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ABSTRACT In this work, we improve the generative replay in a continual learning setting to performwell on
challenging scenarios. Because of the growing complexity of continual learning tasks, it is becoming more
popular, to apply the generative replay technique in the feature space instead of image space. Nevertheless,
such an approach does not come without limitations. In particular, we notice the degradation of the
continually trained model’s performance could be attributed to the fact that the generated features are far
from the original ones when mapped to the latent space. Therefore, we propose three modifications that
mitigate these issues. More specifically, we incorporate the distillation in latent space between the current
and previous models to reduce feature drift. Additionally, a latent matching for the reconstruction and
original data is proposed to improve generated features alignment. Further, based on the observation that the
reconstructions are better for preserving knowledge, we add the cycling of generations through the previously
trained model to make them closer to the original data. Our method outperforms other generative replay
methods in various scenarios. Code available at https://github.com/valeriya-khan/looking-through-the-past.

INDEX TERMS Continual learning, generative replay, machine learning

I. INTRODUCTION

The traditional approach to machine learning involves train-
ing models on shuffled training data to ensure independent
and identically distributed conditions, enabling the model to
learn generalized parameters for the entire data distribution.
On the other hand, in continual learning, the models are
trained on sequential tasks, with only data from the current
task available at any given time. Such a scenario is more
realistic in some applications with, for example, privacy con-
cerns, where the old data may become unavailable. However,
models trained in such an incremental fashion will face a
catastrophic forgetting [24], a significant drop in the accuracy
of previously acquired knowledge.

Class Incremental Learning (CIL) is a widely adopted
setting where the classifier is trained on new classes incre-

mentally using the sequence of separated data [22]. Dif-
ferent regularization methods can be used to preserve the
knowledge [16, 37], however, the performance is significantly
lower without utilizing exemplars from the previous tasks.
Therefore, generative models [5] have gained a significant
attention as the source of synthetic data that can substitute
data from the previous tasks.

Despite the promising setup, it turns out to be very chal-
lenging to scale approaches based on generative models in
CIL to more demanding datasets than MNIST or CIFAR-
10 [32]. Generative replay methods have low performance on
datasets with a larger number of classes or with more complex
data. This can be attributed to the fact that modeling high-
dimensional images is a challenging task during the incre-
mental learning, and the quality of the generations degrades
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as number of learned tasks increases.
Therefore, more recent methods [18] introduced replay

in feature-space of the trained and frozen feature extractor.
The data is firstly passed through the feature-extractor, and
the resulting features are used as the training data for the
generative part. In this case, the distribution of the data has
lower dimensionality and is much simpler for learning by the
generator.

Brain-Inspired Replay (BIR) [33] is one of the recent works
that uses feature-based generative replay. In their work, the
authors introduce several modifications to make variational
autoencoder able to learn and generate longer sequences
of more complex data. The highest results reported by the
authors are when BIR is combined with Synaptic Intelli-
gence (SI) [37] regularization method, which suggests that
BIR alone for a generative features-replay is not enough
and maybe other regularization techniques can yield better
results. It motivates us to analyze an in-depth VAE-based
replay approaches with BIR as its flagship example. We
observe, that there remains a significant difference between
the features produced by the real data and synthetic data.
Our hypothesis is that this difference leads to a significant
degradation of the quality of the replay data, and therefore, we
propose two modifications that diminish the problem. Firstly,
we introduce a new loss term for minimizing the difference
between the encoded latent vectors of the original sample and
the reconstructed sample. This loss enables the encoder to
learn how to reverse the operation of the decoder. Secondly,
we propose to refine the quality of rehearsal samples. To
that end, we introduce a cycling method where we iterate the
generated data through the previously trained model (decoder
and encoder), and only after that feed it to the replay buffer
for training the new model. As we show in our analysis, this
has the effect of reducing a discrepancy between original and
generated features for classification (see Figure 1), and as
a result, improves the final model accuracy. The proposed
changes allowed us to significantly improve the results over
our baseline method.

Overall, the contribution of this study is threefold:
• Based on the analysis of existing generative replay

methods, we identify the weaknesses of VAE-based
approaches such as degradation of generated data and
distribution mismatch between the features obtained by
original and synthetic data.

• To mitigate the discovered problems, we propose a new
generative replay method for class-incremental learn-
ing. Our method uses distillation to better match latent
vectors of reconstructed and original data. Also, we
match the latent representations of current data obtained
through previous and current models. Furthermore, we
incorporate the cycling of generations to diminish the
difference between the original and synthetic data.

• We perform a series of experiments to show that our
approach outperforms the baseline method (BIR). In
addition, we demonstrate through an ablation study that

each improvement we introduce makes an incremental
contribution to the overall performance of the model.

II. RELATED WORKS
Continual learning methods can be divided into three cate-
gories that we overview in this section.
Regularization methods aim to strike a balance between

preserving previously acquired knowledge and providing suf-
ficient flexibility to incorporate new information. To that
end, regularisation is applied to slow down the updates on
the most important weights. In particular, in Elastic Weights
Consolidation (EWC) [13] authors propose to use Fisher
Information to select important model’s weights, while in
Synaptic Intelligence (SI) [38] and Memory Aware Synapses
(MAS) [1] additional information is stored together with
each parameter. Similarly, in Learning Without Forgetting
(LWF) [17] additional distillation loss on current data is used
to match the output of the model trained on the previous task,
with a new one. In this work, we use distillation techniques
to align representations of old and new features similarly to
LWF.
Dynamic architecturemethods create different versions of

the base model for each task. This is usually implemented by
creating additional task-specific submodules [29, 36, 35], or
by selecting different parts of the base network [23, 21, 4, 20].
Such approaches reduce catastrophic forgetting at the expense
of expanding memory requirements.
Rehearsal methods involve storing and replaying past data

to prevent catastrophic forgetting. The simplest implementa-
tion of this approach employs amemory buffer where a subset
of examples from previous tasks can be stored [9, 19, 3, 2,
27]. Such an approach achieves high performance and can
significantly reduce catastrophic forgetting.
However, the memory buffer has to store a significant

number of examples and, hence, grow with each task. Also
in some domains, due to privacy concerns, using historical
data is not possible. Therefore, generative models are often
used to synthesize past data. The first example of genera-
tive replay for CIL model is [32] where a generative model
(e.g., Generative Adversarial Network (GAN) [5]) is used
as a source of rehearsal examples. This idea is further ex-
tended to other generative methods such as Variational Au-
toencoders [12] in [34, 25] or Normalising Flows [28] in
[31]. In [15], the authors overview the general performance
of generative models as a source of rehearsal examples,
showing that even though GANs outperform other solutions,
all the methods struggle when evaluated on more complex
benchmark scenarios. Therefore, to simplify the problem, in
Brain-Inspired Replay (BIR) [33] the authors introduce a new
idea known as feature replay and propose to focus on the
replay of internal data representations instead of the original
samples. This idea was further explored in [10], with a split
between short and long-term memory, and in [18] where
authors employ conditional GANs. Our method falls in the
generative-feature replay category, as we directly base our
approach on the BIR method. This work is an extension of
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FIGURE 1: Principal Component Analysis (PCA) is performed on the original latent representations and the generated ones
after 0, 10, and 20 passes during cycling. The PCA visualizations and Fréchet distances both imply that the cycling procedure
decreases the discrepancy between original and generated data when the appropriate number of passes is performed.
[11]

workshop paper originally presented at ICCV [11]. In this
version, we add experiments on mini-ImageNet dataset, and
detailed evaluation of the quality of rehearsal examples with
precision and recall analysis. The results of these experiments
are presented in Table 2 and Figure 6. In addition, we present
Algorithm1, Figures 2, 3 and 4 for better comprehension of
the method.

III. METHOD
A. PROBLEM DEFINITION
This study addresses image classification within a class-
incremental setting. We train the model on a sequence of n
tasks: T1,T2, ...,Tn where each task t consists of {X (t),Y (t)}
drawn from the distribution D(t), where X is a set of train-
ing samples, Y is a set of corresponding class labels, and
1 ≤ t ≤ n. During the training of task t the model has noo
access to previous tasks data.

In class-incremental learning, the model has to be trained
to predict the labels for all the tasks seen so far.

B. BASELINE MODEL
Brain-Inspired Replay (BIR)method [33] serves as a baseline
for our work. The model consists of feature extractor and
VAE on top of it that plays a role of the feature generator.
The generator part is utilized to create the synthetic data for
the replay of old knowledge. It has encoder part qϕ and the
decoder part pψ . The goal of the encoder is to map the sample
x to probabilistic latent variable z, and the goal of the decoder
is map the latent variable z to reconstruction ẑ. Typically, the
objective of training VAE is to maximize the a variational
lower bound on the evidence (ELBO), or alternatively we try
to minimize the per-sample loss:

LG(x;ϕ, ψ) = Ez∼qϕ(.|x)[− log pψ(x|z)]+
+ DKL(qϕ(.|x)||p(.))

= Lrecon(x;ϕ, ψ) + L latent(x;ϕ), (1)

where qϕ(.|x) = N (µ(x), σ(x)2 I) is the posterior and
p(.) = N (0, I) is prior over the latent variables, and DKL

is the Kullback-Leibler divergence.
For prior distribution equal to N (0, I), the KL divergence

can be calculated as follows:

L latent(x;ϕ) =
1

2

D∑
j=1

(1 + log(σ
(x)2

j )− µ
(x)2

j − σ
(x)2

j ), (2)

where D is a latent dimension. The reconstruction loss in this
work is given by:

Lrecon(x;ϕ, ψ) = Eϵ∼N (0,I)

[ N∑
p=1

xp log(x̂p)

+ (1− xp) log(1− x̂p)
]
, (3)

where N is the size of the input, xp is the pth entry of the
original input x, and x̂p is the pth entry of reconstruction x̂.
In order to generate samples from specifically chosen

classes, the prior can be changed from the standard normal
distribution to the Gaussian mixture with each class modeled
as a separate distribution:

pX (.) =

Nclasses∑
c=1

p(Y = c)pX (.|c), (4)

where pX (.|c) = N (µc, σcI) for c = 1, ...,Nclasses, µc and σc

are trainable means and standard deviation for class c, X is
a set of means and standard deviations for all classes Nclasses

and p(Y = c) is the class prior.
For the current task with hard targets (labels), the L latent has

the following form:

L latent(x, y;ϕ,X ) =
1

2

D∑
j=1

(
1 + log(σ

(x)2

j )

− log(σy
2

j )−
(µ

(x)
j − µyj )

2 + σ
(x)2

j

σy
2

j

)
, (5)
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where µyj is the j
th element of µy and σyj is the j

th element of
σy. For the replay, this loss is estimated for soft-target ỹ as:

L latent(x, y;ϕ,X ) =
1

2

D∑
j=1

(
1 + log(2π) + log(σ

(x)2

j )

)

+ Eϵ∼N (0,I)

[
log

( D∑
j=1

ỹjN (µ(x) + σ(x) ⊙ ϵ|µj, σj
2

I)
)]

,

(6)

where ỹj is the jth entry of ỹ, and estimation of expectation is
performed by a single Monte Carlo sample for each input.

Classification loss is calculated for the current task as
following:

LC(x, y; θ) = − log pθ(Y = y|x), (7)

where pθ is the conditional probability distribution defined by
the model parameters.

In the replay part of BIR method classification loss is
substituted by the distillation loss. Typically, the objective
of knowledge distillation is to transfer knowledge from the
teacher model to student model. Knowledge distillation is
performed by minimizing the distance between the resulting
vectors of the softmax function in teacher and student models.
One of the problem of this approach is that the predicted
probability of the true class is usually close to 1. Hence,
the probability vector is close to the one-hot ground-truth
label vector, and does not provide additional information.
To mitigate this problem, the softmax with temperature is
incorporated [8]. The distillation loss is calculated by:

LD(x, ỹ; θ) = −T 2
Nclasses∑
c=1

ỹc log pTθ (Y = x|x), (8)

where T is the softmax temperature.

C. IMPROVED FEATURE REPLAY
This section describes our proposed modifications to the BIR
method that serves as the baseline. These changes are aimed
to mitigate the problems with VAE-based feature replay:
(1) misalignment between original and reconstructed data,
(2) latent drift due to continual learning training, (3) high
difference between generations and original samples.

1) Latent matching for reconstructions and original data
The first modification we propose aims to improve VAE
model performance in continual retraining. To that end, we
propose a latent matching regularization that enforces en-
coder to reverse the decoding operation performed by the
decoder. More specifically, we pass the sample x through
the encoder model to get the latent representation zo. After
that, we reconstruct the original sample by passing this latent
vector through the decoder and obtain x̂. Then, the recon-
struction is passed through the encoder model, and the latent
representation zr is received.
In particular, we calculate the regularisation on mean and

variations outputted by the encoder. To that end, we utilize the

Encoder Decoder

𝒛𝒐

𝒙 ෝ𝒙 Encoder

𝒛𝒐

𝒛𝒓ෝ𝒙

𝑳𝒎𝒂𝒕𝒄𝒉 = 𝒛𝟎 − 𝒛𝒓 𝟐

FIGURE 2: Visualisation of the latent matching loss. We
minimize the difference between latent vectors of the original
samples and their reconstructions.

mean squared error (MSE) loss for measuring the difference
between obtained latent representations. Therefore, we intro-
duced latent match loss which is defined as the following:

L latent match(zo;ϕ, ψ) =
1

2
(zr − zo)2 (9)

The visualisation of our latent match loss is presented in
Figure 2.

2) Latent distillation

𝐸𝑡−1

𝒛𝒕−𝟏

𝒙
𝒛𝒕−𝟏

𝒛𝒕

𝑳𝒅𝒊𝒔𝒕𝒊𝒍 = 𝒛𝒕−𝟏 − 𝒛𝒕 𝟐

𝐸𝑡𝒙

FIGURE 3: Visualisation of the latent distillation loss that
reduces the feature drift between tasks.

As mentioned in Section III-B, the BIR method does not
have any mechanism for prevention of feature drift, i.e. the
distribution change in feature space during training on new
data. To prevent that, we add a latent distillation loss which
is performed similarly as in [18]. In order to calculate the
loss during the task t , we pass the sample through the pre-
vious model encoder Et−1 and current model encoder Et ,
and obtain latent representations zt−1 and zt respectively. The
latent distillation loss is calculated as the MSE between the
latent representations of previous and current model, and is
calculated by:

L latent distill(zt−1;ϕt−1,t) =
1

2
(zt − zt−1)

2 (10)

The latent distillation loss serves as the purpose of the
regularization term that controls forgetting, similarly to the
SI regularization in the BIR method. Nevertheless our latent
distillation achieves better performance. Figure 3 presents
latent distillation loss.
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Encoder DecoderDecoder

FIGURE 4: Visualisation of the cycling procedure. Each time we generate a batch of rehearsal samples (orange stars), we pass
the generated outputs several times through the Variational Autoencoder in the recursive passing procedure. As a consequence,
the final generations exhibit a considerably improved alignment with the reconstructions of the original training data (green
dots).

3) Cycling
Our hypothesis is that even with the first two added modifica-
tions, there is still a large discrepancy between the generated
and original features. To minimise this effect, we propose a
cycling mechanism that is inspired by the idea presented by
Gopalakrishnan et al. in [6]. In this work, authors propose
to recursively pass images from the buffer through the pre-
trained autonecoder in order to better align them to the data
from a new task. Here, we use the similar mechanismwith our
Variational Autoencoder to align generations of data from the
previous task with data reconstructions.

The visualisation of our cycling mechanism is presented in
Figure 4.

In order to check the hypothesis, we calculate the Fréchet
distance [7], which is used to measure the similarity of two
Gaussian distributions. Typically, it is utilized to estimate
the quality of generated images (known as Fréchet inception
distance). In this case, we use it to measure the quality of
the generated latent representations. Figure 5 presents the
decrease in the Fréchet distance between the distributions
of generated and original latent vectors with the increase of
passes through the previous model. Therefore, we add it to
the training procedure.

Empirical evaluation of the cycling and number of used
rounds is presented with other experiments in Section V-B.

D. FINAL TRAINING OBJECTIVE
To summarize, we present our modified VAE-based replay
method with all the improvements incorporated into the train-
ing routine via a single objective for class-incremental setting.
This objective can be divided into two main parts: Lcurrent and
Lreplay. Current task loss Lcurrent is calculated as follows:

Lcurrent = LG + LC + L latent match (11)

Replay loss Lreplay for the previous tasks is given by:

Lreplay = LG + LD + L latent distill (12)

Finally, the total objective is calculated as summation of these
two losses:

L total = Lcurrent + Lreplay (13)

0
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FIGURE 5: Fréchet distance between the distributions of
original and generated latent vectors depending on the num-
ber of cycles. Zero cycles mean the model without cycling
procedure. As the number of cycles increases (till some
point), the distribution of generated representations better
aligns with the original one.

The final loss is utilized for training of the VAE and clas-
sifier using the current task data and the generative replay
data passed through the previous model the defined number
of times. The resulting loss is a combination of components
without any coefficients to balance the off. That can be further
investigated. The ablation study is provided in Section V-C.
The steps of the overall training procedure can be found in the
Algorithm 1.

IV. EXPERIMENTAL SETUP
A. DATASET
We evaluate the models on two commonly used benchmarks
that are challenging for the generative replay setup CIFAR-
100 dataset [14] and mini-ImageNet. CIFAR-100 consists of
100 object classes in 45,000 images for training, 5,000 for
validation, and 10,000 for test. All images are in the size of
32×32 pixels. The mini-ImageNet contains 50,000 training
images, and 10,000 testing images evenly distributed across
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Algorithm 1 Class-incremental learning with improved gen-
erative feature replay

Input: Data D1, D2, ... , DT , where Dt = {F(Xt), Yt}, where F is a
pretrained feature extractor

Require: Initialized encoderEnc0, initialized decoderDec0, initial-
ized classifier θ0, number of cycles Ncycles

for t = 1, . . . , T do
if t = 1 then

Step 1: Train Encnew, Decnew and θ on data D1 by
minimizing Lcurrent

else
Step 2: Save previously trained generator

Decold = Decnew, Encold = Encnew
Step 3: Generate data D̂1:t−1 = Decold(yt′ , z),

where yt′ is all classes seen-so-far
Step 4:
for k < Ncycles do

D̂1:t−1 = Decold(Encold(D̂1:t−1))
end for
Step 5: Train Encnew, Decnew and θ

on current data Dt by minimizing Lcurrent

and on generated data D̂t−1 by minimizing Lreplay

end if
end for

100 classes. All images have the size 84×84.

B. IMPLEMENTATION DETAILS

As a framework for our experiment, we use PyTorch [26].
We use ResNet-32 model for feature extraction. We pretrain
feature extractor on the 50 classes contained in the first
task, and freeze it afterwards. The same procedure is used
for mini-ImageNet with the substitution of ResNet-32 to
ResNet18. During the pretraining, we utilize the strong data
augmentations from the PyCIL framework [39] to improve
the feature extraction model. During the class-incremental
training of generator and classifier, we use weaker data aug-
mentations to minimize the distortions to the original data.
More specifically, we firstly pad images by 4, and after that
we randomly crop the image to the size 32×32 for CIFAR-
100 and 84×84 for mini-ImageNet. Lastly, random horizontal
flips are applied. We train the encoder part on top of the
feature extractor for 10000 iterations for the first task and for
5000 iterations for the rest of the tasks. Adam optimizer is
used for the experiments with the learning rate equal to 1e-4.

C. EVALUATION

For evaluation, we use the average overall accuracy metric as
in [33]. It is the average accuracy of the model on the test
data of all tasks up to the current one. In addition, to evaluate
the overall performance, we calculate average incremental
accuracy over all tasks. It is obtained by taking the average
of accuracies after each task. Each experiment is performed
over 3 random seeds and the mean is reported.

V. RESULTS AND ANALYSIS

TABLE 1: The average incremental accuracies on CIFAR-
100 with the first task containing 50 classes and the rest 50
classes split into 5, 10, and 25 tasks equally

CIL Method T=6 T=11 T=26
Finetune 32.41±0.07 23.42±0.09 13.26±0.16
SI 35.32±0.35 26.13±0.74 15.6±0.27
EWC 32.64±0.05 23.53±0.74 13.33±0.08
LwF 51.38±0.16 43.57±0.26 22.63±0.08
BIR 54.52±0.29 51.16±0.57 44.95±0.59
BIR+SI 57.18±0.23 52.4±0.29 47.71±0.98
Ours 59.05±0.42 57.97±0.99 53.75±0.32

Joint 64.7

TABLE 2: The average incremental accuracies on mini-
ImageNet with the first task containing 50 classes and the rest
50 classes split into 5, 10, and 25 tasks equally

CIL Method T=6 T=11 T=26
Finetune 29.9±0.08 22±0.05 13.04±0.03
SI 30.68±0.34 23.27±0.27 14.08±0.22
EWC 30.03±0.03 22.07±0.06 13.09±0.02
LwF 45.84±0.3 39.28±0.29 21.47±0.22
BIR 47.86±0.22 44.15±0.58 38.93±0.83
BIR+SI 49.59±0.85 47.52±0.4 43.78±0.55
Ours 52.45±1.22 52.79±2.1 48.94±0.71

Joint 64.2

A. MAIN RESULTS
For the experiments on CIFAR-100 and mini-ImageNet, 50
classes are contained in the first task following [33], and the
rest 50 classes are divided evenly to 5, 10, and 25 tasks. The
average incremental accuracies for CIFAR-100 are shown in
Table 1, and the accuracies after each task for T = 5, 10,
25 are shown in the form of plots in Figure 6 (top). Our
method shows better result in comparison with the baseline
and regularization methods.
The second best method is BIR+SI, but, it is consistently

worse than the proposed approach.
Similar results are presented for mini-ImageNet dataset,

which consists of bigger images than CIFAR-100. Table 2
present average incremental accuracy for this dataset. Here,
as well for CIFAR-100, our method outperforms the other in
a meaning of average incremental accuracy. However, the dif-
ference between ours and BIR+SI is more significant with the
increasing number of tasks, where for T=26 we reach 48.94
and BIR+SI 43.78. The other regularization-based methods
baselines for this scenario fall far behind. In Figure 6 (bottom)
we see accuracies after each task. For mini-ImageNet BIR
results in a better average accuracy in the second task for
T=6 and T=11. This can be attributed to better plasticity (no
SI). However, with a longer training and with more task, our
method outperforms others.
For both datasets, SI alone presents the results comparable

to finetuning. While simple application of LwF works good
for smaller number of bigger tasks, T=6 and T=11, but for
longer sessions T=26 the performance significantly drops.
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FIGURE 6: Comparison of average accuracies on CIFAR-100 (top) and mini-ImageNet (bottom) after each task for 6, 11, and
26 tasks with the first task containing 50 classes

Here, better adjustment of regularization hyper-parameters
can play more important role. Our proposed method does not
suffer from this issue.

B. NUMBER OF CYCLES

We analyze the influence of number of passes during cycling
procedure on the average incremental accuracy for 6 tasks.
According to the results presented in Figure 7, there is a drop
of performance for small number of passes, but increasing
the number improves the accuracy significantly. We suggest
to search an optimal value for the number of passes depending
on the dataset and split scenario used.
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FIGURE 7: Average incremental accuracy as a function of a
number of cycles for T=6.

TABLE 3: Ablation study of our method for class incremental
learning setting with T=6 and CIFAR-100. Average incre-
mental accuracy is reported for ResNet32.

Approach Latent match Latent 10 cycles Acc.(%)
distillation

baseline method - BIR 54.22
w/ latent match ✓ 56.21
w/ latent distillation ✓ ✓ 58.46
w/ 10 cycles ✓ ✓ ✓ 59.78

C. ABLATION STUDY

Through adding the proposed modifications one by one to
the baseline method, we perform an ablation study for the
proposed method. The obtained results can be seen in Ta-
ble 3. The ablation study suggests that each of our modifica-
tions significantly contributes to the total performance of the
model, and overall increase to average incremental accuracy
is 5.56% over baseline.

D. ANALYSIS OF PRECISION AND RECALL

Finally, we perform the analysis of our models performance
in terms of the quality of generations. To that end, we refer to
the distribution precision and recall of the distributions as pro-
posed by [30]. As authors indicate, those metrics disentangle
FID score into two aspects: the quality of generated results
(Precision) and their diversity (Recall). We calculate those
two metrics on the features level and compare the resulting
scores between standard BIR method and our improved ap-
proach. As presented in Figure 8, our improvements allow
the model to retain both higher precision and recall of the
regenerated samples.
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FIGURE 8: Comparison of the Precision/Recall curves for features generated after each task with either the standard BIRmethod
(left) or our improved version (right). Our method is able to retain much better precision-recall tradeoff of the generated samples.

VI. CONCLUSIONS AND FUTURE WORK
In conclusion, we propose the modifications to improve the
VAE-based generative replay in the class-incremental setting.
We observe the disparity between the latent representations
of the original and generated data. Therefore, we incorporate
the latent match loss that address this problem. To mitigate
shift in the feature space during training on new data, we add
latent distillation loss. Finally, we propose the cycling of the
generated features though the previous model to decrease the
distance between the distributions of original and generated
samples. This allowed us to scale the generative approaches
to more complex datasets, such as mini-ImageNet. The per-
formed ablation study illustrates that the increase of perfor-
mance due to each component.

In future, we plan to scale our method to perform well
on more challenging scenarios such as ImageNet dataset and
longer sequences of tasks.

This stands out as a notable limitation in numerous gener-
ative replay methods which are unsuitable for larger datasets,
whereas our approach holds a significant advantage in this
regard.

a: Impact Statement.
By using the generative approach for continual learning,
our method does not require storing exemplars of past data,
therefore it addresses concerns about private or sensitive data,
which are applicable in some scenarios. However, generative
models can retain the biases present in the training data, and
we strongly advise a careful examination of their performance
to ensure unbiased outcomes.
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