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Abstract— Full-wave electromagnetic (EM) analysis is one of
the most important tools in the design of modern microwave com-
ponents and systems. EM simulation permits reliable evaluation
of circuits at the presence of cross-coupling effects or substrate
anisotropy, as well as for accounting for interactions with the
immediate environment. However, repetitive analyses required
by EM-driven procedures, such as parametric optimization or
statistical analysis, may entail considerable computational expen-
ditures, often prohibitive. Tackling the high-cost issue fostered
the shift toward the incorporation of fast replacement models,
including both physics-based surrogates and data-driven ones.
While the latter is more popular and versatile, the construction
of reliable approximation metamodels for microwave components
is hindered by the curse of dimensionality and nonlinearity
of system responses. The recent performance-driven modeling
methodologies are capable of alleviating these difficulties by
confining the surrogate domain to a vicinity of the optimum
design manifold (i.e., the region that contains high-quality designs
rather than the entire parameter space). Although setting up
the model in a constrained domain requires small amounts of
training data, domain definition itself requires a set of preop-
timized reference designs, acquisition of which is an expensive
endeavor. This work proposes a novel approach, which replaces
the reference designs with a small set of random observables,
thereby considerably reducing the overall cost of the model
setup. Comprehensive verification involving several miniaturized
microstrip structures demonstrates that our methodology is
competitive to performance-driven frameworks both in terms of
modeling accuracy and computational efficiency with an average
savings of around 80%.

Index Terms— Domain confinement, inverse models, micro-
wave design, miniaturized components, performance-driven
modeling, regression models, surrogate modeling.

Manuscript received May 17, 2021; revised June 30, 2021 and
August 4, 2021; accepted August 25, 2021. This work was supported in part by
the Icelandic Center for Research (RANNIS) under Grant 217771 and in part
by the National Science Center of Poland under Grant 2020/37/B/ST7/01448.
(Corresponding author: Anna Pietrenko-Dabrowska.)

Slawomir Koziel is with the Engineering Optimization and Modeling Center,
Reykjavik University, 102 Reykjavik, Iceland, and also with the Faculty
of Electronics, Telecommunications and Informatics, Gdańsk University of
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I. INTRODUCTION

ELECTROMAGNETIC (EM)-driven design has become
instrumental in achieving the best possible performance

for the vast majority of microwave components and devices.
While theoretical models (analytical [1] and equivalent net-
work [2]) are often capable of yielding reasonable initial
designs, optimization-based design closure is still necessary.
The latter is most often carried out at the level of EM
simulation tools. This is especially pertinent to miniaturized
components featuring tightly arranged layouts, where a strong
cross-coupling effect makes the equivalent network representa-
tions grossly inaccurate [3]. These issues are related to specific
miniaturization techniques, e.g., transmission line folding [4],
utilization of the slow wave effects (e.g., compact microwave
resonant cells, CMRSs [5]), or multilayer realizations
(e.g., LTCC structures [6]).

Although full-wave EM analysis ensures evaluation accu-
racy, it also entails considerable computational expenses.
These are usually not troublesome for design verification but
may become impractically high whenever repetitive simu-
lations are necessary. The examples of relevant simulation-
based tasks include, first and foremost, parameter tuning
(also referred to as design closure) [7], statistical analy-
sis [8], yield-driven design [9] (or, more generally, uncertainty
quantification, UQ, [10]), global [11], [12], or multiobjective
optimization (MO) [13]. It is especially the case of UQ
and MO, where the computational costs may readily become
prohibitive when using conventional approaches directly at
the level of EM models (e.g., Monte Carlo simulation
for UQ [14] or population-based nature-inspired algorithms
[15]–[17] for MO or global search). A possible workaround
is to employ simplified design procedures that are compu-
tationally tractable but lack accuracy (e.g., supervised para-
meter sweeping for geometry parameter adjustment [18] or
worst case analysis for UQ [19]). In the realm of rigorous
approaches, there have been a large number of methodologies
developed to accelerate EM-driven procedures, including both
algorithmic techniques (e.g., incorporation of adjoint sensi-
tivities [20] or sparse Jacobian updates [21] into gradient-
based routines, parallelization [22], and mesh deformation
methods [23]) but also—more and more popular—surrogate-
assisted solutions [24]–[29]. Among these, physics-based sur-
rogates are most often employed in local optimization [30].
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The models of this class are characterized by improved gener-
alization capability [31], which is a result of capitalizing on the
problem-specific knowledge embedded in an underlying low-
fidelity representation (e.g., an equivalent circuit [32]). Popular
methods include space mapping [33], manifold mapping [34],
or various response correction techniques [35], [36]. Still, the
versatility of physics-based modeling methods, with a notable
example of space mapping, is considerably limited by the
following factors. The techniques of this class require an
underlying low-fidelity model, which is problem-dependent
and whose quality significantly affects the performance of
the entire modeling framework. Development and selection
of such a model require engineering insight and, for some
structures (e.g., those with strong EM cross-coupling effects),
maybe problematic accuracywise. Moreover, physics-based
surrogates, being, as a matter of fact, nonlinear regression
models with a fixed number of degrees of freedom, do not
have universal approximation capability. The latter makes
it difficult to ensure the assumed predictive power of the
surrogate regardless of the number of training data points
involved.

Data-driven surrogates (kriging [37], Gaussian process
regression [38], neural networks [39], ensemble learning [40],
and support vector regression [41]) are typically applied
in global optimization frameworks [12], often in combi-
nation with sequential sampling [42] or machine-learning
schemes [43]. Polynomial chaos expansion (PCE) models are
particularly suitable for handling UQ tasks by eliminating the
need for Monte Carlo analysis [44]. Other worth noticing
techniques include feature-based optimization (FBO) [45] and
cognition-driven design [46], both relying on the exploitation
of a specific structure of the system response (e.g., passband
ripples [47] or allocation of the system resonances [48]).

It is clear that an overall replacement of expensive EM
simulations by a fast surrogate would open the door to low-
cost execution of all sorts of design tasks. Due to their
versatility, easy access (e.g., [49] and [50]), and handling,
the best candidates here seem to be data-driven models.
Also, most of the mainstream methods are well established
(kriging [51], many variations of neural networks [52]–[54],
radial basis functions [55], PCE [56], and so on). Unfortu-
nately, construction of reliable models for microwave compo-
nents is severely hindered by a combination of the following
factors: 1) curse of dimensionality; 2) high nonlinearity of
the system responses (typically, scattering parameters) both
as a function of frequency and geometry/material parameters;
and 3) utility demands (practically usable models have to
cover sufficiently broad ranges of the system parameters and
its operating conditions). Although some mitigation tech-
niques are available, e.g., high-dimensional model represen-
tation (HDMR) [57] and orthogonal matching pursuit [58],
these are of little help for general-purpose modeling of
microwave components. On the other hand, alleviation of
some of the aforementioned difficulties can be obtained by
means of variable-fidelity approaches, such as cokriging [59],
Bayesian model fusion [60], or two-stage Gaussian process
regression [61].

A recently introduced concept of performance-driven mod-
eling [62] can be considered a qualitatively different attempt
to handling most of the issues discussed in the previous
paragraph. It relies on identifying a region that contains
high-quality designs with respect to the assumed figures of
interest (e.g., allocation of operating frequencies, and power
split ratios) and defining the surrogate model domain in its
neighborhood. The computational benefits result from a small
volume of the domain compared to the original parameter
space, which translates into the improved predictive power
of the surrogate even when using limited-cardinality training
datasets [62]. Performance-driven modeling comes in several
variations (e.g., [63] and [64]), with one of the most advanced
being the nested kriging framework [65] and its generalization
to variable-resolution setup [66], and dimensionality-reduced
domains [67]. Notwithstanding, the advantages of the dis-
cussed methodologies are deteriorated by the necessity of
defining the model domain with the use of the preoptimized
reference designs. The computational cost of their acquisition
may be considerable (a few hundred to over a thousand of
EM simulations of the system at hand). The issue can be
mitigated to a certain extent by using sensitivity data in the
form of gradient-enhanced kriging (GEK) [68], which allows
for reducing the number of the necessary reference points by
up to 50%.

This work introduces an alternative approach to microwave
component modeling. Our technique adopts the generic
performance-driven concept; however, in contrast to the pre-
vious methods, it does not employ any reference designs.
Instead, the surrogate model domain is determined based on
a set of random observables, and an inverse regression model
constructed using the EM simulation data is acquired this way.
In order to capture the relevant region of the parameter space,
the image of the considered objective space through the inverse
model is orthogonally extended toward its normal vectors. The
presented approach has a number of advantages over the prior
developments: 1) the number of domain-defining observables
is significantly smaller than the number of EM analyses
required to obtain the reference designs, which translates into
the overall smaller cost of the surrogate model setup (by up
to 80%); 2) the lateral size of the domain can be automatically
determined using the observable set (which was a serious
problem for, e.g., the nested kriging framework [65]); and
3) the observable data can be used to complement the training
samples, thereby considerably improving the model predictive
power for small training sets at no extra cost. These features
have been demonstrated using two examples of miniaturized
microstrip couplers and a dual-band power divider.

II. TWO-STAGE SURROGATES FOR MICROWAVE

COMPONENT MODELING

This section describes the fundamental components of
the considered methodology. A brief recollection of the
performance-driven modeling concept (see Section II-A) is
followed by an introduction of the inverse regression model
obtained from the random observable set (see Section II-B),
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the definition of the surrogate domain (see Section II-C), and
the exposition of the overall modeling flow (see Section II-D).

A. Performance-Driven Modeling Concept

This section briefly recalls the concept of performance-
driven (also referred to as constrained) modeling [62], as the
procedure introduced in this work exploits some of its funda-
mental ideas. The following notation is adopted. The vector of
designable (typically, geometry) parameters of the system of
interest is denoted as x = [x1, . . . , xn]T . The parameter space
X is determined using the lower and upper bounds for para-
meters, denoted as l = [l1, . . . , ln]T and u = [u1, . . . , un]T .
In other words, X is an interval [l , u] so that lk ≤ xk ≤ uk

for k = 1, . . . , n. For the purpose of the modeling process,
we identify a number of figures of interest pertinent to
the component at hand, such as its operating frequency
(or frequencies in the case of multiband structures), bandwidth,
power split ratio (for coupling structures), or material parame-
ters, e.g., the dielectric permittivity of the substrate. The target
values of these figures determine the design goals and allow
for defining the optimality conditions for the system. These
figures are denoted as fk , k = 1, . . . , N , and the interval is
determined by their ranges of interest, fk.min ≤ f ( j)

k ≤ fk.max,
k = 1, . . . , N , becomes the objective space F [62]. This space
becomes the (intended) region of validity of the surrogate to be
constructed. For further considerations, we also use the vector
notation f = [ f1, . . . , fN ]T .

Let U (x, f ) be a scalar merit function that quantifies
the quality of the design x for a given objective vector f
(see [65] for specific examples thereof). The function U is
defined so that smaller values of U (x, f ) correspond to better
designs. Typically, a minimax formulation is used if the target
response is unknown (e.g., matching improvement) [65] or
L-square formulation if the ideal response can be identified
(e.g., obtaining a specific power split ratio) [67]. The optimum
design x∗ is obtained for a given f ∈ F as

x∗ = UF ( f ) = arg min
x

U(x, f ). (1)

Then, the set of all designs that are optimum for all f ∈ F
is denoted by

UF (F) = {UF ( f ) : f ∈ F}. (2)

In general, UF (F) defined by (2) is an N-dimensional
manifold in X . The fundamental concept behind performance-
driven modeling frameworks is to construct the surrogate
in a possibly small neighborhood of UF (F) because only
this region contains high-quality designs [62]. Allocating the
training data outside it is essentially a waste of resources. The
computational benefits result from the fact that the volume of
the region of interest is small compared to that of the original
space X .

The central question of performance-driven methodolo-
gies is to define the surrogate model domain so that
it contains UF (F). Regardless of a particular formulation
(e.g., [62]–[67]), the initial estimation of the spatial alloca-
tion of the optimum design manifold is realized using a

certain number of reference designs x( j) = [x ( j)
1 , . . . , x ( j)

n ]T ,

Fig. 1. Fundamental concepts of performance-driven modeling [62].
(a) Objective space F and (b) parameter space X . The reference designs
are shown as black circles, whereas the optimum design manifold UF (F) is
indicated as a gray surface. The first-level model image s I (F) provides a first
approximation of the manifold and has to be further extended to encapsulate
the UF (F).

j = 1, …, p, which are optimized w.r.t. the selected objective
vectors f ( j) = [ f ( j)

1 , . . . , f ( j)
N ] ∈ F . Because x( j) ∈ UF (F),

the reference designs provide important information about the
optimum design manifold geometry. For example, in the nested
kriging framework [65], the pairs { f ( j), x( j)}, j = 1, . . . , p,
are employed to construct a first-level model s I ( f ): F → X
as an approximation of UF (F) (see Fig. 1).

As demonstrated in the literature [62], [67], domain con-
finement in a way described above allows for a significant
improvement of the model predictive power, extension of the
parameter and operating condition ranges that the model is
valid for, and reduction of the number of training data samples
required for model identification. However, acquisition of the
reference designs is a computationally expensive endeavor,
which may increase the surrogate model cost in a significant
manner.

In practice, the number of reference designs is between
10 and 20 [62], and the total cost of the associated optimization
process may be as high as a few hundred to over a thousand
EM analyses of the component at hand. Also, the acquisition
process can hardly be automated because the optimization
goals are scattered across the entire objective space. Some
mitigation methods were proposed, either in terms of reducing
the number of required designs [68] or automation of the
acquisition process [69], as well as reduction of the overall
cost of acquiring them [76], which alleviates the issue to a
certain extent. The latter technique allows for the automated
and low-cost acquisition of the reference designs required
for domain definition purposes by the performance-driven
frameworks. The latter technique allows for the automated
and low-cost acquisition of the reference designs required
for domain definition purposes by the performance-driven
frameworks. The method proposed in this work can be viewed
as an approach alternative to [76], with the acquisition of
the reference designs abandoned altogether and replaced by
allocation of random observables that subsequently serve to
delimit the surrogate domain.

B. Two-Stage Inverse/Forward Modeling: Stage One

The major goal of this article is to avoid the use of reference
designs while defining the domain of the surrogate model.
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Fig. 2. Generating random observables using the example of a microstrip
coupler, here, modeled over a 2-D objective space F and within a three-
dimensional parameter space X. The random vectors that correspond to
designs featuring operating frequency and power split ratio within F are
accepted, and others are rejected. The observable set {x( j)

r } j=1,...,Nr , is sub-
sequently employed to generate the inverse regression model sr (·).

Here, these are replaced by a set of randomly generated para-
meter vectors (observables), which are preselected in terms of
the associated design quality in terms of the assumed design
objectives. The information contained in the observable set
will be used to construct an inverse regression model providing
the required approximation of the manifold UF (F).

Let us introduce the relevant notation. We denote by x( j)
r ,

j = 1, 2, . . . , the aforementioned random vectors. These
are generated in X using a uniform probability distribu-
tion. We also denote by f ( j)

r the performance figure vectors
extracted from the EM-simulated system responses at x( j)

r . For
the sake of example, let us consider a microwave coupler with
the objective space consisting of its target operating frequency
and the power split ratio. In this case, the two entries of the
vector f ( j)

r may be: 1) the average value of the frequencies
corresponding to the minimum of the matching and isolation
characteristics (|S11| and |S41|) and 2) the actual power split
ratio at the above approximated operating frequency. Note
that, at this stage of the modeling process, we only need
to approximate the operating conditions of the system. Now,

if the extracted f ( j)
r is within F , the random vector is

accepted; it is rejected otherwise (e.g., if f ( j)
r /∈ F , or the

system response is distorted so that the figures of interest
cannot be extracted at all). A graphical illustration of the
discussed concepts can be found in Fig. 2. The process of
generating random vectors is terminated upon finding the
assumed number of observables Nr (in practice, 50–100).
The total number of vectors considered in the procedure is
typically 2Nr to 3Nr , depending on the dimensionality of
the parameter space, and the ranges of the figures of interest
within F . It should be noted that, if the parameter space
is selected without much consideration about the expected
design quality therein (e.g., with extremely broad ranges of
parameters), or the circuit of interest is very sensitive to its
design variables, so that even slight detuning dramatically
distorts its responses, the number of random observables
required to generate Nr vectors of sufficient quality might be

large, thereby compromising the computational benefits of the
presented method. Here, the underlying assumption is that the
parameter space has not been selected ad hoc but at least using
some basic problem-related knowledge.

Additional information is also extracted from the ran-
dom vectors in the form of supplementary coefficients p( j)

r ,
j = 1, . . . , Nr . These coefficients are to measure the design
quality (the lower the better) in order to discriminate between
the vectors that are closer to the optimum design manifold
UF (F) and those that are farther away from it. The former
will have more impact on the inverse model discussed below.
For the discussed example of the microwave coupler, assuming
that the merit function U is defined to minimize |S11| and |S41|
of the circuit at the operating frequency (while maintaining
the power split at the required level), p( j)

r can be simply
the maximum of |S11| and |S41| at the estimated operating
frequency.

The next stage of the modeling procedure is the identifi-
cation of an inverse regression model sr : F → X , which
approximates the optimum design manifold UF (F), i.e., plays
a role similar to that of the first-level model s I in the nested
kriging framework [67]. The inverse model maps the objective
space into the parameter space X , and it is established using
the training set {x( j)

r , f ( j)
r } j=1,...,Nr . We assume the following

analytical form of the model:

sr ( f ) = sr

⎛
⎝

⎞
⎣

f1

· · ·
fN

⎤
⎦

⎞
⎠ =

⎞
⎣

sr.1( f )
· · ·

sr.n( f )

⎤
⎦

=

⎞
⎢⎢⎣

a1.0 + a1.1 exp
��N

k=1 a1.k+1 fk



· · ·
an.0 + an.1 exp

��N
k=1 an.k+1 fk



⎤
⎥⎥⎦. (3)

The exponential terms provide sufficient flexibility (e.g., are
capable of modeling different curvatures) and are described by
a few parameters. Because the primary operating conditions
are frequency-related (e.g., center frequency or frequencies
or the circuit), and the critical dimensions of the circuits
controlling the operating frequencies are often in inversely
proportional relation, it is important that the selected analytical
form of the model allows for mimicking the “saturation”
pertinent to f ∼ 1/L type of dependence (not possible using,
e.g., polynomial regression).

Model identification is realized by solving the regression
problems
�
a j.0 a j.1, . . . , a j.K+1

�

= arg min
[b0 b1,...,bK+1]

Nr�
k=1

wk

�
sr. j

�
f (k)

r

� − x (k)
r. j

�2
(4)

for j = 1, . . . , n. Here, x(k)
r = [x (k)

r.1 x (k)
r.2 , . . . , x (k)

r.n ]T , i.e., x (k)
r. j

is the j th entry of x(k)
r , whereas the weighting factors wk

discriminate between the high- and low-quality observables.
These are assigned as

wk = ��
M − p(k)

r

�
/M

�2
, k = 1, . . . , Nr (5)

where M = max{k = 1, . . . , Nr , j = 1, . . . , N : p(k)
r }. Recall

that p(k)
r is the supplementary coefficients discussed before.
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Fig. 3. Graphical illustration of the inverse regression model sr established
using random observables x( j)

r and their corresponding objective vectors f ( j)
r .

The components sr. j of the inverse model are obtained as in (3)–(5), and
their images are visualized as the gray-shaded surfaces for antenna parameters
x1 (top), x2 (middle), and x3 (bottom), respectively.

As p(k)
r ≤ M , the smallest weighting factor is zero (for the

worst designs) and approaches one for the best ones, assuming
that pr is defined to be nonnegative. The incorporation of the
weighting factors allows for the higher quality observables
to have more impact on the inverse model because these
designs are allocated closer to UF (F). Fig. 3 shows a graphical
illustration of the inverse model in relation to the example
considered in Fig. 2. It should be emphasized that a low
dimensionality of the objective space F is a key factor that
allows us to use low values of Nr as the inverse model is
defined on F ; therefore, its reliability does not depend on the
dimensionality of the circuit parameter space n.

C. Two-Stage Inverse/Forward Modeling: Stage Two

Defining the domain of the final (forward) surrogate model
is the next stage of the modeling process. For that, the set
sr (F) (objective space image through the inverse model) has
to be extended to accommodate the manifold UF (F). The
extension is realized in a similar manner as in the nested
kriging framework [65], i.e., using the orthonormal basis of
vectors {v(k)

n ( f )}, k = 1, . . . , n − N , normal to sr (F) at f .

The amount of extension is decided upon by the vector
T = [T1, . . . , Tn]T of positive real numbers. First, the exten-
sion coefficients are computed as

α( f ) = �
α1( f ), . . . , αn−N ( f )

�T

= ���Tv(1)
n ( f )

��, . . . , ��Tv(n−N)
n ( f )

���T
. (6)

It should be noted that the number of vectors v(k)
n ( f ) normal

to the image of the inverse model sr at f is n − N because
the set sr (F) itself is an N-dimensional manifold in X . The
coefficients αk will determine the amount of extension toward
particular normal vectors using the vector T as discussed later
in this section.

The domain X S is defined as

X S =

⎧⎪⎨
⎪⎩

x = sr ( f ) +
n−N�
k=1

λkαk( f )v(k)
n ( f ) : f ∈ F,

−1 ≤ λk ≤ 1, k = 1, . . . , n − N

⎫⎪⎬
⎪⎭

. (7)

Note that X S contains all vectors of the form of (7) for
all f ∈ F , and all λk ∈ [−1, 1], k = 1, . . . , n − N .
The vectors obtained for λk = 0 correspond to sr (F),
whereas the domain “lower” and “upper” bounds are
S+ = {x ∈ X : x = sr ( f ) + �n−N

k=1 αk( f )v(k)
n ( f )} and S− =

{x ∈ X : x = sr ( f ) − �n−N
k=1 αk( f )v(k)

n ( f )}.
At this point, it is necessary to discuss an important

difference between the nested kriging framework and the pro-
posed approach. The former employs a scalar (i.e., parameter-
independent) extension coefficient that has to be selected by
the user, and the formulation of the framework does not give
any indication about the “right” number (typically, selected
between 0.025 and 0.1, which, more or less, corresponds
to 2.5%–10% domain thickness compared to its tangential
spread). An attempt to automatically determine the extension
parameters has been reported in [70].

In this work, the extension factors Tj are assigned indi-
vidually for each parameter. Furthermore, their values can be
estimated from the observable set and the inverse surrogate,
using the procedure formulated below. Consider the pair

{x( j)
r , f ( j)

r }. Let Pk(x( j)
r ) ∈ [lk uk ] ×F (a Cartesian

product of the interval determined by the lower and upper
bounds for the kth parameter and the objective space) be a

vector minimizing the distance between [x ( j)
r.k ( f ( j)

r )T ]T and
[sr.k( f ) f T ]T , f ∈ F (x ( j)

r.k stands for the kth component of
the vector x( j)

r ). In rigorous terms, we have

Pk
�
x( j)

r

� = arg min
f ∈F

����
�
x ( j)

r.k

�
f ( j)

r

�T
�T − �

sr ( f ) f T �T
����. (8)

In other words, Pk(x( j)
r ) is the orthogonal projection of

[x ( j)
r.k ( f ( j)

r )T ]T onto the image of the kth component of
the inverse regression model within the space [lk uk ] ×F .
Furthermore, let us define

dr.k
�
x( j)

r

� =
����
�
x ( j)

r.k

�
f ( j)

r

�T
�T −

�
sr

�
P

�
x( j)

r

��
P

�
x( j)

r

�T
�T

����
(9)

as the minimum distance between [x ( j)
r.k ( f ( j)

r )T ]T and the
aforementioned image; dr.k can be viewed as the distances
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between the respective entries of the observable vectors and
the gray-shaded manifolds illustrated in Fig. 3.

The extension factor Tk can be determined as

Tk = 1

2Nr

Nr�
j=1

dr.k
�
x( j)

r

�
. (10)

Note that Tk is defined as half of the average distance
between the kth entry of the observable vector and the
respective inverse regression model manifold. The reason
for choosing half of the average distance is the following.
As mentioned before, the high-quality observables are allo-
cated close to the manifold UF (F), thereby contributing in a
more significant manner to identification the inverse model
due to the associated weights wk [cf. (4)]. Similarly, low-
quality observables are away from UF (F). Hence, the dis-
cussed average distance provides a pessimistic estimate of the
necessary domain extension (i.e., if used, the domain would
also contain many mediocre designs). Consequently, reducing
the extension to 50% of the average seems reasonable. This
is corroborated in Section III through the application case
studies. In more challenging cases (e.g., a larger number of
parameters or broader parameter ranges), the aforementioned
50% can be reduced to, e.g., 25% or so.

The final surrogate model s(x) is constructed using kriging
interpolation [71]. The training data are generated in X S

and denoted as {x(k)
B , R(x(k)

B )}k=1,...,N B , where x(k)
B ∈ X S

are the sample points, whereas R stands for the relevant
EM-evaluated system output (typically, S-parameters versus
frequency). The definition of the domain X S facilitates the
sampling procedure, which is arranged in a similar way as
in the nested kriging framework. More specifically, we use a
bijective transformation from the unity hypercube [0,1]n onto
X S . Having z ∈ [0,1]n, the function h1

y = h1(z) = h1
�
[z1, . . . , zn]T

�

= [ f1. min + z1( f1. max − f1. min), . . . , fN . min

+zN ( fN . max − fN . min)]

× �−1 + 2zN+1, . . . ,−1 + 2zn
�

(11)

maps z into F ×[−1, 1]n−N . Subsequently, the function
h2: F × [−1, 1]n−N → X S

x = h2(y) = h2
�
[y1, . . . , yn]T

� = sr
�
[y1, . . . , yN ]T

�

+
n−N�
k=1

yN+kαk
�
[y1, . . . , yN ]T

�
v(k)

n

�
[y1, . . . , yN ]T

�
(12)

maps y into X S . Now, if {z(k)}, k = 1, . . . , NB , is a uniformly
set in [0,1]n (in this work, we use a modified Latin Hypercube
Sampling, LHS [72]), then the set

x(k)
B = H

�
z(k)

� = h2
�
h1

�
z(k)

��
(13)

is uniformly distributed in X S . It should be observed that the
uniformity is understood in relation to the objective space F
(not necessarily the parameter space X). This is beneficial

Fig. 4. Two-stage inverse/forward modeling of microwave components:
operational flow.

because this type of uniformity ensures a balanced represen-
tation of objective vectors within the sample set.

The same transformation H can also facilitate the utilization
of the surrogate as a design tool. Although the geometry of
the surrogate domain X S may be complex, the processes,
such as parametric optimization, can be operated from within
the hypercube [0 1]n. As the function H realizes one-to-one
transformation between the unity interval and X S , the original
task x∗ = UF ( f ) = arg min{x ∈ X S : U(x, f )} [cf. (1)]
can be reformulated as x∗ = UF ( f ) = arg min{x ∈ X S :
U(x, f )}, where H is used to map the vector z to X S for
surrogate model evaluation.

Note that x(0) = sr ( f ) is the best initial design for f ∈ F
that can be obtained based on the available information (here,
the observable set). The vector x(0) can be remapped into the
interval [0 1]n as z(0) = H −1(x(0)) = [( f1 − f1.min)/( f1.max −
f1.min), . . . , ( fN − fN .min)/( fN .max − fN .min)0, . . . , 0]T (the last
N − n entries being zero).

D. Modeling Framework

Having discussed all of the basic components of the
framework introduced in this work, we are in a position to
describe the flow of the modeling process. There are only two
user-defined parameters: the number Nr of random vectors
(cf. Section II-B), typically set to 50, and the training dataset
size NB for final surrogate identification. The parameter
space X and the objective space F are decided by the user
depending on the intended range of validity of the model.
The modeling flow has been summarized in Fig. 4. The
flow diagram of the procedure can be found in Fig. 5.
As mentioned before, a possibility of supplementing the
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Fig. 5. Two-stage inverse/forward modeling framework: flow diagram.

training data by the observables is expected to improve the
surrogate accuracy, especially for smaller datasets, which is an
additional benefit of the modeling framework presented in this
work.

III. VERIFICATION AND BENCHMARKING: CASE STUDIES

The modeling procedure described in Section II is demon-
strated here using three examples of microstrip circuits, two
compact couplers (rat-race and branch-line ones), and a dual-
band power divider. The modeling accuracy is compared to
conventional surrogates (kriging, radial basis functions, and
artificial neural networks), as well as the nested kriging frame-
work [65]. Furthermore, application examples are considered
in the form of circuit optimization for selected target values
of the figures of interest. The benchmarking is limited to data-
driven surrogates as this is the class of models considered in
this work. The advantages (e.g., a potential to construct reliable
models using a small number of high-fidelity training points,
as well as the suitability of local search purposes) and dis-
advantages (e.g., reliance on an underlying low-fidelity model
or lack a universal approximation capability) of physics-based
surrogates have been outlined in Section I. The mentioned
disadvantages would also make it difficult to perform a proper
comparison with data-driven models. In particular, setting up,
e.g., space mapping metamodels, require input other than pure
EM simulation data, whereas the scalability of error w.r.t. the
training dataset cardinality is incomparable to that of data-
driven models either due to a normally fixed number of degrees
of freedom of space mapping transformations.

Fig. 6. Compact RRC: parameterized geometry [73].

A. Example I: Miniaturized Rat-Race Coupler

As a first example, consider a miniaturized microstrip
rat-race coupler (RRC) [73], as shown in Fig. 6. The cir-
cuit is implemented on RO4003 substrate (εr = 3.38 and
h = 0.762 mm). The independent design variables are x =
[l1 l2 l3 d w w1]T , whereas the remaining parameters are
d1 = d + |w − w1|, d = 1.0, w0 = 1.7, and l0 = 15 fixed (all
dimensions in mm). The EM model of the RRC is simulated
in CST Microwave Studio.

The objective space is defined by the operating frequency
f0 of the coupler within the range from 1.0 to 2.0 GHz and the
power split ratio K P from −6 dB to 0 dB. The conventional
parameter space X is defined by the lower and upper bounds
l = [2.0 7.0 12.5 0.2 0.7 0.2]T and the upper bounds
u = [4.5 12.5 22.0 0.65 1.5 0.9]T . The surrogate model of
the RRC S-parameters (|S11|, |S21|, |S31|, and |S41|) is to be
valid over the entire objective space. The design optimality
is understood as minimization of the matching and isolation
characteristics at f0, as well as maintaining the required power
split ratio (also at f0). The objective function is defined as

U(x, f ) = U
�
x, [ f0 K P ]T

� = max{|S11(x, f0)|, |S41(x, f0)|}
+β[K P − [|S21(x, f0)| − |S31(x, f0)|]]2 (14)

where Sk1(x, f ) is the respective S-parameter at the design x
and frequency f . The second term in (14) is a penalty function
enforcing the required power split.

For verification, the two-stage surrogate model has been
constructed using Nr = 100 random observables (obtained
at the cost of 116 coupler simulations) and five different
training datasets of the sizes NB = 50, 100, 200, 400, and
800 samples. This allows us to investigate the predictive
power scalability. As for benchmark, we use the follow-
ing techniques: 1) conventional kriging interpolation model
(constructed in the original parameter space X); 2) con-
ventional RBF model (set up in the space X); 3) artificial
neural network (ANN) model (feedforward network with
two hidden layers, set up in the space X); and 4) nested
kriging model with the thickness parameter of T = 0.05
(domain X S). The last method utilized 12 reference designs
with the associated acquisition cost of 779 EM simulations of
the RRC. This is added to the overall expenses of setting up
the surrogates.

The numerical results have been gathered in Table I. Visual-
ization of the inverse regression model sr for selected coupler
variables can be found in Fig. 7. Note that, although the
observables are spread around the inverse model surfaces due
to their various levels of optimality, they are correlated and
determine clear trends for geometry parameters. A comparison
between EM-simulated scattering parameters of the coupler
and parameters predicted by the proposed surrogate has been
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TABLE I

COMPACT RRC: MODELING RESULTS AND BENCHMARKING

Fig. 7. Compact RRC of Fig. 6: inverse regression model for selected coupler
parameters. (a) l3, (b) w, and (c) w1. Inverse model surfaces and random
observables are shown using gray and blue circles, respectively.

Fig. 8. Compact RRC of Fig. 6: scattering parameters at the selected
test designs: EM model (—) and the proposed two-stage surrogate (o). The
surrogate set up using NB = 400 training samples.

shown in Fig. 8 for selected test points. An excellent agree-
ment between the two datasets can be observed.

In this work, the modeling error is computed as a
relative rms error, evaluated at the parameter vector x as
||Rs(x) − R f (x)||/||R f (x)||, where Rs and R f repre-
sent the relevant circuit responses, surrogate-predicted, and
EM-simulated, respectively. Note that the predictive power of
the inverse/forward surrogate discussed here is overwhelm-
ingly superior over the conventional models (kriging, RBF,
and ANN). On the other hand, it is more or less comparable
to the nested kriging framework but still noticeably better for
smaller training datasets of 50 and 100 samples. Although
both methodologies capitalize on domain confinement, our
approach allows for including all random observables into

TABLE II

COMPACT RRC: OPTIMIZATION RESULTS USING
THE PROPOSED SURROGATE

the training set, which effectively improves the accuracy. The
contribution of the observables is not as pronounced for NB

exceeding 200 because of a limited number thereof.
Notwithstanding, the fundamental advantage of the pro-

posed technique is to eliminate the need for preoptimized
reference designs. As mentioned before, their acquisition cost
within the nested kriging framework was almost 800 EM
simulations of the RRC. At the same time, the cost of
generating random observables is only 116 simulations (almost
seven times cheaper). The associated computational savings
are dramatic: around 80% for NB = 50 and over 40% for
NB = 800.

In order to demonstrate the applicability of the surrogate
for design purposes, the RRC has been optimized for selected
target values of the operating frequency f0 and power split
ratio K P . The numerical results are shown in Table II, whereas
Fig. 9 visualizes the coupler responses at the initial and
optimized designs. It can be observed that the initial designs
generated by the inverse model are of good quality, and they
are further improved through surrogate model optimization.
At the same time, the agreement between EM simulation and
surrogate-predicted scattering parameters is excellent for all
considered cases.

Two of the considered designs [see Fig. 9(a) and (b)]
were fabricated and experimentally validated. Fig. 10 shows
the photographs of the prototypes, along with the compari-
son between the simulated and measured S-parameters. The
agreement between the two datasets is satisfactory; minor
discrepancies result from the effects of connectors not included
in the computational model of the RRC.

B. Example II: Compact Branch-Line Coupler

The second validation example is a compact branch-line
coupler [74], as shown in Fig. 11. The circuit is implemented
on a 0.76-mm-thick substrate of the permittivity εr , being one
of the components of the objective space. The independent
parameters are x = [g l1 r la lb w1 w2r w3 r w4 r wa wb]T .
Other variables are described by the following relations: L =
2dL + Ls , Ls = 4 w1 + 4g + s + la + lb, W = 2dL + Ws ,
Ws = 4w1 + 4 g + s + 2 wa , l1 = lbl1 r , w2 = waw2 r ,
w3 = w3 rwa , and w4 = w4 rwa . The EM model is imple-
mented and simulated in CST Microwave Studio.

The objective space is defined by the operating frequency
f0 of the coupler within the range from 1.0 to 2.0 GHz, and
the relative permittivity εr of the substrate the circuit is to
be implemented on; the range of interest is 2.0 ≤ εr ≤ 5.0.
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Fig. 9. Compact RRC of Fig. 6: EM-simulated S-parameters at the initial
design (thin black lines) obtained using the inverse regression model, as well
as surrogate (gray lines) and EM-simulated response (thick black lines) at the
design obtained by optimizing the proposed two-stage surrogate set up using
NB = 800 training samples. The vertical lines denote the target operating
frequencies. (a) f0 = 1.2 GHz, and K P = 0 dB, (b) f0 = 1.5 GHz, and
K P = −3 dB, (c) f0 = 1.7 GHz, and K P = −2 dB, and (d) f0 = 1.8 GHz,
and K P = 0 dB.

Fig. 10. Experimental validation of the RRC designs considered in
Fig. 9(a) and (b). The EM simulation and measurement data are shown using
gray and black lines, respectively. (a) Design optimized for f0 = 1.2 GHz and
K P = 0 dB and (b) design optimized for f0 = 1.5 GHz and K P = −3 dB.

The conventional parameter space X is defined by the lower
and upper bounds l = [0.4 0.43 5.9 7.7 0.68 0.28 0.1 0.1
2.0 0.2]T and the upper bounds u = [1.0 0.86 14.0 16.5
1.5 0.99 0.65 0.25 5.5 0.8]T . The surrogate model of the

Fig. 11. Compact branch-line coupler: parameterized geometry [74].

TABLE III

COMPACT BLC: MODELING RESULTS AND BENCHMARKING

RRC S-parameters (|S11|, |S21|, |S31|, and |S41|) is to be valid
over the entire objective space. It can be observed that the
modeling task is much more challenging than for the coupler
of Section III-A due to higher dimensionality of the parameter
space but also broad parameter ranges. The design optimality
is understood as minimization of the matching and isolation
characteristics at f0, as well as maintaining the equal power
split ratio, i.e., |S21(x, f )| = |S31(x, f )|, also at f0.

Our modeling framework was validated in the same way
as for the previous example. We set Nr = 100 as the
number of random observables, acquisition of which required
226 EM simulations of the BLC. The surrogates were con-
structed assuming NB = 50, 100, 200, 400, and 800 samples.
In this case, due to the challenging character of the problem,
the extension parameters Tk were set to half of the values
obtained from (10). For the benchmark, the same methods as
in Section III.A were used: kriging, RBF, and ANN (all in
conventional space X) and nested kriging [67] with the thick-
ness parameter of T = 0.025 (established in the domain X S).
The nested kriging model utilizes nine reference designs, and
the cost of their acquisition is 1014 EM simulations.

Table III shows the numerical results for all considered
modeling techniques. The inverse model plots for the selected
coupler parameter can be found in Fig. 12. Note that, for this
example, the observables are more scattered and do not follow
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Fig. 12. Compact BLC of Fig. 11: inverse regression model for selected
parameters. (a) g, (b) lb , and (c) wa . Inverse model surfaces and random
observables are shown using gray and blue circles, respectively.

Fig. 13. Compact BLC of Fig. 11: scattering parameters at the selected
test designs: EM model (—) and the proposed two-stage surrogate (o). The
surrogate set up using NB = 400 training samples.

TABLE IV

COMPACT BLC: OPTIMIZATION RESULTS

USING THE PROPOSED SURROGATE

the trends determined by the inverse surrogate, as well as for
the RRC of Fig. 6, which indicates a certain parameter redun-
dancy, typical for compact components realized using the slow
wave phenomenon. Fig. 13 shows a comparison of the coupler
scattering parameters predicted by the proposed surrogate and
EM simulation. The results are consistent with those obtained
for the RRC of Fig. 6. The two-stage inverse/forward surro-
gate outperforms all considered conventional surrogates. Its
performance is similar to that of nested kriging, yet better for
smaller training datasets, which can be explained the same way
as in Section III-A: the incorporation of the observable data
yields additional benefits. Finally, the computational efficiency
of our approach is significantly improved over the nested
kriging framework due to avoiding the usage of the reference
designs. The extra cost associated with random observable
generation is only 226 EM simulations, whereas the similar
cost for nested kriging (reference design acquisition) is as high
as the already mentioned 1014 simulations. This translates into
computational savings: 74% for NB = 50, 70% for NB = 100,
and over 43% for NB = 800.

Fig. 14. Compact BLC of Fig. 11: EM-simulated S-parameters at the initial
design (thin black lines) obtained using the inverse regression model, as well
as surrogate (gray lines) and EM-simulated response (thick black lines) at the
design obtained by optimizing the proposed two-stage surrogate set up using
NB = 800 training samples. The vertical lines denote the target operating
frequencies. (a) f0 = 1.0 GHz, and εr = 3.0, (b) f0 = 1.2 GHz, and εr = 3.0,
(c) f0 = 1.5 GHz, and εr = 2.5, and (d) f0 = 1.7 GHz, and εr = 2.5.

Fig. 15. Experimental validation of the BLC designs considered in
Fig. 14(b) and (d). The EM simulation and measurement data are shown using
gray and black lines, respectively. (a) Design optimized for f0 = 1.2 GHz
and εr = 3.0, and (b) design optimized for f0 = 1.7 GHz and εr = 2.5.

The relevance of the considered modeling framework
for design purposes has been demonstrated through several
application case studies. The BLC has been optimized for
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TABLE V

POWER DIVIDER: MODELING RESULTS AND BENCHMARKING

Fig. 16. Dual-band equal split power divider [75]: circuit topology; ports
marked using numbers in circles. The lumped resistor is denoted as R.

Fig. 17. Dual-band power divider of Fig. 16: inverse regression model for
selected geometry parameters: (a) l2, (b) l3, and (c) l5. Inverse model surfaces
and random observables are shown using gray and blue circles, respectively.

several target operating frequencies and substrate permittivity,
as shown in Table IV and Fig. 14. In all considered cases,
the initial design obtained from the inverse model is of good
quality, and the optimization process further improves the
circuit responses. At the same time, the agreement between the
surrogate predictions and EM-simulated data is satisfactory.

The designs considered in Fig. 14(b) and (d) were fabricated
and experimentally validated. Fig. 15 shows the comparison
between the simulated and measured S-parameters. The agree-
ment between the two datasets is good; similarly, as in Fig. 10,
the minor discrepancies result from the effects of connectors
not included in the computational model of the coupler.

C. Example III: Dual-Band Power Divider

The third verification example is a dual-band equal-split
power divider [75] (cf. Fig. 16). The circuit is implemented on
AD250 substrate (εr = 2.5 and h = 0.81 mm). The geometry
parameters are x = [l1 l2 l3 l4 l5 s w2]T (dimensions in mm).

Fig. 18. Dual-band power divider of Fig. 16: scattering parameters at the
selected test designs: EM model (—) and the proposed two-stage surrogate (o).
The surrogate set up using NB = 800 training samples.

Fig. 19. Dual-band power divider of Fig. 16: EM-simulated S-parameters at
the initial design (thin black lines) obtained using the inverse regression model,
as well as a surrogate (gray lines) and EM-simulated response (thick black
lines) at the design obtained by optimizing the proposed two-stage surrogate
set up using NB = 800 training samples. The vertical lines denote the target
operating frequencies. (a) f1 = 1.5 GHz, and K f = 1.63, (b) f1 = 1.8 GHz,
and K f = 1.67, (c) f1 = 2.45 GHz, and K f = 1.71, and (d) f1 = 3.6 GHz,
and K f = 1.47.

The fixed parameters are w1 = 2.2 mm (to ensure 50-� line
impedance) and g = 1 mm. The EM model is implemented in
CST Microwave Studio and evaluated using its time-domain
solver (∼200 000 mesh cells and simulation time ∼2 min).

The objective space is defined by the frequency f1 of the
lower operating band of the divider and the ratio K f = f2/ f1

between the frequency f2 of the upper operating band and
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Fig. 20. Experimental validation of the power divider designs considered
in Fig. 19(a) and (b). The EM simulation and measurement data are shown
using gray and black lines, respectively. (a) Design optimized for f1 =
1.5 GHz and K f = 1.63 and (b) design optimized for f1 = 1.8 GHz and
K f = 1.67.

TABLE VI

POWER DIVIDER: OPTIMIZATION RESULTS

f1. The ranges of interest are 1.25 GHz ≤ f1 ≤ 4.0 GHz
and 1.4 ≤ K f ≤ 1.8. The conventional parameter space X
is determined by the lower bounds l = [14.5 1.1 13.0 0.5
1.6 0.19 3.9]T and u = [37.0 16.6 35.0 15.0 5.6 1.5 5.8]T .
Note that the parameter space is large with an average upper-
to-lower bound ratio of nine and a maximum of 30 (for the
fourth parameter).

The numerical verification setup follows that of
Sections III-A and III-B. We use Nr = 50 observables
that are obtained using 78 EM simulations of the divider
structure. Due to the very challenging character of the
modeling task, the extension parameters Tk were set to half of
the values obtained from (10). The surrogates are identified
for NB = 50, 100, 200, 400, and 800. The nested kriging
surrogate (one of the benchmark methods) is constructed in
the domain X S using the thickness parameter T = 0.025.
It utilized nine reference designs with the acquisition cost
of 923 EM simulations of the divider circuit. The results
(Table V, Figs. 17 and 18) are consistent with those obtained
for the previous examples and demonstrate the advantages
of the presented modeling technique. Furthermore, even
though this case is the most challenging one, the two-stage
surrogate can be successfully employed for design purposes,
cf. Table VI and Figs. 19 and 20.

IV. CONCLUSION

This work proposed a new two-stage technique for
reduced-cost surrogate modeling of microwave components.
The presented approach incorporates the concept of domain
confinement, originally introduced within the performance-
driven paradigm. This allows for establishing the surrogate in
a restricted region of the parameters space that contains high-
quality designs, and consequently, to alleviate the difficulties
pertinent to the curse of dimensionality and the broad ranges
of the system parameters, the model is supposed to be valid
for. The surrogate model domain is defined using an auxiliary
inverse regression model identified from a set of preselected
random observables. The major difference between the pro-
posed methodology and the prior performance-driven methods,
including the recent nested kriging framework, is that it does
not rely on preoptimized reference designs, the acquisition of
which considerably increases the model setup cost.

Comprehensive verification studies, involving three
microstrip devices (rat-race and branch-line couplers, as well
as dual-band power divider), demonstrated the superior
predictive power of the proposed two-stage surrogate, which
is dramatically improved over the conventional models and
comparable or better than nested kriging. The advantages of
our approach are especially pronounced for smaller datasets
because the very formulation of the method allows for reusing
the observable data for surrogate model rendition. At the same
time, the domain definition provides means for automated
adjustment of its lateral dimensions (not possible for previous
performance-driven methods). Finally, abandoning the concept
of reference designs leads to considerable computational
savings of up to 80% (for small datasets) and about 50%
(for larger training ensembles). The design utility of the
discussed technique has been corroborated through the
application case studies and experimental validation of
selected designs. The proposed approach can be considered
a viable alternative to existing modeling methods, especially
for challenging scenarios, such as higher dimensional
parameter spaces, nonlinear system responses, broad ranges
of geometry/material parameters, and operating conditions
to be covered by the model validity region. Although the
considered verification examples are very challenging as
compared to what can normally be found in the literature,
also in terms of the parameter space dimensionality, it is
expected that the modeling performance might suffer for an
even larger number of parameters. However, the degradation
of the predictive power should be somehow mitigated by
means of the two-stage approach, specifically the fact that the
domain of the final surrogate is spanned by the inverse model
operating from a low-dimensional objective space. One of the
goals of future work will be to investigate this issue further.
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