical evidence suggests
that convergence takes place under much weaker mixing conditions. For example, figure 2.2 shows
the behavior (averaged by 10 independent realizations of the input signal) of the largest (the upper
plot) and smallest (the lower plot) eigenvalue of a matrix PPPm|k(t) form = 5 and n = 6 in a situation
when u(t) = 0.8u(t − 1) + e(t) and Re[e(t)] ∼ U(−0.5, 0.5), Im[e(t)] ∼ U(−0.5, 0.5). Note that
this situation does not fit either assumption (A2.3) or (A2.4) because the input signal is neither
N -dependent nor Gaussian.

2.3.2 Bias
For the derivation of the covariance matrix and expected trajectory of BF estimates, we will need
the following assumption

(A2.5) {e(t)}, independent of {ϕϕϕ(t)}, is a sequence of zero-mean, i.i.d. complex circular
random variables with finite variance σ2

e .

The result from the previous section justifies the following approximation valid for sufficiently
large values of k

PPP−1
m|k(t) ∼= PPP−1

o , (2.43)
which leads to the simplified version of the BF estimator

α̂ααm|k(t) ∼= α̃ααm|k(t) = PPP−1
o pppm|k(t), (2.44)

and
θ̂θθ

BF
m|k(t+ s|t) ∼= θ̃θθ

BF
m|k(t+ s|t) = FFFm|k(i)α̃ααm|k(t), s ∈ Ik (2.45)

Hence

θθθ
BF
m|k(t+ s|t) = E

[
θ̂θθ

BF
m|k(t+ s|t)

]
∼= E

[
θ̃θθ

BF
m|k(t+ s|t)

]
= E

[
FFFm|k(s)PPP−1

0

k∑
i=−k

wk(i)ψψψm|k(t, i)y∗(t+ i)
]

= FFFm|k(s)PPP−1
0 E

{ k∑
i=−k

wk(i)[ϕϕϕ(t+ i)⊗ fffm|k(i)][ϕϕϕH(t+ i)θθθ(t+ i) + e∗(t+ i)]
}
,

(2.46)
and since

E
{

[ϕϕϕ(t+ i)⊗ fffm|k(i)]ϕϕϕH(t+ i)
}

= ΦΦΦ⊗ fffm|k(i), (2.47)

the final result is

θθθ
BF
m|k(t+s|t) ∼= FFFm|k(s)

k∑
i=−k

wk(i)PPP−1
0 [ΦΦΦ⊗fffm|k(i)]θθθ(t+i) = fffH

m|k(s)
k∑

i=−k
wk(i)fffm|k(i)θθθ(t+i). (2.48)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


2.3. STATISTICAL PROPERTIES OF THE BF METHOD 33

Figure 2.2: The largest (the upper plot) and smallest (the lower plot) eigenvalue of matrix
PPPm|k(t) for m = 5 and n = 6 in a situation when u(t) = 0.8u(t − 1) + e(t) and Re[e(t)] ∼
U(−0.5, 0.5), Im[e(t)] ∼ U(−0.5, 0.5), depicted using black lines. The red lines show the true
eigenvalue of a matrix PPP0. Results were avereged over 10 independent realizations of the input
signal.
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34 CHAPTER 2. BASIS FUNCTION METHOD

Remark 1 - projection
When the flat (unity) weighting is applied, i.e., wh(i) ≡ 1, i ∈ Ik, then (2.48) can be interpreted
as the orthogonal projection of true parameter trajectories onto the subspace spanned by the basis
functions, which confirms that the choice of the coordinates cannot influence the estimation result,
only the change of the basis can. For uniform weighting wk(i) ≡ 1, i ∈ Ik (2.48) is an orthogonal
projection onto the subspace spanned by the basis functions.

Remark 2 - condition for approximate unbiasedness
When the design assumption (A2.1) is fulfilled, which means that parameter trajectories can be
described exactly as a linear combination of chosen basis functions, then (2.48) becomes

θθθ
BF
m|k(t+ s|t) ∼= fffH

m|k(s)
k∑

i=−k
wk(i)fffm|k(i)[IIIn⊗ fffH

m|k(i)]αααm|k(t) = FFFm|k(s)αααm|k(t) = θθθ(t+ s), s ∈ Ik,

(2.49)
and the BF estimator is approximately unbiased which stays in agreement with the remark above.

Remark 3 - filtering
Note that in the context of (2.48), the trajectory of expected estimates can be interpreted as the
effect of filtering the true parameter trajectory with a noncausal, time-varying filter associated
with the basis function method

θθθ
BF
m|k(t+ s|t) ∼=

k∑
i=−k

hBF
m|k(s, i)θθθ(t+ i), (2.50)

where
hBF
m|k(s, i) = wk(i)fffH

m|k(s)fffm|k(i), s, i ∈ Ik

is an impulse response associated with the BF method.

2.3.3 Covariance of the estimation errors
In order to compute the covariance matrix, the same approximation as in the previous subsection
can be used. Suppose that assumption (A2.1) holds true. Then

cov
[
θ̂θθ

BF
m|k(t+ s|t)

]
∼= cov

[
θ̃θθ

BF
m|k(t+ s|t)

]
= FFFm|k(s)cov

[
α̃ααm|k(t)

]
FFFH
m|k(s). (2.51)

Note also, that by combining (2.44) with (1.2), one arrives at

α̃ααm|k(t)−αααm|k(t) =
[
PPP−1

0

k∑
i=−k

wk(i)ψψψm|k(t, i)ψψψH
m|k(t, i)− IIImn

]
αααm|k(t)

+ PPP−1
0

k∑
i=−k

wk(i)ψψψm|k(t, i)e∗(t+ i)

= vvv1(t) + vvv2(t).

(2.52)

Consequently

cov[α̃ααm|k(t)] = E{[vvv1(t) + vvv2(t)][vvv1(t) + vvv2(t)]H} = E[vvv1(t)vvvH
1 (t)] + E[vvv2(t)vvvH

2 (t)], (2.53)

because under (A2.4), and (A2.5): E[vvv1(t)vvvH
2 (t)] = E[vvv2(t)vvvH

1 (t)] = 0. It can be also shown [64]
that under (A2.5) E[vvv1(t)vvvH

1 (t)] = O
( 1
K

)
, hence,

lim
k→∞

E[vvv1(t)vvvH
1 (t)] = 0,
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2.4. FREQUENCY CHARACTERISTICS OF THE BF METHOD 35

in a mean squared sense (hence also in probability). Therefore, for sufficiently long analysis win-
dows

cov[α̃ααm|k(t)] ∼= E[vvv2(t)vvvH
2 (t)]

= PPP−1
0 E

 k∑
i=−k

k∑
j=−k

wk(i)wk(j)ψψψm|k(t, i)ψψψH
m|k(t, j)e∗(t+ i)e(t+ j)

PPP−1
0 .

(2.54)

One can use the well-known extension of the Isserlis’ theorem [88] to show that

E[xxxxxxHyy∗] = E[xxxxxxH]E[yy∗] + E[xxxy∗]E[yxxxH]. (2.55)

Under the assumption (A2.5), and assuming that the noise is complex Gaussian, one can use
the above result to obtain

cov[α̃ααm|k(t)] ∼= σ2
e(ΦΦΦ−1 ⊗HHHm|k), (2.56)

where

HHHm|k =
k∑

i=−k
w2
k(i)fffm|k(i)fffH

m|k(i).

Hence

cov
[
θ̂θθ

BF
m|k(t+ s|t)

]
∼= σ2

e [IIIn ⊗ fffH
m|k(s)][ΦΦΦ−1 ⊗HHHm|k][IIIn ⊗ fffm|k(s)]

= σ2
e [ΦΦΦ−1 ⊗ fffH

m|k(s)HHHm|kfffm|k(s)]

= σ2
e [ΦΦΦ−1 ⊗

k∑
i=−k

wk(i)fffH
m|k(s)fffm|k(i)wk(i)fffH

m|k(i)fffm|k(s)]

= σ2
eΦΦΦ−1

k∑
i=−k
{hBF

m|k(s, i)[hBF
m|k(s, i)]∗} = σ2

eΦΦΦ−1
k∑

i=−k
|hBF
m|k(s, i)|2 = σ2

eΦΦΦ−1

lBF
m|k(s)

,

(2.57)

where

lBF
m|k(s) =

{ k∑
i=−k

|hBF
m|k(s, i)|2

}−1
, s ∈ Ik (2.58)

is the local equivalent number of observations. The name of this quantity originates from the
fact that for constant parameters, using the BF method is locally equivalent to using the least
squares technique with analysis window of length equal to lBF

m|k(s). The local equivalent number
of observations is typically not constant inside the analysis window because hBF

m|k(s, i) is made of
inner products between vectors of basis functions at different times. This means that the accuracy
of estimates at different points inside the analysis window will differ. An example of lBF

m|k(s) for
m = 5 Legendre polynomials and rectangular weighting seqience is depicted in figure 2.3.3 When
the estimates of basis function coefficients are utilized to obtain parameter estimates in the entire
analysis window, as in [66], the notions of an average value of the error covariance matrix and the
average equivalent memory of the BF estimator can be very useful. In this work, the main focus
is on local methods, hence these two quantities are not presented. However, their definitions can
be found in [66].

2.4 Frequency characteristics of the BF method
In this section derivation of frequency characteristics of the BF method is provided. It is worth
noting that in this subchapter all expectations are over different trajectories of parameter tra-
jectories. Thus far, parameter trajectories were treated as deterministic, but now the following
assumption will be adopted

(A2.6) {θθθ(t)}, independent of {u(t)} and {e(t)}, is a zero-mean, wide-sense stationary
process with a spectral density matrix SSSθ(ω).
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36 CHAPTER 2. BASIS FUNCTION METHOD

Figure 2.3: Shape of the local equivalent number of observations for k = 200 and m = 3 Legendre
polynomials, and rectangular weighting sequence.

Let us start by defining the cross-covariance matrices of system parameters as

QQQ(i) = E[θθθ(t)θθθH(t+ i)], i ∈ Z, (2.59)

then the spectral density matrix is defined as follows

SSSθ(ω) =
∞∑

s=−∞
E[θθθ(t)θθθH(t+ s)]e−iωs. (2.60)

Using the relationship (2.48) derived in the previous section, one can easily find the instantenous
frequency response associated with the BF method by computing the discrete Fourier transform
(DFT) of the impulse response of filter associated with the BF estimator

HBF
m|k(s, ω) =

k∑
i=−k

hBF
m|k(t, i)e−iωi = ABF

m|k(s, ω)eiφBF
m|k(s,ω), s ∈ Ik, (2.61)

where ABF
m|k(s, ω) = |HBF

m|k(s, ω)| and φBF
m|k(s, ω) = arg[Hm|k(s, ω)] are the amplitude and phase

responses respectively.
In this subsection, we are interested in examining the frequency distribution of the bias com-

ponent of the mean squared estimation error

B
BF
m|k(s) = E

[∣∣∣∣∣∣θθθ(t+ s)− θθθBF
m|k(t+ s|t)

∣∣∣∣∣∣2] . (2.62)

First, note that (2.48) can be expressed in the form

θθθ
BF
m|k(t+ s|t) ∼= ΘΘΘ(t)hhhm|k(s), (2.63)

where ΘΘΘ(t) = [θθθ(t−k), . . . , θθθ(t+k)] is an n×K matrix and hhhm|k(s) = [hBF
m|k(s,−k), . . . , hBF

m|k(s, k)]T,
and similarly

θθθ(t+ s) = ΘΘΘ(t)111K,s+k+1, (2.64)
where 111K,s+k+1 is an K × 1 indicator vector, namely a column vector which contains one on the
position s+ k + 1 and zeros elsewhere. Therefore

θθθ(t+ s)− θθθBF
m|k(t+ s) = [111K,s+k+1 − hhhm|k(s)]ΘΘΘ(t), (2.65)

and consequently

B
BF
m|k(s) ∼= [111K,s+k+1 − hhhm|k(s)]HE[ΘΘΘH(t)ΘΘΘ(t)][111K,s+k+1 − hhhm|k(s)]. (2.66)
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2.5. SELECTION OF REGRESSORS 37

Since elements of the resulting matrix E[ΘΘΘH(t)ΘΘΘ(t)] are related to cross-covariance matrices of
system parameters, the element from the i-th row and j-th column of E[ΘΘΘH(t)ΘΘΘ(t)] is given by

E[ΘΘΘH(t)ΘΘΘ(t)](ij) = Tr[QQQ(i− j)] = 1
2π

∫ π

−π
Tr[SSSθ(ω)]eiω(i−j)dω. (2.67)

Therefore, one finally obtains

B
BF
m|k(s) ∼=

1
π

∫ π

0
EBF
m|k(s, ω)Tr[SSSθ(ω)]dω, (2.68)

where
EBF
m|k(s, ω) = |1−HBF

m|k(s, ω)|2 (2.69)

is the instantaneous parameter matching characteristic of a BF estimator. This result is by no
means surprising and fully coincides with the previous remarks about the projection and approxi-
mate unbiasedness of the BF method. It also supports the claim, that when the spectral density
function of each parameter is known, basis functions can be chosen so as to capture all of the dom-
inant dynamical patterns of parameter changes. This also gives one an insight into the way the
basis function method will affect (on average) certain frequency components present in parameter
trajectories.

Remark
One can easily conduct a similar analysis for each parameter separately, obtaining

B
BF
j,m|k(s) = E

[∣∣∣θj(t+ s)− θBF
j,m|k(t+ s|t)

∣∣∣2] ∼= 1
π

∫ π

0
EBF
m|k(s, ω)Sθj(ω)dω, (2.70)

where Sθj(ω) denotes the spectral density function of a j-th parameter.

2.5 Selection of regressors
The models of time-varying systems are often sparse, which means that one needs to decide which
of the estimated parameters are of the smallest importance and discard them. Keeping spurious
parameters in the model would result in overfitting, thus decreasing the performance of the model.
The same problem applies to the basis function expansion of each parameter. The speed and
type of variations might be different for each parameter trajectory. As a consequence, one might
need different basis functions to successfully model changes of different parameters. Therefore, one
needs to be able to adaptively select the parameters and basis functions for each one of them. This
problem can be solved by adaptive selection of regressors - basis functions from the expansion of
each parameter. If the parameter is not critical for the model, all basis function coefficients will
be set to zero in its expansion resulting in discarding the parameter from the final model. The
adaptive choice of the most important regressors is most often implemented in one of two ways:
ascending or descending. In the first case, one starts from the first-order model and sequentially
adds new terms to the model until the reduction of the variance of residual errors is insignificant.
The descending approach works in the opposite way. One starts from the full-order model and
then drops the least significant regressors in consecutive iterations. The ideas described in this
section are tightly connected to the techniques used in the identification of nonlinear systems,
where overparametrization is a serious problem. In fact, some of the methods mentioned in the
thesis originate from that field.

2.5.1 The ascending approach
Let us introduce the family of first order models {M1

1(t), . . . ,Mmn
1 (t)} defined as follows

Mp
1(t) : y(t+ i) = [αlk,j(t)]∗fl|k(i)u(t+ i− j + 1) + ep1(t+ i),

p = (j − 1)m+ l, i ∈ Ik, l = 1, . . . ,m, j = 1, . . . , n.
(2.71)
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38 CHAPTER 2. BASIS FUNCTION METHOD

Estimates, obtained for the p-th first order model are given by

α̂
(1,p)
k (t) = arg min

α

k∑
i=−k

wk(i)|y(t+ i)− α∗fk,l(i)u(t+ i− j + 1)|2, p = 1, . . . , nm. (2.72)

To each of the models, the local sum of squared residuals can be assigned

J
(1,p)
k (t) =

k∑
i=−k

wk(i)|y(t+ i)− [α̂(1,p)
k (t)]∗fk,l(i)u(t+ i− j + 1)|2 p = 1, . . . , nm. (2.73)

As the final first order modelM1(t) =Mp1
opt

1 (t), we choose the one with the smallest value of cost
function (2.73)

p1
opt = arg min

p=1,...,nm
J

(1,p)
k (t). (2.74)

Based on the regressor fl1|k(i)u(t + i − j1 + 1) corresponding to the p1
opt we construct family of

second order models {M1
2(t), . . . ,Mmn−1

2 (t)} defined similarly to (2.71)

Mp
2(t) : y(t+ i) = [α2

k,j1
fl1|k(i)]∗u(t+ i− j1 + 1) + [α2

k,j(t)]∗fl|k(i)u(t+ i− j + 1) + ep2(t+ i),
p = (j − 1)m+ l, p 6= popt i ∈ Ik, l = 1, . . . ,m, j = 1, . . . , n,

(2.75)

such that ∀p M1(t) ⊂ Mp
2(t). Next, the estimates corresponding to each model are found and

the sum of squared residuals for each model is evaluated analogically to the way described for the
first-order models. After we find the second most important regressor fk,l2(i)u(t+ i− j2 + 1), the
family of third-order models is constructed and so on. The point of this procedure is to build a
sparse model, so the stopping criterion should be also proposed. The sum of squared residuals
cannot be used for this purpose because as the model order grows, the sum of squared residuals
uniformly decreases. Simultaneously, after passing a certain size, modelling capability decreases
and the model starts to fit the noise. This is why the criterion should include a penalty term on
a model order, preventing the model from overparametrization. The second problem is how to
perform the aforementioned procedure in a computationally efficient manner. These two issues
were discussed in [14]. In this article, the orthogonalization of regressors was proposed to solve the
least squares problem using QR decomposition. Thanks to that, estimates from the first iteration
can be used in the second iteration and so on. For the stopping criterion, the minimization of
the Akaike Information Criterion (AIC) [2] was suggested as one of the possible options. The
methods discussed in [14], called orthogonal least squares (OLS), were derived for time-invariant
nonlinear systems. However, it was shown in [47] and [107] that they can be easily adapted for the
identification of nonstationary processes with the basis function method.

2.5.2 The descending approach
The descending approach reverses the procedure from the ascending approach: we start from the
full-order model and then we iteratively discard some regressors until a stopping criterion is met.
An interesting approach to this problem was described in [11]. The authors propose to build a
basis of candidate functions to describe the nonlinear system dynamics and then to use available
data for sparse regression. As noted by the authors, LASSO [100] is a well-established method for
deducing sparse models from data. However, this method in the general case is computationally
very demanding. This is why the authors propose sequential thresholded least squares (STLS). The
method starts by performing ordinary least squares. In the second step, all regressors corresponding
to estimated coefficients smaller than some threshold are discarded from the model. The next step
computes the least squares estimates for the truncated model and the procedure is repeated. First
of all, it is worth noting that this method can be easily adapted to the basis function method,
just like in the case of the OLS technique. Secondly, the authors of [11] propose to set the
threshold based on the cross-validation. For time-varying systems, traditional cross-validation is
often impossible since typically, one only has one realization of the input/output data. Therefore,
one could modify this approach and use the AIC criterion to choose how many regressors should
be discarded at each step, as well as to determine how many steps should be performed. Similar
approach, utilizing wavelets was presented in [104], where authors used AIC and P test to determine
the final model order.
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2.6. LOCAL BASIS FUNCTION METHOD 39

2.6 Local Basis Function method
As mentioned before, the LBF method introduced and thoroughly described in [69] is a variant of
the BF estimator. Unlike the clasical BF method, the LBF estimator yields the estimates only for
the current time instant, not for the entire analysis interval. Consequently, the analysis in the LBF
method is carried out in a sliding-window mode, resulting in a series of point estimates obtained
for consecutive positions of the window. In a mathematical description of the LBF estimator the
relationships (2.4) - (2.6) remain unchanged, and differences start from (2.8), which now has the
form

θ̂θθ
LBF
m|k (t) = FFFm|k(0)α̂ααm|k(t). (2.76)

The properties of the LBF method can be easily derived, knowing the general properties of BF
estimators. The algebraic properties are exactly the same, since the estimation formula is the
same, and is based on the least squares method. The statistical properties of the LBF method
can be obtained by substituting into formulas derived in the previous section s = 0. The following
subsections compare the properties of LBF and BF methods.

2.6.1 Bias

The formula for the expected path of LBF estimates can be expressed as

θθθ
LBF
m|k (t) = θθθ

BF
m|k(t+ s|t)|s=0 ∼=

k∑
i=−k

hBF
m|k(0, i)θθθ(t+ i) =

k∑
i=−k

hLBF
m|k (i)θθθ(t+ i), (2.77)

where
hLBF
m|k (i) = hBF

m|k(0, i) = wk(i)fffH
m|k(0)fffm|k(i), i ∈ Ik, (2.78)

denotes an impulse response of a time-invariant linear filter associated with the LBF method.
Thus, all remarks about projection and unbiasedness hold true also for the LBF estimator. Addi-
tionally, when the weighting function has the property wk(0) = 1, then the LBF estimator projects
parmaeter trajectories onto the subspace spanned by the functions f̃ffm|k(i) = wk(i)fffm|k(i), i ∈ Ik.
Note that to obtain final estimates at time instant t, the same amount of information is extracted
from the past data and from the “future” (with respect to the time instant t) data, which guaran-
tees more accurate estimates of parameter trajectories. The exemplary impulse responses generated
using Legendre polynomials are presented in figure 2.4.

2.6.2 Covariance matrix of the estimation error

The covariance matrix associated with this method can be obtained in the same way

cov
[
θ̂θθ

LBF
m|k (t)

]
= cov

[
θ̂θθ

BF
m|k(t+ s|t)

] ∣∣∣∣
s=0

∼=
σ2
eΦΦΦ−1

lBF
m|k(0)

= σ2
eΦΦΦ−1

lLBF
m|k

. (2.79)

The equivalent number of observations of the local basis function estimator can be expressed as

lLBF
m|k =

{ k∑
i=−k

|hLBF
m|k (i)|2

}−1
. (2.80)

To get insights into the relationship between covariance matrices of BF and LBF estimators within
the range of the analysis window, one can compare the equivalent numbers of observations. Again,
the key observation is that for each time instant, LBF uses the same equivalent number of ob-
servations, in contrary to the BF estimator. Since typically lBF

m|k(0) is the local maximum of
{lBF
m|k(i), i ∈ Ik}, one can expect the covariance matrix of BF estimates to be greater (in a matrix

sense) than the covariance matrix of the LBF estimates for some time instants within the range of
the analysis window.
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40 CHAPTER 2. BASIS FUNCTION METHOD

Figure 2.4: Impulse responses associated with the LBF method for 1 (the uppmost plot), 3 (plot
in the middle) and 5 Legendre polynomials (the lowest plot).
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2.6. LOCAL BASIS FUNCTION METHOD 41

2.6.3 Frequency characteristics
Using the same technique as above, one can derive frequency characteristics of the LBF method
from corresponding characteristics of a BF estimator. Consequently, we have the discrete Fourier
transform of an impulse response associated with the LBF method

HLBF
m|k (ω) =

k∑
i=−k

hLBF
m|k (i)e−iωi = ALBF

m|k (ω)eiφLBF
m|k (ω), (2.81)

where ALBF
m|k (ω) = |HLBF

m|k (ω)| and φLBF
m|k (ω) = arg[HLBF

m|k (ω)] are the amplitude and phase responses
respectively.

The MSE of LBF estimator, for any particular time instant

B
LBF
m|k
∼=

1
π

∫ π

0
ELBF
m|k (ω)Tr[SSSθ(ω)]dω, (2.82)

where
ELBF
m|k (ω) = |1−HLBF

m|k (ω)|2, (2.83)
is a parameter matching characteristic of the LBF method.

2.6.4 MSE analysis
In this section, we give the expression for the MSE of LBF estimates and show the connection
between the chosen basis functions and the MSE score. To do so, we need to assume some statistical
knowledge about the type of parameter changes.

(A2.7) {θj(t)}, j = 1, . . . , n are sequences of mutually uncorrelated complex random vari-
ables with the same, up to the scaling factors ζj > 0 j = 1, . . . , n, autocorrelation
function E[θj(t)θ∗j (t− s)] = ζjrθ(s), s ≥ 0

The simplest, yet useful example of an autocorrelation function would be the autocorrelation
function of a bandlimited signal with uniform (nonpreferential) power spectral density S(ω) defined
as

S(ω) =
{
S0 for |ω| ≤ ω0

0 for |ω| > ω0
, (2.84)

where S0 is a positive constant and ω0 ∈ [−π, π] is a normalized cut-off frequency. For such a
signal, the autocorrelation function is given by r(s) = σ2sinc(ω0s). Another important example is
a function, that is frequently used when working with terrestrial wireless communication systems
under the assumption of wide-sense stationary uncorrelated scattering [48]. In such a case, one
often adopts the Jakes Doppler power profile, resulting in the following autocorrelation function
r(s) = σ2J0(ωds), where J0(·) is the zero-order Bessel function of the first kind and ωd denotes
the normalized maximum Doppler frequency, which is equal to the speed of the mobile device
and scatterers, divided by the carrier wavelength [56]. Comparison of these two autocorrelation
functions is shown in figure 2.5 for σ2 = 1 and ω0 = ωd = π/20. The upper plot shows the first
of the above-mentioned functions and the lower plot shows the function stemming from the Jakes’
model. As mentioned in the previous chapter, the MSE can be written down as a sum of bias and
variance components (1.6). Combining (1.6) with (2.77), the bias component can be expressed as

BLBF
m|k
∼= ||θθθ(t)−ΘΘΘ(t)hhhm|k||2, (2.85)

where ΘΘΘ(t) = [θθθ(t − k), . . . , θθθ(t + k)], hhhm|k = [hLBF
m|k (−k), . . . , hLBF

m|k (k)]T. Under the assumption
(A2.7), the expected value of the bias component (in this subsection, the expectation is carried
over different realizations of parameter trajectories) can be expressed as

B
LBF
m|k = E[BLBF

m|k ] ∼= η[rθ(0)− rrrH
θ hhh∗m|k − rrrT

θ hhhm|k + hhhH
m|kRRRθhhhm|k], (2.86)

where η =
∑n
j=1 ζj , rrrθ = [rθ(−k), . . . , rθ(k)]T, and

RRRθ =

 rθ(0) . . . rθ(K − 1)
... . . . ...

r∗θ(K − 1) . . . rθ(0)

 = QQQΛΛΛQQQH,
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42 CHAPTER 2. BASIS FUNCTION METHOD

Figure 2.5: Comparison of autocorrelation function of a bandlimited signal (the upper plot) and
the autocorrelation fucntion stemming from the Jakes’ model (the lower plot), for σ2 = 1 and
ω0 = ωd = π/6.
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2.6. LOCAL BASIS FUNCTION METHOD 43

ΛΛΛ = diag[λ1, . . . , λK ], is a matrix made up of the eigenvalues organized in non-ascending order λ1 ≥
λ2 ≥ . . . ≥ λK ≥ 0 and QQQ = [qqq1| . . . |qqqK ] is a matrix of corresponding orthonormal eigenvectors qqql
of RRRθ.

When parameter trajectories belong to the subspace spanned by the basis functions, the vari-
ance component from (1.6) can be expressed as

V LBF
m|k = Tr

{
cov

[
θ̂θθ

LBF
m|k (t)

]}
∼= κσ2

ehhhH
m|khhhm|k, (2.87)

where κ > 0 is a sum of eigenvalues of ΦΦΦ−1. Even if parameter trajectories do not belong to the
subspace spanned by the basis functions, increasingm increases the accuracy of this approximation.

Consequently, the expected mean squared estimation error can be obtained in the form

MLBF
m|k = E[BLBF

m|k ] + E[V LBF
m|k ] ∼= η

[
rθ(0)− rrrH

θ hhh∗m|k − rrrT
θ hhhm|k + hhhH

m|k

(
RRRθ + κσ2

e

η
IIIK
)

hhhm|k
]
. (2.88)

The expression (2.88) shows indirectly how the chosen basis functions affect the MSE of the
LBF estimator. Unfortunately, it ties the impulse response associated with a chosen basis with the
MSE score, which says little about basis functions themselves. One can minimize (2.88) and find
the functions providing the optimal impulse response, but it would require using K basis functions,
which is impossible in practice (unless n = 1) because of the problems with inverting generalized
regularization matrix. To avoid such troubles, the length of the analysis interval should be suitably
large, namely K � mn.

However, one can use functions, resulting from the Karhunen-Loéve theorem [39] (KL functions)
and it turns out that for such a choice of the basis, the optimal number of functions can be easily
found.

KL basis functions

The original Karhunen-Loéve theorem states that any second-order random process can be ex-
pressed using the infinite expansion of orthogonal functions [39], similar in some sense to the
Fourier expansion for deterministic signals. This result was developed independently by several
researchers [38], [40], [42], [54], and has since became useful in many fields of engineering [39]. From
the identification perspective, the most important consequence of the Karhunen-Loéve theorem is
that the second-order discrete-time random sequence of length K can be exactly described as a
linear combination of K orthogonal sequences, that we call here KL functions.

They are defined as follows

[fl|k(−k), . . . fl|k(k)]T = qqql, l = 1, . . . ,K. (2.89)

Note that because RRRθ is Toeplitz, these functions are even. Namely, let JJJK be an antidiagonal
matrix of sizeK×K, with antidiagonal entries equal to one and all other elemnts equal to zero. Left-
side multiplication by such a matrix flips the matrix “upside down” and right-side multiplication
flips the matrix left to right. Then, for each eigenvector we have that

RRRθqqqj = λjqqqj ⇐⇒ JJJKRRRθqqqj = λjJJJKqqqj ⇐⇒ JJJKRRR∗θqqq∗j = λjJJJKqqq∗j ⇐⇒
JJJKRRR∗θJJJKJJJKqqq∗j = λjJJJKqqq∗j ⇐⇒ RRRθqqq∗j = λjqqq∗j , j = 1, . . . ,K.

The last transitions follow from the facts that JJJKRRR∗θJJJK = RRRθ and JJJKJJJK = IIIK . This means that
the i-th element of qqqj , j = 1, . . . ,K obeys qj(i) = q∗j (K − i+ 1), i = 1, . . . ,K, and qj(k + 1) ∈ R.

An example of KL functions for bandlimited signal is shown in figure 2.6.
In practice, one cannot use K basis functions (unless n = 1). However, using (2.88), one can

find the optimal number of KL basis functions. Assume that instead of using all K eigenvectors,
one uses only the first m of them. In such a case, the impulse response is given by

hhhKL
m|k = QQQmQQQH

m111K,k+1 = QQQmfffKL
m|k(0), (2.90)

where QQQm is a K ×m matrix containing first m columns of QQQ. Because

QQQHQQQm =
[

IIIm
000

]
K×m

,
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44 CHAPTER 2. BASIS FUNCTION METHOD

Figure 2.6: Four first KL functions for a bandlimited parameter trajectory with ω0 = 0.1 and
σ2
θ = 1.

it is straightforward to show that

rrrH
θ (hhhKL

m|k)∗ = rrrT
θ hhhKL

m|k = (hhhKL
m|k)HRRRθhhhKL

m|k =
m∑
l=1

λl[fKL
l (0)]2. (2.91)

Therefore, the bias can be expressed as

E[BKL
m|k] = η

{
rθ(0)−

m∑
l=1

λl[fKL
l (0)]2

}
, (2.92)

and the variance is equal

E[V KL
m|k] ∼= κσ2

e

m∑
l=1

[fKL
l (0)]2. (2.93)

Consequently, the MSE for the KL basis has the form

MKL
m|k
∼= ηrθ(0) +

m∑
l=1

{
[κσ2

e − ηλl][fKL
l (0)]2

}
. (2.94)

By looking for m minimizing (2.94), one can find the optimal number of KL basis functions.
However, as emphasized several times before, the number of basis functions cannot be arbitrarily
large due to possible problems with the invertibility of the generalized regression matrix. To
guarantee invertibility of the generalized regression matrix PPPm|k(t) the number of basis functions
m must obey the condition mn ≤ K. This requirement guarantees that the amount of information
is greater than the number of estimated coefficients, which in practice secures well-conditioning of
the generalized regression matrix. To avoid numerical problems we will search m in the interval
[1,m0], where m0 = b(K − 10)/nc:

mopt = arg min
1≤m≤m0

MKL
m|k = arg max

1≤m≤m0

{
m : λm >

κσ2
e

η

}
. (2.95)

Numerical experiments suggest that this safeguard is sufficient to avoid numerical problems.
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2.6. LOCAL BASIS FUNCTION METHOD 45

Remark - DPSS

For bandlimited discrete signals, functions stemming from the Karhunen-Loéve theorem are equiv-
alent to discrete prolate spheroidal sequences (DPSS) [96]. It is also worth noting that in such a
case, the autocorrelation matrix might be poorly conditioned for K ≥ 32, causing numerical prob-
lems during computation of its eigenvectors [105]. However, in the article [30] the fast algorithm
for computing DPSS were provided. It is based on the eigendecomposition of a suitably chosen
tridiagonal symmetric matrix DDDθ that commutes with RRRθ [96]

[DDDθ](ij) =


1
2 i(K − i) if j = i+ 1(
K−1

2 − i+ 1
)2 cosω0 if j = i

1
2 (i− 1)(K − i+ 1) if j = i− 1
0 if |j − i| > 1

i, j = 1, . . . ,K. (2.96)

After computing the eigenvector qqql, l = 1, . . . ,K of matrix DDDθ, the corresponding eigenvalue of RRRθ

can be found using
λl = ||RRRθqqql||, l = 1, . . . ,K. (2.97)

Remark - bias-variance trade-off

Expressions (2.92) and (2.93) well illustrate the need for the bias-variance trade-off. When the
basis functions from defined by the expression (2.89) are adopted, rθ(0) =

∑K
l=1 λl[fKL

l (0)]2, so
the bias component decreases when we increase the number of basis functions. It is interesting
to note, that if K KL basis functions could be used, the LBF estimator would be unbiased. The
opposite effect takes place for variance (2.93). Because QQQ is a unitary matrix, the variance rises
up to κσ2

e with the increase of m.

2.6.5 Computational aspects
The LBF method, when implemented directly, can be computationally very expensive. The cost
of computing generalized regression matrix PPPm|k(t) and vector pppm|k(t) from (2.7) is equal to
O(Km2n2) and O(Kmn) MACs (multiply and accumulate operations), respectively. To solve
(2.6), additional O(m3n3) MACs are needed. The first part of the computational burden, associ-
ated with the update of PPPm|k(t) and pppm|k(t) can be decreased to O(m2n2) and O(mn), respectively,
when the basis functions and the weighting sequence are recursively computable [69]. Namely, as-
sume that there exists a matrix ΓΓΓm|k such that

fffm|k(i− 1) = ΓΓΓm|kfffm|k(i), (2.98)

and a number βk, such that
wk(i− 1) = βkwk(i). (2.99)

An obvious example of a recursively computable weighting sequence is uniform weighting wk(i) =
1, i ∈ Ik.

Examples of recursively computable functions

• Polynomial functions
Let

fl(i) =
(
i

k

)l−1
, i ∈ Ik,

then it is straightforward to check that

ΓΓΓm|k =


1 0 . . . 0
− 1
k 1 . . . 0
...

... . . . ...
(m−1
m−1)

(−k)m−1
(m−1
m−2)

(−k)m−2 . . . 1

 .
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46 CHAPTER 2. BASIS FUNCTION METHOD

• Sine-cosine functions
For

fffm|k(i) =
[
1, sin πi

2k , cos πi2k , . . . , sin
πim0

2k , cos πim0

2k

]T
,

m = 2m0 + 1, matrix ΓΓΓm|k is defined as follows

ΓΓΓm|k = bl diag{1,GGG1|k, . . . ,GGGm0|k},

where
GGGl|k =

[
cos πl2k − sin πl

2k
sin πl

2k cos πl2k

]
, l = 1, . . . ,m0.

• Complex exponential functions
Define

fffm|k(i) = 1√
K

[
1, e

−i2πi
K , e

i2πi
K , . . . , e

−i2πm0i
K , e

i2πm0i
K

]
, m = 2m0 + 1.

From the computational point of view, this basis is the most suitable one because in this case
ΓΓΓm|k is a diagonal matrix

ΓΓΓm|k = diag
{

1, e 2πi
K , e

−2πi
K , . . . , e

2πm0i
K , e

−2πm0i
K

}
.

Moreover, this basis is already orthogonal.

Suppose that one starts from one of the function types listed above and then performs a linear
transformation of the chosen basis, e.g. the wk-orthonormalization. It turns out that the new basis
is still recursively computable. Denote by AAA the matrix transforming the original basis defined by
fffm|k(i) to the new basis f̃ffm|k(i), namely

f̃ffm|k(i) = AAAfffm|k(i).

Then the new transition matrix is defined as

Γ̃ΓΓm|k = AAAΓΓΓm|kAAA−1. (2.100)

Note also, that if the original matrix ΓΓΓm|k is diagonalizable, then the linear transformation matrix
AAA can be easily found that transforms the basis to the basis with lower computational complexity.
If ΓΓΓm|k is not diagonalizable, there is always a transformation that allows one to bring the transition
matrix to Jordan cannonical form using, for example, the Golub-Kahan-Lanczos algorithm [28],
which may also reduce the computational complexity.

Examples
For the sine-cosine basis the transition matrix can be diagonalized, since its block components

are just the rotation matrices, so it holds that

GGGl|k =
[
cos πlk − sin πl

k

sin πl
k cos πlk

]
=
[
−
√

2
2 i

√
2

2√
2

2 −
√

2
2 i

] [
cos πlk − i sin πl

k 0
0 cos πlk + i sin πl

k

][ √2
2 i

√
2

2
−
√

2
2 i

√
2

2

]
,

so matrix A is defined as

AAA = bl diag{1,AAA1, . . . ,AAAm0}

AAAl =
[ √

2
2 i

√
2

2
−
√

2
2 i

√
2

2

]
, l = 2, . . . ,m0.

As a consequence the transformed basis becomes very similar to the complex exponential basis,
defined above. �

It is straightforward to check that the transition matrix associated with the polynomial basis is
not diagonalizable since all of its eigenvalues are equal to 1. What is more important, this matrix
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2.6. LOCAL BASIS FUNCTION METHOD 47

always has only one independent eigenvector pointing in a direction xxx = [0, . . . , 0, 1]T. This means
that only the Jordan canonical form (JCF) can be reached for this matrix. Since JCF is an upper
bidiagonal matrix, it is typically sparser than the initial matrix ΓΓΓm|k.

For the basis functions and weighting sequence, obeying (2.98) and (2.99), respectively, it holds
that

PPPm|k(t) = βk[IIIn ⊗ΓΓΓm|k]
[
PPPm|k(t− 1)− wk(−k)AAA(t− k − 1)⊗BBBm|k(−k)

]
[IIIn ⊗ΓΓΓH

m|k]
+ wk(k)AAA(t+ k)⊗BBBm|k(k)

(2.101)

pppm|k(t) = βk[IIIn ⊗ΓΓΓm|k]
[
pppm|k(t− 1)− wk(−k)ccc(t− k − 1)⊗ fffm|k(−k)

]
[IIIn ⊗ΓΓΓH

m|k]
+ wk(k)ccc(t+ k)⊗ fffm|k(k),

(2.102)

where AAA(t) = ϕϕϕ(t)ϕϕϕH(t), BBBm|k(i) = fffm|k(i)fffH
m|k(i), and ccc(t) = y∗(t)ϕϕϕ(t). This algorithm excludes

the last observation from the analysis window, then “shifts” the basis functions and weighting
sequence, and finally attaches the new observation to the analysis window. Note that for the basis
functions and weighting sequences obeying (2.98) and (2.99), respectively, the inverse of a matrix
PPPm|k(t) can be also computed recursively using the Sherman-Morrison formula [98]. However, due
to the presence of the matrix [IIIn ⊗ ΓΓΓm|k] and its Hermitian transpose, the number of real-valued
multiply and accumulate operations (later called MACs for short), required to update PPP−1

m|k(t), is
of order O(n2m3) (because of the sparse nature of this matrix). The number of MACs required
for the direct implementation is of order O(n3m3), hence, there is no real benefit in recursively
updating the inverse of PPPm|k(t).

Recursively computable complex weighting sequences

Some popular weighting functions, like cosinusoidal or Hann window, are not recursively com-
putable. However, they can be evaluated using the real part of another, complex-valued function
vk(i), i ∈ Ik which is recursively computable, namely vk(i− 1) = βkvk(i).

• Cosinusoidal window
The recursively computable complex function is defined as follows

vk(i) = ei πi2k , i ∈ Ik,

with βk = e−i π2k . The cosinusoidal window can be obtained as

wk(i) = cos πi2k = Re[vk(i)], i ∈ Ik.

• Hann window
The recursively computable complex function is similar to the function for cosinusoidal func-
tion

vk(i) = eiπik , i ∈ Ik,

with βk = e−iπk . The Hann window can be computed as follows

wk(i) = 0.5{1 + Re[vk(i)]}, i ∈ Ik.

Let vrk(i) = Re[vk(i)] and vik(i) = Im[vk(i)]. Then, to perform recursive computations, one
should compute and update two matrices/vectors PPPrm|k(t|t)/ppprm|k(t|t) and PPPim|k(t|t)/pppim|k(t|t) that
appears in the counterpart problem with complex weighting function

RRRm|k(t) =
k∑

i=−k
vrk(i)ψψψ(t, i)ψψψH(t, i) + i

k∑
i=−k

vik(i)ψψψ(t, i)ψψψH(t, i) = PPPrm|k(t|t) + iPPPim|k(t|t)

rrrm|k(t) =
k∑

i=−k
vrk(i)ψψψ(t, i)y∗(t+ i) + i

k∑
i=−k

vik(i)ψψψ(t, i)y∗(t+ i) = ppprm|k(t|t) + ipppim|k(t|t).

(2.103)
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48 CHAPTER 2. BASIS FUNCTION METHOD

Note that the above formula is not a decomposition into a real and imaginary part. Since the re-
gression vectors and basis functions are complex-valued, both PPPrm|k(t|t) and PPPim|k(t|t) are complex-
valued matrices (the same holds for the corresponding vectors). Only when all of the signals in the
system and the basis functions are real-valued, can (2.103) be interpreted as the decomposition
into the real and imaginary part of the matrix RRRm|k(t) and the vector rrrm|k(t).

The first step is to subtract the old observation from these matrices/vectors

PPPrm|k(t|t− 1) = PPPrm|k(t− 1|t− 1)− vrk(−k)AAA(t− k − 1)⊗BBBm|k(−k)
PPPim|k(t|t− 1) = PPPim|k(t− 1|t− 1)− vik(−k)AAA(t− k − 1)⊗BBBm|k(−k)
ppprm|k(t|t− 1) = ppprm|k(t− 1|t− 1)− vrk(−k)ccc(t− k − 1)⊗ fffm|k(−k)
pppim|k(t|t− 1) = pppim|k(t− 1|t− 1)− vik(−k)ccc(t− k − 1)⊗ fffm|k(−k)

(2.104)

Now assume that there exist βk ∈ C such that vk(i− 1) = βkvk(i), and βk = ak + ibk. Then

PPPrm|k(t|t) = [IIIn ⊗ΓΓΓm|k][akPPPrm|k(t|t− 1)− bkPPPim|k(t|t− 1)][IIIn ⊗ΓΓΓH
m|k] + vrk(k)AAA(t+ k)⊗BBBm|k(k)

PPPim|k(t|t) = [IIIn ⊗ΓΓΓm|k][bkPPPrm|k(t|t− 1) + akPPPim|k(t|t− 1)][IIIn ⊗ΓΓΓH
m|k] + vik(k)AAA(t+ k)⊗BBBm|k(k)

ppprm|k(t|t) = [IIIn ⊗ΓΓΓm|k][akppprm|k(t|t− 1)− bkpppim|k(t|t− 1)][IIIn ⊗ΓΓΓH
m|k] + vrk(k)ccc(t+ k)⊗ fffm|k(k)

pppim|k(t|t) = [IIIn ⊗ΓΓΓm|k][bkppprm|k(t|t− 1) + akpppim|k(t|t− 1)][IIIn ⊗ΓΓΓH
m|k] + vik(k)ccc(t+ k)⊗ fffm|k(k).

(2.105)

For the cosinusoidal window PPPm|k(t) = PPPrm|k(t|t) and pppm|k(t) = ppprm|k(t|t), while for the Hann
window PPPm|k(t) = 0.5[1 + PPPrm|k(t|t)] and pppm|k(t) = 0.5[1 + ppprm|k(t|t)].

It is a well-known fact, that the sliding-window-type algoritmhs are not exponentially, but only
mariginally stable, which means that numerical errors will increase at a linear rate. It is caused
by the fact that the spectral radius of matrix ΓΓΓm|k is equal to one. This means that the largest
eigenvalue (and possibly some other eigenvalues as well) lies on the unit circle in a complex plane.
Therefore, computation of PPPm|k(t) and pppm|k(t) should be resetted regularly using the explicit
formulae (2.7). It is easy to check that for basis functions described above all eigenvalues of matrix
ΓΓΓm|k lie on the unit circle in a complex plane. Numerical experiments have shown that the explicit
formulae have to be used every 5 to 20 samples, depending on the value of mn. The higher the
value of mn, the more frequent resetting is needed.

The second component of the LBF algorithm is solving of the set of linear equations

PPPm|k(t)α̂ααm|k(t) = pppm|k(t). (2.106)

It can be done numerically, reducing the complexity. Recently, the dichotomous coordinate descent
(DCD) algorithm was adapted for this task [93], allowing to reduce computaional complexity of
this step to as low as O(mn). The summary of this algortihm with the comparison of exact number
of multiply-add operations nedded for different steps is given in the next section.

2.6.6 The dichotomous coordinate descent approach for LBF and com-
putational costs

The dichotomous coordinate descent (DCD) algorithm, described in detail in [111], can be used to
recursively solve a system of equations, using just a few iterations. It was used in [93] alongside
with the basis functions method. The technique presented in this article was called SRLS-L, but
it is worth noting that it is just a different implementation of the LBF method. Note that after
adopting assumption (A2.1), one might rearrange (2.4)

y(t+ i) = αααH
m|k(t)ψψψm|k(t, i) + e(t+ i) =

n∑
j=1

m∑
l=1

α∗j,l(t)u(t− j + 1)fl|k(i) + e(t+ i)

=
m∑
l=1

fl|k(i)
n∑
j=1

α∗j,l(t)u(t− j + 1) + e(t+ i) = βββH
m|k(t)φφφm|k(t, i) + e(t+ i), i ∈ Ik,

(2.107)
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2.6. LOCAL BASIS FUNCTION METHOD 49

where φφφm|k(t, i) = fffm|k(i)⊗ϕϕϕ(t+ i) is just a permutated version of ψψψ(t, i). Since the LBF method
is based on solving a system of linear equations, any permutation in data will result in the same
permutation of estimated coefficients, and hence the ultimate result will remain the same1 [66].
Anyway, to apply the DCD algorithm, one needs to write the solution of the system of linear
equations in a recursive form, which for LBF is

α̂αα
LBF
m|k (t) = α̂αα

LBF
m|k (t− 1) + ∆αααLBF

m|k (t), (2.108)

where the equation that will be solved instead of

PPPm|k(t)α̂ααLBF
m|k (t) = pppm|k(t)

takes the form
PPPm|k(t)∆αααLBF

m|k (t) = rrrm|k(t), (2.109)
and rrrm|k(t) is a residual vector computed as

rrrm|k(t) = pppm|k(t)−PPPm|k(t)α̂ααLBF
m|k (t− 1). (2.110)

This notation allows one to use the DCD algorithm described in [111]. There is one more difference
between the description used here and in [93]. Namely, the authors of [93] use additional regu-
larization stabilizing the solution, so instead of linear regression they perform the so-called ridge
regression [36], [101].

Computational costs

Here we provide the exact computational costs of all algorithms designed to find the LBF estimates.
In all calculations, it was taken into account that single complex-valued multiplication requires 4
MACs.

The direct approach
We will start with the direct implementation of the LBF method. To compute all generalized

regression vectors inside the analysis window, one needs 4nmK MACs. Computation of the gener-
alized regression matrix takes approximately 2(nm)2K MACs because this matrix is by definition
Hermitian. Computation of the vector pppm|k(t) requires 4nmK MACs. Finally, solving the system
of linear equations directly, i.e. the number of MAC opperations is of order O(n3m3). The total
cost of the direct implementation is also of order O(n3m3).2

Recursive updates
The costs in this sections will characterize operations stemming from equations (2.104) and

(2.105). Computing the first line from (2.104) requires O(n2m2) operations (BBBm|k(−k) can be
precomputed). For the vector ppprm|k(t|t − 1) the cost is O(nm) MACs, which results in a number
of operations of order O(n2m2).

Computing [akPPPrm|k(t|t− 1)− bkPPPim|k(t|t− 1)] requires O(n2m2) MACs, because the matrices
are Hermitian. Multiplications [IIIn ⊗ ΓΓΓm|k][akPPPrm|k(t|t − 1) − bkPPPim|k(t|t − 1)][IIIn ⊗ ΓΓΓH

m|k] require
O(n2m3) MACs (because of the block diagonality), because the matrix ΓΓΓm|k can have a special
structure reducing the number of operations. The rest of calculations needed for the update are of
order O(n2m2), so the total cost is of order O(n2m3).

The DCD algorithm
The DCD algorithm updates the solution using Euclidean coordinate systems and the step size

is chosen using the binary representation of the solution, by proceeding from the most significant
bits to the least significant ones. According to [111], in the worst-case scenario, a single pass of the
algorithm requires only 4Ninm+Nb additions, whereNi denotes the number of algorithm iterations
(typically not greater than 16), and Nb is a number of significant bits (typically not greater than
24). Computing the residual vector requires (assuming that pppm|k(t) was already computed) 4(nm)2

MACs. Summarizing, the DCD approach requires 4(nm)2 + 4Ninm + Nb MACs. For example,
taking n = 20, m = 5, Ni = 16 and Nb = 24 results in approximately 1 000 000 MACs for the
direct method, and only 46 424 MACs (in the worst case scenario) when using DCD iterations.

1In fact, it can be proven that any orthogonal transformation of data will result in exactly the same transformation
of estimated parameters.

2All calculations are for the single position of the analysis window and do not contain constant costs associated
with computations that can be done beforehand.
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50 CHAPTER 2. BASIS FUNCTION METHOD

2.6.7 Hyperparameter optimization
The length of analysis window and the number of basis functions are two very important hyper-
parameters strongly affecting identification results. One method of tuning them is to run several
algorithms equipped with different settings and at each time instant t choose the one that provides
the best results, evaluated in terms of some local quality measure. Thus far, two local performance
measures were proposed: the modified version of the final prediction error (FPE) criterion [68],
originally derived by Akaike [4], and the local sum of squared leave-one-out interpolation errors.
The first of them is based on the idea of evaluating the estimates on a different data set. Denote
by Ω′k(t) = {ϕϕϕ′(t + i), e′(t + i), i ∈ Ik} the realization of input-output data, independent of the
realization Ωk(t) = {ϕϕϕ(t+ i), e(t+ i), i ∈ Ik} used for identification purposes. The FPE measure
is defined as

$m|k(t) = EΩk(t),Ω′
k
(t)

{ ∣∣∣∣y′(t)− [θ̂θθLBF
m|k (t)

]H
ϕϕϕ′(t)

∣∣∣∣2}. (2.111)

This can be expressed as

$m|k(t) = EΩk(t),Ω′
k
(t)

{ ∣∣∣∣e′(t)− [∆θθθLBF
m|k (t)

]H
ϕϕϕ′(t)

∣∣∣∣2}, (2.112)

where ∆θθθLBF
m|k (t) = θθθ(t)− θ̂θθ

LBF
m|k (t). Under the assumptions (A2.4), (A2.6) and using (2.57), (2.112)

becomes

$m|k(t) = σ2
e

(
1 + n

lLBF
m|k

)
. (2.113)

The final formula can be obtained using

σ̂2
m|k(t) = 1

Lw

k∑
i=−k

wk(i)|y(t+ i)− α̂ααH
m|k(t)ψψψm|k(t, i)|2

= 1
Lw

k∑
i=−k

wk(i)|e(t+ i)−∆αααH
m|k(t)ψψψm|k(t, i)|2

= 1
Lw

[
k∑

i=−k
wk(i)|e(t+ i)|2 − ζζζH(t)PPP−1

m|k(t)ζζζ(t)
]
,

(2.114)

where ζζζ(t) =
∑k
i=−k wk(i)ψψψ(t, i)e∗(t+ i) and Lw =

∑k
i=−k wk(i) is an effective window width. The

last transition follows from the fact that

∆αααm|k(t) = α̂ααm|k(t)−ααα(t) = PPP−1
m|k(t)

k∑
i=−k

wk(i)ψψψ(t, i)y∗(t+ i)

= PPP−1
m|k(t)

k∑
i=−k

wk(i)ψψψ(t, i)e∗(t+ i) = PPP−1
m|k(t)ζζζ(t),

(2.115)

which follows directly from (2.4) and (2.7).
Under (A2.5), (A2.6), and the assumption that the noise is Gaussian, one obtains

E[σ̂2
m|k(t)] = σ2

e −
1
Lw

E

 k∑
i=−k

k∑
j=−k

wk(i)wk(j)ψψψH(t, i)PPP−1
m|k(t)ψψψ(t, j)e(t+ i)e∗(t+ j)


∼= σ2

e −
1
Lw

k∑
i=−k

k∑
j=−k

wk(i)wk(j)E[ϕϕϕH(t+ i)ΦΦΦ−1ϕϕϕ(t+ j)e(t+ i)e∗(t+ j)]fffH
m|k(i)fffm|k(j)

= σ2
e

[
1− n

Lw

k∑
i=−k

w2
k(i)fffH

m|k(i)fffm|k(i)
]
.

(2.116)

Finally, by combining (2.113) and (2.116), one arrives at
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2.6. LOCAL BASIS FUNCTION METHOD 51

FPE(t) ∼= $m|k(t) =
1 + n

lLBF
m|k

1− n
Nm|k

σ̂2
m|k(t), (2.117)

where
Nm|k = Lw∑k

i=−k w
2
k(i)fffH

m|k(i)fffm|k(i)
,

and

σ̂2
m|k(t) = 1

Lw

k∑
i=−k

wk(i)
∣∣∣y(t+ i)− α̂ααH

m|k(t)ψψψ(t, i)
∣∣∣2 = 1

Lw

[
dk(t)− α̂ααH

m|k(t)pppm|k(t)
]
, (2.118)

where dk(t) =
∑k
i=−k wk(i)|y(t+ i)|2.

The second approach is based on the idea of leave-one-out cross-validation. The cost function
is defined as follows

JLBF
o,m|k(t) =

L∑
i=−L

∣∣∣εLBF
o,m|k(t+ i)

∣∣∣2 , (2.119)

where
εLBF
o,m|k(t) = y(t)− [θ̂θθ

LBF
o,m|k(t)]Hϕϕϕ(t) = y(t)− α̂ααH

o,m|k(t)ψψψ(t, 0) (2.120)

denotes leave-one-out interpolation error computed using the holey estimates of system trajectories,
i.e. the estimates obtained by excluding the central observation from the analysis window

θ̂θθ
LBF
o,m|k(t) = FFFm|k(0)α̂ααo,m|k(t) (2.121)

and

α̂ααo,m|k(t) = arg min
ααα

k∑
i=−k
i 6=0

wk(i)|y(t+ i)−αααHψψψm|k(t, i)|2 = PPP−1
o,m|k(t)pppo,m|k(t), (2.122)

PPPo,m|k(t) =
k∑

i=−k
i 6=0

wk(i)ψψψm|k(t, i)ψψψH
m|k(t, i) = PPPm|k(t)− wk(0)ψψψ(t, 0)ψψψH(t, 0)

pppo,m|k(t) =
k∑

i=−k
i 6=0

wk(i)y∗(t+ i)ψψψm|k(t, i) = pppm|k(t)− wk(0)ψψψ(t, 0)y∗(t).

(2.123)

Typically, weighting functions used for localization purposes in LBF method are bell-shaped with
wk(0) = 1, which simplifies the derivation.

Using (2.123) and the well-known Sherman-Morrison formula [28], and assuming that wk(0) =
1, one gets

α̂ααo,m|k(t) =
[
PPP−1
m|k(t) +

PPP−1
m|k(t)ψψψ(t, 0)ψψψH(t, 0)PPP−1

m|k(t)
1− qm|k(t)

]
[pppm|k(t)−ψψψ(t, 0)y∗(t)]

=
[
IIImn +

PPP−1
m|k(t)ψψψ(t, 0)ψψψH(t, 0)

1− qm|k(t)

]
α̂ααm|k(t)−

PPP−1
m|k(t)ψψψ(t, 0)y∗(t)

1− qm|k(t) ,

(2.124)

where
qm|k(t) = ψψψH

m|k(t, 0)PPP−1
m|k(t)ψψψm|k(t, 0) ∈ R+, (2.125)

is by construction a real, nonnegative number.
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52 CHAPTER 2. BASIS FUNCTION METHOD

Observe that LOOCV errors (2.120) can be now written as

εLBF
o,m|k(t) = y(t)− α̂ααH

m|k(t)
[
IIImn +

ψψψ(t, 0)ψψψH(t, 0)PPP−1
m|k(t)

1− qm|k(t)

]
ψψψ(t, 0)−

ψψψH(t, 0)PPP−1
m|k(t)y(t)

1− qm|k(t) ψψψ(t, 0)

=
y(t)− α̂ααH

m|k(t)ψψψ(t, 0)
1− qm|k(t) =

εLBF
m|k (t)

1− qm|k(t) ,

(2.126)

which allows one to compute (2.119) without evaluating the holey estimates of system parameters.
This algorithm can still be very time-consuming, unless PPP−1

m|k(t) is a by-product of computing (2.6).
To reduce computational burden, for sufficiently large k, qm|k(t) can be replaced by its expected
value

qm|k = E[qm|k(t)] ∼= E
{

[ϕϕϕH(t)⊗ fffH
m|k(0)][ΦΦΦ−1 ⊗ IIIm][ϕϕϕ(t)⊗ fffm|k(0)]

}
= nfffH

m|k(0)fffm|k(0). (2.127)

These two criteria can be also applied to choose the set of basis functions used for estimation.

2.6.8 Remark on the real-valued case
Note that most of the formulae and derivations presented in this chapter remain valid when the
signals {u(t)}, {y(t)} or/and model parameters θθθ(t) are real-valued. The only difference might
appear when all the signals are real and the chosen basis functions are complex-valued. Then the
final estimates will be the real parts of the estimates derived in this chapter. On the contrary,
when the system is complex and basis functions {fl(i), i ∈ Ik, l = 1, . . . ,m} are real-valued,
all equations remain the same. The only difference is that when all of the listed quantities are
real-valued, the recursive expressions for cosinusoidal and Hann window (2.103) - (2.105) will be
much simpler.
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Chapter 3

Fast local basis function method

The original LBF method, although proven to provide high-quality estimates of nonstationary
system parameters, has two drawbacks. Firstly, when implemented directly, it is very computa-
tionally expensive. Secondly, all basis function identification schemes developed thus far, attempt
to estimates all parameters simultaneously, treating them in the same way, whereas it might be
beneficial to apply different estimation settings to different parameters. Both of these issues can
be solved using the new, two-step algorithm - fast local basis function (fLBF) method, presented
in this chapter. The first step of this new method is called preestimation. It allows one to obtain
approximately unbiased estimates of parameter trajectories, regardless of the type or speed of their
variation. This property is not typical of identification of nonstationary processes and allows one
to obtain unique insight into the dynamics of the system. However, the price for unbiasedness is a
strong preestimation noise. This is the reason why preestimates cannot be used as final estimates
and need to be filtered first. Hence, the second step is called postfiltering. An important advantage
of this approach is that it gives an opportunity to adjust the filtering technique to each parameter
separately based either on some a priori knowledge or on the insights from the preestimation step.

3.1 Concept presentation
3.1.1 Preestimation
In this section we propose an estimator that is unbiased, regardless of the type and speed of
parameter variation, and we describe its statistical properties. Such a method yields estimates
that can be characterized by the following equation

θ̃θθ(t) = θθθ(t) + zzz(t), (3.1)

where zzz(t) is a zero-mean noise. Such an estimator is a “maximum bandwidth” estimator [9],
in the sense that it can track (in a mean sense) arbitrarily fast changes of system parameters.
Estimators that share this property will be called in this thesis preestimators. The name stems
from the fact that the unbiasedness of these estimators comes at a price of high variance of the
estimation errors. Because of this, the estimates they yield cannot be used as final estimates and
require further processing - posfiltering.

Suppose that the system obeys assumptions (A2.3) and (A2.5), and that the covariance matrix
ΦΦΦ of the regression vector is known. An estimator that fulfils this condition and takes the form

θ̃θθ(t) = ΦΦΦ−1ϕϕϕ(t)y∗(t). (3.2)

was proposed in [71]. This particular form of preestimator will be further called prototype estimator
or protoestimator for short.

Under (A2.5) the expected value of protoestimates is equal to

E[θ̃θθ(t)] = ΦΦΦ−1E[ϕϕϕ(t)ϕϕϕH(t)]θθθ(t) + ΦΦΦ−1E[ϕϕϕ(t)e∗(t)] = θθθ(t). (3.3)

The preestimation errors can be expressed as

∆θ̃θθ(t) = θ̃θθ(t)− θθθ(t) = [ΦΦΦ−1ϕϕϕ(t)ϕϕϕH(t)− IIIn]θθθ(t) + ΦΦΦ−1ϕϕϕ(t)e∗(t), (3.4)

53
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54 CHAPTER 3. FAST LOCAL BASIS FUNCTION METHOD

and the covariance matrix of preestimation errors is given by

cov[θ̃θθ(t)] = E{∆θ̃θθ(t)[∆θ̃θθ(t)]H} = E{[ΦΦΦ−1ϕϕϕ(t)ϕϕϕH(t)− IIIn]θθθ(t)θθθH(t)[ϕϕϕ(t)ϕϕϕH(t)ΦΦΦ−1 − IIIn]}
+ ΦΦΦ−1E[e(t)e∗(t)ϕϕϕ(t)ϕϕϕH(t)]ΦΦΦ−1

= ΦΦΦ−1E[ϕϕϕ(t)ϕϕϕH(t)θθθ(t)θθθH(t)ϕϕϕ(t)ϕϕϕH(t)]ΦΦΦ−1 − θθθ(t)θθθH(t) + ΦΦΦ−1E[e(t)e∗(t)ϕϕϕ(t)ϕϕϕH(t)]ΦΦΦ−1.

(3.5)

To obtain more insightful analytical results we will additionally assume that the input signal
and noise are complex Gaussian. Using the identity that can be derived from the moment theorem
for zero-mean complex Gaussian processes (an extension of an Isserlis’ theorem) [88]

E[xxxyyyHSSSpppqqqH] = E[xxxyyyH]SSSE[pppqqqH] + E[yyyHSSSppp]E[xxxqqqH], (3.6)

where SSS is a symmetric matrix and xxx,yyy,ppp,qqq are zero-mean, jointly normally distributed complex
random variables, one obtains that

E[ϕϕϕ(t)ϕϕϕH(t)θθθ(t)θθθH(t)ϕϕϕ(t)ϕϕϕH(t)] = E[ϕϕϕ(t)ϕϕϕH(t)]θθθ(t)θθθH(t)E[ϕϕϕ(t)ϕϕϕH(t)]
+ E[ϕϕϕH(t)θθθ(t)θθθH(t)ϕϕϕ(t)]E[ϕϕϕ(t)ϕϕϕH(t)]
= ΦΦΦθθθ(t)θθθH(t)ΦΦΦ + θθθH(t)ΦΦΦθθθ(t)ΦΦΦ,

(3.7)

and
E[e(t)e∗(t)ϕϕϕ(t)ϕϕϕH(t)] = σ2

eΦΦΦ. (3.8)

Hence
cov[θ̃θθ(t)] = θθθH(t)ΦΦΦθθθ(t)ΦΦΦ−1 + σ2

eΦΦΦ−1 ≥ σ2
eΦΦΦ−1. (3.9)

Note that the covariance matrix of the estimation errors depends on the way parameters vary
with time. It can be upper-bounded

cov[θ̃θθ(t)] ≤ λmax(ΦΦΦ)||θθθ(t)||2
λmin(ΦΦΦ) IIIn + σ2

e

λmin(ΦΦΦ)IIIn = λmax(ΦΦΦ)||θθθ(t)||2 + σ2
e

λmin(ΦΦΦ) IIIn, (3.10)

which stems from the facts that θθθH(t)ΦΦΦθθθ(t) ≤ λmax(ΦΦΦ)||θθθ(t)||2 and ΦΦΦ−1 ≤ 1
λmin(ΦΦΦ)IIIn. Because the

covariance matrix of preestimation errors depends strongly on the values of true parameters, the
variance of preestimation errors may be very high. This justifies the need for the second step -
postfiltering.

In the special case, where {u(t)} is a sequence of independent circular random variables (which
is often the case in telecommunication applications), the covariance matrix of the regression vector
is equal to ΦΦΦ = σ2

uIIIn. In this situation

cov[θ̃θθ(t)] = ||θθθ(t)||2IIIn + σ2
e

σ2
u

IIIn =
[
||θθθ(t)||2 + σ2

e

σ2
u

]
IIIn ∼= σ2

zIIIn, (3.11)

which means that preestimation errors are mutually uncorrelated.1
Figure 3.1 shows the protoestimates obtained for one of the illustrative systems described in

the first chapter. The figure illustrates the capability of preestimates to “x-ray” the system and
simultaneously shows the need for postfiltering.

Remark

For real-valued systems and signals, the covariance matrix of protoestimates will be different (see
page 2 in [73] for the derivation), because according to the Isserlis’ theorem

E[xypq] = E[xy]E[pq] + E[xp]E[yq] + E[xq]E[yp],

which holds true for zero-mean random Gaussian variables, we have that

E[xxxyyyTSSSpppqqqT] = E[xxxyyyT]SSSE[pppqqqT] + E[xxxpppT]SSSE[yyyqqqT] + E[xxxqqqT]E[yyyTSSSppp],
1This result holds also when the input signal is a sequence of mutually uncorrelated circular random variables.
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3.1. CONCEPT PRESENTATION 55

Figure 3.1: Protoestimates (black lines) superimposed on true parameter trajectories (red lines)
for a two-tap FIR system.

where xxx,yyy,ppp,qqq are zero-mean jointly normally distributed and SSS is a symmetric matrix. Therefore,
for real-valued case, one obtains

cov[θ̃θθ(t)] = θθθ(t)θθθT(t) + ΦΦΦ−1θθθT(t)ΦΦΦθθθ(t) + σ2
eΦΦΦ−1. (3.12)

Similarly, the upper and lower bounds can be found as

σ2
eΦΦΦ−1 ≤ cov[θ̃θθ(t)] ≤

[
1 + λmax(ΦΦΦ)

λmin(ΦΦΦ)

]
||θθθ(t)||2IIIn + σ2

eΦΦΦ−1. (3.13)

Note that when the input signal is a sequence of uncorrelated random variables

cov[θ̃θθ(t)] = θθθ(t)θθθT(t) +
[
||θθθ(t)||2 + σ2

e

σ2
u

]
IIIn, (3.14)

and the preestimation errors are usually correlated.

3.1.2 Postfiltering
In the second, postfiltering stage, one can use any well-established filtration technique to obtain
the final fLBF estimates. In the article [17] Kalman smoothing was used as postfiltering method,
while in the paper [77], the application of noncausal lowpass FIR filters was described. In this
thesis, we will use the Savitzky-Golay filtration [91]. This filtering method boils down to adopting
the assumption (A2.1) and solving the following problem

α̂αα
fLBF
m|k (t) = arg min

ααα

k∑
i=−k

wk(i)||θ̃θθ(t)−FFFm|k(i)ααα||2, (3.15)

which under (A2.2) becomes

α̂αα
fLBF
m|k (t) =

k∑
i=−k

θ̃θθ(t+ i)⊗ wk(i)fffm|k(i). (3.16)

The final estimates take the form

θ̂θθ
fLBF
m|k (t) = FFFm|k(0)α̂ααfLBF

m|k (t) =
k∑

i=−k
wk(i)fffH

m|k(0)fffm|k(i)θ̃θθ(t+ i) =
k∑

i=−k
hfLBF
m|k (i)θ̃θθ(t+ i), (3.17)
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56 CHAPTER 3. FAST LOCAL BASIS FUNCTION METHOD

where hfLBF
m|k (i) = wk(i)fffH

m|k(0)fffm|k(i) is the impulse response associated with the selected basis
functions. The first transition follows from the properties of the Kronecker product. When the
assumption (A2.1) is fulfilled, the fLBF estimates (3.17) are unbiased, namely

E[θ̂θθ
fLBF

(t)] =
k∑

i=−k
hfLBF
m|k (i)E[θ̃θθ(t+ i)] =

k∑
i=−k

hfLBF
m|k (i)θθθ(t+ i)

=
k∑

i=−k
wk(i)fffH

m|k(0)fffm|k(i)FFFm|k(i)ααα(t) = FFFm|k(0)ααα(t) = θθθ(t).

(3.18)

The estimation errors can be written down as

∆θ̂θθ
fLBF

(t) = θ̂θθ
fLBF

(t)− θθθ(t) =
k∑

i=−k
hfLBF
m|k (i)θ̃θθ(t+ i)− θθθ(t)

=
k∑

i=−k
hfLBF
m|k (i)ΦΦΦ−1ϕϕϕ(t+ i)ϕϕϕH(t+ i)θθθ(t+ i)− θθθ(t) +

k∑
i=−k

hfLBF
m|k (i)ΦΦΦ−1ϕϕϕ(t+ i)e∗(t+ i)

= vvv1(t) + vvv2(t),
(3.19)

where under (A2.1)

vvv1(t) =
k∑

i=−k
hfLBF
m|k (i)[ΦΦΦ−1ϕϕϕ(t+ i)ϕϕϕH(t+ i)− IIIn]θθθ(t+ i)

vvv2(t) =
k∑

i=−k
hfLBF
m|k (i)ΦΦΦ−1ϕϕϕ(t+ i)e∗(t+ i).

The covariance matrix of estimation errors is defined as

cov[θ̂θθ
fLBF

(t)] = E{∆θ̂θθ
fLBF

(t)[∆θ̂θθ
fLBF

(t)]H} = E{[vvv1(t) + vvv2(t)][vvv1(t) + vvv2(t)]H}
= E[vvv1(t)vvvH

1 (t)] + E[vvv1(t)vvvH
2 (t)] + E[vvv2(t)vvvH

1 (t)] + E[vvv2(t)vvvH
2 (t)],

(3.20)

It is easy to check that E[vvv1(t)vvvH
2 (t)] = E[vvv2(t)vvvH

1 (t)] = 0 under (A2.5), because the noise is
independent of the input signal. It also holds that

E[vvv2(t)vvvH
2 (t)] =

k∑
i=−k

k∑
j=−k

hfLBF
m|k (i)hfLBF

m|k (j)ΦΦΦ−1E[ϕϕϕ(t+ i)ϕϕϕH(t+ j)]E[e∗(t+ i)e(t+ j)]ΦΦΦ−1, (3.21)

where the expectation of the product was separated into the product of expectations because of
the independence of the input signal and the measurement noise. Because {e(t)} is a sequence of
mutually independent random variables, this expression can be further simplified to

E[vvv2(t)vvvH
2 (t)] =

k∑
i=−k

[hfLBF
m|k (i)]2σ2

eΦΦΦ−1 = σ2
eΦΦΦ−1

lfLBF
m|k

, (3.22)

where lfLBF
m|k =

{∑k
i=−k[hfLBF

m|k (i)]2
}−1

is an equivalent number of observations used by the fLBF
method. Note that

E[vvv1(t)vvvH
1 (t)] =

k∑
i=−k

k∑
j=−k

hfLBF
m|k (i)hfLBF

m|k (j)E{[ΦΦΦ−1ϕϕϕ(t+ i)ϕϕϕH(t+ i)− IIIn]θθθ(t+ i)θθθ(t+ j)×

× [ϕϕϕ(t+ j)ϕϕϕH(t+ j)ΦΦΦ−1 − IIIn]}

=
k∑

i=−k

k∑
j=−k

hfLBF
m|k (i)hfLBF

m|k (j){ΦΦΦ−1E[ϕϕϕ(t+ i)ϕϕϕH(t+ i)θθθ(t+ i)θθθ(t+ j)ϕϕϕ(t+ j)×

×ϕϕϕH(t+ j)]ΦΦΦ−1 − θθθ(t+ i)θθθH(t+ j)},
(3.23)
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where the last transition follows from the fact that

ΦΦΦ−1E[ϕϕϕ(t+i)ϕϕϕH(t+i)]θθθ(t+i)θθθH(t+j) = E[ϕϕϕ(t+j)ϕϕϕH(t+j)]ΦΦΦ−1θθθ(t+i)θθθH(t+j) = θθθ(t+i)θθθH(t+j).

To obtain analytical results that are easier to interpret, we will adopt the assumption (A2.3). This
allows one to again use the results (3.6), leading to

E[vvv1(t)vvvH
1 (t)] =

k∑
i=−k

k∑
j=−k

hfLBF
m|k (i)hfLBF

m|k (j){ΦΦΦ−1ΦΦΦθθθ(t+ i)θθθH(t+ j)ΦΦΦΦΦΦ−1

+ ΦΦΦ−1Tr[ΦΦΦH
ijθθθ(t+ i)θθθH(t+ j)]ΦΦΦijΦΦΦ−1 − θθθ(t+ i)θθθH(t+ j)}

=
k∑

i=−k

k∑
j=−k

hfLBF
m|k (i)hfLBF

m|k (j)Tr[ΦΦΦH
ijθθθ(t+ i)θθθH(t+ j)]ΦΦΦ−1ΦΦΦijΦΦΦ−1,

(3.24)

where
ΦΦΦij = E[ϕϕϕ(t+ i)ϕϕϕH(t+ j)]. (3.25)

Now we will show that the modulus of any element of a matrix E[vvv1(t)vvvH
1 (t)]:

vn1n2(t) = E[vvv1(t)vvvH
1 (t)](n1,n2), n ≥ n2 ≥ n1 ≥ 1 tends to zero as k increases. First, note that

E[vvv1(t)vvvH
1 (t)] ≤ 1

λ2
min(ΦΦΦ)

k∑
i=−k

k∑
j=−k

hfLBF
m|k (i)hfLBF

m|k (j)Tr[ΦΦΦH
ijθθθ(t+ i)θθθH(t+ j)]ΦΦΦij . (3.26)

As a consequence, one obtains

|vn1n2(t)| ≤ 1
λ2

min(ΦΦΦ)

k∑
i=−k

k∑
j=−k

|hfLBF
m|k (i)hfLBF

m|k (j)||Tr[ΦΦΦH
ijθθθ(t+ i)θθθH(t+ j)]||[ΦΦΦij ](n1n2)|. (3.27)

We will assume that each parameter trajectory is bounded, which means that ∃Mj>0∀t∈Z |θj(t)| ≤
Mj . As a result ∃M>0∀i,j∈Z ||θθθH(j)θθθ(i)||2 < M . Consequently θθθ(t+ i)θθθH(t+ j) ≤MIIIn and

|Tr[ΦΦΦH
ijθθθ(t+ i)θθθH(t+ j)]| ≤M |Tr[ΦΦΦH

ij ]| ≤M
n∑
s=1
|E[u(t+ i+ s− 1)u∗(t+ j + s− 1)]|

= M

n∑
s=1
|ru(j − i)| ≤Mnc2β

|j−i|.

(3.28)

Note also that
|[ΦΦΦij ](n1n2)| = |ru(j − n2 − i+ n1)| ≤ c2β|j−n2−i+n1|. (3.29)

Finally, using lemma 2.1 and the same arguments as in the previous chapter2, one obtains that

∃c1>0∃k0>0∀k>k0∀i,j∈Ik |hfLBF
m|k (i)hfLBF

m|k (j)| ≤ c41
k2 . (3.30)

Combining (3.27) - (3.30), one arrives at the following formula

∃D>0∃k0>0∀k>k0 |vn1n2(t)| ≤ D

k2

k∑
i=−k

k∑
j=−k

β|j−i|β|j−n2−i+n1|

≤ D

k2

k∑
i=−k

k∑
j=−k

β2|j−i|β−|n2−n1| = O
(

1
k

)
.

(3.31)

The last transition follows from the fact that |j−n2−i+n1| ≥ |j−i|−|n2−n1|, hence β|j−n2−i+n1| ≤
β|j−i|β−|n2−n1|.

2see pages 20-22.
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58 CHAPTER 3. FAST LOCAL BASIS FUNCTION METHOD

Remark

Note that such a formulation of identification strategy allows one to use different basis functions
and different lengths of analysis window for each system parameter. The decoupled problem can
be formulated as follows

α̂αα
fLBF
j,m|k(t) = arg min

αααj

k∑
i=−k

wj,k(i)|θ̃j(t)− fffH
j,mk(i)αααj |2 =

k∑
i=−k

θ̃j(t)wj,k(i)fffj,m|k(i), j = 1, . . . , n.

(3.32)
The final estimates can be written down as

θ̂fLBF
j,m|k(t) = fffH

j,mk(0)α̂ααfLBF
j,m|k(t) =

k∑
i=−k

wj,k(i)fffH
j,m|k(0)fffj,m|k(i)θ̃j(t)

=
k∑

i=−k
hfLBF
j,m|k(i)θ̃j(t), j = 1, . . . , n.

(3.33)

When basis functions, lengths of analysis window and weigthing sequences are the same for every
parameter, then the formulation above boils down to (3.17).

3.1.3 Connection with the LBF method
Note that (3.17) can be written down as

θ̂θθ
fLBF
m|k (t) =

k∑
i=−k

wk(i)fffH
m|k(0)fffm|k(i)ΦΦΦ−1ϕϕϕ(t+ i)y∗(t+ i). (3.34)

Combining (2.77) and (2.46) yields

θ̂θθ
LBF
m|k (t) ∼= θ̃θθ

BF
m|k(t+ s|t)|s=0 = FFFm|k(0)PPP−1

0

k∑
i=−k

wk(i)ψψψm|k(t, i)y∗(t+ i)

= [IIIn ⊗ fffH
m|k(0)][ΦΦΦ−1 ⊗ IIIm]

k∑
i=−k

wk(i)[ϕϕϕ(t+ i)⊗ fffm|k(i)]y∗(t+ i)

=
k∑

i=−k
wk(i)fffH

m|k(0)fffm|k(i)ΦΦΦ−1ϕϕϕ(t+ i)y∗(t+ i) = θ̂θθ
fLBF
m|k (t),

(3.35)

which is justified for sufficiently large values of k. In other words, when one chooses the same basis
functions and the same weighting sequence in the LBF and fLBF methods, then the fLBF can be
regarded as a close approximation of the LBF technique.

Note that the statistical properties, i.e. the formulae for bias and covariance matrix, of the
LBF method were derived in the previous chapter for a simplified estimator for which PPPm|k(t) was
replaced by PPP0, just as in the equation (3.35). This means that for sufficiently large values of k,
the statistical properties of the fLBF and LBF methods should be approximately the same.

3.2 Direct preestimates
If the covariance matrix of input signal is not known, one can use the following formula for the
direct preestimate

θ̃θθ
d
(t) = Φ̂ΦΦ

−1
λ (t)ϕϕϕ(t)y∗(t), (3.36)

where

Φ̂ΦΦλ(t) = 1
L(t)

t∑
i=1

λt−iϕϕϕ(i)ϕϕϕH(i), (3.37)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


3.3. INDIRECT PREESTIMATES 59

is the exponentially weighted estimate of ΦΦΦ, where λ ∈ (0, 1) is the so-called forgetting constant
and L(t) =

∑t
i=1 λ

t−i = λL(t − 1) + 1 = 1−λt
1−λ , L(0) = 0 denotes the effective length of the

wieghting sequence. One can show that under (A2.3) [66]

lim
λ→1

Φ̂ΦΦλ(t) = E[Φ̂ΦΦλ(t)] = ΦΦΦ, (3.38)

in a mean squared sense.
For values of λ sufficiently close to 1, Φ̂ΦΦλ(t) ∼= ΦΦΦ and direct preestimates can be seen as a close

approximation of protoestimates, and as a consequence

E[θ̃θθ
d
(t)] ∼= θθθ(t). (3.39)

The preestimation errors take the form

∆θ̃θθ
d
(t) = θ̃θθ

d
(t)− θθθ(t) = [Φ̂ΦΦλ(t)ϕϕϕ(t)ϕϕϕH(t)− IIIn]θθθ(t) + Φ̂ΦΦλ(t)ϕϕϕ(t)e∗(t). (3.40)

One can again use the approximation Φ̂ΦΦλ(t) ∼= ΦΦΦ valid for λ sufficiently close to 1, to obtain that

cov[θ̃θθ
d
(t)] = E

{
∆θ̃θθ

d
(t)[∆θ̃θθ

d
(t)]H

}
∼= cov[θ̃θθ(t)]. (3.41)

Remark

Note that the direct preestimates can be also obtained using different estimate of the input signal
covariance matrix, like

Φ̂ΦΦk0(t) = 1
2k0 + 1

k0∑
i=−k0

ϕϕϕ(t+ i)ϕϕϕH(t+ i), (3.42)

which can approximate ΦΦΦ more accurately. This formulation was proposed in the paper [71] where
direct preestimates were introduced.

Remark 2

The inverse of matrix Φ̂ΦΦλ(t) can be easily updated using the Sherman-Morrison formula, which
reduces the number of required computations.

3.3 Indirect preestimates
The indirect preestimates were proposed in [76] for the purpose of causal estimation and then
applied in [70] to noncausal estimation. They are based on the exponentially weighted least squares
estimates of system parameters

θ̂θθ
EWLS

(t) = arg min
θθθ

t∑
i=1

λt−i|y(i)− θθθHϕϕϕ(i)|2, (3.43)

θ̂θθ
EWLS

(t) = RRR−1(t)rrr(t), (3.44)

where

RRR(t) =
t∑
i=1

λt−iϕϕϕ(i)ϕϕϕ(i)H = λRRR(t− 1) +ϕϕϕ(t)ϕϕϕH(t)

rrr(t) =
t∑
i=1

λt−iϕϕϕ(i)y∗(i) = λrrr(t− 1) +ϕϕϕ(t)y∗(t),
(3.45)

and the initial conditions are RRR(0) = 0, rrr(0) = 0.
The indirect preestimates are defined as follows

θ̃θθ
EWLS

(t) = L(t)θ̂θθ
EWLS

(t)− λL(t− 1)θ̂θθ
EWLS

(t− 1). (3.46)
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60 CHAPTER 3. FAST LOCAL BASIS FUNCTION METHOD

Note that RRR(t) = L(t)Φ̂ΦΦλ(t) and for λ sufficiently close to 1, the following approximation is
valid

RRR(t) ∼= E[RRR(t)] = L(t)ΦΦΦ, (3.47)

which leads to
θ̂θθ

EWLS
(t) ∼=

1
L(t)ΦΦΦ−1rrr(t). (3.48)

Applying this to (3.46) yields

θ̃θθ
EWLS

(t) = L(t)RRR−1rrr(t)− λL(t− 1)RRR−1(t− 1)rrr(t− 1)
∼= ΦΦΦ−1[rrr(t)− λrrr(t− 1)] = ΦΦΦ−1ϕϕϕ(t)y∗(t) = θ̃θθ(t).

(3.49)

This is the reason why the estimator (3.46) was given the name indirect preestimator in the
article [70]. The formula (3.46) can be regarded as an indirect approximation of the protoestimator.

3.3.1 Properties of the indirect preestimates
Using the formula (3.48), one can conclude that the indirect preestimates are approximately unbi-
ased

E[θ̃θθ
EWLS

(t)] ∼= E[θ̃θθ(t)] = θθθ(t). (3.50)

Thus far, one could expect that the preestimation errors for the indirect preestimator will be
similar to preestimation errors of the protoestimator and direct preestimator. Quite surprisingly,
the truth turns out to be different. To show this, we will start with the recursive formula for the
EWLS estimates [98]

θ̂θθ
EWLS

(t) = θ̂θθ
EWLS

(t− 1) + RRR−1(t)ϕϕϕ(t)[εEWLS(t)]∗, (3.51)

where
εEWLS(t) = y(t)− [θ̂θθ

EWLS
(t− 1)]Hϕϕϕ(t) (3.52)

denotes one-step-ahead prediction error. Using (3.51) one can rewrite (3.46) as

θ̃θθ
EWLS

(t) = L(t)θ̂θθ
EWLS

(t)− λL(t− 1)θ̂θθ
EWLS

(t− 1)

= L(t)θ̂θθ
EWLS

(t− 1) + L(t)RRR−1(t)ϕϕϕ(t)[εEWLS(t)]∗ − λL(t− 1)θ̂θθ
EWLS

(t− 1)

= θ̂θθ
EWLS

(t− 1) + Φ̂ΦΦ
−1
λ (t)ϕϕϕ(t)ϕϕϕH(t)θθθ(t) + Φ̂ΦΦ

−1
λ (t)ϕϕϕ(t)e∗(t)

− Φ̂ΦΦ
−1
λ (t)ϕϕϕ(t)ϕϕϕH(t)θ̂θθ

EWLS
(t− 1),

(3.53)

where the last transition follows from (1.2), (3.48) and (3.51). Using (3.53), one gets

∆θ̃θθ
EWLS

(t) = θ̃θθ
EWLS

(t)− θθθ(t) = [Φ̂ΦΦ
−1
λ (t)ϕϕϕ(t)ϕϕϕH(t)− IIIn][θθθ(t)− θ̂θθ

EWLS
(t− 1)] + Φ̂ΦΦ

−1
λ (t)ϕϕϕ(t)e∗(t).

(3.54)
One can now easily compare preestimation errors of direct and indirect preestimates described

by (3.40) and (3.54), respectively. The difference boils down to the first term that is equal to
[Φ̂ΦΦ
−1
λ (t)ϕϕϕ(t)ϕϕϕH(t)− IIIn]θθθ(t) in direct preestimation and [Φ̂ΦΦ

−1
λ (t)ϕϕϕ(t)ϕϕϕH(t)− IIIn][θθθ(t)− θ̂θθ

EWLS
(t− 1)]

in indirect preestimation. Since typically ||θθθ(t)|| � ||θθθ(t) − θ̂θθ
EWLS

(t − 1)||, preestimation errors
in indirect preestimation scheme have substantially smaller variability than preestimation errors
in direct preeestimates. It is also worth noting that when parameters are slowly changing and
θ̂θθ

EWLS
(t− 1) ∼= θθθ(t), indirect preestimation errors are approximately white.

Using the approximation stemming from (3.38), one arrives at

cov[θ̃θθ
EWLS

(t)] ≥ σ2
eE[Φ̂ΦΦ

−1
λ (t)ϕϕϕ(t)ϕϕϕH(t)Φ̂ΦΦ

−1
λ (t)] ∼= σ2

eΦΦΦ−1. (3.55)
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3.3.2 Steady-state preestimation formula

For a sufficiently large value of t, the steady-state version of formulae described above can be used.
They can be obtained by substituting L(t) with L(∞) = 1

1−λ in (3.46), which results in

θ̃θθ
EWLS

(t) = 1
1− λ [θ̂θθ

EWLS
(t)− λθ̂θθ

EWLS
(t− 1)] (3.56)

The steady-state formula (3.56) has an additional, interesting interpretation. According to [66]
the expected path of the EWLS estimates in a steady state can be approximately seen as the
output of a linear time-invariant lowpass filter

θθθ
EWLS(t) = E[θ̂θθ

EWLS
(t)] ∼= HEWLS(q−1)θθθ(t), (3.57)

where

HEWLS(q−1) = 1− λ
1− λq−1 . (3.58)

Note that (3.56) can be rewritten as highpass filtration of the EWLS estimates

θ̃θθ
EWLS

(t) = 1
HEWLS(q−1) θ̂

θθ
EWLS

(t). (3.59)

The EWLS estimates can be expressed as

θ̂θθ
EWLS

(t) = θθθ
EWLS(t) + ηηη(t), (3.60)

where ηηη(t) is a zero-mean noise. Therefore,

θ̃θθ
EWLS

(t) ∼= θθθ(t) + 1
HEWLS(q−1)η

ηη(t). (3.61)

This means that they can be seen as the effect of “inverse filtering” of the EWLS estimates. From
this point of view, it becomes clear that one should carefully choose the value of λ for the purpose
of preestimation. On the one hand, small values of the forgetting constant are desirable because
decreasing λ reduces the estimator memory which allows one to successfully track faster changes
in parameter trajectories. On the other hand, estimating a large number of parameters using an
estimator with a very short memory can cause practical problems. This is why one should search
for a trade-off when choosing the forgetting constant. It turns out that the rule of thumb that
provides satisfactory results can be formulated in the following form

λ = max
{

0.9, 1− 2
n

}
. (3.62)

The expression 1− 2
n follows from the assumption that the equivalent steady-state memory of the

EWLS estimator [66]

l∞ = 1 + λ

1− λ
∼=

2
1− λ

should not be smaller than the number of estimated parameters which yields

2
1− λ ≥ n ⇐⇒ λ ≥ 1− 2/n. (3.63)

Although even for a very low value of l∞, one usually does not encounter numerical problems
when computing the inverse of a matrix RRR(t), from a statistical point of view it is questionable to
use the estimator with an equivalent memory smaller than the number of estimated parameters.
Such an estimator can simply lack sufficient information to track changes of all parameters in a
reliable way.
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3.4 LMS-based preestimates
Although the EWLS algorithm can be implemented using fast transversal filters [35], ensuring the
computational complexity proportional to the number of estimated parameters, one can use even
faster, gradient-based least mean squares (LMS) estimates to obtain preestimates

θ̂θθ
LMS

(t) = θ̂θθ
LMS

(t− 1) + µ

σ2
u

ϕϕϕ(t)ε∗(t)

ε(t) = y(t)− [θ̂θθ
LMS

(t− 1)]Hϕϕϕ(t),
(3.64)

where µ > 0 is a stepsize parameter, typically of a small value.
The following preestimation formula can be proposed

θ̃θθ
LMS

(t) = 1
1− λL

[θ̂θθ
LMS

(t)− λLθ̂θθ
LMS

(t− 1)], (3.65)

where λL = 1 − µ. Note that this formula closely resembles the steady-state formula (3.56) for
EWLS-based indirect preestimates.

3.4.1 Mean squared stability of the preeestimation scheme
The mean squared stability of the LMS-based preestimation algorithm depends on the mean
squared stability of the LMS algorithm. In this section we derive the upper bound for the step-size
parameter, which guarantees the mean squared stability of the LMS algorithm under some simpli-
fying assumptions. We assume that the parameters are constant. We will also adopt the following
assumption

(A3.1) {ϕϕϕ(t)}, independent of {e(t)}, is a sequence of zero-mean mutually independent and
identically distributed n-dimensional complex random variables with the covariance
matrix E[ϕϕϕ(t)ϕϕϕH(t)] = σ2

uIIIn.

The estimation errors can be defined as

ρρρ(t) = θθθ − θ̂θθ
LMS

(t) = θθθ − θ̂θθ
LMS

(t− 1)− µ

σ2
u

ϕϕϕ(t)y∗(t) + µ

σ2
u

ϕϕϕ(t)ϕϕϕH(t)θ̂θθ
LMS

(t− 1)

= ρρρ(t− 1)− µ

σ2
u

ϕϕϕ(t)ϕϕϕH(t)θθθ + µ

σ2
u

ϕϕϕ(t)ϕϕϕH(t)θ̂θθ
LMS

(t− 1)− µ

σ2
u

ϕϕϕ(t)e∗(t)

=
[
IIIn −

µ

σ2
u

ϕϕϕ(t)ϕϕϕH(t)
]
ρρρ(t− 1)− µ

σ2
u

ϕϕϕ(t)e∗(t).

(3.66)

Note that ρρρ(t − 1) = θθθ(t − 1) − θ̂θθ
LMS

(t − 1), which is independent of ϕϕϕ(t) under (A3.1). This
leads to

E[ρρρ(t)] = (1− µ)E[ρρρ(t− 1)], (3.67)

which means that the convergence in the mean sense is guaranteed for µ ∈ (0, 1).
Now let us inspect the mean squared convergence. First note that

ρρρ(t) = vvv1(t)− vvv2(t),

where

vvv1(t) =
[
IIIn −

µ

σ2
u

ϕϕϕ(t)ϕϕϕH(t)
]
ρρρ(t− 1)

vvv2(t) = µ

σ2
u

ϕϕϕ(t)e∗(t).

Hence

E[||ρρρ(t)||2] = E[ρρρH(t)ρρρ(t)] = E[vvvH
1 (t)vvv1(t)]− E[vvvH

1 (t)vvv2(t)]− E[vvvH
2 (t)vvv1(t)] + E[vvvH

2 (t)vvv2(t)].
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3.4. LMS-BASED PREESTIMATES 63

Because e(t) is independent of ϕϕϕ(t) and of ρρρ(t−1), it holds that E[vvvH
1 (t)vvv2(t)] = E[vvvH

2 (t)vvv1(t)] = 0.
For the same reason

E[vvvH
2 (t)vvv2(t)] = µ2

(σ2
u)2 E[|e(t)|2]E[ϕϕϕH(t)ϕϕϕ(t)] = nµ2σ2

e

σ2
u

. (3.68)

The last quantity takes the form

E[vvvH
1 (t)vvv1(t)] = E

{
ρρρH(t− 1)

[
IIIn −

µ

σ2
u

ϕϕϕ(t)ϕϕϕH(t)
]2
ρρρ(t− 1)

}
= E[||ρρρ(t− 1)||2]− 2 µ

σ2
u

E[ρρρH(t− 1)ϕϕϕ(t)ϕϕϕH(t)ρρρ(t− 1)]

+ µ2

(σ2
u)2 E[ρρρH(t− 1)ϕϕϕ(t)ϕϕϕH(t)ϕϕϕ(t)ϕϕϕH(t)ρρρ(t− 1)].

(3.69)

The second term, due to independecne between ρρρ(t− 1) and ϕϕϕ(t), is equal to

E[ρρρH(t− 1)ϕϕϕ(t)ϕϕϕH(t)ρρρ(t− 1)] = σ2
uE[||ρρρ(t− 1)||2].

To obtain results, that are easier to analyze, we will additionally assume that the regression vectors
are jointly normally distributed. Under this assumption, one can use the results from the extension
of the Isserlis’ theorem [88], to obtain

E[ϕϕϕ(t)ϕϕϕH(t)ϕϕϕ(t)ϕϕϕH(t)] = σ4
u(n+ 1)IIIn, (3.70)

which means that

E[||ρρρ(t)||2] = [1− 2µ+ (n+ 1)µ2]E[||ρρρ(t− 1)||2] + nµ2σ2
e

σ2
u

. (3.71)

Hence, to guarantee convergence in the mean squared sense, the following condition has to be met

µ <
2

n+ 1 . (3.72)

Even though this bound was derived for constant parameters and restrictive assumptions about
mixing conditions and distribution of regression vectors, numerical experiments have shown that
when these assumptions are not met (i.e. parameters are time-varying and the regression vectors
are dependent and not Gaussian), this stability criterion (3.72) still allows one to pretty accurately
determine when the LMS algorithm becomes unstable.

Remark

For the real-valued case, (3.70) looks differently because of the discrepancy in the moment theorem
for Gaussian variables for real and complex random variables, namely

E[ϕϕϕ(t)ϕϕϕT(t)ϕϕϕ(t)ϕϕϕT(t)] = σ4
u(n+ 2)IIIn, (3.73)

which leads to
µ <

2
n+ 2 . (3.74)

3.4.2 Bias and preestimation errors
Now, we show the expressions for the expected value and preestimation noise for LMS-based
preestimates under the assumption (A3.1). First, note that

θ̃θθ
LMS

(t) = θ̂θθ
LMS

(t)− (1− µ)θ̂θθ
LMS

(t− 1)
µ

= 1
µ
θ̂θθ

LMS
(t− 1) + 1

σ2
u

ϕϕϕ(t)y∗(t)− 1
σ2
u

ϕϕϕ(t)ϕϕϕH(t)θ̂θθ
LMS

(t− 1)− 1
µ
θ̂θθ

LMS
(t− 1) + θ̂θθ

LMS
(t− 1)

= 1
σ2
u

ϕϕϕ(t)ϕϕϕH(t)θθθ(t) + 1
σ2
u

ϕϕϕ(t)e∗(t)− 1
σ2
u

ϕϕϕ(t)ϕϕϕH(t)θ̂θθ
LMS

(t− 1) + θ̂θθ
LMS

(t− 1)

= 1
σ2
u

ϕϕϕ(t)ϕϕϕH(t)θθθ(t) + 1
σ2
u

ϕϕϕ(t)e∗(t) + [IIIn −
1
σ2
u

ϕϕϕ(t)ϕϕϕH(t)]θ̂θθ
LMS

(t− 1).

(3.75)
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64 CHAPTER 3. FAST LOCAL BASIS FUNCTION METHOD

Hence,

E[θ̃θθ
LMS

(t)] = 1
σ2
u

E[ϕϕϕ(t)ϕϕϕH(t)]θθθ(t) + 1
σ2
u

E[ϕϕϕ(t)e∗(t)] + E{[IIIn −
1
σ2
u

ϕϕϕ(t)ϕϕϕH(t)]θ̂θθ
LMS

(t− 1)}. (3.76)

The second term of the formula above is equal zero because the noise is independent of the
regression vector. Based on the assumption (A3.1), θ̂θθ

LMS
(t − 1) depends on ϕϕϕ(t − 1) but not on

ϕϕϕ(t), so the expectation can be replaced by the product of expectations, which is equal to zero.
Therefore

E[θ̃θθ
LMS

(t)] = θθθ(t). (3.77)
The preestimation errors can be expressed in the form

∆θ̃θθ
LMS

(t) = θ̃θθ
LMS

(t)− θθθ(t) =
[

1
σ2
u

ϕϕϕ(t)ϕϕϕH(t)− IIIn
]

[θθθ(t)− θ̂θθ
LMS

(t− 1)] + 1
σ2
u

ϕϕϕ(t)e∗(t), (3.78)

which is very similar to the expression (3.54). Similarly as in the case of the EWLS-based prees-
timates

cov[θ̃θθ
LMS

(t)] ≥ 1
σ4
u

E[e(t)e∗(t)ϕϕϕ(t)ϕϕϕH(t)] = σ2
e

σ2
u

IIIn. (3.79)

Remark

Note that the assumption (A3.1) can be relaxed resulting in approximate unbiasedness. Because
ϕϕϕ(t)ϕϕϕH(t) is a fast changing quantity and θ̂θθ

LMS
(t − 1) is slowly changing, based on the averaging

theory (see [43] for more details), one can write down

E{[IIIn −
1
σ2
u

ϕϕϕ(t)ϕϕϕH(t)]θ̂θθ
LMS

(t− 1)} ∼= E
{
{IIIn −

1
σ2
u

E[ϕϕϕ(t)ϕϕϕH(t)]}θ̂θθ
LMS

(t− 1)
}

= 0.

The same argument can be used to derive the approximate criterion for the mean squared
stability of the LMS algorithm (see [32]).

3.5 Enhanced preestimates
Enhancement of preestimates is an iterative procedure introduced in [73] aiming at reducing the
variance of preestimation errors without affecting the approximate unbiasedness property. The
enhanced preestimates are obtained using the fLBF estimates of system parameters

θθθ†(t) = θ̃θθ
d
(t) + [IIIn − Φ̂ΦΦ

−1
λ (t)ϕϕϕ(t)ϕϕϕH(t)]θ̂θθ

fLBF
(t) = θ̃θθ

d
(t) + θ̂θθ

fLBF
(t)− θ̃θθ

d
(t)ϕϕϕH(t)
y∗(t) θ̂θθ

fLBF
(t)

= θ̂θθ
fLBF

(t) +

1− ϕϕϕH(t)θ̂θθ
fLBF

(t)
y∗(t)

 θ̃θθd
(t).

(3.80)

Note that θ̂θθ
fLBF

(t) and Φ̂ΦΦ
−1
λ (t) are slowly changing, while ϕϕϕ(t) is a fast-changing quantity.

Hence, one can use the results of the averaging theory to conclude that

E[θθθ†(t)] ∼= θθθ(t), (3.81)

which holds under (A2.1).
It is easy to check that preestimation errors for the enhanced preestimates can be expressed as

∆θ̃θθ
†
(t) = θθθ†(t)− θθθ(t) = [Φ̂ΦΦ

−1
λ (t)ϕϕϕ(t)ϕϕϕH(t)− IIIn][θθθ(t)− θ̂θθ

fLBF
(t)] + Φ̂ΦΦ

−1
λ (t)ϕϕϕ(t)e∗(t). (3.82)

Since typically the accuracy of fLBF estimates is higher than the accuracy of the ELWS es-
timates, the variance of preestimation errors is lower for enhanced preestimates than for indirect
preestimates.

Note that the oracle enhanced preestimate would use θθθ(t) instead of θ̂θθ
fLBF

(t) resulting in

θ̃θθ
o
(t) = θθθ(t) + Φ̂ΦΦ

−1
λ (t)ϕϕϕ(t)e∗(t).
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3.5. ENHANCED PREESTIMATES 65

Such an oracle preestimate would be characterized by the smallest possible variance of preesti-
mation errors. It is worth noting that this sets the lower bound on the covariance matrix of the
enhanced preestimates

cov[θ̃θθ
†
(t)] ≥ σ2

eE[Φ̂ΦΦ
−1
λ (t)ϕϕϕ(t)ϕϕϕH(t)Φ̂ΦΦ

−1
λ (t)] ∼= σ2

eΦΦΦ−1. (3.83)

Exemplary preestimation errors are shown in the figure 3.2.
Summarizing, the algorithm to use enhanced preestimates would be

1. Compute direct and indirect preestimates.

2. Postfilter indirect preestimates.

3. Use direct preestimates and filtered indirect preestimates to obtain enhanced preestimates.

4. Filter enhanced preestimates to get the final estimates.
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66 CHAPTER 3. FAST LOCAL BASIS FUNCTION METHOD

Figure 3.2: Preestimation errors for direct preestimates - plot a), indirect preestimates - plot b),
LMS-based preestimates - plot c), enhanced preestimates - plot d), oracle preestimates - plot e)
and bidirectional E2WLS-based preestimates - plot f). Note that the scale of the first plot differs
from the scales of other plots to avoid clipping.
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3.6 Delay cancellation
Although the initial analysis suggests that the EWLS-based preestimates are unbiased, they result
from a purely causal estimation scheme. The EWLS algorithm uses only data from the past,
which means that EWLS estimates will lag behind the true parameter trajectories. Assume that
the system parameters are lowpass signals. According to [66], for slowly varying parameters the
mean path of the EWLS estimates can be, to some extent, regarded as a delayed version of the
true parameter trajectory

E[θ̂θθ
EWLS

(t)] ∼= θθθ(t−∆f ), (3.84)

where ∆f = int
[

λ
1−λ

]
is a nominal (low-frequency) delay of filter (3.58) associated with the

EWLS estimator and int(x) is an integer closest to x. Detailed numerical analysis shows that the
EWLS-based preestimates tend to inherit the delay associated with the EWLS-based estimates in
a nontrivial way. However, simulations suggest that this delay becomes a significant factor when
a number of parameters n grows and when the forgetting constant λ approaches 1. Therefore, in
this section, two methods that allow one to cope with the delay, are presented. In the next section
we present modifications in preestimation scheme, that are designed to avoid the delay.

3.6.1 Fixed-delay shift

The first and the simplest possibility is based on the formula (3.84) and boils down to shifting
preestimates (or final fLBF estimates) using ∆f . It is worth mentioning that [66] offers an al-
ternative method of evaluating the “average” delay of the EWLS estimates. It is a time-domain
approach in which one chooses the delay that minimizes the following criterion

∆t = arg min
∆

E{||θθθEWLS(t)− θθθ(t−∆)||2}, (3.85)

where θθθEWLS(t) = E[θ̂θθ
EWLS

(t)].
It was shown in [66] that for sufficiently large values of t and assuming that θθθ(t) is a random

walk process, ∆t is a solution to the following equation

∆t∑
i=0

(1− λ)λi ∼= 0.5. (3.86)

After straightforward, yet tedious calculations, one can find the exact formula for ∆t, however, the
result is more instructive when one uses the following integral approximation

∆t∑
i=0

(1− λ)λi ∼=
∫ ∆t

0
γe−γτdτ, γ = − log λ ∼= 1− λ. (3.87)

This results in∫ ∆t

0
γe−γτdτ = 0.5 ⇐⇒ e−γτ |0∆t

= 0.5 ⇐⇒ ∆t = − log 2
log λ

∼=
log 2
1− λ. (3.88)

The practically usefull formula is

∆t
∼= int

[
log 2
1− λ

]
. (3.89)

According to the performed computer simulations, there is no clear benefit from using either
of the two formulas for the delay. In some situations, using ∆f provided better results, while in
others, ∆t turned out to be better suited than ∆f . Regardless of the formula used to compute
the delay, the fixed-delay shift turns out to provide worse results than the adaptive procedure
presented in the next paragraph.
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3.6.2 Adaptive shift
Instead of using the fixed delay to shift preestimates, one can use a more flexible approach. Final,
approximately debiased estimates can be obtained using the following formula

θ̂θθ
dfLBF

(t) = θ̂θθ
fLBF

(t+ d(t)), (3.90)

where

d(t) = arg min
d∈D

L0∑
i=−L0

|y(t+ i)− [θ̂θθ
fLBF

(t+ d+ i)]Hϕϕϕ(t+ i)|2, (3.91)

and D = [∆f − d0,∆f + d0] is a set of all candidate delays, centered around the nominal delay
∆f . In this approach, at each time instant, one chooses the delay that minimizes the local sum
of interpolation errors. Such an adaptive method will obviously provide better results than a
fixed-delay shift.

3.7 Bidirectional preestimates
One can avoid introducing delay by using noncausal algorithm at the preestimation stage. We
will start by defining the steady-state bidirectional exponentially weighted least squares (E2WLS)
estimates as

θ̂θθ
E2WLS

(t) = arg min
θθθ

∞∑
i=−∞

λ|t−i||y(i)− θθθHϕϕϕ(i)|2, (3.92)

where λ ∈ (0, 1) is the forgetting constant. It is easy to check that the explicit formula for the
estimates is given by

θ̂θθ
E2WLS

= [RRR2(t)]−1rrr2(t)(t), (3.93)

where

RRR2(t) =
∞∑

i=−∞
λ|t−i|ϕϕϕ(i)ϕϕϕ(i)H

rrr2(t) =
∞∑

i=−∞
λ|t−i|ϕϕϕ(i)y∗(i).

(3.94)

The effective memory of this steady-state estimator takes the form

L∞ = 1 + λ

1− λ. (3.95)

We will show that the mean paths of estimated trajectories are approximately delay-free. For
λ sufficiently close to 1, one can use the following approximation

RRR2(t) ∼= E[RRR2(t)] = L∞ΦΦΦ, (3.96)

which leads to

θθθ
E2WLS(t) = E[θ̂θθ

E2WLS
(t)] = E[RRR−1

2 (t)rrr2(t)] ∼=
1
L∞

ΦΦΦ−1
∞∑

i=−∞
λ|t−i|E[ϕϕϕ(i)y∗(i)]

= 1
L∞

ΦΦΦ−1
∞∑

i=−∞
λ|t−i|{E[ϕϕϕ(i)ϕϕϕH(i)]θθθ(i) + E[ϕϕϕ(i)e∗(i)]} = 1

L∞

∞∑
i=−∞

λ|t−i|θθθ(i)

= 1
L∞

∞∑
i=−∞

λ|i|θθθ(t− i).

(3.97)

The impulse response of a filter associated with this estimator is given by

hE2WLS(i) = 1
L∞

λ|i|, i ∈ Z. (3.98)
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The freuquency characteristic of this filter is defined as

HE2WLS(ω) = 1
L∞

∞∑
i=∞

λ|i|e−iωi = 1
L∞

[ 0∑
i=−∞

λ−ie−iωi +
∞∑
i=1

λie−iωi

]

= 1
L∞

[
1

1− λeiω + λ

1− λe−iω

]
= 1− λ

1 + λ

1− λ2

1− 2λ cosω + λ2 = (1− λ)2

1− 2λ cosω + λ2 .

(3.99)

Note that the frequency characteristic is real-valued, which means that this filter does not
introduce any delay.

Preestimates, based on the E2WLS estimates can be defined as follows

θ̃θθ
E2WLS

(t) = (1 + λ2)θ̂θθ
E2WLS

(t)− λθ̂θθ
E2WLS

(t− 1)− λθ̂θθ
E2WLS

(t+ 1)
(1− λ)2 . (3.100)

Using the approximation (3.114), one obtains

θ̃θθ
E2WLS

(t) ∼=
1

1− λ2ΦΦΦ−1[rrr2(t) + λ2rrr2(t)− λrrr2(t− 1)− λrrr2(t+ 1)]. (3.101)

Note that

rrr2(t) =
t∑

i=−∞
λt−iϕϕϕ(i)y∗(i) +

∞∑
i=t+1

λi−tϕϕϕ(i)y∗(i)

λ2rrr2(t) =
t∑

i=−∞
λt−i+2ϕϕϕ(i)y∗(i) +

∞∑
i=t+1

λi−t+2ϕϕϕ(i)y∗(i)

λrrr2(t− 1) =
t∑

i=−∞
λt−iϕϕϕ(i)y∗(i) +

∞∑
i=t+1

λi−t+2ϕϕϕ(i)y∗(i)−ϕϕϕ(t)y∗(t) + λ2ϕϕϕ(t)y∗(t)

λrrr2(t+ 1) =
t∑

i=−∞
λt−i+2ϕϕϕ(i)y∗(i) +

∞∑
i=t+1

λi−tϕϕϕ(i)y∗(i),

hence
θ̃θθ

E2WLS
(t) ∼= ΦΦΦ−1ϕϕϕ(t)y∗(t) = θ̃θθ(t), (3.102)

and the bidirectional preestimates are approximately unbiased.
Unfortunately, implementation of such estimator is impossible in practice, due to required

infinite amount of data. One can only implement one of the finte-time versions of this algorithm,
that are approximately delay-free.

3.7.1 Offline implementation
When one has access to the entire segment of prerecorded data3, the fixed-interval implementation
can be used (this method will be called for short offline E2WLS)

θ̂θθ
E2WLS

(t|T ) = arg min
θθθ

T∑
i=1

λ|t−i||y(i)− θθθHϕϕϕ(i)|2. (3.103)

Similar as before
θ̂θθ

E2WLS
(t|T ) = [RRR2(t|T )]−1rrr2(t)(t|T ), (3.104)

where

RRR2(t|T ) =
T∑
i=1

λ|t−i|ϕϕϕ(i)ϕϕϕ(i)H

rrr2(t|T ) =
T∑
i=1

λ|t−i|ϕϕϕ(i)y∗(i).

(3.105)

3Such a situation can occur e.g. when two UAC devices working in an FD mode exchange frames of data instead
of communicating in a continuous manner.
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Note that the offline E2WLS estimates can be expressed using unidirectional EWLS algortihms
working forward (3.43) and backward in time. The latter is defined as follows

θ̂θθ
EWLS
− (t) = arg min

θθθ

T∑
i=t

λi−t|y(i)− θθθHϕϕϕ(i)|2, (3.106)

θ̂θθ
EWLS
− (t) = RRR−1

− (t)rrr−(t), (3.107)

where

RRR−(t) =
T∑
i=t

λi−tϕϕϕ(i)ϕϕϕ(i)H = λRRR−(t+ 1) +ϕϕϕ(t)ϕϕϕH(t)

rrr−(t) =
T∑
i=1

λi−tϕϕϕ(i)y∗(i) = λrrr−(t+ 1) +ϕϕϕ(t)y∗(t),

(3.108)

which is initialized with RRR−(T + 1) = 0 and rrr−(T + 1) = 0.
The effective memory of this estimator is given by

L−(t) =
T∑
i=t

λi−t = λL−(t+ 1) + 1 = 1− λT−t+1

1− λ , (3.109)

with the initial condition L−(T + 1) = 0.
Combining forward and backward-time EWLS estimators one obtains

RRR2(t|T ) = RRR(t) + λRRR−(t+ 1)
rrr2(t|T ) = rrr(t) + λrrr−(t+ 1),

(3.110)

which leads to a simple recursive expression, that boils down to processing the causal estimator in
a backward time

RRR2(t|T ) = λRRR2(t+ 1|T ) + (1− λ2)RRR(t)
rrr2(t|T ) = λrrr2(t+ 1|T ) + (1− λ2)rrr(t),

(3.111)

with the initial conditions being RRR2(T + 1|T ) = λRRR(T ) and rrr2(T + 1|T ) = λrrr(T ). Obviously, the
analogous expression can be coined for the forward-time regression using backward-time EWLS
estimator.

Similarly, the effective memory of the offline bidirectional estimator can be written down as

L2(t|T ) =
T∑
i=1

λ|t−i|L(t) + λL−(t+ 1) = λL2(t+ 1|T ) + (1− λ2)L(t), (3.112)

where L2(T + 1|T ) = λL(T ).
Bidirectional offline preestimates will be defined as follows

θ̃θθ
E2WLS

(t|T ) = 1
1− λ2

[
(1 + λ2)L2(t|T )θ̂θθ

E2WLS
(t|T )− λL2(t− 1|T )θ̂θθ

E2WLS
(t− 1|T )−

λL2(t+ 1|T )θ̂θθ
E2WLS

(t+ 1|T )
]
.

(3.113)

It turns out that the preestimates implemented like this have approximately the same properties
as preestimates (3.100), when t >> 1 and t << T . In such situation, one can use the following
approximation

RRR2(t|T ) ∼= E[RRR2(t|T )] = L2(t|T )ΦΦΦ, (3.114)

which leads to

L2(t|T )θ̂θθ
E2WLS

(t|t)−λL2(t+1|T )θ̂θθ
E2WLS

(t+1|T ) ∼= ΦΦΦ−1[rrr2(t|T )−λrrr2(t+1|T )] = (1−λ2)ΦΦΦ−1rrr(t).
(3.115)
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3.7. BIDIRECTIONAL PREESTIMATES 71

Figure 3.3: Offline E2WLS preestimates (black lines) superimposed on true parameter trajectories
(red lines).

Note that the formula (3.2) can be expressed as

θ̃θθ(t) = ΦΦΦ−1ϕϕϕ(t)y∗(t) = ΦΦΦ−1[rrr(t)− λrrr(t− 1)]. (3.116)

Combining (3.115) with (3.116) one obtains that

θ̃θθ
E2WLS

(t|T ) ∼= ΦΦΦ−1[rrr(t)− λrrr(t− 1)] = θ̃θθ(t), (3.117)

which means that the offline bidirectional preestimates are approximately unbiased. An example
of such preestimates is shown in figure 3.3.

3.7.2 Fixed-delay implementation
The second way of implementing the E2WLS preestimates is by using the fixed-delay algorithms.
These algorithms allow one to work in almost-real time. The definitions are very similar to these
from the previous section, the ddifference is that T should be replaced by t + t0 in formulae
(3.103) - (3.109). The obvious drawback of the truncation is that it makes all the recursions more
complicated. Note, however, that the recursive approach from (3.108) is still possible but in a
slightly different manner, resembling the sliding-window-type recursions. In fact, even the inverse of
the matrix from (3.108) can be still computed recursively despite its truncated form. As mentioned
previously, the formulation of the truncated E2WLS estimator is very similar. Nonetheless, it is
worth explaining the difference between truncated and the normal backward-time EWLS estimator
(3.106). The truncated anticausal algorithm is defined as follows

θ̂θθ
tEWLS
− (t) = arg min

θθθ

t+t0∑
i=t

λi−t|y(i)− θθθHϕϕϕ(i)|2 = [RRRt
−(t)]−1rrrt−(t), (3.118)

where

RRRt
−(t) =

t+t0∑
i=t

λi−tϕϕϕ(i)ϕϕϕ(i)H

rrrt−(t) =
t+t0∑
i=t

λi−tϕϕϕ(i)y∗(i).
(3.119)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


72 CHAPTER 3. FAST LOCAL BASIS FUNCTION METHOD

This time, the recurssion from (3.108) does not hold, but instead we have that

RRRt
−(t) = 1

λ
[RRRt
−(t− 1)−ϕϕϕ(t− 1)ϕϕϕH(t− 1)] + λt0ϕϕϕ(t+ t0)ϕϕϕH(t+ t0)

rrrt−(t) = 1
λ

[rrrt−(t− 1)−ϕϕϕ(t− 1)y∗(t− 1)] + λt0ϕϕϕ(t+ t0)y∗(t+ t0),
(3.120)

Using the Sherman-Morrison formula [28] twice, one can compute recursively the inverse of matrix
RRRt
−(t). Denote by PPPt−(t) = [RRRt

−(t)]−1, the first step is

PPPt−(t|t− 1) = λ[RRRt
−(t− 1)−ϕϕϕ(t− 1)ϕϕϕH(t− 1)]−1

= λPPPt−(t− 1) +
λPPPt−(t− 1)ϕϕϕ(t− 1)ϕϕϕH(t− 1)PPPt−(t− 1)

1−ϕϕϕH(t− 1)PPPt−(t− 1)ϕϕϕ(t− 1) .
(3.121)

The second step is

PPPt−(t) = PPPt−(t|t− 1)−
λt0PPPt−(t|t− 1)ϕϕϕ(t+ t0)ϕϕϕH(t+ t0)PPPt−(t− 1)

1 + λt0ϕϕϕH(t+ t0)PPPt−(t|t− 1)ϕϕϕ(t+ t0) . (3.122)

These recursions can be helpful when using the fixed-delay implementation with the simplified
preestimates described below.

When t is large and λt0 is sufficiently small, the fixed-delay implementation has approximately
the same properties as the steady-state E2WLS algorithm. However, if the algorithm is meant to
work in almost real-time, then one should carefully choose t0 since it decides upon the amount of
the processing delay introduced by the algorithm. The rule of thumb, that works well in practice
turns out to be

t0 ≥
⌈

8
1− λ

⌉
,

where dxe is an integer closest to x but not smaller than x.

3.7.3 Simplified bidirectional preestimates
The bidirectional preestimates have an obvious drawback, which is their high computational com-
plexity. Unfortunately, there are no fast algorithms for the computation of E2WLS estimates,
resembling the fast transversal filters or computations based on the matrix inversion lemma [28].
A simple solution to this problem would be to use an approximation of the bidirectional preesti-
mates. For λ sufficiently close to 1

RRR−(t) ∼= E[RRR−(t)] = L−(t)ΦΦΦ. (3.123)

Combining this with (3.116), one can define the unidirectional anticausal preestimates as

θ̃θθ
EWLS
− (t) =

L−(t)θ̂θθ
EWLS
− (t)− λL−(t+ 1)θ̂θθ

EWLS
− (t+ 1)

L−(t) . (3.124)

The simplified bidirectional preestimates become

θ̃θθ
±

(t) =
L(t)θ̃θθ

EWLS
(t) + L−(t)θ̃θθ

EWLS
− (t)

L(t) + L−(t) . (3.125)

Using the same argument as in the previous sections, one can conclude that both θ̃θθ
EWLS
− (t) and

θ̃θθ
±

(t) are approximately unbiased. The steady-state version of such preestimates boils down to

θ̃θθ
±

(t) =
θ̃θθ

EWLS
(t) + θ̃θθ

EWLS
− (t)

2 . (3.126)

It is easy to show that the simplified bidirectional preestimates are approxiately unbiased.
Furthermore, if one assumes that

E[θ̃θθ
EWLS

(t)] ∼= θθθ(t−∆f )

E[θ̃θθ
EWLS
− (t)] ∼= θθθ(t+ ∆f ),

(3.127)
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then it can be showed that these preestimates are delay-free. Assume that the discrete-time param-
eter trajecory {θθθ(t), t ∈ Z} is a result of sampling a smooth continous-time trajectory {θθθ(τ), τ ∈ R}.
Then, using the first-order Taylor approximation θθθ(τ + τ0) ∼= θθθ(τ) + τ0θθθ

′(τ), one arrives at

θθθ(t−∆f ) ∼= θθθ(t)−∆fθθθ
′(t)

θθθ(t+ ∆f ) ∼= θθθ(t) + ∆fθθθ
′(t),

(3.128)

which means that
E[θ̃θθ
±

(t)] ∼= θθθ(t), (3.129)
the steady-state simplified preestimates are approximately delay-free.

Note that the simplified scheme can be used with both fixed-interval and fixed-delay implemen-
tations.

3.8 MSE analysis and optimal impulse response
In this section, we again adopt the assumption (A2.7), under which the MSE of the fLBF estimator
can be found. First, define the estimation errors

∆θ̂θθ
fLBF

(t) = θ̂θθ
fLBF

(t)− θθθ(t) =
k∑

i=−k
hfLBF
m|k (i)θθθ(t+ i) +

k∑
i=−k

hfLBF
m|k (i)zzz(t+ i)− θθθ(t). (3.130)

The MSE is equal to

M fLBF
m|k = E[||∆θ̂θθ

fLBF
(t)||2] = E[||ΘΘΘ(t)hhhm|k − θθθ(t)||2] + E{[ΘΘΘ(t)hhhm|k − θθθ(t)]HZZZ(t)hhhm|k}

+ E{hhhH
m|kZZZH(t)[ΘΘΘ(t)hhhm|k − θθθ(t)]}+ E[||ZZZ(t)hhhm|k||2],

(3.131)

where the expectation is carried over different realizations of parameter trajectories, and hhhm|k =
[hfLBF
m|k (−k), . . . , hfLBF

m|k (k)]T, ΘΘΘ(t) = [θθθ(−k), . . . , θθθ(t+ k)], ZZZ(t) = [zzz(t− k), . . . ,zzz(t+ k)].
Under (A2.4), (A2.5) and (A2.6) the preestimation noise zzz(t) is approximately white and un-

correlated with θθθ(t), hence E{[ΘΘΘ(t)hhhm|k − θθθ(t)]HZZZ(t)hhhm|k} = E{hhhH
m|kZZZH(t)[ΘΘΘ(t)hhhm|k − θθθ(t)]} = 0.

Furthermore, under (A2.7)

E[||ΘΘΘ(t)hhhm|k − θθθ(t)||2] = η[rθ(0)− rrrH
θ hhh∗m|k + hhhH

m|kRRRθhhhm|k], (3.132)

where rrrθ and RRRθ are defined exactly the same as in Section 2.6.4. In fact, the expression above is
the same as the formula (2.86).

We will also make an additional assumption, that is commonly fulfilled in telecommunication
applications.

(A3.2) {u(t)} is a sequence of mutually uncorrelated circular random variables with variance
σ2
u.

Under (A3.2), it holds that
cov[zzz(t)] ∼= σ2

zIIIn, (3.133)
and

E[||ZZZ(t)hhhm|k||2] ∼= σ2
zhhhH
m|khhhm|kIIIK . (3.134)

Summarizing,

M fLBF
m|k

∼= η

[
rθ(0)− rrrH

θ hhh∗m|k + hhhH
m|k

(
RRRθ + nσ2

z

η
IIIK
)

hhhm|k
]
, (3.135)

which is very similar to (2.88). The difference is that in this case, one can actually find the optimal
impulse response hhhopt

m|k and apply it in the fLBF method. A similar approach for the WLS method
was presented in [48]. One can take one of the two approaches here. The first would be to perform
unconstrained optimization, leading to

hhhopt
k =

(
RRRθ + nσ2

z

η
IIIK
)−1

rrr∗θ. (3.136)
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The other way would be to adopt a constraint
∑k
i=−k h

fLBF
m|k (i) = 1 ⇐⇒ cccThhhm|k = 1, ccc =

[1, . . . , 1]T. The impulse response of a suboptimal lowpass filter can be then found using the
method of Lagrange multipliers (see Appendix D in [35]). Its impulse response would be defined
as

hhhsopt
k =

(
RRRθ + nσ2

z

η
IIIK
)−1

(rrr∗θ + γ), (3.137)

where

γ =
1− cccT

(
RRRθ + nσ2

z

η IIIK
)−1

rrr∗θ

cccT
(
RRRθ + nσ2

z

η IIIK
)−1

ccc
. (3.138)

Remark 1 - optimal basis functions

It turns out that the optimal impulse response can be easily connected with the basis functions
incorporated in the Savitzky-Golay filter, when wk(i) ≡ 1, i ∈ Ik. Note that the optimal impulse
response can be expressed in the form

hhhopt
k =

(
RRRθ + nσ2

z

η
IIIK
)−1

rrr∗θ = QQQΥΥΥQQQH111K,k+1, (3.139)

where ΥΥΥ = diag
{

ηλ1
ηλ1+nσ2

z
, . . . , ηλK

ηλK+nσ2
z

}
, and QQQ is a matrix of eigenvectors of RRRθ, while λi, i ∈

[1,K] are eigenvalues of the matrix RRRθ.
Hence, the optimal basis should be defined as

[fl|K(−k), . . . , fl|K(k)]T =

√
λlη

λlη + nσ2
z

qqql, l = 1, . . . ,K, (3.140)

to produce the filter with the same impulse response as the optimal one.
Note also that in the noiseless scenario these functions reduce to KL functions. They are also

almost indistinguishable from the KL functions when λl � σ2
z/η. Another important thing is that

in the fLBF method, one can use K orthonormal basis functions without any numerical problems.
Figure 3.4 shows the shapes of the optimal (the top plot) and suboptimal impulse response

(in the middle plot), and the impulse response resulting from the KL functions (the bottom plot).
These plots were obtained assuming uniform power spectral density function of parameter changes
(2.84), with ζ1 = ζ2 = . . . = ζ20 = 1, normalized cut-off frequency ω0 = π/50 and σ2

z = 2.
The differences between the first two plots are very small. In fact, for this particular example

cccThhhopt
k
∼= 0.993. Note that

hhhsopt
k = hhhopt

k + γ

(
RRRθ + nσ2

z

η
IIIK
)−1

ccc. (3.141)

The suboptimal window is an effect of modifying the optimal one to make sure that the constraint
cccThhhm|k = 1 is satisfied. In this example, the modification needs to be very small because the
constraint is almost met. More differences are visible between the first and the last plot (especially
at both ends of the analysis window), which is due to the fact that in this example σ2

z > 0 and
hence, for some eigenvectors σ2

z

nλl
is substantially greater than 0.

Remark 2 - decoupled optimization

Note that the MSE for the entire system is the sum of the MSEs for every parameter. Since, using
the fLBF method, one can decouple the estimation problem, one can also relax the assumption
(A2.7) and assume that every parameter is characterized by a different autocorrelation function.
Then, one can find the impulse response of the optimal filter for each parameter, and filter each
preestimated trajectory differently.

Remark 3 - regularization
Note that impulse response (3.136) can be interpreted as the impulse response associated with
the KL basis after applying regularization. The higher the variance of the preestimation noise
compared to the variance of the parameter trajectories, the stronger the regularization effect.
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3.8. MSE ANALYSIS AND OPTIMAL IMPULSE RESPONSE 75

Figure 3.4: Shapes of the optimal (the top plot) and the suboptimal impulse response (the middle
plot), and the impulse response resulting from the KL functions (the bottom plot). The plots
were obtained assuming uniform power spectral density function of parameter changes (2.84), with
ζ1 = ζ2 = . . . = ζ20 = 1, normalized cut-off frequency ω0 = π/50 and σ2

z = 2.
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Remark 4 - delay
Note that the debiasing, either using the fixed delay or with the adaptive choice of the local delay
of preestimates, can be incorporated into the design of an optimal (or suboptimal) filter. For
instance, assuming that the average delay of preestimates is known and equal to ∆f , it is easy to
check that the formula for the optimal filter requires replacing rrrθ with a new, shifted one

r̃rrθ = [rθ(−k −∆f ), . . . , rθ(k −∆f )]T. (3.142)

3.9 Hyperparameter optimization in postfiltering
When using Savitzky-Golay filtration, one faces the same dilemma as in the LBF method, namely,
how to choose the number of basis functions m, and the length of analysis window K? It turns out
that the same approach, based on parallel estimation can be applied in the fLBF method. Just as
previously, the FPE and LOOCV methods can be adapted to determine which settings are locally
best suited for identification.

The fLBF method is a unique identification technique, which allows one to decouple the esti-
mation of system parameters. This means, that the quality measure for choosing hyperparameters
can be either based on modeling errors related to the system output, just like in the LBF approach,
or one can use several quality measures, based on errors related to filtering preestimates. The first
strategy is called centralized while the second one is called decentralized.

While tuning hyperparameters, one can make the decision for each parameter separately (re-
sulting in potentially different m and K for every system parameter) or jointly. In the second
approach, one chooses the same hyperparameters for every parameter trajectory. Both of these
approaches can be implemented in centralized and decentralized strategies. However, choosing
hyperparameters separately for every preeestimate is more natural and implementational easier in
a decentralized approach.

3.9.1 Centralized approach
Whether the hyperparameters are selected together or separately for each parameter, one has to
run several estimators θ̂θθ

fLBF
j (t), j ∈ MK in parallel, where MK is a set of all different settings.

At each time instant, one chooses the one that minimizes the centralized quality measure

θ̂θθ
fLBF

(t) = θ̂θθ
fLBF
j(t) (t), (3.143)

where
j(t) = arg min

j∈MK
Jc(t). (3.144)

The quality measure is based on the leave-one-out cross-validation approach, namely

J fLBF
c (t) =

L∑
i=−L

∣∣∣εfLBF
o,m|k(t+ i)

∣∣∣2 , (3.145)

where
εfLBF
o,m|k(t) = y(t)− [θ̂θθ

fLBF
o,m|k(t)]Hϕϕϕ(t), (3.146)

denotes leave-one-out interpolation error, computed for the holey estimates of system trajectories

θ̂θθ
fLBF
o,m|k(t) = FFFm|k(0)α̂ααfLBF

o,m|k(t), (3.147)

and

α̂αα
fLBF
o,m|k(t) = arg min

ααα

k∑
i=−k
i 6=0

wk(i)||θ̃θθ(t)−FFFm|k(i)ααα||2. (3.148)
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It is straightforward to check that

α̂αα
fLBF
o,m|k(t) =

 k∑
i=−k
i 6=0

wk(i)FFFH
m|k(i)FFFm|k(i)


−1  k∑

i=−k
i 6=0

wk(i)θ̃θθ(t+ i)⊗ fffm|k(i)


= [IIInm − wk(0)FFFH

m|k(0)FFFm|k(0)]−1[α̂ααfLBF
m|k (t)− wk(0)θ̃θθ(t)⊗ fffmk(0)].

(3.149)

Since it was assumed that wk(0) = 1, using the Sherman-Morrison formula [28] and the properties
of Kronecker product, one obtains

α̂αα
fLBF
o,m|k(t) = IIIn ⊗ [IIIm − fffm|k(0)fffH

m|k(0)]−1[α̂ααfLBF
m|k (t)− θ̃θθ(t)⊗ fffmk(0)]

= IIIn ⊗
[
IIIm +

fffm|k(0)fffH
m|k(0)

1− fffH
m|k(0)fffm|k(0)

]
[α̂ααfLBF
m|k (t)− θ̃θθ(t)⊗ fffmk(0)]

= IIIn ⊗
[
IIIm +

fffm|k(0)fffH
m|k(0)

1− fffH
m|k(0)fffm|k(0)

]
α̂αα

fLBF
m|k (t)− 1

1− fffH
m|k(0)fffm|k(0)

θ̃θθ(t)⊗ fffm|k(0).

(3.150)

Combining the result above with (3.147), one gets

θ̂θθ
fLBF
o,m|k(t) = FFFm|k(0)α̂ααfLBF

o,m|k(t) = [IIIn ⊗ fffH
m|k(0)]α̂ααfLBF

o,m|k(t)

= IIIn ⊗
[
fffH
m|k(0) +

fffH
m|k(0)fffm|k(0)fffH

m|k(0)
1− fffH

m|k(0)fffm|k(0)

]
α̂αα

fLBF
m|k (t)

− 1
1− fffH

m|k(0)fffm|k(0)
θ̃θθ(t)⊗ fffH

m|k(0)fffm|k(0)

= 1
1− fffH

m|k(0)fffm|k(0)
[FFFm|k(0)α̂ααfLBF

m|k (t)− fffH
m|k(0)fffm|k(0)θ̃θθ(t)]

= 1
1− fffH

m|k(0)fffm|k(0)
[θ̂θθ

fLBF
m|k (t)− fffH

m|k(0)fffm|k(0)θ̃θθ(t)].

(3.151)

As a consequence

εfLBF
o,m|k(t) = y(t)− [θ̂θθ

fLBF
o,m|k(t)]Hϕϕϕ(t) = 1

1− fffH
m|k(0)fffm|k(0)

[εfLBF
m|k (t)− fffH

m|k(0)fffm|k(0)ε̃(t)]

= 1
1− hfLBF

m|k (0)
[εfLBF
m|k (t)− hfLBF

m|k (0)ε̃(t)],
(3.152)

where
εfLBF
m|k (t) = y(t)− [θ̂θθ

fLBF
m|k (t)]Hϕϕϕ(t), (3.153)

denotes the fLBF interpolation error, and

ε̃(t) = y(t)− θ̃θθ
H

(t)ϕϕϕ(t), (3.154)

is a preestimate interpolation error. This means, that leave-one-out interpolation errors can be
found without computing new estimates of system parameters. Note also, that the expression
analogous to (3.152) can be derived for any filter with the impulse response {h(i), i ∈ Ik}, even if
it is not associated with any basis functions [77].

3.9.2 Decentralized approach
Unlike in the centralized approach, in this approach, every parameter has its own quality measure
based not on the errors related to the system output, but on the filtering performance. The
procedure is as follows, at each time instant, and for every parameter, one selects hyperparameters
from sets of possible hyperparameter candidates Mj , Kj , j = 1, . . . , n, for which the estimator
minimizes the local quality measure

{mj(t), kj(t)} = arg min
mj∈Mj ,kj∈Kj

Jj(t), j = 1, . . . , n, (3.155)
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78 CHAPTER 3. FAST LOCAL BASIS FUNCTION METHOD

and
θ̂fLBF
j,m|k(t) = θ̂fLBF

j,mj(t)|kj(t)(t). (3.156)

Such a quality measure can be derived either from the FPE criterion or again using the LOOCV
approach.

FPE criterion

Let Ω′j,k(t) = {z′j(t + i), i ∈ Ik}, j = 1, . . . , n, denote the realization of preestimation noise,
independent of the realization Ωj,k(t) = {zj(t + i), i ∈ Ik}, j = 1, . . . , n,, used for filtering. The
FPE for each parameter trajcetroy is defined as follows

υj,m|k(t) = EΩ′
j,k

(t)Ωj,k(t)

[
|θ̃′j(t)− θ̂fLBF

j,m|k(t)|2
]
, j = 1, . . . , n. (3.157)

This can be expressed as

υj,m|k(t) = EΩ′
j,k

(t)Ωj,k(t)

∣∣∣∣∣θj(t) + z′j(t)−
k∑

i=−k
hfLBF
m|k (i)θj(t+ i)−

k∑
i=−k

hfLBF
m|k (i)zj(t+ i)

∣∣∣∣∣
2 .
(3.158)

When the assumption (A2.1) is fulfilled, then
∑k
i=−k h

fLBF
m|k (i)θj(t+i) = θj(t), and (3.157) becomes

υj,m|k(t) = EΩ′
j,k

(t)Ωj,k(t)

∣∣∣∣∣z′j(t)−
k∑

i=−k
hfLBF
m|k (i)zj(t+ i)

∣∣∣∣∣
2

= EΩ′
j,k

(t)Ωj,k(t)[||z′j(t)|2] + EΩ′
j,k

(t)Ωj,k(t)

∣∣∣∣∣
k∑

i=−k
hfLBF
m|k (i)zj(t+ i)

∣∣∣∣∣
2

= σ2
zj + EΩ′

j,k
(t)Ωj,k(t)

∣∣∣∣∣
k∑

i=−k
hfLBF
m|k (i)zj(t+ i)

∣∣∣∣∣
2 ,

(3.159)

where the last transition follows from the fact, that z′j(t) is independent of zj(t) and zero-mean.
Under (A3.2) it holds that

υj,m|k(t) ∼= σ2
z

(
1 + 1

lfLBF
m|k

)
. (3.160)

The final expression can be obtained using

σ̂2
z = 1

Lw

k∑
i=−k

wk(i)|θ̃j(t+ i)− fffH
m|k(i)α̂ααfLBF

j,m|k(t)|2

= 1
Lw

k∑
i=−k

wk(i)|θj(t+ i) + zj(t+ i)− fffH
m|k(i)α̂ααfLBF

j,m|k(t)|2

= 1
Lw

k∑
i=−k

wk(i)|zj(t+ i)− fffH
m|k(i)∆α̂ααfLBF

j,m|k(t)|2.

(3.161)

Under (A2.1) it holds that

∆α̂ααfLBF
j,m|k(t) = α̂αα

fLBF
j,m|k(t)−αααj(t) =

k∑
i=−k

wk(i)fffm|k(i)θ̃j(t+ i)−αααj(t)

=
k∑

i=−k
wk(i)fffm|k(i)fffH

m|k(i)αααj(t)−αααj(t) +
k∑

i=−k
wk(i)fffm|k(i)zj(t+ i)

=
k∑

i=−k
wk(i)fffm|k(i)zj(t+ i),

(3.162)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


3.9. HYPERPARAMETER OPTIMIZATION IN POSTFILTERING 79

hence

σ̂2
z = 1

Lw

k∑
i=−k

wk(i)
∣∣∣∣∣zj(t+ i)− fffH

m|k(i)
k∑

s=−k
wk(s)fffm|k(s)zj(t+ s)

∣∣∣∣∣
2

= 1
Lw

k∑
i=−k

wk(i)
∣∣∣zj(t+ i)− fffH

m|k(i)ξξξj,m|k(t)
∣∣∣2 ,

(3.163)

where ξξξj,m|k(t) =
∑k
s=−k wk(s)fffm|k(s)zj(t + s). Under (A3.2), the expected value of σ̂2

z has the
form

E[σ̂2
z ] = 1

Lw

k∑
i=−k

wk(i)
{

E[|zj(t+ i)|2]− E[z∗j (t+ i)fffH
m|k(i)ξξξj,m|k(t)]− E[zj(t+ i)ξξξH

j,m|k(t)fffm|k(i)]

+ E[ξξξH
j,m|k(t)fffm|k(i)fffH

m|k(i)ξξξj,m|k(t)]
}

= σ2
z −

2
Lw

k∑
i=−k

w2
k(i)fffm|k(i)fffH

m|k(i)σ2
z + 1

Lw

k∑
i=−k

w2
k(i)fffm|k(i)fffH

m|k(i)σ2
z

= σ2
z

(
1− 1

Nm|k

)
.

(3.164)

Combining the result above with (3.160), one arrives at

FPEj(t) = υj,m|k(t) ∼=
1 + 1

lfLBF
m|k

1− 1
Nm|k

σ̂2
z(t), (3.165)

where σ̂2
z can be evaluated as

σ̂2
z(t) = 1

Lw

k∑
i=−k

wk(i)|θ̃j(t+ i)− fffH
m|k(i)α̂ααfLBF

j,m|k(t)|2 = 1
Lw

k∑
i=−k

wk(i)|θ̃j(t+ i)|2 − 1
Lw
||α̂ααfLBF

j,m|k(t)||2.

(3.166)
Note that (3.165) has the same form as (2.117).

Leave-one-out cross-validation

The alternative to the FPE-based criterion is to use LOOCV, which involves the quality measure
defined as

Jj(t) =
L∑

i=−L
|εfLBF
o,j (t+ i)|2, (3.167)

where
εfLBF
o,j (t) = θ̃j(t)− θ̂fLBF

o,j (t), (3.168)
is a leave-one-out interpolation error, and

θ̂fLBF
o,j (t) = 1∑k

i=−k h
fLBF
m|k (i)− hfLBF

m|k (0)

k∑
i=−k
i 6=0

hfLBF
m|k (i)θ̃j(t), (3.169)

is a holey estimate of parameter trajectory. It is immediate to see that when the applied filter is
a lowpass filter, then

θ̂fLBF
o,j (t) = 1

1− hfLBF
m|k (0)

[θ̂fLBF
j,m|k(t)− hfLBF

m|k (0)θ̃j(t)]. (3.170)

As a consequence
εfLBF
o,j (t) = 1

1− hfLBF
m|k (0)

εfLBF
j,m|k(t), (3.171)
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80 CHAPTER 3. FAST LOCAL BASIS FUNCTION METHOD

where
εfLBF
j,m|k(t) = θ̃j(t)− θ̂fLBF

j,m|k(t). (3.172)

Just like in the centralized case, the leave-one-out cross-validation approach can be used even if
the filtration is performed with a finite impulse response filter that is not associated with any basis
functions.

Remark

If one wants to choose hyperparameters jointly for all system parameters using a decentralized
approach, then the following quality measure can be adopted

J(t) =
n∑
j=1

Jj(t). (3.173)

However, it is worth noting that since typically the variance of preestimation noise is much larger
than the variance of the measurement noise σ2

z � σ2
e , the decentralized approach for choosing

hyperparameters in a joint manner might yield inferior results to the results provided by the
centralized strategy.

Sign test

One can also adopt the approach based on counting the sign changes of residuals, for choosing the
number of basis functions m. If a model consisting of m basis functions is locally describing the
true trajectory sufficiently accurately, then under (A2.5) and (A3.1), the residual errors

εfLBF
j,m|k(t, i) = θ̃j(t+ i)− fffH

m|k(i)α̂ααfLBF
j,m|k(t), i ∈ Ik, (3.174)

can be approximately viewed as a realization of white noise. As a consequence, the signs of residuals
should change on average every second sample. Define

δR
j,m|k(t, i) =

{
1 if Re[εfLBF

j,m|k(t, i)] > 0
−1 if Re[εfLBF

j,m|k(t, i)] ≤ 0
, i ∈ Ik, (3.175)

the signs of real part of residuals. Furthermore, define the set of indices for which the δR
m|k(t, i), i ∈

Ik changes sign

DR
j,m|k(t) = {i : δR

j,m|k(t, i− 1)δR
j,m|k(t, i) < 0, i ∈ [−k + 1, k]}. (3.176)

Denote also by
dR
j,m|k(t) = card[DR

j,m|k(t)] ∈ [0,K − 1], (3.177)

the number of sign changes of the real part of residuals inside the analysis window. If the sequence of
residuals is a realization of a sequence of mutually independent, random variables with symmetrical
probability distribution function, then the signs of residuals should obey the binomial distribution
(see [25]). Hence, the test for the quality of a model will be based on checking whether dR

j,m|k(t) is
above some statistically justified threshold.

Consider the following null hypothesis:

HR
0,j(t): {Re[εfLBF

j,m|k(t + i)], i ∈ Ik} is a sequence of independent random variables obeying
the condition

P
(

Re[εfLBF
j,m|k(t+ i)] > 0

)
= P

(
Re[εfLBF

j,m|k(t+ i)] ≤ 0
)
, ∀i∈Ik ,

and P (·) denotes the probability.

If the null hypothesis is true, then one has

P
(
dR
j,m|k(t) = d|HR

0,j(t)
)

= (K − 1)!
2K−1d!(K − 1− d)! . (3.178)
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3.9. HYPERPARAMETER OPTIMIZATION IN POSTFILTERING 81

As a consequence, one obtains

∀d0∈[1,K−1] P
(
dR
j,m|k(t) ≤ d0|HR

0,j(t)
)

=
d0∑
d=0

(K − 1)!
2K−1d!(K − 1− d)! = ηR

0 . (3.179)

One can also define the analogous quantities δI
j,m|k(t, i), DI

j,m|k(t), dI
j,m|k(t) and ηI

0 for the imaginary
part of the residuals as well as the null hypothesis HI

0,j(t). The sign test can be used to choose the
number of basis functions in the fLBF method. If the number of local signs changes in the real part
dR
j,m|k(t) > d0 or in the imaginary part dI

j,m|k(t) > d0, then one should increase m by adding a new
basis function to the set of currently used functions and repeat the identification process inside the
current analysis window. More precisely, one should start with one, constant basis function, which
is sufficient to model static parameters, run the sign test, and in case it indicates that one basis
function does not suffice to model parameter dynamics, one should add another basis function,
repeat the estimation process and the sign test. The procedure of adding new basis functions and
repeating the estimation should be repeated until the sign test indicates that the currently used
model explains parameter dynamics sufficiently.

The threshold d0 can be calculated based on the chosen probability of type I errors

η0 = P
(
dR
j,m|k(t) ≤ d0 ∪ dI

j,m|k(t) ≤ d0|HR
0,j(t) ∩ HI

0,j(t)
)

= P
(
dR
j,m|k(t) ≤ d0|HR

0,j(t)
)

+ P
(
dI
j,m|k(t) ≤ d0|HI

0,j(t)
)
− P

(
dR
j,m|k(t) ≤ d0 ∩ dI

j,m|k(t) ≤ d0|HR
0,j(t) ∩ HI

0,j(t)
)
.
(3.180)

Assuming that the real and imaginary part of residuals are independent, one obtains

η0 = ηR
0 + ηI

0 − ηR
0 η

I
0 = 1− (1− ηR

0 )(1− ηI
0) = 1− (1− ηR

0 )2

= 1−
[

1−
d0∑
d=0

(K − 1)!
2K−1d!(K − 1− d)!

]2

,
(3.181)

where the last transition follows from the fact that the threshold is the same for the real and
imaginary parts, hence ηR

0 = ηI
0. One should always choose a sufficiently small value of a probability

of type I errors, typically η0 = 0.01 or η0 = 0.05.

Remark 1

Note that when the basis functions are wk-orthonormal, then the residuals from the equation
(3.174) can be computed in an order-recursive fashion. Note that

α̂αα
fLBF
j,m+1|k(t) =

[
α̂αα

fLBF
j,m|k(t)

α̂m+1
j,m+1|k(t)

]
, (3.182)

where

α̂m+1
j,m+1|k(t) =

k∑
i=−k

wk(i)θ̃j(t+ i)fm+1|k(i). (3.183)

Hence
εfLBF
j,m+1|k(t, i) = εfLBF

j,m|k(t, i)− f∗m+1|k(i)α̂m+1
j,m+1|k(t), i ∈ Ik. (3.184)

Remark 2

For the real-valued systems, i.e. systems in which input and output signals, and parameters are
real-valued, the probability of type I errors has a simpler form

η0 = P (dR
j,m|k(t) ≤ d0|HR

0,j(t)) =
d0∑
d=0

(K − 1)!
2K−1d!(K − 1− d)! . (3.185)
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82 CHAPTER 3. FAST LOCAL BASIS FUNCTION METHOD

Remark 3

If the resudiuals are i.i.d. and symmetrically distributed, the numbers of sign changes dR
j,m|k(t)

and dI
j,m|k(t) can be seen as sums of independent and identically distributed random variables and,

according to the central limit theorem, they have the asymptotical normal distribution

dR
j,m|k(t) dist.−−−→ N (dk, σ2

d)

dI
j,m|k(t) dist.−−−→ N (dk, σ2

d),
(3.186)

where (see [98])

dk = E[dR
j,m|k(t)] = E[dI

j,m|k(t)] = K − 1
2 = k

σ2
d = var[dR

j,m|k(t)] = var[dI
j,m|k(t)] = E{[dR

j,m|k(t)]2} − k2 = K − 1
4 = k

2 ,
(3.187)

which means that

dR
j,m|k(t)− k
√

2k/2
dist.−−−→ N (0, 1)

dI
j,m|k(t)− k
√

2k/2
dist.−−−→ N (0, 1),

(3.188)

and for K large enough, with approximately 95% confidence it holds

|dR
j,m|k(t)− k|
√

2k/2
≤ 1.96, (3.189)

and the same holds true for the imaginary part of residuals. Using the reasoning leading to (3.181),
the probability that both numbers of sign changes will not obey the above condition, given that
residuals are i.i.d. and symmetrically distributed, is equal to η0 = 0.0975 ≈ 0.01. Hence, for
sufficiently large values of K, one can use this simplified version of a sign test. Note that this
simplified test poses a lower and an upper bound on the number of sign changes. For example, for
η0 = 0.01 andK = 1021 the full sign test gives a threshold of 468, while the simplified test indicates
that the number of sign changes should be in the interval [478, 542], for K = 401, one obtains the
exact threshold equal to 173, and the interval provided by the simplified test is [180, 220].

3.10 Computational complexity
The computation of EWLS-based preestimates requires O(n) operations when implemented using
fast transversal filters [5], [35], [53]. It is worth noting that one should take some precautions when
implementing them with finite precision [35]. However, one can obtain similar computational
complexity (also of order O(n)) with DCD algorithm [111]. Computing preestimates also requires
O(n) operations.

In the second step - postfiltering, one can take one of the two approaches. The first one is
to find the estimates of basis function coefficients first, using equation (3.16) (when the basis is
wk-orthonormal), and then calculate the estimates of system parameters. The second approach -
filtering, is to filter the preestimates using the impulse response associated with the chosen basis
functions (equation (3.17)).

In the first case, computational complexity can be substantially reduced (compared with di-
rect implementation of equation (3.16)) with recursive computations. The idea of the recursive
computations was presented in Section 2.6.5. Note that the formulae (2.101) and (2.102) can be
easily adapted to the fLBF case. In fact, one does not need to update the regression matrix, and
when the basis is wk-orthonormal, one does not need to inverse it either. In formulas for updating
pppm|k(t), one only needs to replace y(t) with 1 and ϕϕϕ(t) with θ̃θθ(t).

In the second approach, one can use the FFT-based approach (even when working in an almost
real-time fashion, the technique presented in [95] can be used).
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Chapter 4

Regularization in basis function
methods

4.1 Introduction
The ultimate goal of identification is to minimize mean squared estimation errors. These errors can
be decomposed into bias and variance components. As described in previous chapters, reducing
one of them usually increases the value of the second one. This is why one should seek a bias-
variance trade-off. One of the powerful tools, that help to reach such a trade-off, is regularization.
In this chapter we show how to incorporate regularization in the local basis function and the fast
local basis function methods, resulting in regularized LBF (RLBF) and regularized fLBF (fRLBF)
methods. The content of this chapter evolves around the four questions that one may ask about
regularization:

1. What is being constrained?

2. What penalty is used?

3. What prior knowledge is available?

4. What optimization technique is used?

4.2 Regularized local basis function method
Before one can formulate expressions for the RLBF estimator, one needs to answer the first two of
the aforementioned questions. One can put constraints on the vector of basis function coefficients,
or on the vector of system parameters. Regarding the second question, one can choose e.g. the
`2 or `1 norm. First, note that the functional form of the final formula will be the same when
the constraint is put on the vector of basis function coefficients and on the vector of system
parameters. However, the resulting regularization matrix will be different because under (A2.1)
θθθ(t) = FFFm|k(0)ααα(t). Therefore, we first show the more natural formulation, when one constrains
the basis function coefficients. Later we explain, how one can use this formulation to impose
constraints on the vector of system parameters θθθ(t).

4.2.1 Formulation for the `2 penalty
Let GGG be an mn × mn Hermitian nonnegative-definite regularization matrix and ||ααα(t)||2GGG =
αααH(t)GGGααα(t). The RLBF estimates are defined as follows

α̂αα
RLBF
m|k (t) = arg min

ααα

{ k∑
i=−k

wk(i)|y(t+ i)−αααHψψψm|k(t, i)|2 + µ||ααα||2GGG
}

θ̂θθ
RLBF
m|k (t) = FFFm|k(0)α̂ααRLBF

m|k (t),

(4.1)

83
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84 CHAPTER 4. REGULARIZATION IN BASIS FUNCTION METHODS

where µ > 0 is a regularization constant. This constant is very important since it controls the
balance between the influence of user requirements for the system parameters or basis function
coefficients and the information contained in the available data. Therefore, the optimization of
this constant is a crucial factor and will be discussed in detail in the next sections. Assume
now, that one wants to put constraints on the vector of system parameters using the Hermitian
nonnegative regularization matrix HHH = DDDHDDD, where DDD is an l × n matrix, l ≥ n, this can be
achieved by noting that

||θθθ(t)||2HHH = θθθH(t)HHHθθθ(t) = αααH(t)FFFH
m|k(0)HHHFFFm|k(0)ααα(t) = αααH(t)GGGααα(t) = ||ααα(t)||2GGG, (4.2)

provided that (A2.1) holds true. Hence, one can use the expression (4.1) when the constraints are
imposed on the vector of system parameters θθθ(t) as well as when they are formulated for the vector
of basis function coefficients ααα(t).

It can be shown that
α̂αα

RLBF
m|k (t) = SSS−1

m|k(t)pppm|k(t), (4.3)

where

SSSm|k(t) = PPPm|k(t) + µGGG =
k∑

i=−k
wk(i)ψψψm|k(t, i)ψψψH

m|k(t, i) + µGGG. (4.4)

Note that, one can still use the recursive formulae introduced in one of the previous chapters
to update the matrix SSSm|k(t).

From now on, we will assume in all derivations for the RLBF method (unless stated otherwise)
that

GGG = FFFH
m|k(0)HHHFFFm|k(0) = FFFH

m|k(0)DDDHDDDFFFm|k(0) = BBBHBBB = HHH⊗ fffm|k(0)fffH
m|k(0), (4.5)

where BBB = DDDFFFm|k(0) = DDD⊗ fffH
mk(0).

4.2.2 Formulation for the `1 penalty
The RLBF estimator with the `1 penalty is defined as follows

α̂αα
RLBF
m|k (t) = arg min

ααα

{ k∑
i=−k

wk(i)|y(t+ i)−αααHψψψm|k(t, i)|2 + µ||ααα||1
}

θ̂θθ
RLBF
m|k (t) = FFFm|k(0)α̂ααRLBF

m|k (t).

(4.6)

As it was explained in [100], such a formulation of the problem promotes the sparsity of basis
function coefficients. However, the closed-form solution for such a problem is not known in general,
and the minimization problem with the `1 norm is considered difficult. One can either solve (4.6)
numerically as an optimization problem or apply an iterative reweighting technique, which is a
useful tool in approximation theory [8], [12]. Note that the `1 norm can be written down as

|x| = xx∗

|x|
,

which means that the formula (4.6) can be approximated by a RLBF method with `2 penalty and
suitably designed regularization matrix, namely

α̂αα
RLBF
m|k (t, p) = arg min

ααα

{ k∑
i=−k

wk(i)|y(t+ i)−FFFm|k(i)ααα|2 + µ||ααα||2GGGp

}
θ̂θθ

RLBF
m|k (t, p) = FFFm|k(0)α̂ααRLBF

m|k (t, p), p ∈ N+,

(4.7)

where

GGGp = diag{|α̂RLBF
1,1 (t, p− 1)|, . . . , |α̂RLBF

m,1 (t, p− 1)|, . . . |α̂RLBF
1,n (t, p− 1)|, . . . , |α̂RLBF

m,n (t, p− 1)|}−1,

p ∈ N+,

(4.8)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl
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and α̂ααRLBF
m|k (t, 0) = α̂αα

LBF
m|k (t). When the `1 penalty is applied to the vector of system parameters

θθθ(t), the matrix GGGp takes the form

GGGp = FFFH
m|k(0)diag{|θ̂RLBF

1 (t, p− 1)|, . . . , |θ̂RLBF
n (t, p− 1)|, }−1FFFm|k(0), p ∈ N, (4.9)

and θ̂θθ
RLBF
m|k (t, 0) = θ̂θθ

LBF
m|k (t). Such estimators were investigated in [22].

4.3 Regularization matrix design
Designing the regularization matrix appropriately, one can impose certain restrictions on the shape
and smoothness of the estimated instantaneous impulse response of a time-varying system. Its
structure can also reflect the available prior knowledge about parameter changes and in this sense,
it addresses the third of the questions listed in the introduction to this chapter. One can find more
information about the design of the regularization matrices in the publication [15]. It discusses
two perspectives on the design of regularization matrices. Even though the article describes the
identification of time-invariant systems, it contains many valuable insights.

4.3.1 Design with no prior knowledge about parameter changes

If no prior knowledge about the parameter variations is available, one can use the regularization
matrix either to implement the reweighted estimation scheme, as it was shown earlier, or to prevent
the estimation procedure from ill-conditioning, e.g. by using the ridge regression.

4.3.2 Design based on partial prior knowledge about parameter varia-
tions

When the partial or full (statistical) knowledge about parameter changes is available, one can
parametrize the regularization matrix in terms of some prior-related hyperparameter vector βββ,
resulting in HHH(βββ).

Time-domain smoothness priors

Historically, the first attempt to incorporate prior knowledge into the design of a regularization
matrix was made by Whittaker [108]. Later on, his approach was rediscovered and/or extended
by many authors - see e.g. [3], [41], [81]. This method, based on time-domain smoothness priors
was later used for Kalman-filter-based identification of nonstationary processes [41].

Define the forward lag-shift operator δ, working in the domain of a frozen impulse response of
a system, namely

δθj(t) = θj+1(t), j = 1, . . . , n− 1.

One can impose smoothness constraints on {θj(t)} by penalizing the excessive values of the
following p-th order finite differences

∇pθj(t) = (1− δ)pθj(t) =
p∑
i=0

(−1)i
(
p

i

)
δp−iθj(t) =

p∑
i=0

cp,iθj+p−i(t), j = 1, . . . , n,

where the boundary conditions are θj(t) = 0, j > n. Such boundary conditions allow to achieve
an additional goal. Besides imposing the smoothness constraints, the regularization based on the
above formula helps to achieve the tapering (gradual decay to zero) of the last p impulse response
coefficients, which is often beneficial in practical applications.

Using time-domain smoothness priors in identification results in penalizing the excessive values
of a vector DDD(p)θθθ(t), where
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DDD(p) =



cp,0 cp,1 . . . cp,p 0 . . . 0 0
0 cp,0 . . . cp,p−1 cp,p . . . 0 0
...

... . . . ...
... . . . ...

...
0 0 . . . cp,0 cp,1 . . . cp,p 0
0 0 . . . cp,0 cp,1 . . . cp,p−1 cp,p
...

... . . . ...
... . . . ...

...
0 0 . . . 0 0 . . . cp,0 0
0 0 . . . 0 0 . . . 0 cp,0


, (4.10)

is an n×n matrix. As a consequence, the regularization matrix takes the form HHH(p) = DDDT(p)DDD(p)
because using ||θθθ(t)||2HHH(p) will boil down to

||θθθ(t)||2HHH(p) = θθθH(t)HHH(p)θθθ(t) = θθθH(t)DDDT(p)DDD(p)θθθ(t) = ||DDD(p)θθθ(t)||2 = ||xxx(t)||2,

where xxx(t) = DDD(p)θθθ(t) = [∇pθ1(t), . . . ,∇pθn(t)]T is a vector of p-th order finite differences.
For example, when p = 1, one promotes local constancy of the impulse response, when p = 2,

one promotes local linearity of the impulse response, when p = 3, one promotes local convexity of
the impulse response, and so on. The case of p = 0 corresponds to the traditional ridge regression
[101], in which one penalizes the excessive values of the impulse response coefficients.

Frequency-domain smoothness priors

This approach was originally proposed in the article [26] for time-invariant processes. However,
it can be easily adapted to the time-varying, complex-valued case. Define the frozen frequency
response of a time-varying system as

Θ(t, ω) =
n∑
j=1

θj(t)e−iωj . (4.11)

One can adopt the measure of smoothness of the frozen frequency response, defined as∫ π

−π

∣∣∣∣∂rΘ(t, ω)
∂ωr

∣∣∣∣2 dω = 2π
n∑
j=1

j2r|θj(t)|2. (4.12)

The above formula follows directly from Parseval’s theorem and the differentiation rule in
the frequency domain (see [85]). Using this formula, one can impose some constraints on the
smoothness of the frozen frequency response of the system by applying regularization on the vector
DDD(r)θθθ(t), where

DDD(r) = diag{1r, 2r, . . . , nr}, (4.13)
which results in the regularization matrix HHH(r) = DDD2(r).

Such a choice of regularization matrix promotes also the stability of the instantaneous im-
pulse response because the higher penalty is imposed on the last coefficients of the frozen impulse
response, which promotes their small values.

Stability priors

Recently many researchers proposed different regularization matrices whose structure is based
upon the assumption of exponential stability of the identified system. In such a case, one expects
that the coefficients of the impulse response decay at an exponential rate. In the UAC case, the
exponential decay of impulse response coefficients has a physical justification. The decay of a
power profile of system parameters is caused by the spreading and absorption loss (see [99]).

A popular choice of a regularization matrix is based on the so-called kernels: diagonal-correlated
(DC) kernel, and tuned correlation (TC) kernel. The DC kernel takes the form

KKKDC(β1, β2) =


β1 β

3
2
1 β2 β2

1β
2
2 . . .

β
3
2
1 β2 β2

1 β
5
2
1 β2 . . .

β2
1β

2
2 β

5
2
1 β2 β3

1 . . .
...

...
... . . .

 , β1 ∈ (0, 1), |β2| < 1. (4.14)
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4.3. REGULARIZATION MATRIX DESIGN 87

The TC kernel is a special case of a DC kernel, for β2 =
√
β1, namely

KKKTC(β) =


β β2 β3 . . .
β2 β2 β3 . . .
β3 β3 β3 . . .
...

...
... . . .

 , β ∈ (0, 1). (4.15)

The regularization matrix, based on kernels is defined as follows

HHH(βββ) = KKK−1
∗ (βββ), ∗ ∈ {DC,TC}. (4.16)

Recently, in [55], a different perspective on the design of regularization matrices was presented. The
authors noted that regularization matrices based on both DC and TC kernels can be decomposed
using the Cholesky decomposition HHH(βββ) = DDDT(βββ)DDD(βββ), and the operation DDD(β)θθθ(t) can be seen as
prefiltering. They have shown that these kernels impose not only exponential stability constraints
but also some smoothness constraints on the coefficients of the impulse response. The authors of
this article presented also the explicit formulas for the entries of matrices DDD(βββ) and HHH(βββ) for DC
and TC kernels.

4.3.3 Hyperperameter optimization based on LOOCV
When the regularization matrix HHH is parametrized, one can use the parallel estimation approach
similar to the one described in the second chapter, to choose the value of the hyperparameters
defining the regularization matrix. Here, the regularization constant will be also treated as a such
hyperparameter, hence in this and the following sections regarding RLBF, the following modified
problem formulation will be used

α̂αα
RLBF
m|k (t|HHH) = arg min

ααα

{ k∑
i=−k

wk(i)|y(t+ i)−FFFm|k(i)ααα|2 + ||ααα||2GGG(HHH)

}
θ̂θθ

RLBF
m|k (t|HHH) = FFFm|k(0)α̂ααRLBF

m|k (t|HHH),

(4.17)

where GGG(HHH) = FFFH
m|k(0)HHHFFFm|k(0).

One can run several algorithms with different regularization matrices, and at each time instant
decide which one should constitute the final estimate. The criterion for choosing the final estimate
can be again based on the leave-one-out cross-validation.

Consider running several RLBF algorithms, each one with a different regularization matrix
HHH ∈ H = {HHH1, . . . ,HHHg}. At each time instant t, one can choose the estimates corresponding to the
regularization matrix for which the local estimate of the variance of leave-one-out interpolation
errors is the smallest

JRLBF
0,m|k (t|HHH) =

L∑
i=−L

∣∣∣εRLBF
0,m|k (t+ i|HHH)

∣∣∣2 , (4.18)

where εRLBF
0,m|k (t|HHH) = y(t)− [θ̂θθ

RLBF
0,m|k (t|HHH)]Hϕϕϕ(t) denotes the leave-one-out interpolation error, and

α̂αα
RLBF
o,m|k (t|HHH) = arg min

ααα

{ k∑
i=−k
i 6=0

wk(i)|y(t+ i)−FFFm|k(i)ααα|2 + ||ααα||2GGG
}

θ̂θθ
RLBF
o,m|k (t|HHH) = FFFm|k(0)α̂ααRLBF

o,m|k (t|HHH),

(4.19)

are the holey regularized estimates. Note that

α̂αα
RLBF
o,m|k (t|HHH) = SSS−1

o,m|k(t|HHH)pppo,m|k(t), (4.20)

where, since wk(0) = 1,

SSSo,m|k(t|HHH) = SSSm|k(t|HHH)−ψψψm|k(t, 0)ψψψH
m|k(t, 0),

pppo,m|k(t) = pppm|k(t)− y∗(t)ψψψm|k(t, 0).
(4.21)
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88 CHAPTER 4. REGULARIZATION IN BASIS FUNCTION METHODS

One can apply the well-known Sherman-Morrison formula [28] to (4.20), which leads to

α̂αα
RLBF
o,m|k (t|HHH) =

[
SSS−1
m|k(t|HHH) +

SSS−1
m|k(t|HHH)ψψψm|k(t, 0)ψψψH

m|k(t, 0)SSS−1
m|k(t|HHH)

1−ψψψH
m|k(t, 0)SSS−1

m|k(t|HHH)ψψψm|k(t, 0)

]
[pppm|k(t)− y∗(t)ψψψm|k(t, 0)]

= α̂αα
RLBF
m|k (t|HHH) +

SSS−1
m|k(t|HHH)ψψψm|k(t, 0)ψψψH

m|k(t, 0)
1− qm|k(t|HHH) α̂αα

RLBF
m|k (t|HHH)

−
SSS−1
m|k(t|HHH)ψψψm|k(t, 0)

1− qm|k(t|HHH) y∗(t),

(4.22)

where qm|k(t|HHH) = ψψψH
m|k(t, 0)SSS−1

m|k(t|HHH)ψψψm|k(t, 0).

Note that
[
α̂αα

RLBF
m|k (t|HHH)

]H
ψψψm|k(t, 0) =

[
θ̂θθ

RLBF
m|k (t|HHH)

]H
ϕϕϕ(t), hence

α̂αα
RLBF
o,m|k (t|HHH) = α̂αα

RLBF
m|k (t|HHH)−

SSS−1
m|k(t|HHH)ψψψm|k(t, 0)

1− qm|k(t|HHH)

[
εRLBF
m|k (t|HHH)

]∗
, (4.23)

where εRLBF
m|k (t|HHH) = y(t)−

[
θ̂θθ

RLBF
m|k (t|HHH)

]H
ϕϕϕ(t). Finally, one obtains

εRLBF
o,m|k (t|HHH) = y(t)−

[
α̂αα

RLBF
o,m|k (t|HHH)

]H
ψψψm|k(t, 0) = y(t)−

[
α̂αα

RLBF
m|k (t|HHH)

]H
ψψψm|k(t, 0)

+
qm|k(t|HHH)

1− qm|k(t|HHH)ε
RLBF
m|k (t|HHH)

=
εRLBF
m|k (t|HHH)

1− qm|k(t|HHH) .

(4.24)

The formula (4.24) allows one to evaluate (4.18) without computing holey estimates of system
parameters. However, the formula (4.24) is still computationally demanding because evaluation of
qm|k(t|HHH) requires inversion of matrix SSSm|k(t|HHH). For the sufficiently large value of k, the following
approximation can be used

SSS−1
m|k(t|HHH) ∼= [ΦΦΦ⊗ IIIm + GGG(HHH)]−1. (4.25)

One can use this approximation to compute the approximate formula

q̂m|k(t|HHH) = ψψψH
m|k(t, 0)[ΦΦΦ⊗ IIIm + GGG(HHH)]−1ψψψm|k(t, 0). (4.26)

One can also replace q̂m|k(t|HHH) by its expected value

qm|k(HHH) = E[q̂m|k(t|HHH)] = Tr{[ΦΦΦ⊗ IIIm + GGG]−1ΦΦΦ⊗ IIIm}. (4.27)

Under the assumption (A3.1), the above formulae can be simplified. Firstly,

qm|k(HHH) = fffH
m|k(0)fffm|k(0)Tr{[IIIn + fffH

m|k(0)fffm|k(0)HHH]−1}. (4.28)

Denote by λj(HHH), i = 1, . . . , n the eigenvalues of a matrix HHH, then

qm|k(HHH) = fffH
m|k(0)fffm|k(0)

n∑
j=1

1
1 + fffH

m|k(0)fffm|k(0)λj(HHH)
. (4.29)

To simplify the formula (4.26), one needs additional lemma. First, note that the regularization
matrix can be put down in the form

GGG(HHH) = FFFH
m|k(0)HHHFFFm|k(0) = FFFH

m|k(0)DDDHDDDFFFm|k(0) = BBBHBBB,

where BBB = DDDFFFm|k(0) is an l ×mn matrix and DDD is an l × n matrix, l ≥ n. The second transition
follows from the fact that every Hermitian, positive semidefinite matrix HHH can be expressed in the
form HHH = DDDHDDD, where DDD is an l × n matrix, l ≥ n. The following lemma can be proven
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Lemma 4.1

[IIImn+µBBBHBBB]−1 = IIImn−IIIn⊗
[

fffm|k(0)fffH
m|k(0)

fffH
m|k(0)fffm|k(0)

]
+[IIIn+µfffH

m|k(0)fffm|k(0)HHH]−1⊗

[
fffm|k(0)fffH

m|k(0)
fffH
m|k(0)fffm|k(0)

]
,

Proof of Lemma 4.1
Using the matrix inversion lemma [28] and the properties of the Kronecker product, one obtains

[IIImn + µBBBHBBB]−1 = IIImn − µ[DDDH ⊗ fffm|k(0)]{IIIl + µ[DDD⊗ fffH
m|k(0)][DDDH ⊗ fffm|k(0)]}−1[DDD⊗ fffH

m|k(0)]
= IIImn − µDDDH[IIIl + µfffH

m|k(0)fffm|k(0)DDDDDDH]−1DDD⊗ fffm|k(0)fffH
m|k(0),

(4.30)

Note that one can use again the matrix inversion lemma, which leads to

[IIIn + µfffH
m|k(0)fffm|k(0)DDDHDDD]−1 = IIIn − µfffH

m|k(0)fffm|k(0)DDDH[IIIl + µfffH
m|k(0)fffm|k(0)DDDDDDH]−1DDD

⇐⇒ µDDDH[IIIl + µfffH
m|k(0)fffm|k(0)DDDDDDH]−1DDD

= 1
fffH
m|k(0)fffm|k(0)

{
IIIn − [IIIn + µfffH

m|k(0)fffm|k(0)DDDHDDD]−1
}
.

(4.31)

Combining equations (4.30) and (4.31), and noting that DDDHDDD = HHH, one obtains the result presented
in the Lemma 4.1. �.

Using this result, one can replace (4.26) with

q̂m|k(t|HHH) = ψψψH
m|k(t, 0)ψψψm|k(t, 0)− [ϕϕϕH(t)⊗ fffH

m|k(0)]
{

IIIn ⊗
[

fffm|k(0)fffH
m|k(0)

fffH
m|k(0)fffm|k(0)

]}
[ϕϕϕ(t)⊗ fffm|k(0)]

+ [ϕϕϕH(t)⊗ fffH
m|k(0)]

{
[IIIn + fffH

m|k(0)fffm|k(0)HHH]−1 ⊗

[
fffm|k(0)fffH

m|k(0)
fffH
m|k(0)fffm|k(0)

]}
[ϕϕϕ(t)⊗ fffm|k(0)]

= fffH
m|k(0)fffm|k(0)ϕϕϕH(t)[IIIn + fffH

m|k(0)fffm|k(0)HHH]−1ϕϕϕ(t).
(4.32)

4.3.4 Hyperparameter optimization based on the empirical Bayes ap-
proach

When the weighting sequence is rectangular wk(i) ≡ 1, i ∈ Ik and the signals are Gaussian and
circular, the RLBF estimator has the Bayesian interpretation. Note that minimization of (4.17) is
equivalent to maximization of the quantity

exp
{
− 1
σ2
e

k∑
i=−k

|y(t+ i)−αααHψψψm|k(t, i)|2
}
× exp

{
− 1
σ2
e

||ααα||2GGG(HHH)

}
. (4.33)

Hence, the regularization matrix HHH can be chosen using the type II maximum likelihood method [3]
recently referred to as the empirical Bayes approach [16]. The first part of (4.33) can be associated
with the conditional data distribution p(Y(t)|ααα,HHH), where Y(t) = {y(t+ i), i ∈ Ik}, and the second
term can be attributed to the prior distribution of the basis function coefficients ααα: π(ααα|HHH). The
posterior distribution of ααα can be seen as

p(ααα|Y(t),HHH) ∝ p(Y(t)|ααα)π(ααα|HHH), (4.34)

Using properties of the probability density function of circular complex normal random variables
[1], [110], one obtains

p(Y(t)|ααα) = 1
(πσ2

e)K exp
{
− 1
σ2
e

k∑
i=−k

|y(t+ i)−αααHψψψm|k(t, i)|2
}
, (4.35)
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and
π(ααα|HHH) = det+

[
1
πσ2

e

GGG(HHH)
]

exp
{
− 1
σ2
e

αααHGGG(HHH)ααα
}
, (4.36)

where det+(XXX) denotes pseodudeterminant of the matrix XXX - the product of all nonzero eigenvalues
of XXX. The above results from the following theorem stemming from the properties of degenerate
normal distribution of multivariate real varaibles [86], [110].

Theorem 4.1 Let zzz = xxx+iyyy, xxx ∼ N (0,PPP), yyy ∼ N (0,PPP) be a zero-mean degenerate circular
normal random variable, with a covariance matrix ZZZ = E[zzzzzzH] which is singular, namely
rank(ZZZ) = r < dim(ZZZ) = n. The probability density function of such a random variable is
given by

pZ(zzz) = 1
πrdet+(ZZZ) exp{−zzzHZZZ+zzz},

where ZZZ+ denotes the Moore-Penrose pseudoinverse.

Since GGG(HHH) = [DDDH ⊗ fffm|k(0)][DDD⊗ fffH
m|k(0)] = HHH⊗ fffm|k(0)fffH

m|k(0), the formula (4.36) becomes

π(ααα|HHH) =
[

fffH
m|k(0)fffm|k(0)

πσ2
e

]n
det(HHH) exp

{
− 1
σ2
e

αααHGGG(HHH)ααα
}
. (4.37)

The likelihood function L(HHH, σ2
e , t) can be computed as

L(HHH, σ2
e , t) =

∫
Cmn

p(Y(t)|ααα)π(ααα|HHH)dααα

=
[fffH
m|k(0)fffm|k(0)]ndet(HHH)

(πσ2
e)K+n ×

×
∫
Cmn

exp
{
− 1
σ2
e

[
αααHSSSm|k(t|HHH)ααα−αααHpppm|k(t)− pppH

m|k(t)ααα+
k∑

i=−k
|y(t+ i)|2

]}
dααα.

(4.38)

One can compute this integral using the matrix version of the technique known as completing the
square

xxxHAAAxxx + bbbHxxx + xxxHbbb + c = xxxHAAAxxx + bbbHAAA−1AAAxxx + xxxHbbb + c+ bbbHAAA−1bbb− bbbHAAA−1bbb
= (xxxH + bbbHAAA−1)AAAxxx + (xxxH + bbbHAAA−1)bbb + c− bbbHAAA−1bbb
= (xxxH + bbbHAAA−1)(AAAxxx + bbb) + c− bbbHAAA−1bbb
= (xxx + AAA−1bbb)HAAA(xxx + AAA−1bbb) + c− bbbHAAA−1bbb,

(4.39)

which can be applied for any complex-valued bbb, c, and any hermitian positive definite matrix AAA
(provided that the dimensions match). Using this technique, one obtains

L(HHH, σ2
e , t) =

[fffH
m|k(0)fffm|k(0)]ndet(HHH)

(πσ2
e)K+n ×

×
∫
Cmn

exp
{
− 1
σ2
e

[ααα− SSS−1
m|k(t|HHH)pppm|k(t)]HSSSm|k(t|HHH)[ααα− SSS−1

m|k(t|HHH)pppm|k(t)]

− 1
σ2
e

k∑
i=−k

|y(t+ i)|2 + 1
σ2
e

pppH
m|k(t)SSS−1

m|k(t|HHH)pppm|k(t)
}
dααα

=
[fffH
m|k(0)fffm|k(0)]ndet(HHH)
(πσ2

e)Ndet[SSSm|k(t|HHH)] exp
{
− 1
σ2
e

[
k∑

i=−k
|y(t+ i)|2 − pppH

m|k(t)α̂ααRLBF
m|k (t|HHH)

]}
,

(4.40)

where N = K + n− nm. The last transition follows from (4.3).
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In practice, it is more convenient to work with the minus log-likelihood function

L(HHH, σ2
e , t) = − logL(HHH, σ2

e , t) = N log σ2
e − log[det(HHH)] + log{det[SSSm|k(t|HHH)]}

+ 1
σ2
e

{
k∑

i=−k
|y(t+ i)|2 − pppH

m|k(t)α̂ααRLBF
m|k (t|HHH)

}
+ C, C ∈ R.

(4.41)

One can now find the maximum likelihood estimate of σ2
e by solving

∂L
∂σ2

e

(HHH, σ2
e , t) = N

σ2
e

− 1
σ4
e

{
k∑

i=−k
|y(t+ i)|2 − pppH

m|k(t)α̂ααRLBF
m|k (t|HHH)

}
= 0, (4.42)

from the equation above one obtains

σ̂2
e(t|HHH) = 1

N

{
k∑

i=−k
|y(t+ i)|2 − pppH

m|k(t)α̂ααRLBF
m|k (t|HHH)

}
. (4.43)

As a consequence, one can find locally the best estimator by choosing HHH which minimizes the
following function

L̂(HHH, t) = N log σ̂2
e(t|HHH)− log[det(HHH)] + log{det[SSSm|k(t|HHH)]}+ C1, C1 ∈ R (4.44)

In practice, optimization can be done by means of parallel estimation, similar to the approach
based on leave-one-out cross-validation.

Note that, one can again replace SSSm|k(t|HHH) with its expected value ΦΦΦ ⊗ IIIm + GGG(HHH) (which is
justified for k sufficiently large). Under the assumption (A3.2) one obtains

det[SSSm|k(t|HHH)] ∼= det{IIImn + [DDDH ⊗ fffm|k(0)][DDD⊗ fffH
m|k(0)]} = det[IIIl + fffH

m|k(0)fffm|k(0)DDDDDDH]

=
n∏
j=1

[1 + fffH
m|k(0)fffm|k(0)λj(HHH)],

(4.45)

where λj(HHH), j = 1, . . . , n denotes the i-th eigenvalue of the matrix HHH. The penultimate transition
follows from the so-called Weistein-Aronszajn identity [98].

Remark
In the real-valued case the expression for the probability density function of a multivariate Gaussian
random variable is different, hence the likelihood function L(HHH, σ2

e , t) can be expressed as

L(HHH, σ2
e , t) =

√
[fffT
m|k(0)fffm|k(0)]ndet(HHH)

(2πσ2
e)Ndet[SSSm|k(t|HHH)] exp

{
− 1

2σ2
e

[
k∑

i=−k
y2(t+ i)− pppT

m|k(t)α̂ααRLBF
m|k (t|HHH)

]}
,

(4.46)
therefore it is typical to work with a -2 log-likelihood function

L(HHH, σ2
e , t) = −2 logL(HHH, t) = N log σ2

e − log[det(HHH)] + log{det[SSSm|k(t|HHH)]}

+ 1
σ2
e

{
k∑

i=−k
y2(t+ i)− pppT

m|k(t)α̂ααRLBF
m|k (t|HHH)

}
+D, D ∈ R,

(4.47)

one can again find the maximum likelihood estimate of the noise variance

σ̂2
e(t|HHH) = 1

N

{
k∑

i=−k
y2(t+ i)− pppT

m|k(t)α̂ααRLBF
m|k (t|HHH)

}
, (4.48)

and use it to obtain the formula for the function to minimize

L̂(HHH, t) = N log σ̂2
e(t|HHH)− log[det(HHH)] + log{det[SSSm|k(t|HHH)]}+D1, D1 ∈ R. (4.49)
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4.4 Regularization matrix design based on full (statistical)
knowledge about parameter changes

It will be shown here that with some statistical knowledge about the parameter changes, one can
derive the formula for the optimal regularization matrix. Since here, we are interested in the
optimal regularization matrix, there is no point in introducing the regularization constant µ, so we
shall again adopt the problem formulation presented in (4.17).

To perform the derivation, one needs assumptions (A2.5), (A3.1), and one additional assump-
tion.

(A4.1) {θθθ(t)} is a sequence, independent of {u(t)} and {e(t)}, with known correlation matrix
E[θθθ(t)θθθH(t)] = QQQ0 > 0.

Define the MSE of RLBF estimates as

MRLBF
m|k (HHH) = E

{[
θ̂θθ

RLBF
m|k (t|HHH)− θθθ(t)

]H [
θ̂θθ

RLBF
m|k (t|HHH)− θθθ(t)

]}
, (4.50)

where the avereging in this section is not only over {u(t)}, and {e(t)}, but also over {θθθ(t)}. Now,
the following theorem will be proven

Theorem 4.2 Under assumptions (A2.5), (A3.1) and (A4.1), the matrix that minimizes
the MSE (4.50) takes the form

HHHopt
m|k = σ2

e

fffH
m|k(0)fffm|k(0)lLBF

m|k
QQQ−1

0 . (4.51)

Proof

The proof proceeds along the same lines as the reasoning presented in [72]. The only difference is
that here the proof is given for complex-valued basis functions. First, note that the equation (4.1)
can be expressed as (under (A2.1))

MRLBF
m|k (HHH) = Tr

{
FFFm|k(0)E{[α̂ααRLBF

m|k (t|HHH)−ααα(t)][α̂ααRLBF
m|k (t|HHH)−ααα(t)]H}FFFH

m|k(0)
}
. (4.52)

Moreover, it holds that

α̂αα
RLBF
m|k (t|HHH)−ααα(t) =

[
SSS−1
m|k(t|HHH)

k∑
i=−k

wk(i)ψψψm|k(t, i)ψψψH
m|k(t, i)− IIImn

]
ααα(t) + SSS−1

m|k(t|HHH)ζζζm|k(t)

= [SSS−1
m|k(t|HHH)PPPm|k(t)− IIImn]ααα(t) + SSS−1

m|k(t|HHH)ζζζm|k(t)

= −SSS−1
m|k(t|HHH)GGG(HHH)ααα(t) + SSS−1

m|k(t|HHH)ζζζm|k(t)
(4.53)

where

ζζζm|k(t) =
k∑

i=−k
wk(i)ψψψm|k(t, i)e∗(t+ i). (4.54)

The last transition follows from the fact that SSSm|k(t|HHH) = PPPm|k(t) + GGG(HHH).
Under the assumptions mentioned at the beginning of this section, the matrix PPPm|k(t) converges

to its expected value in a mean squared sense (as it was shown in 2.3.1), which justifies the following
approximation, valid for sufficiently large values of k

SSS−1
m|k(t|HHH) = [PPPm|k(t) + GGG(HHH)]−1 ∼= [σ2

uIIImn + GGG(HHH)]−1 = [σ2
uIIImn + BBBHBBB]−1. (4.55)
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The above approximation leads to

α̂αα
RLBF
m|k (t|HHH)−ααα(t) ∼= −[IIImn + B̃BB

H
B̃BB]−1B̃BB

H
B̃BBααα(t) + 1

σ2
u

[IIImn + B̃BB
H

B̃BB]−1ζζζm|k(t)

= [IIImn + B̃BB
H

B̃BB]−1
[
ζζζm|k(t)
σ2
u

− B̃BB
H

B̃BBααα(t)
] (4.56)

where B̃BB
H

= BBB/σu. It is easy to check that using the lemma 4.1. yields

FFFm|k(0)[α̂ααRLBF
m|k (t|HHH)−ααα(t)] ∼= [IIIn + H̃HH]−1

[
1
σ2
u

k∑
i=−k

hfLBF
m|k (i)ϕϕϕ(t+ i)e∗(t+ i)− H̃HHθθθ(t)

]

= [IIIn + H̃HH]−1
[

1
σ2
u

ξξξm|k(t)− H̃HHθθθ(t)
]
,

(4.57)

where ξξξm|k(t) =
∑k
i=−k h

fLBF
m|k (i)ϕϕϕ(t+ i)e∗(t+ i), and H̃HH = fffH

m|k(0)fffm|k(0)
σ2
u

HHH. Hence

MRLBF
m|k (HHH) ∼= Tr

{
[IIIn + H̃HH]−1E

{[
1
σ2
u

ξξξm|k(t)− H̃HHθθθ(t)
] [

1
σ2
u

ξξξm|k(t)− H̃HHθθθ(t)
]H
}

[IIIn + H̃HH]−1

}

= Tr
{

[IIIn + H̃HH]−1E
[

1
σ4
u

ξξξm|k(t)ξξξH
m|k(t)− 1

σ2
u

ξξξm|k(t)θθθH(t)H̃HH− 1
σ2
u

H̃HHθθθ(t)ξξξH
m|k(t) +

+ H̃HHθθθ(t)θθθH(t)H̃HH
]

[IIIn + H̃HH]−1

}
.

(4.58)

Note that
E[ξξξm|k(t)θθθH(t)]H̃HH = H̃HHE[θθθ(t)ξξξH

m|k(t)] = 0, (4.59)
because noise is independent of the input signal. It also holds that

1
σ4
u

E[ξξξm|k(t)ξξξH
m|k(t)] = 1

σ4
u

E
{ k∑
i=−k

k∑
j=−k

hfLBF
m|k (i)[hfLBF

m|k (j)]∗e∗(t+ i)e(t+ j)ϕϕϕ(t+ i)ϕϕϕH(t+ j)
}

= 1
σ4
u

k∑
i=−k

E[|hfLBF
m|k (i)|2|e(t+ i)|2ϕϕϕ(t+ i)ϕϕϕH(t+ i)] = σ2

e

σ2
u

k∑
i=−k

|hfLBF
m|k (i)|2IIIn.

(4.60)

It means that

MRLBF
m|k (HHH) ∼= Tr

{
[IIIn + H̃HH]−1

[
σ2
e

σ2
ul

fLBF
m|k

IIIn + H̃HHQQQ0H̃HH
]

[IIIn + H̃HH]−1

}

= aTr
{

[IIIn + H̃HH]−1[IIIn + H̃HHQ̃QQ0H̃HH][IIIn + H̃HH]−1

}
,

(4.61)

where

a = σ2
e

σ2
ul

fLBF
m|k

Q̃QQ0 = 1
a

QQQ0.

(4.62)

According to the theorem 1 from [72] the matrix which minimizes the [IIIn+H̃HH]−1[IIIn+H̃HHQ̃QQ0H̃HH][IIIn+
H̃HH]−1 in a matrix sense is given by

H̃HH = Q̃QQ
−1
0 . (4.63)

Note also that XXX ≤ YYY ⇐⇒ Tr(XXX) ≤ Tr(YYY), therefore it holds that the matrix minimizing the
MSE is given by

HHHopt
m|k = σ2

u

fffH
m|k(0)fffm|k(0)

Q̃QQ
−1
0 = σ2

e

fffH
m|k(0)fffm|k(0)lLBF

m|k
QQQ−1

0 q.e.d. (4.64)
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Remark 1

When parameter trajectories are mutually uncorrelated, the optimal regularization matrix is diag-
onal

HHHopt
m|k = σ2

e

fffH
m|k(0)fffm|k(0)lLBF

m|k
diag

{
1

var[θ1(t)] , . . . ,
1

var[θn(t)]

}
. (4.65)

Note that such a matrix is structurally very similar to the regularization matrix emerging in the
reweighted regularization, described previously in the section about the formulation for the `1
penalty.

Remark 2

From (4.51) the conclusion can be drawn that the regularization has the most to offer when the
measurement noise is strong (σ2

e is growing), and plays marginal role for high values of SNR and
for growing k (because the equivalent length of the analysis window grows for growing k). This
confirms the intuition that the regularization is of the utmost help in situations, in which the
variance component of the MSE dominates.

4.5 Fast regularized local basis function (fRLBF) method
Just as the fLBF estimator can be seen as an efficient alternative for the LBF method, one can
also construct the regularized version of the fLBF method - the fast regularized local basis function
(fRLBF) algorithm, which hopefully improves the accuracy of the estimates and makes it similar
to the accuracy of estimates provided by the RLBF method. Another advantage of the fRLBF
method over the RLBF (other than the computational cost) is its flexibility. The fLBF method
allows one to analyze and track each parameter trajectory separately, similarly, the fRLBF allows
one to design regularization for each parameter separately. Besides, when developing the fRLBF
method, the same considerations apply as in the case of the RLBF estimator. Hence, the first
decision one should make, is what penalty to use when defining the fRLBF method. We will again
start with the `2 penalty because it is more common and easier to work with.

4.5.1 Formulation for the `2 penalty
The formulation of the fRLBF estimator is very straightforward

α̂αα
fRLBF
j,m|k (t) = arg min

αααj

{ k∑
i=−k

wk(i)|θ̃j(t+ i)− fffH
m|k(i)αααj |2 + µj ||αααj ||2GGGj

}
θ̂fRLBF
j,m|k (t) = fffH

m|k(0)α̂ααfRLBF
j,m|k (t), j = 1, . . . , n.

(4.66)

It is easy to show that

α̂αα
fRLBF
j,m|k (t) = (IIIm + µjGGGj)−1α̂αα

fLBF
j,m|k(t), j = 1, . . . , n, (4.67)

the regularized estimates of basis coefficients can be obtained by the linear transformation of the
fLBF estimates of basis coefficients, and in the ridge regression case, when the matrix GGGj = IIIm, j =
1, . . . , n, the regularized estimates can be obtained by uniform “shrinking” of the fLBF estimates

θ̂fRLBF
j,m|k (t) =

θ̂fLBF
j (t)
1 + µj

. (4.68)

Obviously, one can also design the estimator in a similar way to the RLBF one, which can be
useful, e.g. when one wants to apply the conclusions from the section about the regularization
matrix design to the fRLBF estimator.

α̂αα
fRLBF
m|k (t) = arg min

ααα

{ k∑
i=−k

wk(i)||θ̃θθ(t+ i)−FFFm|k(i)ααα||2 + µ||ααα||2GGG
}

θ̂θθ
fRLBF
m|k (t) = FFFm|k(0)α̂ααfRLBF

m|k (t),

(4.69)
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then
α̂αα

fRLBF
m|k (t) = (IIImn + µGGG)−1α̂αα

fLBF
m|k (t). (4.70)

These two descriptions are equivalent when GGG = bl diag{µ1GGG1, . . . , µnGGGn} and µ = 1.

4.5.2 Formulation for the `1 penalty
The formulation for the `1 penalty for each system parameter is defined as

α̂αα
fRLBF
j,m|k (t) = arg min

αααj

{ k∑
i=−k

wk(i)|θ̃j(t+ i)− fffH
m|k(i)αααj |2 + µj ||αααj ||1

}
θ̂fRLBF
j,m|k (t) = fffH

m|k(0)α̂ααfRLBF
j,m|k (t), j = 1, . . . , n.

(4.71)

Unlike the RLBF case, there is a closed-form solution to this problem and it is given by [100]

α̂αα
fRLBF
j,m|k (t) = sign[α̂ααfLBF

m|k (t)]� [|α̂ααfLBF
m|k (t)| − µj ], j = 1, . . . , n, (4.72)

where both operations sign(xxx) and |xxx| are here applied elementwise - to every element of the
vector of basis function coefficients, and � denotes the elementwise multiplication (the Hadamard
product).

This means that the `1 penalty with the fRLBF can be practically useful, however, it still
might be hard to optimize the value of µj . Therefore, as in the RLBF case, one might want to
use the reweighting technique to approximate the solution to the problem with the `1 penalty by
the solution to the problem with the `2 penalty. Applying the reweighting technique boils down
to solving the problem written down as

α̂αα
fRLBF
j,m|k (t, p) = arg min

αααj

{ k∑
i=−k

wk(i)|θ̃j(t+ i)− fffH
m|k(i)αααj |2 + µj ||αααj ||2GGGj(p)

}
θ̂fRLBF
j,m|k (t, p) = fffH

m|k(0)α̂ααfRLBF
j,m|k (t, p), j = 1, . . . , n, p ∈ N+

(4.73)

where

GGGj(p) = diag{|α̂fLBF
j,1m|k(t, p− 1)|, . . . , |α̂fLBF

j,mm|k(t, p− 1)|}−1, j = 1, . . . , n, p ∈ N+,

and α̂ααfRLBF
j,m|k (t, 0) = α̂αα

fLBF
m|k (t).

4.5.3 Hyperparameter optimization with the LOOCV-based approach
As in the RLBF case, one can use the LOOCV or empirical Bayes approach to find the regulariza-
tion matrix that provides the estimates of best accuracy. Again, we will assume a slightly different
problem formulation, in which the regularization constant is a part of the regularization matrix.
The LOOCV criterion will be derived only from the decentralized description because it allows one
to obtain final formulae in a concise form. More precisely, we will start with the following problem
description

α̂αα
fRLBF
j,m|k (t|GGGj) = arg min

αααj

{ k∑
i=−k

wk(i)|θ̃j(t+ i)− fffH
m|k(i)αααj |2 + ||αααj ||2GGGj

}
θ̂fRLBF
j,m|k (t|GGGj) = fffH

m|k(0)α̂ααfRLBF
j,m|k (t|GGGj), j = 1, . . . , n.

(4.74)

As it was explained before, in the cross-validation approach one allows several estimators
equipped with different settings to run in parallel, and at each time instant, one chooses the
one which minimizes the following cost function

Jj(t|GGGj) =
L∑

i=−L
|εfRLBF
o,j (t+ i|,GGGj)|2, (4.75)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


96 CHAPTER 4. REGULARIZATION IN BASIS FUNCTION METHODS

where εfRLBF
o,j (t|GGGj) = y(t)− [θ̂θθ

fRLBF
o,m|k (t|GGGj)]Hϕϕϕ(t) the leave-one-out interpolation error, sometimes

also called deleted residuals. They can be obtained as a result of estimation with an excluded
central observation from the analysis window

α̂αα
fRLBF
o,j (t|GGGj) = arg min

αααj

{ k∑
i=−k
i 6=0

wk(i)|θ̃j(t+ i)− fffH
m|k(i)αααj |2 + ||αααj ||2GGGj

}

θ̂fRLBF
o,j (t|GGGj) = fffH

m|k(0)α̂ααfRLBF
o,j (t|GGGj), j = 1, . . . , n.

(4.76)

Note that exactly the same derivation can be made as in (4.22) - (4.24) to find the formula for
the interpolation errors εfRLBF

o,j (t|GGGj), one only needs to set SSSm|k(t) = IIIm+GGGj , ψψψm|k(t, 0) = fffm|k(0)
and y∗(t) = θ̃j(t) to obtain

θ̂fRLBF
o,j (t|GGGj) = 1

1− βj,m|k(GGGj)
[θ̂fRLBF
j,m|k (t|GGGj)− βj,m|k(GGGj)θ̃j(t)] (4.77)

where
βj,m|k(GGGj) = fffH

m|k(0)(IIIm + GGGj)−1fffm|k(0), (4.78)

and can be computed prior to estimation.

4.5.4 Adaptive choice based on the empirical Bayes approach

Centralized approach

As in the case of the RLBF case, to derive the formulae based on the empirical Bayes approach, we
will assume the modified version of the centralized formulation (4.69), in which the regularization
constant µ is a part of the regularization matrix GGG

α̂αα
fRLBF
m|k (t|HHH) = arg min

ααα

{ k∑
i=−k

wk(i)||θ̃θθ(t+ i)−FFFm|k(i)ααα||2 + ||ααα||2GGG(HHH)

}
θ̂θθ

fRLBF
m|k (t|HHH) = FFFm|k(0)α̂ααfRLBF

m|k (t|HHH).

(4.79)

When the weighting sequence is uniform wk(i) ≡ 1, i ∈ Ik and the signals are Gaussian and
circular, one can use the Bayesian interpretation to optimize the value of GGG. Note that minimizing
the cost function from (4.69) is equivalent to maximizing the following expression

exp
{
− 1
σ2
z

k∑
i=−k

||θ̃θθ(t+ i)−FFFm|k(i)ααα||2
}
× exp

{
− 1
σ2
z

||ααα||2GGG(HHH)

}
. (4.80)

The first term can be attributed to the conditional probability distribution of preestimates

p(Θ̃(t)|ααα) = 1
(πσ2

z)Kn exp
{
− 1
σ2
z

k∑
i=−k

||θ̃θθ(t+ i)−FFFm|k(i)ααα||2
}
, (4.81)

where Θ̃(t) = {θ̃θθ(t + i), i ∈ Ik}. The second term corresponds to the prior distribution of basis
function coefficients

π(ααα|HHH) =
[

fffH
m|k(0)fffm|k(0)

πσ2
z

]n
det(HHH) exp

{
− 1
σ2
z

αααHGGG(HHH)ααα
}
. (4.82)

The reasoning behind this formula is the same as behind (4.37).
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Just as in the case of the RLBF estimator, one can compute the likelihood function as

L(HHH, σ2
z , t) =

∫
Cmn

p(Θ̃(t)|ααα)π(ααα|HHH)dααα

=
[fffH
m|k(0)fffm|k(0)]ndet(HHH)

(πσ2
z)Kn+n ×

×
∫
Cmn

exp
{
− 1
σ2
z

{
αααH[IIImn + GGG(HHH)]ααα−αααHα̂αα

fLBF
m|k (t)− [α̂ααfLBF

m|k (t)]Hααα

+
k∑

i=−k
||θ̃θθ(t+ i)||2

}}
dααα

=
[fffH
m|k(0)fffm|k(0)]ndet(HHH)

(πσ2
z)N2det[IIImn + GGG(HHH)] exp

{
− 1
σ2
z

{ k∑
i=−k

||θ̃θθ(t+ i)||2 − [α̂ααfLBF
m|k (t)]Hα̂ααfRLBF

m|k (t|HHH)
}}

,

(4.83)

where N2 = Kn+ n− nm. The minus log-likelihood function is given by

L(HHH, σ2
z , t) = − log[det(HHH)] +N2 log σ2

z + log{det[IIIl + fffH
m|k(0)fffm|k(0)DDDDDDH]}+

+ 1
σ2
z

{ k∑
i=−k

||θ̃θθ(t+ i)||2 − [α̂ααfLBF
m|k (t)]Hα̂ααfRLBF

m|k (t|HHH)
}

+ C2, C2 ∈ R.
(4.84)

Note that using (4.45), one can write

log{det[IIIl + fffH
m|k(0)fffm|k(0)DDDDDDH]} =

n∑
j=1

log[1 + fffH
m|k(0)fffm|k(0)λj(HHH)]. (4.85)

Just as in the RLBF case, one can develop the formula for the maximum likelihood estimate of
the preestimates variance

σ̂2
z(t|HHH) = 1

N2

{ k∑
i=−k

||θ̃θθ(t+ i)||2 − [α̂ααfLBF
m|k (t)]Hα̂ααfRLBF

m|k (t|HHH)
}
. (4.86)

Putting these facts together, one should minimize the function

L̂(HHH, t) = − log[det(HHH)] +N2 log σ̂2
z(t|HHH) +

n∑
j=1

log[1 + fffH
m|k(0)fffm|k(0)λj(HHH)] + C3, C3 ∈ R.

(4.87)

Note that σ̂2
z(t|HHH) is the only quantity that needs to be evaluated at each time step.

Remark 1

The final formula for the real-valued signals were given in [79] and looks very similar to (4.87)

L̂(HHH, t) = − log[det(HHH)] +N2 log σ̂2
z(t|HHH) +

n∑
j=1

log[1 + fffT
m|k(0)fffm|k(0)λj(HHH)] +D2, D2 ∈ R,

(4.88)

where

σ̂2
z(t|HHH) = 1

N2

{ k∑
i=−k

||θ̃θθ(t+ i)||2 − [α̂ααfLBF
m|k (t)]Tα̂ααfRLBF

m|k (t|HHH)
}
. (4.89)

Remark 2
In [79] the problem is defined differently, for a regularization matrix of a fixed structure one is
looking for the optimal regularization constant µ (or µj). For such a formulation of a problem,
one can find the closed-form formulas for the regularization constant, which minimizes the minus
log-likelihood function. These formulas were given in [79].
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98 CHAPTER 4. REGULARIZATION IN BASIS FUNCTION METHODS

Decentralized approach

One can also approach the optimization problem starting from the decentralized description (4.74)
instead of (4.79). This leads to the conditional probability

p(Θ̃j(t)|αααj) = 1
(πσ2

zj )K
exp

{
− 1
σ2
zj

k∑
i=−k

||θ̃j(t+ i)− fffH
m|k(i)αααj ||2

}
, j = 1, . . . , n, (4.90)

where Θ̃j(t) = {θ̃j(t+ i), i ∈ Ik}, j = 1, . . . , n, and

π(αααj |GGGj) = 1
(πσ2

zj )m
det(GGGj) exp

{
− 1
σ2
zj

αααH
j GGGjαααj

}
, j = 1, . . . , n. (4.91)

The likelihood function is defined as

Lj(GGGj , σ
2
zj , t) =

∫
Cm

p(Θ̃j(t)|αααj)π(αααj |GGGj)dαααj

=
µmj det(GGGj)
(πσ2

zj )K+m

∫
Cm

exp
{
− 1
σ2
zj

{
αααH
j (IIIm + GGGj)αααj −αααH

j α̂αα
fLBF
j,m|k(t)− [α̂ααfLBF

j,m|k(t)]Hαααj

+
k∑

i=−k
|θ̃j(t+ i)|2

}}
dmαααj

= det(GGGj)
(πσ2

zj )Kdet(IIIm + GGGj)
×

× exp
{
− 1
σ2
zj

{ k∑
i=−k

|θ̃j(t+ i)|2 − [α̂ααfLBF
j,m|k(t)]Hα̂ααfRLBF

j,m|k (t|GGGj)
}}

, j = 1, . . . , n.

(4.92)

The minus log-likelihood function is then defined as

Lj(GGGj , σ
2
zj , t) = − log[det(GGGj)] +K log σ2

zj + log[det(IIIm + GGGj)]

+ 1
σ2
zj

{ k∑
i=−k

|θ̃j(t+ i)|2 − [α̂ααfLBF
j,m|k(t)]Hα̂ααfRLBF

j,m|k (t|GGGj)
}

+ C4, C4 ∈ R, j = 1, . . . , n.

(4.93)

One can now find the maximum likelihood estimate of the variance of preestimate noise as

σ̂2
zj (t|GGGj) = 1

K

{ k∑
i=−k

|θ̃j(t+ i)|2 − [α̂ααfLBF
j,m|k(t)]Hα̂ααfRLBF

j,m|k (t|GGGj)
}
, (4.94)

which leads to a function that should be minimized to find locally the best regularization matrix

L̂j(GGGj , t) = − log[det(GGGj)] +K log σ̂2
zj (t|GGGj) + log[det(IIIm + GGGj)] + C5, C5 ∈ R, j = 1, . . . , n.

(4.95)

Remark 1

Just as in the previous examples, for real-valued signals, one typically uses the −2 log-likelihood
function of a form

L̂j(GGGj , t) = − log[det(GGGj)] +K log σ̂2
zj (t|GGGj) + log[det(IIIm + GGGj)] +D3, D3 ∈ R, j = 1, . . . , n,

(4.96)

where

σ̂2
zj (t|GGGj) = 1

K

{ k∑
i=−k

|θ̃j(t+ i)|2 − [α̂ααfLBF
j,m|k(t)]Tα̂ααfRLBF

j,m|k (t|GGGj)
}
. (4.97)
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4.5. FAST REGULARIZED LOCAL BASIS FUNCTION (FRLBF) METHOD 99

Remark 2

In [23] it was shown that one can also use the generalized cross-validation (GCV) to choose the
value of the regularization constant µj and that there exists a closed-form solution to the GCV
optimization problem. However, this approach will be skipped here because it was based on a
special case when the weighting is uniform wk(i) ≡ 1, i ∈ Ik and the regularization matrix
GGGj = IIIm.
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Chapter 5

Computer simulations

5.1 Introduction
All results presented in this chapter were obtained for either real- or complex-valued simulated
self-interference UWA channel, characterized by the equation

y(t) =
20∑
j=1

θ∗j (t)u(t− j + 1) + e(t). (5.1)

The parameter trajectories are lowpass filtered white Gaussian noises, either real or complex. The
fast parameter changes correspond to the cut-off angular frequency of ω0 = 0.006π, while to obtain
the slow parameter changes the cut-off angular frequency ω0 = 0.001π was used. The variance
of system parameters was decreasing exponentially to reflect the power absorption loss present in
real UWA communication systems

var[θj(t)] = 0.69j−1, j = 1, . . . , 20. (5.2)

The input signal was random white binary u(t) = ±1 for a real-valued system, and random circular
binary u(t) = ±1 ± i for a complex-valued system. The noise {e(t)} was either white Gaussian
or circular white Gaussian, in the case of a complex-valued system. All of the results, presented
in this chapter were averaged over one long data realization (105 samples). To avoid boundary
problems, data generation started 1000 samples before t = 1 and ended 1000 samples after t = 105.

Fragments of one of the simulated trajectories are shown in figure 5.1.
Figure 5.2 depicts real and imaginary parts of a typical frozen impulse response of a simulated

underwater system.

5.2 LBF
We shall start by giving a comparison of the accuracy of estimates obtained using the LBF method
with different weighting sequences: rectangular, cosinusoidal, and Hann (see 2.6.5). To make this
comparison fair, for each weighting sequence, and the number of basis functions m, the half-width
of the analysis window k was chosen in a way that assures the euivalent number of observations
lLBF
m|k for different algorithms is approximately the same. Because, the variance component of the
MSE depends on this quantity, this corresponds to comparing bias components resulting from
using different weighting. Table 5.1 shows the half-widths k of the analysis window, for different
number of basis functions, different lengths KR of the analysis window with rectangular weighting
and different types of weighting.

The comparison for different speeds of parameter changes and different SNRs were presented
in tables 5.2 and 5.3.

As can be seen from tables 5.2 and 5.3, applying the non-rectangular weighting tends to improve
the identification results at a cost of slight increase in the processing delay.

An example of LBF estimates obtained for SNR equal to 10 dB, m = 5, k = 200, polynomial
basis functions and rectangular weighting sequence are presented in figure 5.3. Figure 5.4 presents
an example of an estimate of a frozen impulse response obtained for the settings listed above.

100
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5.2. LBF 101

Figure 5.1: Real (upper plots) and imaginary (lower plots) parts of a typical simulated trajectory.
On the left there is an example of fast parameter changes, on the right there is an example of slow
parameter changes.

Figure 5.2: Real and imaginary parts of a typical frozen impulse response of a simulated underwater
system.

Table 5.1: Value of k needed to obtain approximately the same equivalent number of observations
lLBF
m|k as for the rectangular weighting of length KR, for different weighting sequences and different
numbers of basis functions.

Cosinusoidal Hann
KR\m 1 3 5 1 3 5
201 124 113 109 151 130 121
401 247 226 218 301 259 242
801 494 452 436 601 516 482
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102 CHAPTER 5. COMPUTER SIMULATIONS

Table 5.2: Comparison of the MSE scores [dB] averaged over one long realization of input\output
data for the fast parameter changes and for different weighting sequences.

Rectangular Cosinusoidal Hann
SNR [dB] m\kR 201 401 801 201 401 801 201 401 801

10
1 -3.90 3.00 5.51 -5.02 1.77 4.85 -5.03 1.60 4.68
3 -8.96 -7.14 3.75 -9.11 -8.06 2.62 -9.19 -8.05 2.23
5 -6.32 -10.26 -1.91 -6.56 -10.37 -3.07 -6.68 -10.41 -3.33

30
1 -4.43 2.95 5.49 -5.70 1.71 4.83 -5.70 1.54 4.67
3 -23.58 -8.56 3.71 -24.73 -9.86 2.56 -24.73 -9.83 2.16
5 -26.31 -24.90 -2.19 -26.56 -25.79 -3.45 -26.68 -25.67 -3.72

50
1 -4.43 2.95 5.49 -5.71 1.71 4.83 -5.71 1.54 4.67
3 -24.99 -8.57 3.71 -26.61 -9.88 2.56 -26.57 -9.85 2.16
5 -45.55 -26.32 -2.19 -45.89 -27.56 -3.45 -45.96 -27.37 -3.73

Table 5.3: Comparison of the MSE scores [dB] averaged over one long realization of input\output
data for the slow parameter changes and for different weighting sequences.

Rectangular Cosinusoidal Hann
SNR [dB] m\kR 201 401 801 201 401 801 201 401 801

10
1 -11.63 -9.62 -1.66 -12.17 -10.73 -2.93 -12.25 -10.72 -2.96
3 -9.08 -12.60 -14.48 -9.20 -12.66 -14.85 -9.28 -12.68 -14.85
5 -6.34 -10.38 -13.77 -6.58 -10.47 -13.81 -6.70 -10.51 -13.82

30
1 -16.75 -10.66 -1.74 -18.55 -12.10 -3.03 -18.78 -12.09 -3.07
3 -29.06 -31.48 -20.02 -29.19 -31.88 -21.43 -29.27 -31.92 -21.42
5 -26.34 -30.38 -33.44 -26.58 -30.47 -33.57 -26.70 -30.51 -33.57

50
1 -16.86 -10.67 -1.74 -18.71 -12.12 -3.04 -18.95 -12.11 -3.07
3 -47.71 -37.80 -20.14 -48.25 -39.57 -21.60 -48.35 -39.66 -21.59
5 -46.34 -50.36 -44.29 -46.58 -50.45 -45.64 -46.70 -50.49 -45.63
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5.2. LBF 103

Figure 5.3: LBF estimates (red lines) obtained for SNR equal to 10 dB,m = 5, k = 200, polynomial
basis functions and rectangular weighting sequence, superimposed on true parameter trajectories
(black lines).

In general, using bell-shaped weighting sequences can improve the results [70], however, in some
examples, like the one given here, the results are comparable. In tables 5.4 and 5.5 the MSE scores
for different types of basis functions were presented. It is clear that in this experimental scenario,
tested basis functions yield very similar results. This can be attributed to the fact that parameter
trajectories can be only approximated by linear combinations of basis functions, and all of them
have similar modeling capabilities.

Table 5.4: Comparison of the MSE scores [dB] averaged over one long realization of input\output
data for the fast parameter changes and different types of basis functions.

Polynomial Sinusoidal Complex exponential Prolate spheroidal
SNR [dB] m\k 100 200 400 100 200 400 100 200 400 100 200 400

10
1 -3.90 3.00 5.51 -3.90 3.00 5.51 -3.90 3.00 5.51 -3.90 3.00 5.51
3 -8.96 -7.14 3.75 -8.75 -8.26 3.48 -6.43 -9.74 2.10 -8.27 -9.25 3.18
5 -6.32 -10.26 -1.91 -5.95 -10.00 -3.32 -3.87 -8.25 -9.55 -5.06 -9.17 -6.74

30
1 -4.43 2.95 5.49 -4.43 2.95 5.49 -4.43 2.95 5.49 -4.43 2.95 5.49
3 -23.58 -8.56 3.71 -26.88 -10.37 3.43 -12.51 -15.04 2.01 -20.75 -12.44 3.12
5 -26.31 -24.90 -2.19 -25.92 -29.52 -3.76 -13.22 -18.56 -13.05 -19.83 -23.53 -7.99

50
1 -4.43 2.95 5.49 -4.43 2.95 5.49 -4.43 2.95 5.49 -4.43 2.95 5.49
3 -24.99 -8.57 3.71 -31.30 -10.40 3.43 -12.64 -15.14 2.01 -21.55 -12.49 3.12
5 -45.55 -26.32 -2.19 -44.05 -39.03 -3.76 -20.35 -28.51 -19.66 -31.98 -37.29 -12.00

Tables 5.6, 5.7 show the comparison of the MSE scores for the LBF with polynomial basis
functions and uniform weighting, and the LBF with KL functions, the number of which was
chosen adaptively, according to (2.95). This table also presents the lowest theoretical MSE score,
attainable if the KL functions could be chosen without any restrictions.

Tables 5.8, and 5.9 present the comparison of the MSE scores obtained for the LBF estima-
tor with polynomial basis functions and uniform weighting, for the time-updated recursive least
squares (TU-RLS) algorithm (which, until recently, was considered the state-of-the-art in UWA
communication applications [19], [46]), and for the multi-resolution wavelets (MW) estimator, pre-
sented in [47], [106], with settings recommended in [47]. Because the MW algorithm was developed
for the real-valued systems, these tables present results obtained for the real-valued version of the
system described at the beginning of this chapter. The MW algorithm is also based on a localized
identification method, however, unlike the LBF, it allows one to find the estimates for the entire
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104 CHAPTER 5. COMPUTER SIMULATIONS

Figure 5.4: LBF estimate (red lines) of a system frozen impulse response obtained for SNR equal
to 30 dB, m = 5, k = 200, polynomial basis functions and rectangular weighting sequence, super-
imposed on a true frozen impulse response (black lines).

Table 5.5: Comparison of the MSE scores [dB] averaged over one long realization of input\output
data for slow parameter changes and different types of basis functions.

Polynomial Sinusoidal Complex exponential Prolate spheroidal
SNR [dB] m\k 100 200 400 100 200 400 100 200 400 100 200 400

10
1 -11.63 -9.62 -1.66 -11.63 -9.62 -1.66 -11.63 -9.62 -1.66 -11.63 -9.62 -1.66
3 -9.08 -12.60 -14.48 -8.78 -12.30 -15.17 -7.40 -10.48 -12.53 -8.43 -11.85 -15.07
5 -6.34 -10.38 -13.77 -5.96 -10.02 -13.42 -4.27 -8.35 -11.57 -5.16 -9.22 -12.61

30
1 -16.75 -10.66 -1.74 -16.75 -10.66 -1.74 -16.75 -10.66 -1.74 -16.75 -10.66 -1.74
3 -29.06 -31.48 -20.02 -27.62 -30.03 -24.94 -19.49 -17.98 -16.62 -24.54 -24.39 -26.49
5 -26.34 -30.38 -33.44 -25.94 -29.97 -33.31 -19.01 -19.70 -20.61 -23.13 -24.49 -26.77

50
1 -16.86 -10.67 -1.74 -16.86 -10.67 -1.74 -16.86 -10.67 -1.74 -16.86 -10.67 -1.74
3 -47.71 -37.80 -20.14 -33.71 -33.75 -25.34 -20.19 -18.17 -16.67 -26.72 -25.18 -27.07
5 -46.34 -50.36 -44.29 -44.51 -47.22 -48.01 -30.73 -30.45 -31.42 -40.99 -39.34 -42.08

Table 5.6: Comparison of the MSE scores [dB] averaged over one long realization of input\output
data for the fast parameter changes, obtained for polynomial and KL basis functions.

Polynomial KL Lower bound
SNR [dB] m\k 100 200 400 100 200 400 100 200 400

10
1 -3.90 3.00 5.51

-8.68 -10.15 -11.22 -10.43 -11.62 -12.093 -8.96 -7.14 3.75
5 -6.32 -10.26 -1.91

30
1 -4.43 2.95 5.49

-27.16 -29.57 -30.40 -29.60 -30.65 -31.463 -23.58 -8.56 3.71
5 -26.31 -24.90 -2.19

50
1 -4.43 2.95 5.49

-46.14 -48.35 -49.99 -48.16 -49.73 -51.053 -24.99 -8.57 3.71
5 -45.55 -26.32 -2.19
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5.2. LBF 105

Table 5.7: Comparison of the MSE scores [dB] averaged over one long realization of input\output
data for slow parameter changes, obtained for polynomial and KL basis functions.

Polynomial KL Lower bound
SNR [dB] m\k 100 200 400 100.00 200.00 400.00 100 200 400

10
1 -11.63 -9.62 -1.66

-11.60 -10.76 -15.12 -13.33 -14.24 -15.603 -9.08 -12.60 -14.48
5 -6.34 -10.38 -13.77

30
1 -16.75 -10.66 -1.74

-29.00 -32.25 -33.53 -30.68 -32.97 -34.253 -29.06 -31.48 -20.02
5 -26.34 -30.38 -33.44

50
1 -16.86 -10.67 -1.74

-48.76 -45.06 -53.06 -50.08 -52.08 -53.873 -47.71 -37.80 -20.14
5 -46.34 -50.36 -44.29

analysis window. As mentioned in Chapter 2, such estimators typically provide estimates of the
highest accuracy on the center of the analysis interval. Hence, to make the comparison fair, the
overlap-add technique, described in [73], was applied. The last three columns show the result of
applying techniques of adaptive selection of the number of basis functions m and the length of the
analysis window 2k + 1. The LOOCV 0 denotes the adaptive choice based on the exact formula
(2.125), and LOOCV denotes the results obtained for its simplified version (2.127).

Tables below present also the TU-RLS results for the settings which guarantee the best achiev-
able estimation accuracy.

Table 5.8: Comparison of the MSE scores [dB] averaged over one long realization of input\output
data for the fast parameter changes and different identification algorithms.

SNR [dB] m\k 100 200 400 FPE LOOCV 0 LOOCV

10

1 -6.86 0.09 2.53
-9.27 -12.69 -9.313 -11.86 -10.09 0.88

5 -9.27 -13.19 -4.87
TU-RLS -7.90
MW -7.09 -10.35 -13.06 X X X

30

1 -7.38 0.04 2.51
-29.26 -29.15 -29.263 -26.45 -11.51 0.83

5 -29.26 -27.85 -5.15
TU-RLS -13.83
MW -18.18 -25.55 -30.47 X X X

50

1 -7.38 0.04 2.51
-48.49 -48.49 -48.493 -27.88 -11.52 0.83

5 -48.49 -29.29 -5.16
TU-RLS -14.15
MW -25.84 -30.09 -47.22 X X X

The LBF algorithm outperforms the TU-RLS algorithm in terms of estimation accuracy, and
yields results that are almost always better than the results provided by the MW algorithm. It
is also worth noting that all adaptive algorithms yield estimates of accuracy comparable to the
accuracy of the estimates provided by the best estimator incorporated in the parallel scheme, and
substantially better than the results provided by most of the algorithms involved in the compu-
tations. The best results achievable for the MW algorithm are very similar to the best results
yielded by the LBF algorithm, however, the MW estimator was working with more than 30 basis
functions.
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106 CHAPTER 5. COMPUTER SIMULATIONS

Table 5.9: Comparison of the MSE scores [dB] averaged over one long realization of input\output
data for slow parameter changes and different idnetification algorithms.

SNR [dB] m\k 100 200 400 FPE LOOCV 0 LOOCV

10

1 -14.64 -12.68 -4.81
-9.33 -16.21 -9.373 -12.03 -15.58 -17.50

5 -9.33 -13.35 -16.74
TU-RLS -10.76
MW -8.41 -11.79 -13.85 X X X

30

1 -19.78 -13.75 -4.90
-29.33 -35.44 -29.373 -32.02 -34.50 -23.20

5 -29.33 -33.35 -36.44
TU-RLS -20.55
MW -21.14 -27.19 -31.13 X X X

50

1 -19.89 -13.76 -4.90
-49.33 -52.98 -49.353 -50.73 -40.88 -23.33

5 -49.33 -53.33 -47.46
TU-RLS -22.74
MW -27.06 -32.34 -47.97 X X X

5.3 fLBF
In this part of the chapter, we demonstrate some results for the fLBF method. Firstly, we give the
comparison between the LBF and fLBF without debiasing, with adaptive debiasing and debiasing
using the nominal delay (in the table this is called “fixed debiasing”). The results are presented
in tables 5.10 and 5.11. The comparison was carried out for polynomial basis functions and
rectangular weighting sequence. The fLBF estimates were based on EWLS preestimates.

Table 5.10: Comparison of the MSE scores [dB] averaged over one long realization of input\output
data for the fast parameter changes. The comparison was obtained for LBF and fLBF algorithms
with and without debiasing.

LBF fLBF fLBF + adaptive debias fLBF + fixed debias
SNR [dB] m\k 100 200 400 100 200 400 100 200 400 100 200 400

10
1 -3.90 3.00 5.51 -4.87 2.75 5.41 -5.20 2.67 5.38 -4.99 2.75 5.41
3 -8.96 -7.14 3.75 -7.78 -6.96 3.59 -8.13 -7.39 3.51 -8.12 -7.18 3.59
5 -6.32 -10.26 -1.91 -6.05 -8.67 -1.94 -6.30 -9.11 -2.18 -6.28 -9.08 -1.99

30
1 -4.43 2.95 5.49 -5.84 2.67 5.39 -6.30 2.59 5.36 -5.99 2.67 5.39
3 -23.58 -8.56 3.71 -16.18 -8.91 3.52 -21.88 -9.74 3.43 -19.52 -9.28 3.52
5 -26.31 -24.90 -2.19 -15.64 -16.37 -2.36 -20.19 -22.69 -2.63 -18.51 -19.94 -2.41

50
1 -4.43 2.95 5.49 -5.85 2.67 5.39 -6.32 2.59 5.36 -6.01 2.67 5.39
3 -24.99 -8.57 3.71 -16.44 -8.94 3.52 -23.02 -9.77 3.43 -20.13 -9.31 3.52
5 -45.55 -26.32 -2.19 -16.00 -16.59 -2.36 -21.35 -23.78 -2.64 -19.26 -20.47 -2.41

As it can be seen from these tables, the fLBF algorithm can provide estimates of similar accu-
racy as the estimates produced by the LBF method, especially when one incorporates debiasing.
Obviously, the MSE scores for the fLBF estimates are slightly lower, which is a price for a lower
computational burden. However, it was also shown that this discrepancy becomes visible only when
the number of parameters n grows [70], [78]. It is also worth noticing, that the results provided
by the fLBF algorithm tend to get better quickly when one increases m and k [63], [78], which
has a very slight impact on the computational costs, whereas increasing the values of these two
parameters in the LBF method results in a substantially higher computational burden.

An example of fLBF estimates obtained for EWLS-based preestimates, SNR equal to 10 dB,
m = 5, k = 200, polynomial basis functions and rectangular weighting sequence are shown in
figures 5.3, 5.4.

Tables 5.12, and 5.13 show the comparison of the MSE scores for the fLBF algorithm based

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


5.3. FLBF 107

Table 5.11: Comparison of the MSE scores [dB] averaged over one long realization of input\output
data for slow parameter changes. The comparison was obtained for LBF and fLBF algorithms
with and without debiasing.

LBF fLBF fLBF + adaptive debias fLBF + fixed debias
SNR [dB] m\k 100 200 400 100 200 400 100 200 400 100 200 400

10
1 -11.63 -9.62 -1.66 -11.51 -10.40 -1.88 -11.56 -10.58 -1.96 -11.59 -10.46 -1.89
3 -9.08 -12.60 -14.48 -8.35 -11.24 -13.33 -8.38 -11.28 -13.43 -8.40 -11.32 -13.46
5 -6.34 -10.38 -13.77 -6.47 -9.36 -12.27 -6.50 -9.39 -12.31 -6.50 -9.41 -12.37

30
1 -16.75 -10.66 -1.74 -21.74 -12.38 -2.01 -23.57 -12.79 -2.09 -22.79 -12.48 -2.01
3 -29.06 -31.48 -20.02 -24.12 -25.28 -20.18 -27.23 -30.09 -21.57 -26.25 -28.34 -20.88
5 -26.34 -30.38 -33.44 -22.98 -24.65 -25.63 -25.11 -28.40 -31.24 -24.51 -27.15 -29.08

50
1 -16.86 -10.67 -1.74 -22.19 -12.41 -2.01 -24.35 -12.83 -2.09 -23.39 -12.51 -2.02
3 -47.71 -37.80 -20.14 -26.10 -26.50 -20.37 -33.78 -36.92 -21.86 -30.26 -31.34 -21.11
5 -46.34 -50.36 -44.29 -25.47 -26.37 -26.63 -30.84 -35.67 -38.78 -28.77 -30.98 -31.78

Figure 5.5: fLBF estimates (red lines) obtained for SNR equal to 10 dB,m = 5, k = 200, polynomial
basis functions and rectangular weighting sequence, superimposed on true parameter trajectories
(black lines).
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108 CHAPTER 5. COMPUTER SIMULATIONS

Figure 5.6: fLBF estimate (red lines) of a system frozen impulse response obtained for SNR
equal to 30 dB, m = 5, k = 200, polynomial basis functions and rectangular weighting sequence,
superimposed on a true frozen impulse response (black lines).

on different types of preestimates. The EWLS-based and direct preestimates were obtained for
λ = 0.9, and the LMS-based preestimates were computed for µ = 0.09. The enhanced preestimates
were obtained using the fLBF estimates calculated for EWLS-based preestimates. Finally, the
E2WLS-based and simplified E2WLS-based preestimates were calculated for λ = 0.8. All results
in these tables were obtained for k = 200, polynomial basis functions, and wk(i) ≡ 1, i ∈ Ik.

Table 5.12: Comparison of the MSE scores [dB] averaged over one long realization of input\output
data for fast parameter changes. The comparison was obtained for the fLBF algorithm based on
different types of preestimates.

SNR [dB] m EWLS Direct LMS Enhanced E2WLS Simplified E2WLS

10
1 2.75 4.81 3.06 3.26 2.75 2.77
3 -6.96 2.85 -2.92 -5.30 -7.14 -6.76
5 -8.67 2.50 -1.92 -9.26 -8.92 -8.21

30
1 2.67 4.80 2.70 3.20 2.67 2.67
3 -8.91 2.80 -8.27 -6.41 -9.45 -9.32
5 -16.37 2.42 -11.40 -19.04 -23.32 -22.41

50
1 2.67 4.80 2.70 3.20 2.66 2.67
3 -8.94 2.80 -8.38 -6.42 -9.49 -9.36
5 -16.59 2.42 -11.76 -19.42 -24.65 -23.69

As expected, the results obtained using the bidirectional preestimates are better than these
obtained using unidirectional ones. It is also worth noting that using the enhanced preestimates
can substantially improve identification results if the starting estimates are of sufficient accuracy.
In the next simulation, the performance of the FLBf with a polynomial basis was compared with
the performance of this algorithm with the optimized impulse response. Tables 5.14 and 5.15
present the MSE scores for the optimal impulse response, described by (3.136) (called “optimal
centralized”) and suboptimal impulse response (3.137) (called “suboptimal centralized”), and their
decoupled versions, i.e. the fLBF algorithm, for which the shape of the optimal impulse response
was adjusted for each parameter trajectory separately. These algorithms are called “optimal de-
coupled” and “suboptimal decoupled” respectively.

Quite surprisingly, sometimes, the MSE score for the algorithm equipped with the optimized
filter, designed using the centralized approach, yields results slightly worse than those, obtained
from the algorithm using polynomial functions. This might be due to the fact that for the design
of the optimal (and suboptimal) filter the average value of the preestimation variance was used.
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5.3. FLBF 109

Table 5.13: Comparison of the MSE scores [dB] averaged over one long realization of input\output
data for slow parameter changes. The comparison was obtained for the fLBF algorithm based on
different types of preestimates.

SNR [dB] m EWLS Direct LMS Enhanced E2WLS Simplified E2WLS

10
1 -10.40 2.58 -6.65 -8.14 -10.33 -10.01
3 -11.24 2.26 -4.35 -11.75 -10.97 -10.25
5 -9.36 2.39 -2.37 -9.69 -9.05 -8.35

30
1 -12.38 2.56 -12.34 -9.02 -12.51 -12.48
3 -25.28 2.20 -20.77 -28.00 -30.17 -29.40
5 -24.65 2.31 -18.81 -27.10 -28.49 -27.77

50
1 -12.41 2.56 -12.45 -9.04 -12.55 -12.52
3 -26.50 2.20 -23.18 -30.32 -37.75 -36.79
5 -26.37 2.31 -21.23 -30.48 -37.29 -36.43

Table 5.14: Comparison of the MSE scores [dB] averaged over one long realization of input\output
data for fast parameter changes. The results were obtained for different shapes of the filter impulse
response, including impulse response associated with the polynomial basis (called here “fLBF”),
the optimal and suboptimal filters designed for the entire system (“optimal centralized” and “sub-
optimal centralized” respectively) and optimal and suboptimal filters designed for each parameter
separately (“optimal decoupled” and “suboptimal decoupled” respectively).

fLBF Optimal centralized Suboptimal centralized Optimal decoupled Suboptimal decoupled
SNR [dB] m\k 100 200 400 100 200 400 100 200 400 100 200 400 100 200 400

10
1 -4.87 2.75 5.41

-7.35 -7.80 -8.06 -7.36 -7.80 -8.06 -9.51 -9.79 -9.95 -9.51 -9.79 -9.953 -7.78 -6.96 3.59
5 -6.05 -8.67 -1.94

30
1 -5.84 2.67 5.39

-16.07 -16.29 -16.46 -16.08 -16.28 -16.46 -16.33 -16.42 -16.49 -16.33 -16.42 -16.493 -16.18 -8.91 3.52
5 -15.64 -16.37 -2.36

50
1 -5.85 2.67 5.39

-16.39 -16.58 -16.74 -16.40 -16.58 -16.74 -16.57 -16.64 -16.70 -16.57 -16.64 -16.703 -16.44 -8.94 3.52
5 -16.00 -16.59 -2.36

Table 5.15: Comparison of the MSE scores [dB] averaged over one long realization of input\output
data for slow parameter changes. The results were obtained for different shapes of the filter
impulse response, including impulse response associated with the polynomial basis (called here
“fLBF”), the optimal and suboptimal filters designed for the entire system (“optimal centralized”
and “suboptimal centralized” respectively) and optimal and suboptimal filters designed for each
parameter separately (“optimal decoupled” and “suboptimal decoupled” respectively).

fLBF Optimal centralized Suboptimal centralized Optimal decoupled Suboptimal decoupled
SNR [dB] m\k 100 200 400 100 200 400 100 200 400 100 200 400 100 200 400

10
1 -11.51 -10.40 -1.88

-10.48 -11.00 -11.73 -10.39 -11.01 -11.71 -12.34 -13.09 -13.55 -12.34 -13.09 -13.553 -8.35 -11.24 -13.33
5 -6.47 -9.36 -12.27

30
1 -21.74 -12.38 -2.01

-24.17 -25.03 -25.33 -24.16 -25.00 -25.32 -24.78 -25.29 -25.50 -24.78 -25.29 -25.503 -24.12 -25.28 -20.18
5 -22.98 -24.65 -25.63

50
1 -22.19 -12.41 -2.01

-26.15 -26.47 -26.59 -26.16 -26.48 -26.59 -26.37 -26.58 -26.64 -26.37 -26.58 -26.643 -26.10 -26.50 -20.37
5 -25.47 -26.37 -26.63
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110 CHAPTER 5. COMPUTER SIMULATIONS

However, if some statistical knowledge about parameter changes is known, then this optimization
approach can be successfully used to achieve satisfactory identification results without looking for
the best combination of m and k. If the maximum acceptable communication delay is known, then
the maximum value of k can be easily found, and it is easy to notice that the estimation results
for the optimized filters tend to improve with growing k.

The last two tables - tab. 5.16 and 5.17 show the results after applying the adaptive techniques
described in Section 3.9. It is a comparison of results yielded by the adaptive choice applied in
the centralized manner based on the LOOCV criterion either for the system errors or preestimates
errors, and based on the FPE criterion. The example of results obtained after using the sign test
was presented in the last section of this chapter.

Table 5.16: Comparison of the MSE scores [dB] averaged over one long realization of input\output
data for fast parameter changes. The results were obtained for different strategies of adaptive
choice of m and k - LOOCV based on system errors, preestimates errors or FPE criterion.

SNR [dB] m\k 100 200 400 CV, system errors CV, preestimates errors FPE

10
1 -4.87 2.75 5.41

-7.65 -7.79 -6.863 -7.78 -6.96 3.59
5 -6.05 -8.67 -1.94

30
1 -5.84 2.67 5.39

-16.42 -16.38 -16.013 -16.18 -8.91 3.52
5 -15.64 -16.37 -2.36

50
1 -5.85 2.67 5.39

-16.64 -16.60 -16.313 -16.44 -8.94 3.52
5 -16.00 -16.59 -2.36

Table 5.17: Comparison of the MSE scores [dB] averaged over one long realization of input\output
data for slow parameter changes. The results were obtained for different strategies of adaptive
choice of m and k - LOOCV based on system errors, preestimates errors or FPE criterion.

SNR [dB] m\k 100 200 400 CV, system errors CV, preestimates errors FPE

10
1 -11.51 -10.40 -1.88

-9.61 -9.44 -8.353 -8.35 -11.24 -13.33
5 -6.47 -9.36 -12.27

30
1 -21.74 -12.38 -2.01

-25.53 -25.59 -24.563 -24.12 -25.28 -20.18
5 -22.98 -24.65 -25.63

50
1 -22.19 -12.41 -2.01

-26.74 -26.67 -26.483 -26.10 -26.50 -20.37
5 -25.47 -26.37 -26.63

As can be seen in tables 5.16 and 5.17, the adaptive methods can provide results that are
substantially better then the results yielded by most of the algorithms incorporated in the parallel
scheme, and comparable with the MSE scores obtained for the best of the algorithms. Sometimes
they might even improve slightly the best of the results obtained from the candidate algorithms.

5.4 RLBF
Here we show the potential of the regularization. As was pointed out in the Remark 2 in Section
4.4, regularization brings benefits when the variance component of the MSE dominates. Therefore,
we show here the comparison for a short analysis window (k = 70) and relatively high number of
basis functions (m = 5). In tables below, the results were shown for the LBF algorithm and for the
RLBF algorithm with the regularization matrix described by (4.51), whereQQQ0 = diag{γ, . . . , γn−1},
where γ ∈ {0.5, 0.7, 0.9}, none of which is exactly equal to the true value of γ. Table 5.18 shows
also the results provided by the algorithms with adaptive choice of the regularization matrix -
LOOCV with the exact value of qm|k(t) (A0), its approximation qm|k(t) (A1), and the Bayesian
approach with the exact formula (4.44) (B0) and with the approximation (4.45) (B1).
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5.4. RLBF 111

Table 5.18: Comparison of the MSE scores [dB] averaged over one long realization of input\output
data for fast (on the left) and slow (on the right) parameter changes. The results were obtained
for k = 70, m = 5, the LBF and RLBF algorithms with the adaptive choise of a parameter γ,
based on cross-validation (A0 and A1) and empirical Bayes approach (B0 and B1).

SNR [dB] γ RLBF LBF

10

0.5 -5.04

-3.37

0.7 -7.06
0.9 -4.19
A0 -6.98
A1 -7.01
B0 -4.15
B1 -4.15

30

0.5 -17.54

-23.37

0.7 -23.68
0.9 -23.38
A0 -23.68
A1 -23.68
B0 -18.82
B1 -18.80

50

0.5 -34.66

-43.36

0.7 -43.36
0.9 -43.36
A0 -43.36
A1 -43.36
B0 -34.68
B1 -34.68

SNR [dB] γ RLBF LBF

10

0.5 -5.03

-3.39

0.7 -7.06
0.9 -4.20
A0 -6.99
A1 -7.01
B0 -4.18
B1 -4.18

30

0.5 -17.53

-23.39

0.7 -23.70
0.9 -23.40
A0 -23.70
A1 -23.69
B0 -18.80
B1 -18.78

50

0.5 -34.67

-43.39

0.7 -43.39
0.9 -43.39
A0 -43.39
A1 -43.39
B0 -34.69
B1 -34.69
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112 CHAPTER 5. COMPUTER SIMULATIONS

Results gathered in table 5.18 confirm the conclusions drawn in the previous chapter, that
applying regularization brings the greatests benefits for low values of SNR. It is also clearly visible
that the adaptive algorithms based on simplified formulas yield almost the same results as the
algorithms based on the exact formulas.

5.5 fRLBF
In this section we compare the results yielded by the fLBF algorithm for k = 100 and m = 5 and
its regularized version (fRLBF), characterized by (4.7) and (4.8). LOOCV and empirical Bayes
(EB) rules (both in decentralized fashion) were applied to choose the value of µ ∈ {0.001, 0.1, 0.5}.
The results of this experiment were gathered in table 5.19.

Table 5.19: Comparison of the MSE scores [dB] averaged over one long realization of input\output
data for fast (on the left) and slow (on the right) parameter changes. The results were obtained
for k = 100, m = 5, the fLBF and fRLBF algorithms with the adaptive choise of a regularization
constant, based on cross-validation and empirical Bayes approach.

SNR [dB] µ fRLBF fLBF

10

0.001 -6.05

-6.05
0.1 -6.65
0.5 -7.76

LOOCV -7.58
EB -6.06

30

0.001 -15.66

-15.64
0.1 -15.77
0.5 -12.71

LOOCV -15.82
EB -15.54

50

0.001 -16.03

-16.00
0.1 -16.04
0.5 -12.76

LOOCV -16.11
EB -15.88

SNR [dB] µ fRLBF fLBF

10

0.001 -6.47

-6.47
0.1 -7.20
0.5 -8.90

LOOCV -8.79
EB -6.49

30

0.001 -23.03

-22.98
0.1 -23.15
0.5 -16.90

LOOCV -23.32
EB -22.69

50

0.001 -25.55

-25.47
0.1 -24.28
0.5 -16.97

LOOCV -25.43
EB -24.90

The results presented in table 5.19 confirms that the greatest improvement can be achieved for
low values of SNR. It can be also seen, that the too small or too high values of the regulariza-
tion constant can substantially deteriorate the estimates quality. Fortunately, proposed adaptive
schemes always provide results that are either better or comparable with the best results yielded
by all algorithms incorporated in the parallel estimation scheme.

Remark

More results regarding regularized basis function methods can be found in [72], [74] and [79].

5.6 Lake experiment and sea simulations
This section presents the results published in [63] and [78]. The first experiment was simulating
the self-interference cancellation in FD UWA communication, details can be found in [93]. The
transmitter-receiver device, presented in figure 5.7, was placed inside an 8 m deep lake, 4 m
under the surface. Transmitter was sending the known signal, while the receivers were recording
its version contaminated by self-interference. Because in the real experiment, the true parameter
trajectories are not available, the self-interference cancellation (SIC) factor [92] was used to measure
the estimation accuracy. The SIC factor reflects the ratio between signal-to-interference ratios
before and after self-interference cancellation. Hence, the higher the SIC score, the higher the
accuracy of the estimates. Estimation was carried out for n = 80 system parameters.
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5.6. LAKE EXPERIMENT AND SEA SIMULATIONS 113

Figure 5.7: Photo of a transmitter and receiver antennas mounted on the frame [93].

Using the data gathered during the lake experiment, the fLBF algorithm was compared with
the fLBF algorithm combined with the adaptive detection of static parameters (called adaptive
fLBF), which was done using the sign test (see [78] for more details), the adaptively debiased fLBF
(dfLBF), and the regularized version of the fLBF algorithm (fRLBF or dfRLBF). The regularization
constant was chosen for each parameter separately using the empirical Bayes approach. The results
were gathered in figure 5.8.

Figure 5.8 shows that all techniques proposed in the article [78] improve the identification
results. The adaptive choice of time-varying parameters using the sign test increases the estimation
accuracy because in practice only the parameters corresponding to the reflections from the moving
objects like lake surface or underwater animals are time-varying, while the rest of them is constant
(see figure 5.9). However, the static parameters can become time-varying and vice versa if the
conditions change, e.g. if the far-end transmitter starts moving. This is the way the detection
should be carried out for each time instant. Also, using regularization is helpful because of the
sparse nature of the time-varying impulse response. As explained before, when the forgetting
constant increases, so does the preestimation delay, hence, the adaptive debiasing also improves
the estimation accuracy. Not surprisingly, a combination of these techniques provides the best
estimation accuracy. In the article [63], the proposed improvements of the fLBF method (except
for the regularization) were compared with the LBF method. Results are shown in figure 5.10.

The article [78] presents also the results for the more realistic simulated system. In this article,
two situations were simulated: static transmitter and receiver, and static transmitter, moving
receiver. Simulations were prepared using the Waymark simulator [50] and Bellhop acoustic toolbox
[84] (for more details see [78]). Simulations were carried out in the “South Korean Sea” scenario
(see [84]) - sea depth was set to 20 m, and the devices’ depth was 10 m. In the first simulation, the
distance between transmitter and receiver was set to 7 m and wind speed was equal to 10 m/s, in
the second scenario the initial distance between communication devices was set to 50 m, the sea
surface was assumed to be flat (zero wind speed) and the receiver was moving away at speed 2.5
m/s. Figure 5.11 presents the amplitudes of time-varying parameters for these simulated scenarios.

The estimation accuracy was measured using the mean squared deviation defined as

MSD(t) = ||θ̂θθ(t)− θθθ(t)||
2

||θθθ(t)||2 . (5.3)

The MSD score, averaged over 5000 samples are depicted in the figure 5.12.
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114 CHAPTER 5. COMPUTER SIMULATIONS

Figure 5.8: Comparison of a SIC factor obtained using fLBF, adaptively debiased fLBF (dfLBF)
regularized fLBF (fRLBf or dfRLBF) using the empirical Bayes approach for choosing the reg-
ularization constant, and fLBF with the adaptive choice of static and time-varying parameters
(Adaptive fLBF, dfLBF, fRLBF or dfRLBF) [78].
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5.6. LAKE EXPERIMENT AND SEA SIMULATIONS 115

Figure 5.9: The power delay profile and highest frequencies for each of the system parameters (the
upper plot), and the normalized amplitude of the time-varying impulse response in decibels (the
lower plot) [78].
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116 CHAPTER 5. COMPUTER SIMULATIONS

Figure 5.10: Comparison of a SIC factor obtained using fLBF, adaptively debiased fLBF with the
adaptive choice of time-varying and static parameters, and LBF methods on the data gathered
during the lake experiment [63].
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5.6. LAKE EXPERIMENT AND SEA SIMULATIONS 117

Figure 5.11: The normalized magnitudes of time-varying parameters for simulated sea scenarios
with static communication devices (the upper plot), and static transmitter and moving receiver
(the lower plot) [78].D
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118 CHAPTER 5. COMPUTER SIMULATIONS

Figure 5.12: The MSD scores averaged over 5000 time samples obtained in the simulation of UWA
communication in the sea, for static communication devices (the upper plot), and static transmitter
and moving receiver (the lower plot) [78].
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Chapter 6

Conclusions

This thesis summarizes the most recent developments of the basis function methods (LBF and
fLBF). The theoretical analysis and results gathered in the previous chapter, as well as in the
articles listed in the references, suggest that the LBF method is the state-of-the-art version of the
basis function method for the identification of nonstationary processes. Conducted simulations
confirm a few intuitive conclusions. First, applying a bell-shaped weighting sequence during iden-
tification can improve estimation accuracy by placing more emphasis on data close to the center of
the analysis window. Second, when no prior knowledge about parameter changes is available, the
use of “non-specific” basis functions like polynomials, or sine-cosines can provide estimates of sat-
isfying quality. Third, when the basis functions are chosen based on the knowledge of statistics of
parameter changes, the identification results can be further improved. Some other intuitive hopes
turned out to be in vain. For example, one might have expected that the methods of adaptive
choice of hyperparameters will result in estimates of higher quality than estimates provided by all
the algorithms involved in parallel computations. Such methods evaluate the local measures of fit
for different estimators, and at each time point, they choose the one that performs the best. As a
consequence, one might expect that the final estimate - an amalgam of locally the best estimates
will be of the highest quality of them all. However, numerous simulations show that it is rarely the
case. In most cases, the adaptive methods yield estimates that are of comparable quality as the
best estimates obtained from single algorithms and of noticeably higher quality than the worst of
them. This conclusion holds for both LBF, fLBF estimators, and their regularized versions. Hence,
it is a good method for robustifying estimation results against unknown, and possibly time-varying
characteristics of parameter trajectories.

Another mild disappointment regards the fLBF method. Initial experiments, made for systems
with a very low number of parameters (e.g. n = 2) indicated that the estimates provided by this
method can be indistinguishable from the estimates yielded by the LBF algorithm. However further
simulations for systems with more parameters have shown that even though the fLBF estimates
still look convincingly accurate, they yield the mean square estimation errors that are noticeably
higher than for the LBF estimates. This can be attributed to the fact that when n grows, one needs
to use the value of forgetting constant that is closer to 1. This means that the causal preestimation
algorithms will be characterized by higher delay and simultaneously the EWLS algorithm will be
incapable of tracking fast parameter changes - more information about true parameter trajectories
will be lost at this stage. The remedy for the first problem is quite simple - one can use either
debiasing mechanisms or noncausal preestimation techniques. Quite interestingly, even for high
values of n, the fLBF estimates are of higher accuracy than LBF estimates for low values of
signal-to-noise ratio.

The aforementioned problems should not rule out the fLBF method completely. It proves very
useful whenever a method computationally cheaper than LBF, but providing a similar accuracy of
estimates, is needed. It allows also to use much higher number of basis functions with relatively
short analysis windows - something that would be impossible for the LBF method due to the
numerical conditioning requirements. The second case, where it proves to be useful, is when the
speed or type of parameter changes differs for each system parameter. Then, as shown in [78], the
ability of the fLBF method to process each parameter separately can provide many benefits.

Another novelty described in this thesis is a combination of regularization and basis function
methods. First, it is worth noting that regularization can improve the conditioning of the least
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squares problem in situations where the order of a hypermodel is close to or exceeds the length
of the analysis interval. However, its main goal is to allow the incorporation of prior knowledge
into the identification process. It can be achieved by a proper design of the regularization matrix.
The regularization constant, the second important hyperparameter in regularization techniques,
controls the ratio between information extracted from data and the one introduced in the form of
prior knowledge. As pointed out previously, regularization provides the largest benefits when the
variance component of the MSE dominates. It means that it can be particularly useful when the
signal-to-noise ratio is low, or when the number of basis functions is high and simultaneously the
processing delay is limited, which limits the length of the analysis window. Simulation results sug-
gest also that the adaptive methods of choosing regularization hyperparameters are very important
because a poorly designed regularization matrix or too high value of a regularization constant can
deteriorate estimation results.
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Appendix A

The Wirtinger derivative and the
least squares problem for
complex-valued vectors

In this appendix we discuss briefly the problem of optimization of real-valued functions of several
complex variables. For a more rigorous mathematical treatment, see [31] and [89].

Let z = x+ iy be a complex number where x, y ∈ R. We call the function f : C→ C

f(z) = u(x, y) + iv(x, y), (A.1)

a function of a complex variable z, where u : R2 → R, v : R2 → R. The complex derivative of a
function f(z) at the point z0 is defined as

f ′(z0) = lim
∆z→0

f(z0 + ∆z)− f(z0)
∆z , (A.2)

provided that the limit exists. Note that the difference ∆z can approach 0 in infinitely many ways.
Note also that ∆z = ∆x+ i∆y. By computing the derivative in two different ways, first by setting
∆x = 0, second by setting ∆y = 0, one obtains the Cauchy-Riemann equations

∂u

∂x
(x0, y0) = ∂v

∂y
(x0, y0) ∧ ∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0). (A.3)

When the complex derivative of a function f(z) at the point z0 exists, then the Cauchy-Riemann
equations hold true. Hence, they can be used as a necessary condition for the existence of a complex
derivative. Moreover, if the functions u(x, y) and v(x, y) have continuous partial derivatives in some
neighborhood D of a point z0 and additionally fulfill the Cauchy-Riemann conditions, then the
complex derivative of a function f(z) exists in every point of D [89]. A function, for which the
complex derivative exists in its entire domain, is called holomorphic or analytic.

Although the definition of a complex derivative is very natural, its existence imposes serious
limitations on the structure of the function f(z). For instance, it is easy to show that a real-valued
function of a complex variable, namely the function for which v(x, y) ≡ 0, is holomorphic only when
it is a constant function. Unfortunately, many cost functions present in engineering applications
are real-valued functions of a complex variable or several complex variables. This means that they
are not complex-differentiable, i.e. differentiable in the sense described above. One solution to this
problem is to interpret the function f(z) as a two-dimensional function of real variables x and y,
to compute the derivative with respect to the vector [x, y]T and then to convert the solution to
the complex domain, such approach was presented in [10]. However, there is a simpler approach,
after the work of Wirtinger [109] often called the Wirtinger derivative [1], or less commonly called
CR-calculus [20], [21].

One can interpret the function of a complex variable f(z) as a function of two real variables
f(x, y). One can also note that

x = 1
2(z + z∗), y = 1

2(z − z∗). (A.4)
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128 APPENDIX A. THE WIRTINGER DERIVATIVE

Hence, the function f(x, y) depends on z and z∗ which can be treated as independent variables.
Provided that the partial derivatives exist, one can use the chain rule to obtain

∂f

∂z
(z, z∗) = 1

2

[
∂f

∂x
(x, y)− i∂f

∂y
(x, y)

]
∂f

∂z∗
(z, z∗) = 1

2

[
∂f

∂x
(x, y) + i∂f

∂y
(x, y)

]
.

(A.5)

Note that for real-valued functions
∂f

∂z∗
(z, z∗) =

[
∂f

∂z
(z, z∗)

]∗
, (A.6)

the partial derivative with respect to a complex conjugate of z is just a complex conjugate of
a partial derivative with respect to z. As a consequence, one only needs to evaluate ∂f

∂z (z, z∗),
because a real-valued function will have a stationary point at (z0, z

∗
0) when ∂f

∂z (z0, z
∗
0) = 0 [1].

Another interesting observation is that the Cauchy-Riemann equations are equivalent to
∂f

∂z∗
(z, z∗) = 0, (A.7)

which means that the holomorphic functions depend only on z - they are independent of z∗.
For the practitioner, the most important conclusions are that the rules for differentiation of

functions of real variables apply in the Wirtinger calculus [89] and that the rules of the Wirtinger
calculus can be easily extended to the functions of several complex variables [31]. This means that
one can use the rules known from the calculus of functions of multiple real variables for solving
the least squares problem with complex-valued vectors, which is demonstrated in the following
example.

Example

The purpose of this example is to demonstrate the technique of solving the least-squares problems
in a complex domain.

Consider the task of finding the n × 1 complex-valued vector zzz = xxx + iyyy, xxx,yyy ∈ Rn which
minimizes the following cost function

J(zzz) = ||AAAzzz− bbb||2, (A.8)

where AAA ∈ Cm×n, bbb ∈ Cm, rank(AAA) = n, m ≥ n and ||zzz|| =
√

zzzHzzz denotes the `2 norm of a vector
z. Naturally, J : Cn → R is a real-valued function, and hence is not complex-differentiable. The
cost function (A.8) can be expressed as

J(xxx,yyy) = (xxx − iyyy)TAAAHAAA(xxx + iyyy)− (xxx − iyyy)TAAAHbbb− bbbHAAA(xxx + iyyy) + bbbHbbb
= xxxTAAAHAAAxxx + yyyTAAAHAAAyyy− xxxTAAAHbbb− bbbHAAAxxx + i(xxxTAAAHAAAyyy− yyyTAAAHAAAxxx − bbbHAAAyyy + yyyTAAAHbbb)
+ bbbHbbb.

(A.9)

From the above, it follows that the real derivatives are defined as
∂J

∂xxx (xxx,yyy) = xxxT(AAAHAAA + AAATAAA∗)− bbbTAAA∗ − bbbHAAA + i(yyyTAAATAAA∗ − yyyTAAAHAAA)

∂J

∂yyy (xxx,yyy) = yyyT(AAAHAAA + AAATAAA∗) + i(xxxTAAAHAAA− xxxTAAATAAA∗ − bbbHAAA + bbbTAAA∗).
(A.10)

As a consequence, the complex derivative can be written down as [31]

∂J

∂zzz (zzz,zzz∗) = 1
2

[
∂J

∂xxx (xxx,yyy)− i∂J
∂yyy (xxx,yyy)

]
= 1

2
[
xxxT(AAAHAAA + AAATAAA∗) + xxxTAAAHAAA− xxxTAAATAAA∗ − bbbTAAA∗ − bbbHAAA− bbbHAAA + bbbTAAA

]
+

+ 1
2i
[
yyyTAAATAAA∗ − yyyTAAAHAAA− yyyT(AAAHAAA + AAATAAA∗)

]
= xxxTAAAHAAA− bbbHAAA− iyyyTAAAHAAA = zzzHAAAHAAA− bbbHAAA.

(A.11)
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The stationary point can be obtained from

∂J

∂zzz (zzz,zzz∗) = 0 ⇐⇒ zzzHAAAHAAA = bbbHAAA ⇐⇒ zzz = (AAAHAAA)−1AAAHbbb. (A.12)

Since the cost function is convex, the solution is

ẑzz = (AAAHAAA)−1AAAHbbb. (A.13)

Note that this result can be also achieved after noting that the matrix AAAHAAA is by definition
positive definite, and incorporating the generalization of “square-completing” technique, described
in Chapter 4 (see [98]).
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