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ABSTRACT Phased array antenna (PAA) technology is essential for applications requiring high gain and
wide bandwidth, such as sensors, medical, and 5G. Achieving such a design, however, is a challenging
and intricate process that calls for precise calculations and a combination of findings to alter the phase
and amplitude of each unit. Furthermore, coupling effects between these PAA structure elements can
only be completed with the use of full-wave electromagnetic simulation tools. Due to recent advances,
radio-over-fiber (RoF) technology has been positioned as a possible alternative for high-capacity wireless
communications. This paper presents a low-cost, multiband Sub-6 GHz 5G PAA with enhanced gain
achieved through integration with a new specialized RoF system design to improve PAA performance by
using the phenomenon of modulation instability (MI). Optimizing the antenna’s Defected Ground Structure
(DGS) leads to even more improvement. To enable operation across three distinct frequency bands (Sub-
6 GHz n78 band (3-3.8 GHz), n79 band (3.8-5 GHz), and n46 band (5-5.5 GHz)), the proposed antenna
design features four elliptical patches strategically positioned at the four sides of the ground plane, providing
comprehensive 360◦ coverage in the azimuth plane. Additionally, integrating elliptical slots and upper gaps
contributes to improvement. The proposed PAA’s experimentally validated gain values are 5.2 dB, 7.4 dB,
and 7.8 dB in the n78, n79, and n46 bands, respectively. For improving the performance of the proposed PAA
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in RoF systems, anomalous fibers (n2 ̸= 0 and β2 < 0) are employed to consider the modulation instability (MI)
phenomenon, which can lead to the generation of the MI gain on the carrier sideband. The true time delay (TTD)
technique controls the beam pattern by adjusting the time delay between adjacent radiation elements. Furthermore,
the TTD technique utilizes frequency combs for the proposed 4-element array antenna to applyMI gain to all antenna
elements.

INDEX TERMS Phased array antenna, modulation instability, radio-over-fiber, sub-6 GHz band.

I. INTRODUCTION
Wireless communications, such as LTE and Wi-Fi, typically
rely on Sub-6 GHz frequency ranges due to their mobility
and effectiveness in indoor environments. However, the
proliferation of high-tech devices such as mobile phones,
tablets, and smartphones has led to a significant surge in
data traffic across wireless networks [1], [2], [3]. To provide
incomparable spectrum and broadband services, communica-
tion technology is advancing toward its fifth-generation (5G),
which will utilize millimeter wave (mm-wave) frequency
bands [4], [5], [6], [7]. Multiple-port antennas have recently
been suggested for Sub-6 GHz to enhance data rates.
However, they require additional support to attain satisfactory
gain or sufficient bandwidth (BW) [8], [9], [10], [11].

One of the fundamental challenges in 5G transmission
is that phased array antenna (PAA) configurations can
considerably increase data rate and capacity over single-
port antennas. The upcoming 5G radio access networks
are planned to support multiple connections simultaneously
while operating over a wide range of frequencies by keeping
low latency and acceptable BW [12], [13], [14], [15].
The PAA project aims to design an antenna with high

efficiency and broadband performance for various uses,
including 5G applications. Only full-wave electromagnetic
simulation tools may be used to provide accurate computation
and a combination of results acquired for modifying the phase
and amplitude of each unit and coupling effects between these
elements of the PAA structure. This comes with a well-known
downside of forward EM modeling of microwave stages:
a notable increase in the computational cost of the design
process [16], [17].

In order to achieve both wide coverage and high gain,
the PAA system with multi-beam antennas is the best option
for 5G wireless systems and mobile terminals [18], [19].
Multiple beams and respectable coverage performance can
be achieved with the PAA system; however, some important
considerations include the cost of the transmitter/receiver
(T/R) modules and the intricacy of the PAA hardware design.
Low profile and low fabrication cost feed networks are essen-
tial for large-scale PAA system deployment and practical
use [20], [21]. Numerous techniques have been employed to
generate improved phased array antennas with large-angle
scanning capability [22], [23], [24], [25], [26], [27], [28].
Initially, extending the radiation element pattern of the array
is a useful technique to enhance the scanning coverage of
phased arrays [25]. Techniques like the metal-cavity [29],
unique structures and metal via [30], using metal walls [27],

designing the tapered slot [25], and proposing a resonant
microstrip meander line [31] are applied to extend the
radiation element pattern. Secondly, pattern reconfigurable
modern technology efficiently measures phased arrays with
large scanning coverage improvement [26], [27]. Thirdly,
the mutual coupling among the array elements is crucial
to achieving large-angle scanning capability in linear or
planar arrays [31]. Antenna performance has been enhanced
through various efforts for 5G applications. Researchers
aim to design small, highly effective, and low-cost PAAs
to operate within the Sub-6 GHz frequency range [32],
[33], [34]. In 5G applications, the BW of the antenna
plays a crucial role in boosting channel capacity. In [32],
a 136 mm × 68 mm antenna is presented. The design
uses a monopole configuration and operates within the
5.15–5.925 GHz frequency range.

The antenna system has been developed in [35] for
integrated cognitive radios. However, in this research,
the orthogonal positioning of antenna elements inherently
improves the isolation between the ports, but the reflectors
improve the isolation between the ports by drastically
increasing the antenna system’s size.

According to [36], a C-shaped antenna with a dimension
20 × 15 mm2 is designed for WLAN and 5G applications.
Even though this antenna is small in size which is one
of the important characteristics for 5G application, the
scattering characteristics are simulated at -6dB. As per
industry requirements and upcoming standards like IEEE
802.11ax, it is not a regular practice to accept scattering
characteristics at -6dB. Also, the gain of the antenna is not
acceptable for a 5G wireless application.

Therefore, designing an antenna with an acceptable gain
and a low profile is crucial for the generation of new
wireless communication. As in [37], the size of the proposed
design noted is 130 mm × 100 mm with an operating band
of 5.1–6 GHz. The gain obtained ranges from 2.5–4.2 dB
within the operating frequency band.

A center-fed circular patch antenna is proposed in [38]
with shorting posts that can switch between four linear
polarizations at a 45◦ rotation and a broadside beam. Four
shorting posts are positioned at a 45◦ angle to enable
rotatability of the linear polarization and the connection
between the shorting posts, and four PIN diodes regulate the
ground. Turning the PIN diodes ON andOFF allows the patch
antenna to alternate between four linear polarizations at a 45◦

rotation. The 2.4 GHz band can be covered by the measured
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overlapping impedance bandwidth of 2.33 GHz to 2.50 GHz
for all four polarization states.

A circular disc microstrip-fed monopole antenna with a
reconfigured wideband to narrowband frequency is presented
in [39]. A reversible band-pass filter was integrated with the
antenna in the feed line. An active element could change the
impedance bandwidth from wideband to narrowband. Two
varactor diodes have been used for the narrowband state to
continuously isolate and tune the antenna response between
3.9 and 4.7 GHz.

A monopole antenna with enhanced impedance is pro-
posed in [40]. This antenna covers an acceptable 5G
frequency band. However, the size of the antenna is large
which limits functionality for 5G applications.

The gain of a PAA is a crucial parameter that significantly
influences its performance. A 150mm× 75mm antenna with
an operational bandwidth of 5.15–5.85 GHz and peak gain
of 4.62 dB is proposed in [41]. Researchers in [42] used the
defected ground structure (DGS) to raise the gain of the PAA.
In the [43], the Photonic Band Gap (PBG) was utilized to
improve antenna radiation characteristics.

RoF has recently become one of the most well-known
schemes in the communication industry. The RoF systems
operating in the Sub-6 GHz range can be employed in wire-
less access networks, helping to provide high-capacity and
low-latency connectivity to support many users, especially
in densely populated areas for 5G applications [44], [45],
[46]. In that case, the signals can be transported over long
distances without suffering significant degradation or loss
of quality by utilizing the low-loss properties of fiber optic
cables [47], [48].

FIGURE 1. The progression of the proposed PAA design for 5G wireless
application.

RoF systems benefit from MI in specific applica-
tions. By controlling system parameters and utilizing MI’s

characteristics, the generated sidebands can be used for
different purposes. MI can be created by employing non-
linear and anomalous fibers, which can amplify the carrier’s
sideband. Through pulse modulation and manipulation of the
fiber’s properties, the input pulse can be positioned within the
amplified sideband, exploiting its benefits. Consequently, this
approach enhances the system’s overall gain [49], [50].

TTD is a crucial technique used in PAAs to control the
phase shift among the elements of the array antenna. It refers
to the precise and independent adjustment of the time delay
applied to each element’s signal to steer the antenna’s beam
in a specific direction. This enables the PAA to form and
direct the radiation pattern to a desired target or point of
interest. One of the best methods of implementation of TTD
is utilizing frequency combs. Upon passing through the fiber,
the combs’ free spectral range (FSR) is one of the parameters
that determines the time delay required to reach the desired
beam.

This proposed work presents a low-design complexity,
low-cost, and multiband PAA aimed at achieving wideband
gain enhancement. Firstly, four printed elliptical patch
antennas with tapered feeding are designed and investigated.
The design uses a tapered feed, a DGS structure, and a four-
slotted elliptical patch to improve wideband performance.
The design employs a standard elliptical radiator. To enhance
the bandwidth and matching, the above traditional elliptical
antenna is modified by adjoining the rotated patch copy
to employ the PAA better. Incorporating the elliptical slot
helps extend the current path length without modifying the
actual dimensions of the antenna. The proposed structure’s
main highlights are its acceptable gain and multi-bandwidth,
which are achieved by enhancing the radiator’s electrical
length. The elliptical array patch antenna, designed to offer
appropriate gain, emerges as a promising candidate for 5G
wireless communication applications.

Furthermore, we introduce a novel RoF system that
leverages the MI phenomenon to control and amplify the
beam of the proposed PAA. Through the utilization of MI,
we can modulate the input Sub-6 GHz signals onto the
amplified sideband of the carrier, effectively operating within
the desired frequency band for signal amplification. This
method has been extended to frequency combs. Therefore,
all antenna elements can experience an advantage from MI
gain. As a result, the performance of PAAs, such as the gain,
will be enhanced. Furthermore, we introduce a bit-controlled
system that can control the beam angle of the array antenna.

The rest of this paper is composed as follows: Section II
discusses the theory and design of the proposed PAA.
Section III shows the proposed antenna results. To verify the
simulation results, the antenna is experimentally fabricated
andmeasured using the antennameasurement system. In Sec-
tion IV, a new RoF system is introduced, leveraging fibers
under theMI phenomenon that are capable of integrating with
the proposed antenna to enhance its performance. Finally,
Section V provides a summary of the main results presented
in this paper.
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FIGURE 2. Fabricated prototype of the proposed PAA structure for 5G wireless application a) top view b) bottom view c)
measurement setup.

TABLE 1. Dimensions of the proposed elliptical patch antenna.

II. PAA-ANTENNA THEORY AND DESIGN
The elliptical patch is considered one the best candidates and
the simplest shape of microstrip patch antenna applied in
wireless technology to achieve high BW. The elliptical shape
has several advantages, like having more degrees of freedom
than the circular geometry and providing larger flexibility in
the design [51], [52].

For an elliptical patch shape of a major axis and a minor
axis, the perimeter is given by:

p = 2aE(em) (1)

where E(em) is the elliptic integral of the second kind with
elliptic modulus em, the eccentricity.

The size and axial ratio of the elliptical patch are
determined by using approximate formulas given by [53],
[54], [55]

em =

√
1 − (

b
a
)2 (2)

and

fr =
c

p
√

ϵr
(3)

Here, c and ϵr are the light’s speed and the dielectric
substrate’s relative permittivity, respectively.

The elliptical slot and the adjusted gap are employed for
better BW and increase the peak gains, and the truncation
is used between the microstrip line and elliptical patch for

having a good impedance [56], [57], which helps to be good
candidates for Sub-6 GHz in 5G wireless technology.

Fig. 1 demonstrates the progression of the design of the
PAA. Initially, single radiating patch elements are designed
followed by 2 × 1 and 2 × 2 PAAs to achieve better gain.

The design evolved from the basics of a mono-patch
antenna. The antenna consists of the patch section, tapered
feed region, and DGS section. The tapered feedline and
the elliptical patch improve the antenna performance and
matching. The tapered feedline concatenated with the main
patch aids in smoothening the current path, resulting in
a broader impedance bandwidth. Hence, this mono patch
antenna is fed by a tapered curve feed line, optimized to
50� impedance matching to reduce incident wave reflection.
As result, tapered feed line’s width at the bottom end
corresponds to a characteristic impedance of 50 �, and the
width at the top end has a characteristic impedance of 75 �.
The tapered feed line, together with themono-patch antennas,
tends to have enhanced bandwidth performance and can
transmit UWB pulses with minimal distortion

Using a PAA configuration helps reduce coupling effects
and improve spatial and pattern diversity. Copper was used
to create the radiating element, which has a highly stable
conductivity of 5.8 × 107S/m. This stability resulted in
minimal impact on the impedance matching. The parameters
are optimized by using CSTmicrowave studio as commercial
software.
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FIGURE 3. Development of simulated and measured results of the wideband microstrip PAA: (a) gain (b) reflection
coefficient (S11).

The characteristics of the substrate, such as the tangent loss
(tan(δ)), the dielectric constant, and height, have a significant
impact on the impedance matching and BW of an antenna.
A very thin substrate may result in high copper losses, but a
thicker substrate may reduce the antenna’s performance due
to surface waves. To achieve a suitable impedance matching,
the proposed antenna is mounted on the low-cost FR-4
substrate with a dielectric constant of ϵr = 4.3, a loss tangent
of tan(δ) = 0.025 and a thickness of 0.787 mm. Table 1
demonstrates the parameters of the suggested antenna. The
parameters are optimized for the proposed PAA to achieve
resonance frequency ranges from 2.9 GHz to 5.3 GHz
and to guarantee reduced mutual coupling between antenna
parts.

The design evolution begins with a conventional elliptical
patch, as Figure 1 depicts. The design first provided a simple
elliptical patch with bandwidth for a 5G application and three
stop bands. As the evolution proceeds towards the second
stage, a central elliptical slot with a smaller upper gap is
created to increase the bandwidth and gain. These values are
improved for mono-patch by optimizing initially the ra and rb
for bandwidth and then g for gain, respectively. A small curv
transition microstrip line connects the patches to the feed line
is added to have good impedance matching and decrease the
reflection coefficient []. The 1×2 antenna is designed for the
next stage. The distance between the patches directly affects
the proposed structure’s directivity. Finally, the final structure
is designed for the 5G wireless application. In this stage, the
value of the Lg is optimized to reduce the side lobe levels.

III. SIMULATION AND MEASURED RESULTS
This section presents and discusses the simulation and
measured results of the proposed PAA. The simulation
is conducted using CST Microwave Studio, which is an
electromagnetic simulation software available commercially.
Fig. 2 demonstrates the prototype of the proposed structure.
Measurement of all the radiation performance was carried out
in an anechoic far-field chamber.

The reflection coefficient S11 and realized gain for each
stage of the antenna’s development are shown in Fig. 3.

Accurately designing and increasing the radiating elements
clarifies how it impacts the antenna’s performance. Good
agreement between the simulated and measured results can
be observed. The realized gain of the first and second stages
varies between 1.9 and 4.5 dB across the frequency operating
range from 3 GHz to 5.5 GHz, as shown in Fig. 3(a).
Meanwhile, the suggested 2× 2 PAA achieved a realized gain
of 5 to 8.1 dB throughout the operational spectrum. The mea-
sured gain variation is less than 2 dB within this operational
band. However, due to minor fabrication and measurement
inaccuracy issues, the measured gain is slightly higher than
the simulated result at certain frequencies. Additionally,
as illustrated in Fig. 3(b), these antennas have low reflection
coefficients (S11), less than -10 dB in both simulation
and measured results. Furthermore, for the suggested PAA
to function effectively, all other S-parameters must remain
below -10 dB. Fig. 7 demonstrates the measurement and
simulation of the transmission and reflection coefficients of
the proposed PAA.

Optimizing the distances and dimensions of the radiation
elements improves the PAA’s performance, helping to achieve
resonance frequencies of 3.3 GHz, 4.6 GHz and 5.2 GHz.

Fig. 4 demonstrates the radiation patterns in the magnetic
field (H) plane and electrical field (E) plane at three
frequencies 3.3 GHz, 4.6 GHz, and 5.2 GHz.

A 3D radiation pattern is a graphical representation of the
radiated power from an antenna in free space, achieved in the
far-field region. It provides a three-dimensional view of how
the antenna’s power is distributed in different directions.

The 3D radiation patterns of the antenna proposal are
displayed in Fig. 5. The maximum directivity at 3.3 GHz,
4.6 GHz, and 5.2 GHz are 5.2 dB, 7.4 dB, and 7.8 dB,
respectively. These results demonstrate that the proposed
PAA exhibits favorable radiation patterns at three different
frequencies, making it well-suited for Sub-6 GHz 5Gwireless
applications.

To reveal the working mechanism, Fig. 6 displays the
distribution of the surface current on the YoX cutting plane
above the surface of the PAA at these frequencies. The current
has a high strength near the patch and feed intersection. Fur-
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FIGURE 4. The simulated and measured E-field and H-field radiation patterns of the wideband PAA at (a) 3.3 GHz, (b) 4.6 GHz, and
(c) 5.2 GHz.

FIGURE 5. The 3D simulated pattern of the proposed PAA at (a) 3.3, (b) 4.6, and (c) 5.2 GHz.

FIGURE 6. Surface current distribution of the proposed PAA at (a) 3.3, (b) 4.6, and (c) 5.2 GHz.

FIGURE 7. Simulation and measured transmission and reflection
coefficients of the proposed PAA.

thermore, the level of coupling among the elements is quite
negligible, as indicated by the current distribution pattern.

Table 2 demonstrates the comparison of the proposed
antenna with other Sub-6 GHz candidate array antennas for
5G wireless communication applications.

IV. PROPOSED RADIO-OVER-FIBER STRUCTURE
The application of RoF systems in Sub-6 GHz antennas
offers several advantages, including enhanced performance,
increased coverage, and improved signal quality. RoF
technology utilizes optical fibers to transport radio signals,
enabling flexible and efficient transmission of data over long
distances. When integrated with Sub-6 GHz antennas, RoF
systems can extend the reach of wireless communication
networks, particularly in urban and indoor environments
where signal propagation may be limited. Additionally, RoF
systems can facilitate centralized processing and coordi-
nation of multiple antennas, leading to optimized network
performance and resource allocation [58], [59]. Overall, the
application of RoF systems in Sub-6 GHz antennas holds
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FIGURE 8. RoF diagram with the utilization of optical fiber under MI phenomenon with dispersion coefficients of x1 = 60 ps2/km,
x2 = 90 ps2/km, and x3 = 120 ps2/km.

TABLE 2. Comparison features of the suggested PAA with other array antennas.

promise for enhancing the capabilities and reliability of
wireless communication systems, particularly in the context
of emerging 5G networks and IoT applications [60], [61].
The schematic of the proposed RoF system is displayed in

Fig. 8. Continuous Wave (CW) lasers excite as the sources of
frequency combs, and the input signals undergo modulation
through a Mach-Zehnder modulator (MZM). The resulting
optical signal is then amplified by passing through non-linear
and anomalous fibers (n2 ̸= 0 and β2 < 0), utilizing the MI
phenomenon.

The switch allows the proposed RoF system to operate on
the antenna’s desired frequency band. The control section
also enables precise manipulation of the antenna beam.
Finally, the demultiplexer (DMUX) and photodetectors
separate the excitation signals, ensuring each antenna element
receives the correct signals.

A. MODULATION INSTABILITY METHOD
MI is a nonlinear phenomenon in the presence of an
intense optical carrier wave that travels through a nonlinear
medium. It is induced by the interaction between dispersion,
nonlinearity, and diffraction. The spectral sidebands are
expected to exponentially expand at the output along with the
carrier wave’s central band. While the carrier tends to be a
CW laser optical beam, rapid fluctuations usually appear as
modulated pulse trains [66], [67].
In optical communication, the dispersion of fiber plays an

essential role in the transmission of short optical pulses. This
is because the numerous spectral components of the pulse
travel at different speeds, as indicated by c

n(w) .
In order to consider the impact of fiber dispersion, the

mode-propagation constant is expanded in a Taylor series
around the frequency w0 where the pulse spectrum is
centered. Below is the equation that represents this concept:

B(w) =

∞∑
m=0

Bm
m!

(w− w0)m (4)

where β(w) can be expanded in a Taylor series around w0,
and βm represents the dispersion parameter of order m.
Here is the non-linear Schrödinger equation that serves as

a model for optical pulse propagation:

ı
∂A
∂z

+ ı
α

2
A−

β2

2
∂2A
∂T 2 + γ |A|

2 A = 0 (5)

where γ , A, α, and β2 represent the non-linear parameter,
the slowly varying envelope of the optical pulse, the loss
factor of the fiber, and the dispersion of the group velocity,
respectively.

When the time-dependent derivation is ignored, eq. 5 is
simply solved to yield the steady-state continuous radiation
solution. The CW for the eq. 5 is a soliton with the form
√
P0eiγ p0z, in the case of the lossless response of the laser,

that P0 is the incident power and φNL = γ p0z is the non-
linear phase shift induced by self-phase modulation.

If the steady-state is stable against small perturbations in
the power of the laser, the form of is:

A = (
√
P0 + a1ei(Kz−�t)

+ a2e−i(Kz−�t))eiγ p0z (6)

where K and � are the wave-number and frequency
perturbation at sideband frequency of laser
spectrum [67], [68].

By substituting eq. 6 in eq. 5, the following equation can
be achieved:

K = ±
1
2

|β2�|

[
�2

+ sgn(β2)�2
c

] 1
2

(7)

which �c has an inverse relation with the non-linear length
LNL and the β2 (�c = 2/

√
|β2|LNL). When the group

velocity dispersion is positive (β2 > 0), in all situations,
the wave-number (K) is real. Also, the steady-state is stable
in all small perturbations. On the other hand, when the
group velocity dispersion becomes negative (β2 < 0), the
wave-number is imaginary, and the perturbation increases.
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FIGURE 9. a) Unboosted and boosted sideband by different fiber lengths of 25 km, 50 km, and 75 km. b) Boosted sideband by
the different values of group velocity dispersion of the fiber.

Therefore, in the negative dispersion, the gain is:

GMI (�) = |β2�|

√
�2
c − �2 (8)

Themaximumgain also occurs at frequency�max = ±
�c√
2
.

Fig. 9 illustrates a comparison between the conventional
carrier sideband power and the carrier sideband power
under MI. The MI technique can be adapted to operate at
different frequency bands by adjusting the fiber parameters.
In Fig. 9(a), the amplification is presented for different fiber
lengths with the carrier frequency of 193 THz. The maximum
MI gain is observed at a frequency shift of fmax = 5 GHz,
which supports Sub-6 GHz 5G communications. Notably,
the -85 dBm unboosted sideband experiences significant
amplification. As the length of the fiber increases, theMI gain
at the sideband carrier also rises. Specifically, for fiber lengths
of 25 km, 50 km, and 75 km, the MI gain is 10 dB, 20 dB,
and 31 dB, respectively.

In addition, Fig. 9(b) illustrates the sideband amplification
under varying fiber group velocities, considering it particu-
larly well-suited for amplifying input signals in Sub-6 GHz
applications. Three fibers are utilized in the RoF system
to select the appropriate frequency for the proposed array
antenna’s operating frequency. Hence, with group velocity
dispersion of β2 = −60ps2/km, β2 = −90ps2/km, and
β2 = −120, ps2/km, amplification can be achieved at the
range of 3 GHz to 6 GHz. Based on the relations outlined
in subsection IV-A, it is evident that the central frequency
of the amplification band exhibits an inverse relationship
with the group dispersion of the fiber (fmax ∝ 1/

√
|β2|).

Notably, the non-linear refraction index of the fiber and
laser power are n2 = 0.8 × 10−20 m2.W−1 and 300 mW,
respectively.

B. TRUE TIME DELAY METHOD
In wideband phased-array antenna (PAA), TTD utilization
emerges as a fundamental technique to effectively address
beam-steering and beamforming challenges. By employing
TTD, several advantages from the optical domain become

feasible, such as wide bandwidth, immunity to electromag-
netic radiation, and minimal signal loss.

One of the convenient approaches to implementing TTD
in Microwave Photonics (MWP) is using parallel and
separate fibers with low dispersion. The time delay variation
is determined by the difference in length between the
fibers corresponding to each adjacent radiation element
in the PAA. However, this method can lead to increased
costs and bulkiness due to the requirement of individ-
ual fibers to excite each radiation element (multi-fiber
structure).

Instead of utilizing multiple fibers with a single source,
a more practical approach [69] involves employing a single
fiber with a frequency-comb source. These configurations
introduce a time delay and dispersion in the fiber due to the
differential frequency of the modulated pulses on the adjacent
frequency combs.

FIGURE 10. Normal and boosted system response frequency combs with
FSR of 100 GHz.

Fig. 10 shows the system response when MI is extended
to a frequency comb source with the FSR of 100 GHz.
The amplified frequency comb serves as the basis for PAA
utilizing TTD techniques.

1τ = (|DmiLmi| − |DcLc|)1λ (9)
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The relation between the TTD and the length of the fibers
is demonstrated in eq. 9, whereDmi and Lmi are the dispersion
and the length of the fibers under MI, respectively. Also, Dc
is the dispersion, and Lc is the length of the normal fibers
(β2 > 0) used in the control system.

The value of the TTD with the FSR of 100 GHz (1λ

= 0.8 nm), assuming the length of fiber equivalent to
Lmi=50km, is greater than the required time delay of the
antenna. To address this, the bit-control system uses the fiber
with positive dispersion (β > 0) to decrease the time delay.
The binary delay line with optical switch components and

dispersive fibers provides a basis for the dispersion matrix,
as shown in Fig. 8.
Avoiding time delay is also possible by considering

|DmiLmi| = |DcLc|. Therefore, we have developed a
configurable dispersionmatrix to achieve precise control over
the time delay introduced by the fiber under MI.

Using a fiber with positive dispersion (β > 0) helps to
reduce the excessive time delays in PAA and also enables us
to control the time delay for PAA by adjusting the minimum
time delays.

To optimize the control system’s time delay, we consider
the minimum and maximum fiber lengths denoted as L and
15L, respectively. Decreasing either Dc or Lc allows us to
increase the time delay as desired.

It is evident from eq. 9 that there are two manners to
modify the steering angle. In. Also, it enables changing
the FSR, which uses the frequency combs. It is possible to
select the appropriate frequency. After that, using eq. 8 as
a guide, modifying the fiber length while maintaining the
same type. It is notable to note that the second strategy is
more accessible with respect to the first one. Following this,
the comb line undergoes photo-detection and de-multiplexing
processes. Subsequently, the array antenna receives the
amplified microwave signals that have been generated.

FIGURE 11. Beam steering diagram of the proposed PAA at 3 GHz in three
different angle at θ = 0, θ = 8, θ = 16.

The beam angle of an array antenna is determined by its
design parameters, including the wavelength of the operating

frequency and the spacing between the antenna elements
(dPAA). The formula for calculating the beam angle of an array
antenna is as follows:

20 = sin−1 c.1τ

dPAA
(10)

where θ0 is the radiating steering angle, c is the speed of light
in the vacuum space, and 1τ is the time delay.

Beamforming based on TTD in a PAA is essential for
communication systems because it demonstrates excellent
operating frequency and BWperformance. The advantages of
low loss and immunity to electromagnetic interference raise
wireless communication quality.

Fig. 11 clearly shows the benefits of TTD beam steering
by choosing the angle of 0◦, 8◦, and 16◦ for the main lobe of
the proposed array antenna at 3 GHz. The main lobe’s peak
can be precisely directed to a specific angle by fine-tuning the
antenna’s phase offset.

V. CONCLUSION
This work presented a novel design of PAA for 5G wireless
applications. The antenna comprises four elliptical patches,
each with a central slot and upper gap for simultaneously
increasing the BW and gain.

The prototype wideband twice2 PAA with a low-cost
FR-4 substrate is fabricated and measured. The simulation
and measured results demonstrate that this antenna has a
−10 dB bandwidth of more than 2.5 GHz and covers three
essential 5G bands: the n78 band (3)-3.8 GHz), the n79 band
(3.8-5 GHz), and the n46 band (5)-5.5 GHz). The realized
gains are above 5 dB in the Sub-6 GHz 5G band, while the
achieved gains at 4.6 GHz and 5.2 GHz are 7.4 and 7.8 dB,
respectively.

We also proposed a new way to improve the antenna
performance in Sub-6 GHz 5G applications by using a novel
RoF system that employs theMI phenomenon. This proposed
model allows the antenna to achieve MI gain, work in a
switchable band, and have a tuned beam.

To achieve this goal, non-linear and anomalous fibers
(n2 ̸= 0 and β2 < 0) are employed. The non-linear refraction
index of the fiber is n2 = 0.8 × 10−20 m2.W−1 and laser
power is 300 mW. Three fibers under MI with group velocity
dispersion of β2 = −60ps2/km, β2 = −90ps2/km, and
β2 = −120, ps2/km, are used for maximum amplification
in frequency ranges of 2.5-5 GHz, 4-5.5 GHz and 5-7.5 GHz
respectively. By employing these fibers, the entire operating
frequency range of the PAA can be covered. The MI gain is
displayed for fiber lengths of 25 km, 50 km, and 75 km, with
values of 10 dB, 20 dB, and 31 dB, respectively.

The TTD technique is used to controls better the beam
pattern, by adjusting the time delay between adjacent of the
radiation elements.

In conclusion, the proposed system is an acceptable
candidate to increase the effectiveness and functionality of
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the 5G wireless communication system, with high gain, low
complexity, and low-cost structure.
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