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Abstract 

Design of contemporary microwave circuits is a challenging task. Typically, it has to take into 

account several performance requirements and constraints. The design objectives are often 

conflicting and their simultaneous improvement may not be possible: instead, compromise 

solutions are to be sought. Representative examples are miniaturized microwave passives 

where reduction of the circuit size has a detrimental effect on electrical characteristics. 

Acquiring information about the best possible design trade-offs is invaluable for the designer 

yet it entails computationally expensive multi-objective optimization (MO). MO is typically 

conducted using population-based metaheuristic algorithms, the cost of which might be 

extremely high. If the circuit performance is evaluated using full-wave electromagnetic (EM) 

analysis, this cost is often prohibitive. A workaround is the employment of fast surrogate 

models, and a number of surrogate-assisted frameworks have been proposed in the literature. 

Unfortunately, a construction of reliable surrogates is hindered in higher-dimensional 

parameter spaces. The recently proposed constrained modeling mitigates this issue to a certain 

extent by restricting the modeling process to the region containing the Pareto front to be found. 

This work proposes a novel surrogate-based MO technique that involves constrained modeling 

and explicit reduction of the surrogate domain dimensionality. The latter is achieved through 

the spectral analysis of the extreme Pareto-optimal design set obtained by local search routines. 

Our methodology is validated using a 15-parameter impedance matching transformer with the 

Pareto set identified at the cost of a few hundred of EM analyses of the circuit. The numerical 

experiments also demonstrate a significant reduction of the optimization cost as compared to 

the state-of-the-art surrogate-assisted MO methods. 

This is the peer reviewed version of the following article: 
Koziel, S, Pietrenko‐Dabrowska, A, Al‐Hasan, M. Low‐cost multi‐criteria design optimization of compact microwave 
passives using constrained surrogates and dimensionality reduction. Int J Numer Model El. 2020; 1– 12
which has been published in final form at https://doi.org/10.1002/jnm.2855 This article may be used for non-commercial 
purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

mailto:koziel@ru.is
mailto:anna.dabrowska@pg.edu.pl
mailto:muath.alhasan@aau.ac.ae
https://doi.org/10.1002/jnm.2855


1. Introduction 

Size reduction of circuits and systems is an important aspect of contemporary microwave 

design [1]-[4]. Miniaturization has become essential for a number of space-limited application 

areas such as mobile communications [5], internet of things (IoT) [6], sensors [7], bio-medicine 

[8], wearable and implantable devices [9], or body area networks [10]. A number of techniques 

have been developed to permit compact realization of microwave passives. Some of these 

methods include implementation on high-permittivity substrates [11], folding of conventional 

transmission lines (TLs) [12], multi-layer circuits (e.g., Low Temperature Cofired Ceramic, 

LTCC technology [13], [14]), as well as utilization of slow-wave phenomenon where the 

traditional TLs are replaced by the abbreviated components (e.g., compact microwave resonant 

cells, CMRCs) [15], [16]. The aforementioned techniques typically imply the increase of the 

circuit complexity and the appearance of electromagnetic (EM) cross-coupling effects, which 

cannot be accounted for using circuit-theory means, in particular, equivalent network models. 

Instead, full-wave EM analysis has to be used which tends to be computationally expensive. 

High cost negatively affects carrying out EM-driven design procedures, primarily parametric 

optimization [17], and even more so uncertainty quantification (e.g., statistical analysis [18] or 

tolerance-aware design [19]). A number of methods have been developed over the years to 

alleviate the cost-related difficulties [20]-[29]. These include surrogate-based optimization 

methods (e.g., space mapping [20], response correction [21], response feature technology [22]), 

machine learning techniques [23], [24], adjoint-based local optimizers [25], [26], as well as 

gradient-based algorithm with sparse sensitivity updates [27]-[29]. 

Design of high-frequency components requires taking into account several performance 

figures pertinent to both electrical and field properties (impedance matching, bandwidth, gain, 

radiation pattern for antenna arrays) as well as geometrical constraints (e.g., the area occupied 

by the circuit). Thus, it is a multi-objective task with the design goals at least partially 
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conflicting: improving of any particular objective has—in general—detrimental effects on the 

remaining parameters. A representative example is miniaturization of planar microwave 

passives or antennas: reduction of the circuit footprint results in difficulties with obtaining 

satisfactory impedance matching or bandwidth [30], may lead to frequency misalignment of 

transmission/matching characteristics in couplers [31], or degrade gain and efficiency of 

antennas [32]. In fact, any practical design needs to be a compromise (or trade-off) between 

the relevant design goals. 

Multi-objective design is quantitatively different from single-objective endeavors 

already at the level of comparing solutions, which is most often realized using Pareto 

dominance relation [33]. For practical reasons, multi-objective tasks are commonly 

reformulated into single-criterial problems due to the availability of relevant solution methods, 

mainly well-established numerical algorithms (gradient-based [34], computational intelligence 

[35], [36], etc.). The said reformulation may be realized using objective aggregation (e.g., 

weighted sum methods [37], goal attainment approach [38]) or by selecting a primary objective 

while handling the remaining ones through appropriately defined constraints [39]. If the 

designer’s preferences are clearly stated, the latter approach may be effective. An illustrative 

example is explicit reduction of the circuit footprint with hard acceptance thresholds assumed 

for electrical performance parameters [40].  

Regardless of possible simplifications, multi-objective optimization (MO) is a proper 

way of generating comprehensive data on available design trade-offs. This sort of information 

can be used to assess suitability of a particular structure for a given application or to 

conclusively compare alternative circuit solutions. Nevertheless, MO is quite challenging, 

mostly due to the incurred computational costs. Nowadays, the most popular algorithmic 

approaches are population-based metaheuristics, including genetic and evolutionary algorithms 

[41], particle swarm optimizers [42], differential evolution [43], harmony search [44], firefly 
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algorithm [45], and a lot more [46], [47]. Population-based methods are capable of yielding the 

Pareto set in a single run of the respective algorithm, yet their computational complexity is 

considerable. In practice, they can be applied whenever the evaluation cost of the structure at 

hand is low, in particular, if reliable analytical or equivalent network models are available. 

Direct application of full-wave EM models for MO usually turns prohibitive. A viable 

alternative is utilization of surrogate modeling techniques in combination with metaheuristics 

[48]-[50]. Another option are deterministic methods (e.g., point-by-point Pareto front 

exploration [51], generalized bisection algorithm [52], etc.). 

In this work, a novel algorithmic framework for multi-objective optimization of 

compact microwave passives is proposed. Our methodology is a surrogate-assisted approach 

that involves the concept of domain confinement [53] but also employs principal component 

analysis (PCA) [54] for explicit reduction of the parameter space dimensionality. To reduce 

the computational overhead related to training data acquisition, the surrogate is constructed in 

the region containing the Pareto front, estimated using a few designs representing single-

objective optima (extreme Pareto-optimal points [55]). The surrogate serves as a prediction 

tool to yield an initial approximation of the Pareto set and to carry out the space-mapping-based 

refinement process. The presented technique is illustrated using a 15-parameter miniaturized 

impedance matching transformer with the Pareto set obtained at the cost of a few hundred of 

EM analyses. Comparative experiments demonstrate advantages of our method over two state-

of-the-art surrogate-based benchmark algorithms in terms of computational efficiency.  

  

2. Low-Cost Multi-Objective Optimization of Microwave Components Using Surrogate 

Models in Confined Domains 

 

The purpose of this section is to formulate the multi-objective optimization (MO) 

procedure introduced in the paper. In order to put it in a proper context, a general surrogate-

assisted MO technique is first outlined in Section 2.1. Section 2.2 discusses the concept of 
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parameter space restriction, whereas Section 2.3 presents the details pertaining to the surrogate 

model set up within the reduced-dimensionality region, defined using the spectral analysis of 

an auxiliary set of extreme Pareto-optimal points.  Section 2.4 summarizes the operation of the 

proposed multi-objective optimization procedure and illustrates it using a flow diagram. 

 

2.1.  Multi-Objective Design Using Surrogate Models 

We assume Nobj design objectives, denoted as Fk, k = 1, …, Nobj. The aim is to minimize 

all of them simultaneously. Because the objectives are normally at least partially conflicting, the 

goal of multi-objective optimization (MO) is to identify a so-called Pareto front which consists 

of globally non-dominated solutions also referred to as Pareto-optimal points [41]. The relation 

 [56] allows for comparing the vector-valued solutions by stating that the objective vector F1 = 

[F1.1 … F1.Nobj]
T dominates over the vector F2 = [F2.1 … F2.Nobj]

T (or F1  F2) if F1.j  F2.j for all j 

and the inequality is strict for at least one j. No elements of the Pareto front are dominated by any 

other solutions; thus, they are equally good from the MO point of view. In practice, the aim is to 

identify a discrete representation of the front, referred to as the Pareto set. 

The primary model of the microwave component under design is a full-wave 

electromagnetic (EM) one, denoted as R(x), where x stands for a vector of parameters 

(typically, the geometrical dimensions of the circuit). As discussed in Section 1, direct multi-

objective optimization of the EM model entails significant computational expenses. This is a 

serious practical problem, particularly if the population-based algorithms are employed as the 

solution approaches of choice. A possible and popular workaround this issue is the application 

of surrogate modelling methods [48]-[50]. The fast replacement model, here denoted as Rs, 

allows for massive evaluations of the structure at hand, as required by evolutionary or similar 

methods, at low cost. Most often Rs is constructed as a data-driven surrogate. The widely used 

methods include kriging interpolation [57], radial-basis functions [58], Gaussian process 

regression [59], or neural networks [48]. It should be mentioned that several surrogate-based 
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MO techniques have been proposed recently that do not involve population-based method to 

generate the Pareto set (e.g., [51], [52]). 

A further mitigation of the high cost issue can be achieved by incorporating variable-

fidelity simulation models. Perhaps the most straightforward way of implementing lower-

fidelity models is to use coarser discretization of the structure under design [60], which can be 

accompanied by additional simplifications (e.g., the use of perfect metal conductors, neglecting 

dielectric losses, or reducing the computational domain [60]). This approach leads to additional 

savings, especially at the stage of acquiring the training data for surrogate model construction. 

However, it also requires some caution because of unavoidable misalignment between the 

models of various fidelities. In particular, the Pareto designs rendered by optimizing the low-

fidelity-model-based surrogate require additional refinement. This can be realized using a 

simple response correction (output space mapping, OSM) as proposed in [32]. Given the low-

fidelity Pareto-optimal design xs
(k) (one of the designs selected from the initial Pareto set), the 

refined (high-fidelity) design is obtained as 

 
( )

2 2

( )

( ) ( ) ( )

1
, ( ) ( )

( ) ( )

arg min ( ) [ ( ) ( )]
k

s

k
N N sobj obj

k k k

f s s s s
F F

F F

F




  
x x x

x x

x R x R x R x                             (1) 

The OSM correction term R(xs
(k)) – Rs(xs

(k)) is introduced to compensate for the model 

misalignment and ensures zero-order consistency [61] between Rs and R at xs
(k). The process 

(1) can be iterated as necessary. It can also be used if the surrogate model is constructed using 

high-fidelity data because even in this case, the model accuracy is limited due to computational 

budget constraints related to training data acquisition.  

 

2.2.  Parameter Space Reduction Using Single-Objective Optimization Runs 

In practice, constructing the surrogate within the entire parameter space is normally 

impossible due to the curse of dimensionality but also the lack of prior information about the 

allocation of the Pareto front. On the other hand, the Pareto front typically occupies a small 
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portion of the space so that it is computationally advantageous to restrict the modelling process 

to this region. Perhaps the simplest way of estimating such a subset is through the single-

objective optima of the form 

 *( ) arg min ( )k

kF
x

x R x                                                       (2) 

The extreme Pareto-optimal points x*(k) determine the span of the Pareto front and can be used 

to define a reduced space as the interval [l*,u*], where  l* = min{x*(1),…, x*(Nobj)} and u* = 

max{x*(1),…, x*(Nobj)}. The set [l*,u*] contains the majority of the Pareto front and it is therefore 

sufficient to render the surrogate therein. Figure 1 shows the graphical illustration of the 

parameter space reduction using single-objective optima (2). 

 

2.3.  Surrogate Model Domain Definition with Restricted Dimensionality 

In pursuit of improving the computational efficiency of the surrogate-assisted multi-

objective optimization procedure, an alternative definition of the surrogate model domain is 

established. While encapsulating a possibly large portion of the Pareto front, it is also featuring 

reduced dimensionality, which allows for further reduction of the number of training data 

samples required to set up a reliable replacement model. The very first approximation of the 

Pareto front allocation can be obtained using the single-objective optimization runs of (2) and 

the extreme designs x*(k).  

x1

x3

x2

x
*(1)

x
*(3)

x
*(2)

Original 
parameter 
space

Reduced 
parameter 
space [l

*
,u

*
]

 

Fig. 1. Graphical illustration of the initial parameter space reduction using extreme Pareto-optimal 

points x*(k) generated by (2).  
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A generalized version of the process (2) can be considered that allows for gaining more 

detailed information about the Pareto front geometry, e.g., its curvature. More specifically, we 

find the designs minimizing the convex combination of the objectives of the form  

 
1

arg min ( )
objN

k k

k

w F


 W

x
x R x                                                      (3) 

where W = [w1 … wNobj]
T are the weighting factors such that 

1
0 1 and 1

objN

k kk
w w


                                                      (4) 

Setting W = [0 … 1 … 0]T with 1 on the kth position leads to the designs x*(k) obtained using 

(2). The approximate centre of the front can be found using W = [1/Nobj 1/Nobj  …  1/Nobj]
T. In 

general, we denote as xwk, k = 1, …, p, the designs produced by (3), (4), to be used in surrogate 

model domain definition. 

The designs xwk are used to obtain more precise allocation of the Pareto front, both in 

terms of its span and the most important directions that need to be considered in the 

optimization process. For that purpose, we consider the covariance matrix of the set {xwk}  

1

1
( )( )

1
k k

p
T

m m

kp 

  



w w
C x x x x                                                (5) 

where xm = p–1k = 1,…,pxwk is the centre of the set {xwk}. We also denote by {vk, k} k = 1, …, p 

– 1, the eigenvectors (i.e., the principal components) of {xwk} and their corresponding 

eigenvalues. The eigenvalues quantify the spread (variance) of the designs xwk. They are 

arranged in a descending order, i.e., 1  2  …  p–1  0. Furthermore, we define the matrix 

VK = [v1 … vK], with the first k eigenvectors being the columns. 

The goal is to define the domain XS of the surrogate model so that it is spanned by the 

most important principal components of the set {xwk}, i.e., those corresponding to the largest 

eigenvalues. In practice, as only a few reference points are available, all eigenvectors will be 
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employed because the number of these is still much smaller than the original dimensionality n 

of the parameter space. 

The technicalities of the domain definition are described below. First, we consider the 

expansions of the vectors xwk w.r.t. vj as 

1

k
p

m kj jj
b


 

w
x x v                                                            (6) 

The bar on the left-hand-side of (6) is added to indicate that the expansion represents the part 

of xwk that belongs to the affine space spanned by xm and V. The expansion coefficients bkj can 

be found analytically as bkj = vj[vj
T(xwk – xm)]. Some additional notation is also used 

.max .minmax{ : }, min{ : } j kj j kjb k b b k b                                           (7) 

.min .max

.0
2




j j

j

b b
b ,    j = 1, …, p                                                 (8) 

0 1.0 .0...
T

pb b   b                                                                                 (9) 

1 ...
T

b bp    bλ                                                             (10) 

The entries of vector b are calculated as bj = (bj.max – bj.min)/2.  

The surrogate model domain is defined as XS = XK for the user-selected value of K with 

 

x1

x3

x2{x
wk

}

xc
v1

v2

Reduced 
parameter 
space [l

*
,u

*
]

Surrogate 
model 
domain X2

 

Fig. 2. Definition of the surrogate model domain (here, two-dimensional X2) using the spectral analysis 

of the reference set {xwk}. In the example shown, the domain is spanned by the two most dominant 

principal components of {xwk}. 
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1
(2 1)

0 1, 1,...,

j

K

c j b jj
k

j

X
j K

 




    

  
    

x x a
                                                (11) 

in which 

xc = xm + Vb0                                                                                              (12) 

The set XK contains all designs xwk in the directions vj, j = 1, …, K. Figure 2 provides a graphical 

illustration of the concepts pertinent to surrogate model definition. 

The surrogate model is constructed in XS using kriging interpolation [48]. The training 

samples z = [z1 … zK]T  are first allocated using modified Latin Hypercube Sampling (LHS) 

[62] in the normalized hypercube [0 1]K (K-times Cartesian product of intervals [0 1]), i.e., 0  

zj  1, j = 1, …, K. The samples in XS are obtained using the affine mapping h defined as 

1

( ) (2 1)
j

K

c j b j

j

h z 


   y z x v                                                 (13) 

In (13), we use the same notation as before: bj are the coefficients defined in (10), whereas vj 

are the eigenvectors of the covariance matrix C (5).  

 

2.4.  Multi-Objective Design Framework with Dimensionality-Reduced Surrogate 

The multi-objective optimization framework presented in this work adheres to the 

overall surrogate-assisted strategy described in Section 2.1. The major difference is the way of 

constraining the domain of the surrogate model, which is realized as discussed in Section 2.3. 

Once constructed, the surrogate is employed to generate the initial approximation of the Pareto 

front using multi-objective evolutionary algorithm (MOEA) [56]. The selected Pareto designs 

are refined as described in Section 2.1 (cf. (1)). Figure 3 shows the flow diagram of the entire 

algorithm. It should be noted that although the domain of the surrogate model utilized to render 

the initial approximation of the Pareto set is a low-dimensional set, it is embedded in the 
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original design space so that the Pareto-optimal solutions produced by the proposed method 

already reside in the original space. The assumption is that the information about the front 

contained along the principal dimensions used to span the domain contain sufficient amount of 

information about the Pareto front, which is ensured by using a sufficient number of reference 

designs xwj to account for the front geometry. 

At this point, it is necessary to clarify some details concerning surrogate model 

optimization. Although the model is defined over XS = XK, it is more convenient to formally 

conduct the optimization process in the normalized domain [0 1]K. For the purpose of 

evaluating the design objectives, one uses the mapping  h : [0,1]K  XS (cf. (13)), so that we 

have Fk(R(x)) = Fk(R(h(z))) with z  [0 1]K. 

 

3. Demonstration Case Study and Benchmarking 

The presented MO algorithm is demonstrated here using an exemplary three-section 50-

to-100 ohm impedance matching transformer, optimized for two design objectives: 

minimization of the in-band reflection and minimization of the circuit footprint area. Our 

methodology is compared to two state-of-the-art surrogate-assisted optimization frameworks. 

 

3.1. Impedance Matching Transformer. Circuit Description and Design Objectives 

Consider the impedance matching transformer shown in Fig. 4(b) [63], constructed using 

compact microstrip resonant cells (CMRCs, see Fig. 4(a)). Replacing conventional transmission 

lines by CMRCs allows for shortening of the structure. The design variables are x = [l1.1 l1.2 w1.1 

w1.2 w1.0 l2.1 l2.2 w2.1 w2.2 w2.0 l3.1 l3.2 w3.1 w3.2 w3.0]
T. The structure is implemented on RF-35 

substrate (εr = 3.5, h = 0.762 mm). The transformer is supposed to operate within the frequency 

range from 1.75 GHz to 4.25 GHz.  
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Allocate the Pareto front by identifying 

designs x
wk, k = 1,  , p

Perform principal component

analysis of {x
wk}

Define the constrained domain XS 

of the surrogate model 

Design of experiments;

Acquire training data samples

Construct surrogate model

Identify the initial Pareto front

Refine Pareto set

High-fidelity 

Pareto front 

{xf
(j)

}

EM 

Solver

MOEA

{x
wk}

{vj,j}

XS

{xB
(j),R(xB

(j))}j=1, ,NB

{xs
(j)}

{xs
(j)}

Design objectives Fk

Rs

Normalized 

samples 

{z
(j)

}, j = 1,  , NB 

 

Fig. 3. Multi-objective optimization procedure with dimensionality-reduced surrogate: flow diagram.  

 

 
 

In the optimization process, we consider two objectives:  

 Minimization of the in-band reflection (F1); 

 Minimization of the footprint area (F2), defined as the area of the smallest rectangle 

encapsulating the circuit. 

The EM simulation model R is implemented in CST Microwave Studio and evaluated by the 

transient solver (~280,000 mesh cells, simulation time 2.5 min).  
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3.2. Optimization Setup and Results 

The surrogate model domain is established using the two extreme Pareto-optimal 

designs xw1 = x*(1) = [3.66 0.28 0.77 0.54 0.30 4.32 0.28 0.51 0.24 1.62 4.50 0.20 0.29 0.26 

0.57]T (best reflection design), xw2 = x*(2) = [3.54 0.15 0.80 0.16 0.33 2.55 0.15 0.19  0.47 1.42 

3.18 0.20 0.21 0.29 1.42]T (minimum footprint design), and two additional points: xw3 = [3.67 

0.24 0.78 0.40 0.31 3.78 0.25 0.40 0.32 1.73 4.14 0.16 0.26 0.26 0.73]T, xw4 = [2.50 0.15 0.80 

0.32 0.38 2.93 0.18 0.31 0.53 1.73 3.11 0.49 0.20 0.27 1.05]T. These designs are obtained for 

the weighting factors [w1 w2] of (3), (4) set up as follows: [1 0], [0 1], [2/3 1/3], and [1/3 2/3]. 

The surrogate model was constructed using only 100 training samples. Its relative RMS 

error, defined as ||R(x) – Rs(x)||/||R(x)||, averaged over the testing set, is 4.3%. The model domain 

dimensionality is K = 3, which is the maximum possible number because only four designs xwk 

are utilized. For the sake of benchmarking, two other surrogates were also constructed: 

 The model set up in the interval [l* u*] with l* = min{x*(1), x*(2), x*(3), x*(4)} and u* = 

max{x*(1), x*(2), x*(3), x*(4)} (i.e., the initially reduced domain, cf. Section 2.2). The error of 

this surrogate is 10.4% despite using 1,600 training data samples; 

 The model set up using the nested kriging framework [53], the recent performance-driven 

modeling method. The domain of this surrogate was defined using the same designs x*(k), 

k = 1, …, 4. The model error is 4.1% when rendered using 200 training samples. 

 The results of multi-objective optimization using the dimensionality-reduced surrogate 

have been gathered in Table 1 and 2, as well as Figures 5 and 6. Figure 5 shows the initial Pareto 

set obtained by optimizing the surrogate using MOEA [56], along with the ten designs selected 

along the Pareto front before and after their refinement. The geometry parameter values for the 

refined design can be found in Table 1. Figure 6 illustrates the reflection responses of the 

transformer at the selected designs from Table 1. Table 2 provides a breakdown of the 

optimization cost of the optimization process.  
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lk.1

lk.2

wk.1

wk.2

wk.0  

       

                                    (a)                                                                           (b) 

Fig. 4. Three-section 50-to-100 ohm impedance matching transformer: (a) basic building block of the 

transformer: compact microstrip resonant cell (CMRC) cell, (b) transformer geometry. 

 

 

Fig. 5. Three-section impedance matching transformer of Fig. 4(b): (o) initial Pareto set obtained using 

MOEA, (*) selected designs for refinement, ( ) EM-simulated selected designs, (O) EM-simulated 

refined designs. 
 

 

 
 

Fig. 6. Three-section impedance matching transformer of Fig. 4(b): reflection characteristics at the 

selected Pareto-optimal designs of Table 1: x(1) (—), x(4) (), x(7) (- - -), and x(10) (-o-).  

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Table 1. Impedance matching transformer: refined Pareto-optimal designs 

 
Pareto-optimal design 

x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9) x(10) 

Objectives 
F1 [dB] –26.4 –25.6 –23.7 –23.1 –22.5 –21.9 –21.7 –20.4 –19.8 –19.6 

F2 [mm2] 66.2 60.0 55.3 54.5 47.9 39.1 37.2 34.7 34.3 32.7 

G
eo

m
et

ry
 p

ar
am

et
er

s 
[m

m
] 

l1.1 3.51 3.60 3.50 3.56 3.25 2.54 2.59 3.56 3.56 3.46 

l1.2 0.26 0.24 0.23 0.23 0.20 0.15 0.15 0.15 0.15 0.15 

w1.1 0.77 0.78 0.78 0.78 0.79 0.80 0.80 0.80 0.80 0.80 

w1.2 0.50 0.43 0.40 0.39 0.36 0.30 0.30 0.14 0.14 0.17 

w1.0 0.31 0.31 0.32 0.32 0.33 0.38 0.37 0.33 0.33 0.34 

l2.1 4.13 3.89 3.69 3.65 3.34 2.90 2.88 2.51 2.52 2.58 

l2.2 0.27 0.25 0.24 0.24 0.21 0.18 0.18 0.15 0.15 0.15 

w2.1 0.47 0.42 0.39 0.38 0.35 0.30 0.30 0.17 0.18 0.20 

w2.2 0.29 0.32 0.35 0.35 0.40 0.54 0.53 0.48 0.48 0.47 

w2.0 1.76 1.75 1.73 1.70 1.56 1.80 1.71 1.54 1.52 1.45 

l3.1 4.34 4.20 4.02 4.01 3.63 3.12 3.11 3.18 3.18 3.17 

l3.2 0.22 0.18 0.21 0.20 0.30 0.47 0.47 0.18 0.18 0.22 

w3.1 0.27 0.26 0.25 0.25 0.24 0.20 0.20 0.20 0.20 0.21 

w3.2 0.26 0.26 0.27 0.27 0.27 0.27 0.27 0.29 0.29 0.29 

w3.0 0.55 0.66 0.76 0.80 1.01 1.02 1.09 1.37 1.38 1.40 

 
 

Table 2.  Impedance matching transformer: optimization cost breakdown and benchmarking 

Cost item 
Surrogate model domain 

XS (this work) XS (nested kriging [53]) Hypercube [l*,u*] 

Extreme points 515  R 515  R 515  R 

Data acquisition for kriging 
surrogate 

100  R 200  R 1600  R 

MOEA optimization* N/A N/A N/A 

Refinement 30  R 30  R 30  R 

Total cost# 645  R (27 h) 745  R (31 h) 2145  R (89 h) 
* The cost of MOEA optimization is negligible compared to other stages of the process. 
# The total cost is expressed in terms of the equivalent number of EM simulations. 

 

3.3. Discussion 

Table 2 includes two benchmark techniques, both surrogate-assisted ones. These are (i) 

the approach with the surrogate model constructed in the interval [l* u*] (initially reduced space), 

and (ii) the method involving the surrogate constructed with the nested kriging framework [53]. 

For the MO algorithm using the surrogate constructed in the interval [l* u*] (initially reduced 
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space), the majority of the CPU expenses come from the training data acquisition. The nested 

kriging model reduces this cost by the factor of eight (from 1600 to 200 samples), whereas the 

proposed surrogate provides additional and considerable savings (from 200 to 100 samples) 

while retaining comparable model accuracy. The overall speedup of the presented method is 70 

percent and 13 percent over the considered benchmark techniques. If the cost of acquiring the 

reference designs is not included (it should be observed that this is a common cost necessary to 

obtain the initial allocation of the Pareto front regardless of any further action), the speedup is 

as high as 92 percent and 43 percent. 

 

4. Conclusion 

 The paper presented a low-cost surrogate-assisted technique for multi-objective 

optimization of miniaturized microwave components. The keystone of the approach is a 

surrogate model rendered in a reduced-dimensionality domain defined using a small set of 

designs, pre-optimized in a single-optimization sense, as well as its spectral analysis. The latter 

yields the domain-spanning directions that represent the variability of the geometry parameters 

of the circuit under design along its Pareto front. Limiting the domain dimensionality results in 

a considerable reduction of the number of training points required to construct a reliable 

surrogate, and, consequently, lowering the overall cost of the optimization process. This has 

been demonstrated using a three-section impedance matching transformer described by 15 

parameters, with the 10-element Pareto set obtained at the total cost of 645 EM simulations of 

the structure, with only 130 simulations required by the actual MO process. The speedup with 

respect to two state-of-the-art procedures surrogate-based algorithms is as high as 13 and 70 

percent (concerning the total cost), or 43 and 92 percent (concerning the MO part of the 

process). The presented methodology may be viewed as an alternative approach to cost-
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efficient multi-objective design for higher-dimensional problems where construction of the 

surrogate model is difficult or even impossible due to the large size of the parameter space. 
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