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Abstract. In this paper we are presenting calculations of the elastic cross section of positrons with gas-
phase benzene for the energy range from 0.25 eV to 9.0 eV. The calculations are done with the molecular
R-matrix method for positron-scattering from poly-atomic molecules using a scaling factor to scale the
electron-positron interaction. The scaling factor influences the position of the poles of the R-matrix. We
adjust the scaling factor is such a way, that the position of the lowest pole is similar to the proposed
binding energy of around 150 meV, given by [J.A. Young, C.M. Surko, Phys. Rev. Lett 99, 133201 (2007)].
Below the threshold for positronium formation, we calculate elastic cross section in good agreement with
experimental cross sections. Above the threshold for positronium formation we use the difference between
the experimental total cross section data and our computed elastic cross section to provide a first estimation
of the cross section for positronium formation.

1 Introduction

Benzene is one of the simplest organic molecules. It is an
ideal model compound to study interactions of positrons
with biological matter. Such information is important for
simulations of positron tracks in biological material [1,2].
These simulations require cross section data as an input.
However, only a limited amount of experimental and the-
oretical cross section data are available for positron colli-
sions with benzene. In a recent review Brunger et al. [3]
point out that only total cross section data for positron-
collisions with gas-phase benzene are available in the
literature. The available experimental data show some dis-
agreement between the experimental data sets from vari-
ous groups. Occhigrossi and Gianturco [4] have done the
only available theoretical study of this system.

An additional source of information on interactions of
positrons with gas-phase benzene comes from the Surko-
group in San Diego, which has studied the annihilation of
the colliding positrons depending on the collisional energy
[5]. Young et al. [6–10] have used the model of vibra-
tional Feshbach resonances to extract a binding energy
of 150 meV. Recently Fedus [11] has analysed low-energy
cross section data extract the scattering length with the
modified effective range theory (MERT) [12]. As input for
his MERT model he uses the scattering length obtained
from the experimental binding energy of Young et al. [6]
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and obtains good agreement for the elastic scattering cross
section at higher energies.

In this paper we present calculations of the elastic cross
section of positrons with benzene molecules in the gas-
phase over the energy range from 0.25 eV to 9.0 eV. For the
calculations we are using the molecular R-matrix method
for positron-scattering from poly-atomic molecules [13]
with a semi-empirical scaling factor, which scales the
electron-positron interaction [14]. The scaling factor scales
the poles of the R-matrix. The method, its motivation and
the computational details are described in Section 2.

In Section 3 we show the influence of the scaling factor on
the poles of the R-matrix and on the elastic cross section.
By using the scaling factor to move the lowest pole of the
R-matrix to the value of the positron binding energy, we
obtain an elastic cross section in good agreement with exper-
imental data sets. We use difference between the experimen-
tal total cross section data of Karwasz et al. [15,16] and our
computed elastic cross section to estimate the cross section
for positronium formation. The paper ends with conclusions
in Section 4.

2 Theoretical and computational methods

2.1 R-matrix method for positron-molecule scattering

In the molecular R-matrix method for positron-scattering
from poly-atomic molecules [13] the total wavefunction for
N electrons and one positron can be defined as
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Ψ(x1,x2, . . . ,xN ; xp;E)

=
∑

k

AK(E)ΨK(x1,x2, . . . ,xN ; xp). (1)

Here x1 . . .xN are the coordinates (both space and spin)
of the electrons, xp are the coordinates of the positron
and E is the collision energy. The coefficients AK(E) are
energy-dependent and are obtained by propagating the R-
matrix outwards into the asymptotic region [17]. The func-
tions ΨK(x1,x, . . . ,xN ; xp) are energy-independent and
are eigenfunctions of the box-Hamiltonian HN+1

Ω

HN+1
Ω ΨK(x1,x2, . . . ,xN ; xp) = EKΨK(x1,x2, . . . ,xN ; xp). (2)

The eigenvalues EK are also called R-matrix poles. The
box-Hamiltonian

HN+1
Ω = HN+1 + L (3)

is confined to the sphere Ω and is the sum of the
Hamiltonian HN+1 for the N + 1 particle system and the
Bloch operator [18]

L =
1
2
δ(rp − a)

(
d

drp
− b− 1

rp

)
· (4)

Here rp is the radial distance of the positron from the
scattering center, a is the radius of the innermost R-matrix
sphere and b is an arbitrary constant. In this work we
are choosing b = 0. By adding the Bloch operator, the
box-Hamiltonian HN+1

Ω is hermitian and the Schrd̈inger
equation is transformed into(

HN+1
Ω − E

)
Ψ(x1,x2, . . . ,xN ; xp;E)

= LΨ(x1,x2, . . . ,xN ; xp;E). (5)

The R-matrix basis functions are constructed by the
close-coupling expansion

ΨK(x1,x2, . . . ,xN ; xp) =
∑

A

∑

i

bKAiΦ
target
A (x1,x2, . . . ,xN )φi(xp)

+
∑

B

∑

j

cKBjΦN+1
Bj (x1,x2, . . . ,xN ; xp).

(6)

The coefficients bKAi and cKBj are obtained variationally
by diagonalizing the Hamiltonian HN+1

Ω . The first sum
includes products of scattering functions φi(xp) of the
positron and of the eigenfunctions Φtarget

A (x1,x2, . . . ,xN ),
of the Hamiltonian of the target molecule

HtargetΦ
target
A (x1,x2, . . . ,xN ) = Etarget

A Φtarget
A (x1,x2, . . . ,xN )

(7)

with eigenvalue Etarget
A . The second sum in the equation

above runs over square-integrable functions for N+1 par-
ticles. Here the N + 1 particles are N electrons and one
positron. These functions are confined to a sphere around
the target molecule and their amplitude vanishes at the
boundary.

At the boundary of the innermost R-matrix sphere the
N + 1 particle problem is projected onto an effective

one-particle problem by integrating over the coordinates
of the N electrons. The R-matrix provides the bound-
ary condition for the one-particle problem outside of
the spherical box. More details can be found in e.g.
Tennyson [17].

2.2 R-matrix method with a semi-empirical scaling
factor

It is computationally very demanding to describe
correlation between the impinging positron and the elec-
trons without explicitly taking into account the positron-
electron distance. In Franz et al. [14] we have introduced a
semi-empirical scaling factor f , which scales the electron-
positron attraction integrals. This approach has been suc-
cessfully tested and applied to positron scattering from
CO2 and C2H2 by Franz et al. [14,19].

The approach can be motivated by examination of the
expression of the electron-positron correlation energy in
second-order Møller-Plesset perturbation theory (see e.g.
Takatsuka and Ten-no [20])

E(2) =
∑
iaia

(ia|ia)
εi − εa + εi − εa

· (8)

Here εi and εa denote energies of occupied and virtual
electronic orbitals, respectively. εi and εa are the same for
positrons. The positron-electron attraction integrals are
given by

(pq|r̄s̄) =
∫
φp(r1)φq(r1)

(
− 1
|r11|

)
χr(r1)χs(r1)dr1dr1,

(9)
where φp(r1) and φq(r1) are electron orbitals, χr(r1) and
χs(r1) are positron orbitals, and |r11| = |r1 − r1| is the
electron-positron distance. All orbital energies and orbital
can be obtained by a generalized Hartree-Fock procedure
for electron-positron systems [21].

However, in our implementation we are not using a gen-
eralized Hartree-Fock procudure and instead are using the
same spatial orbitals for electrons and positrons. The first-
order contribution is given by

E(1) =
∑
ii

(ii|ii). (10)

The sum of the first- and second-order contribution can
be rearranged as

E(1+2) =
∑
ii

(
(ii|ii) + (ii|ii)(2)

)
. (11)

Here we have introduced a second-order correction
(ii|ii)(2) to the electron-positron attraction integral (ii|ii)
as

(ii|ii)(2) =
∑
ii

∑
aa

(ia|ia)
εi − εa + εi − εa

· (12)
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For each electron-positron pair we can define a pair-
dependent scaling factor

fii = 1 +
(ii|ii)(2)

(ii|ii)
· (13)

With this short-hand notation the sum of first and
second-order electron-positron interaction energies can be
written as

E(1+2) =
∑
ii

fii(ii|ii). (14)

If we assume, that the scaling factor is the same for each
electron-positron pair, we can replace the pair-dependent
scaling factor by an averaged scaling factor f . The energy
expression simplifies to

E(1+2) ≈ f
∑
ii

(ii|ii). (15)

In our computer implementation we are scaling all
positron-electron attraction integrals by the same factor

(ij |̄ij̄)enh = f(ij |̄ij̄). (16)

Since we are using generalized configuration interaction
wavefunctions, we encounter not only the integrals of the
type (ii|ii), but the more general type (ij|ij). In this case
the approximation used in equation (15) is less accurate.

The introduction of the scaling factor f is moving the
poles of the R-matrix. As can be seen in the next section,
the R-matrix poles depend linearly from the scaling factor.
In our calculations we are shifting the scaling factor f in
such a way, that the lowest R-matrix pole is close to the
estimated positron-binding energy in benzene of 150 meV,
as given by Gribakin et al. [5].

2.3 Computational details

The molecular geometry has been optimized with the pro-
gram package Frisch et al. [22] using the B3LYP (Becke
[23], three-parameter, Lee-Yang-Parr [24]) exchange-
correlation functional with the 6-311++G** basis set [25].

For the scattering calculations we are using the modified
UK molecular R-matrix codes of Gillan et al. [26], with
the modifications described in Franz and Tennyson [13],
Baluja et al. [27] and Franz et al. [14]. The target states
are constructed from a complete active space configura-
tion interaction (CAS-CI) wavefunction, where the com-
plete active space is generated by distributing 4 electrons
in 7 orbitals. All other electrons are kept frozen in the
Hartree-Fock orbitals. The positron is allowed to occupy
any of the occupied or virtual orbitals, which are used for
electrons. In addition the positron can occupy continuum
gaussian orbitals. These functions are located at centre
of gravity of the molecule. The gaussian functions for the
continuum basis function are constructed with the pro-
grams NUMCBAS and GTOBAS [30] following the pro-
cedure of Nestmann and Peyerimhoff [31]. The continuum
basis set is contructed for 8s, 7p, 7d, 6f and 6g functions
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Fig. 1. Total elastic cross section for positron scattering from
benzene for different values of the scaling factor f . For the
static calculation (red, dashed line) a Hartree-Fock wavefunc-
tion is used for the electronic part. In all other calculations
CAS-CI wavefunctions are employed. For more details see main
text.

for a sphere with a radius of 14 bohr. In the actual scat-
tering calculation the most-inner sphere has a radius of
13 bohr. In total this generates roughly 8000 configura-
tion interaction functions for the construction of the total
wavefunction. All calculations are done in the molecular
point group D2h. The propagation of the R-matrix into the
asymptotic region is done with the R-matrix propagator
of Baluja et al. [32].

3 Results and discussion

3.1 Influence of the scaling factor

In Figure 1 the total elastic cross sections are shown for
different values of the scaling factor f using the CAS-CI
model. For the value f = 1 the scaling is switched off. In
addition the cross section is shown for a static calculation,
in which the electronic wavefunction of the target is repre-
sented by a Hartree-Fock wavefunction and and no other
electronic functions are taken into account. The elastic
cross section without scaling is a flat line and very simi-
lar to the static calculation with the Hartree-Fock target.
This shows the difficulty to describe electron-positron cor-
relation without taking into account the electron-positron
distance explicitly. In our previous studies on positron
collisions with the non-polar molecules N2 in Franz and
Tennyson [13], CO2 in Franz et al. [14] and C2H2 in Franz
et al. [19] we have obtained a similar picture.

A scaling factor larger than one is resulting in a mark-
able increase of the elastic cross section at low collision
energies. For larger collision energies we can see a small
decrease in the cross section.

In Figure 2 the lowest R-matrix pole is shown as a func-
tion of the scaling factor f . The energy of the R-matrix
pole is nearly a linear function of the scaling. In the follow-
ing scattering calculations, which are presented in the next
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Fig. 2. Energy of the lowest R-matrix pole as a function of
the scaling factor f . For more details see main text.

sub-section, we are using a scaling factor of f = 1.00325.
With this value of the scaling factor the lowest R-matrix
pole is at an energy of 157 meV. This value is very close
to the estimated binding energy of 150 meV, obtained by
the analysis of vibrational Feshbach resonances of energy
resolved annihilitation spectra Young et al. [5–8,8–10].

3.2 Comparison with results from the literature

In Figure 3 our computed total elastic cross sections are
shown for calculations without scaling (f = 1) and with
the scaling factor of (f = 1.00325), which produces an
R-matrix pole with a similar energy as the estimated
positron-binding energy. Also shown are the calculations
by Occhigrossi and Gianturco [4] and experimental data
sets from Sueoka et al. [33], Makochekanwa et al. [34],
Karwasz et al. [15,16] and Zecca et al. [35].

All experimental data sets are for total cross sections,
including all inelastic channels, like rotational, vibrational
and electronic excitation, positronium formation and ion-
isation. The experimental data sets differ from each other.
Especially the data set by Makochekanwa et al. [34] devi-
ates from the other data sets at low collision energies. The
measurements of Makochekanwa et al. [34] are performed
with the same scattering machine as those experiments
of Sueoka [33] at Yamaguchi University. Brunger et al.
[3] argue that the deviations could be a consequence of
modifications in the spectrometer. The small differences
between the data sets of Karwasz et al. [15,16] and Zecca
et al. [35] are mainly a result of an energy offset by 0.2 eV
in the collision energy.

The calculations by Occhigrossi and Gianturco [4] are
done with potentials derived from density functional the-
ory. The calculations are done for total elastic cross sections
and do not include any inelastic channels. The authors used
an asymptotic polarization potential to describe the long-
range interaction between the positron and the molecule.
Over the shown range of collision energies the calculations
by Occhigrossi and Gianturco [4] are roughly 50 per-cent, as
compared to the experimental data sets.
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Fig. 3. Cross section for positron scattering from benzene.
Also shown are calculations by Occhigrossi and Gianturco
[4] and experimental data sets from Sueoka et al. [33],
Makochekanwa et al. [34], Karwasz et al. [15,16] and Zecca
et al. [35]. The arrow marks the threshold for positronium for-
mation. For more details see main text.

The vertical ionization energy of benzene in the gas-
phase has been determined experimentally to be 9.240 eV
in Siegbahn’s laboratory in Uppsala by Karlsson et al. [36].
Theoretically investigations by the group in Heidelberg
have calculated a vertical ionization energy of 9.27 eV
using the equation-of-motion ionization potential coupled
clusters singles and doubles (EOMIP-CCSD) method.
Considering the experimental vertical ionization energy
(Eion = 9.24 eV), the threshold for the formation of
positronium is

EPs = Eion − 6.6 eV = 2.44 eV, (17)

where 6.8 eV is the ground state energy of positronium
[38]. This position is marked with an arrow in Figure 3.

For energies below the positronium formation threshold
our calculations using the scaling factor are in good agree-
ment with the experimental data sets of Sueoka [33] and
Karwasz et al. [15,16]. At energies above the threshold for
positronium formation, the differences between our calcu-
lations and the experimental data might be due opening
of the channel for positronium formation. This channel is
not included in our computed elastic cross sections, but is
included in the experimental total cross sections.

3.3 Estimation of the cross section for positronium
formation

The cross sections for inelastic rotional, vibrational and
electronic excitation can be estimated to be of the order of
a less than a few 10−16 cm2. Furthermore the cross section
for ionization by positron impact is above the ionization
threshold of 9.24 eV. Therefore we could use the differ-
ence between total cross section σtot from the experimen-
tat data set by Karwasz et al. [15,16] and our computed
elastic cross section σel to estimate the cross section for
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Table 1. Estimated cross sections for positronium formation.
The collision energy is given in eV. All cross section data are
given in 10−16 cm2. The total cross section σtot is taken from
Karwasz et al. [15,16]. The elastic cross section σel is from this
work using R-matrix theory with a scaling factor. The cross
section for positronium formation σPs is difference of the two
cross sections.

Energy σtot σel σPs

2.6 61.8 57.2 4.6
2.9 58.2 51.6 6.6
3.1 55.7 48.4 7.3
3.4 53.7 44.4 9.3
3.6 51.1 42.0 9.1
3.7 51.6 40.8 10.8
3.9 51.3 38.7 12.6
4.1 50.6 36.8 13.8
4.4 47.6 34.2 13.4
4.9 46.6 30.6 16.0
5.9 42.6 25.3 17.3
6.9 39.1 21.8 17.3
7.9 38.9 19.9 19.0
8.9 38.3 19.0 19.3

positronium formation

σPs ≈ σtot − σel. (18)

The calculated values are given in Table 1 for the energy
range (2.6–8.9 eV). The cross section increases from 4.6×
10−16 cm2 at 2.6 eV to 19.3× 10−16 cm2 at 8.9 eV.

It can be expected that the cross section for positronium
formation is similar to the cross sections for positronium
formation in organic molecules of similar size with simi-
lar ionization energies. Chiari et al. [39] have measured
Positronium formation cross sections for positron colli-
sions with tetrahydrofuran. They report an increase from
0.2×10−16 cm2 at 2.6 eV to 10.4×10−16 cm2 at 9.0 eV. For
positron collisions with pyrimidine Palihawadana et al.
[40] report cross sections for positronium formation, which
increase from 0.25 × 10−16 cm2 at 2.0 eV to 11.74 ×
10−16 cm2 at 9.0 eV. Our approximated cross section for
positronium formation is about two times larger than
for the two molecules, tetrahydrofuran and pyrimidine.
This might be an indication, that our values are an
overestimation.

4 Present conclusions

In this paper we have presented calculations of the elas-
tic cross section of positrons with gas-phase benzene
molecules for the energy range from 0.25 eV to 9.0 eV. The
calculations are done with the molecular R-matrix method
for positron-scattering from poly-atomic molecules [13]
using a scaling factor for scaling the electron-positron
interaction [14]. By using the scaling factor we move the
lowest pole of the R-matrix to the value of the proposed
positron binding energy of Young et al. [6] and obtain an

elastic cross section in good agreement with experimen-
tal data sets of Sueoka [33] and Karwasz et al. [15,16] for
collision energy below the threshold for positronium for-
mation. This can be interpreted as another indication for
the existence of a positron bound-state in benzene with
the binding energy of around 150 meV, as obtained by
Young et al. [6]. Above the threshold for positronium for-
mation we use difference between the experimental total
cross section data and our computed elastic cross section
to provide a first estimation of the cross section for positro-
nium formation.
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