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Low-energy positron scattering from gas-phase pyrimidine: A quantum treatment of the dynamics
and a comparison with experiments
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In the present work we are reporting detailed quantum scattering calculations that describe the diffusion of
a beam of low-energy positrons interacting with the pyrimidine target as a gas-phase partner. The calculations
have employed an essentially ab initio model for the short-range correlation interaction and for the electrostatic
interaction of an impinging positron and the electron+nuclear structure of the target molecule at its equilibrium
geometry. The available experiments were also performed in the low-energy region below about 30 eV and have
been reported by two different experimental groups cited in the main text. Those data include integral elastic
plus rotationally and vibrationally summed cross sections, together with angular distributions over the same
range of energies. The effects on the scattering observables which stem from the permanent dipole moment of
the title molecule are carefully analyzed and computational corrections which ensure numerical convergence are
introduced and discussed. The additional uncertainties introduced by the angular discrimination error present
in the experiments are also discussed and analyzed, thereby providing a numerical procedure for correcting all
available data. The final comparison between experimental angular distributions and the computed counterparts
produced in the present work turns out to be very good. The same applies to the comparison in size and
energy dependence of the integral cross sections, where we show that our calculated quantities and the corrected
experiments are in very good agreement over the whole range of available energies.
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I. INTRODUCTION

The interactions of positrons, the electron’s antiparticle,
with biological material plays an important role in nuclear
medicine [1]. The positrons can be created by positron-electron
pair production or by nuclear β+ decay [1]. Electron-positron
pair production can be triggered by the interaction of high-
energy photons with the electromagnetic field of an atomic
nucleus. The photon energy has to be at least the threshold
energy of 2 × 511 keV = 1.022 MeV, which is the energy
equivalent to the rest mass of the two particles. The process of
creating positrons by nuclear β+ decay is used in positron
emission tomography (PET), where specific molecules are
marked with β+ emitters. For applications in nuclear medicine
it is important to know about the interactions of the positron
with biological material, from its creation until its annihilation,
either the direct interactions with a molecular bound electron,
or the secondary interactions which can occur after forming
positronium. In this context, therefore, the knowledge of the
interaction of slow positrons, with kinetic energies below
30 eV with biomolecules is certainly an important item for
developing any model for the involved processes. It thus
follows that a fairly large number of experiments have been
analyzing beams of slow positrons colliding with individual
biomolecules in the gas phase. It is important to note here
that in these collision experiments the linear transmission
technique is used, and therefore it is not possible to distinguish
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between unscattered positrons and positrons scattered elasti-
cally into a small cone of forward direction. Due to this effect,
the amount of unscattered particles is usually overestimated
in the measurements and consequently the total elastic cross
sections become affected by very large uncertainties. The
availability of reliable computations thus becomes an essential
step on the way to get a better knowledge of the overall
collision process. One biomolecule of very broad interest in
many areas of biomaterial studies is indeed the pyrimidine.
It has structural similarities with the nuclear bases uracil,
thymine, and cytosine and is important in the biochemistry
of the reactions involving such nuclear bases [2].

In this paper we shall therefore report new quantum
computations of the rotational elastic and inelastic cross
sections of low-energy positrons colliding with pyrimidine.
On the experimental side, the cross sections for slow positrons
in collision with pyrimidine have been measured recently
by Zecca et al. [3] and by Palihawadana et al. [4]: In
these experiments the measured elastic integral cross sections
disagree with each other. Palihawadana et al. [4] are also
presenting differential cross sections so we shall also compute
such quantities for further comparisons.

In our computations we do not take into account inelastic
channels like positronium formation, annihilation, ionization,
and vibrational or electronic excitation, because such a
treatment is computationally too demanding. Annihilation is
possible at all collision energies. The coupling between elastic
channels and annihilation is usually small and annihilation is
usually treated uncoupled from elastic scattering (see, e.g.,
Chapter 4.2 in [5] and Humberston et al. [6]) The couplings
between open channels usually will give structure in the elastic
cross section on either side of each threshold for opening a
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new inelastic channel. A detailed discussion can be found in
Charlton and Humberston [5]. The effects on the structure of
the elastic cross section can be expected to be much smaller
than the experimental uncertainties. Therefore it should be a
valid assumption to neglect these channels in the comparison of
elastic cross sections. The threshold for positronium formation
is given by EPs = Eion − 6.8 eV [5]. The experimental value
for the first ionization energy (at the peak maximum) was
measured by Potts et al. [7] to be Eion ≈ 9.8 eV, which gives
EPs ≈ 3.0 eV.

This paper is organized in the following way: In the next
section we describe our theoretical model and our computa-
tional procedure. In Sec. III we compare our computations
with the experimental differential and integral cross sections
and, to improve on this comparison, we further add the
computed partial cross section for the forward scattering which
are corrected for the effects originating from the angular
discrimination correction. The paper ends with presenting our
conclusions in Sec. IV.

II. THEORETICAL AND COMPUTATIONAL METHODS

A. Scattering equations

In order to obtain the scattering cross sections for poly-
atomic molecules, we need to solve the Schrödinger equation
of the total system,

(H − E)� = 0, (1)

at the total energy E, for the corresponding wave function �.
Here H is the total Hamiltonian given by

H = Hmol + K + V, (2)

where Hmol,K , and V represent the operators of the molecular
Hamiltonian, kinetic energy for the scattered positron, and
the interaction potential between the incident positron and the
target molecule, respectively. The Hmol further consists, in
general, of the rotational and vibrational parts,

Hmol = Hrot + Hvib, (3)

whereby we exclude, at the collision energies considered, elec-
tronic excitations, ionization, and the Ps formation channels.

The total wave function � is described in the body-fixed
(BF) reference frame, in which the z axis is taken along the
direction of the main molecular axis and is expanded around
a single-center (SCE) as

�(r1...rZ,rp|R) = �mol(r1...rZ|R)ϕ(rp|R), (4)

where

ϕ(rp|R) =
∑
lπμh

r−1
p u

πμ

lh (rp|R)Xπμ

hl (r̂p). (5)

In Eq. (4), ri represents the position vector of the ith electron
among the Z bound electrons in the target, taken from the center
of mass. �mol is the electronic wave function for the molecular
target at the nuclear geometry R. The continuum function
ϕ(rp|R) refers to the wave function of the scattered positron
under the full action of the field created by the molecular
electrons and by their response to the impinging positron as
described in [8]. Each u

πμ

lh is the radial part of the wave function
for the incident particle and the X

πμ

hl are the symmetry-adapted

angular basis functions (for more detailed information see, e.g.,
[9]). The suffix π stands for the irreducible representation (IR),
μ distinguishes the components of the basis, if its dimension
is greater than one, and h does the same within the same set
with angular momentum quantum number l.

We can now assume that the target molecule can be kept
fixed during the collision, since the molecular rotations and
vibrations are often slower when compared with the velocity of
the impinging positrons considered in the present study. This is
called the fixed-nuclear (FN) approximation [10] that ignores
the molecular term of Hmol in Eq. (2) and fixes the values
of all R at their equilibrium locations in the target molecule.
To solve the Schrödinger equation in the FN approximation,
we make use of the body-fixed (BF) system rather than the
laboratory frame, space-fixed (SF) frame of reference, because
a formulation in the former can be simpler, both conceptually
and computationally. The two systems are related through a
frame transformation scheme given, for example, by Chang
and Fano [10].

After substituting Eq. (4) into Eq. (1) under the FN approx-
imation, we obtain a set of coupled differential equations for
ulv where, for simplicity, v represents (πμh) collectively:{

d2

dr2
p

− l(l + 1)

r2
p

+ k2

}
ulv(rp|R)

= 2
∑
l′v′

〈lv|V|l′v′〉ul′v′ (rp|R), (6)

with

〈lv|V|l′v′〉 =
∫

dr̂pX∗
lv(r̂p)V (rp|R)Xl′v′(r̂p). (7)

When solving Eq. (6) under the boundary conditions that the
asymptotic form of ulv is represented by a sum containing out-
going spherical Bessel and Neumann functions we obtain the
corresponding S-matrix elements Slv

l′v′ . The actual numerical
procedure we have employed to solve that equation is given in
detail in [11,12].

The integral cross section (ICS) for the elastic scattering in
the BF frame is given by

σcc = π

k2

∑
lv

∑
l′v′

∣∣T lv
l′v′

∣∣2
, (8)

where the index cc indicates the close-coupling approach.
The T-matrix is defined as a function of the S and K

matrices,

T = 1 − S (9)

= 1 − (1 − iK) · (1 + iK)−1. (10)

The integral cross section diverges in the forward direction
in the presence of a molecular dipole moment, because
of the long-range interaction between the positron and the
molecular dipole moment. This problem can be solved by
applying the following closure formula for the differential
cross section [21]:

dσ

d�
(Jτ → J ′τ ′) = dσB

rd

d�
(Jτ → J ′τ ′)

+
∑
L

(
AL − AB

L

)
PL(cos θ ), (11)
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where Jτ and J ′τ ′ denote the initial and final rotational
level, respectively. The first quantity on the right-hand side
is the differential cross section for a rotating dipole using
the first Born approximation. The PL(cos θ ) are the Legendre
functions. The coefficients AL are computed from the K
matrices, which are obtained by solving the close-coupling
equations. The coefficients AB

L are computed from the K
matrices using the first Born approximation. Explicit formulas
for AL and AB

L are given in Gianturco and Jain [9]. The final
differential cross section is obtained by summation over the
different initial and final rotational levels,

dσ

d�
=

∑
JτJ ′τ ′

wJ

dσ

d�
(Jτ → J ′τ ′), (12)

where wJ is the relative occupation of the initial rotational
level J . The corresponding integral cross section in the SF
frame can be computed as

σ = σB
rd + σcc − σB

f d . (13)

Here σB
rd is the integral cross section for a rotating dipole

in the Born approximation. σcc is the integral cross section
obtained by solving the close-coupling equations in the FN
approximation and σB

f d is the integral cross section for a fixed
dipole. Further details can be found in Sanna and Gianturco
[21].

B. The DFT modeling of correlation and polarization

The interaction between the positron and the molecular
nuclei and electrons is specified by the total interaction
potential:

Vtot(re|R) = Vst(re|R) + Vpcp(re|R), (14)

which is the sum of the static potential Vst and the correlation-
polarization potential Vpcp. The static potential Vst is the exact
electrostatic interaction potential between the positron and
the nuclei and electrons in the molecule. The correlation-
polarization potential is modeled by the potential [12]:

Vpcp(re|R) =
{
Vcorr(re|R) for rp � rc

Vpol(re|R) for rp > rc

. (15)

Here Vcorr and Vpol are the short-range part and long-range parts
of the correlation-polarization potential. rc is the outermost
point, at which Vpol becomes larger than Vcorr. Vcorr is based on
the functional εe−p [ρ(re|R)] for the correlation energy of one
positron in an electron gas with density ρ(re|R). Boronski and
Nieminen [13] have derived interpolation formulas for εe−p.
Vcorr can be obtained from εe−p by the functional derivative
[12]:

Vcorr(re|R) = δ

δρ
{εe−p[ρ(re|R)]}. (16)

The long-range part Vpol of the correlation-polarization poten-
tial is given by

Vpol(re|R) = −
(

α0

2r4
+ α2

2r4
P2(cosθ )

)
, (17)

where α0 and α2 are the values of the isotropic and anisotropic
polarizabilities, respectively, and P2(cosθ ) is a Legendre
polynomial.

C. Computational details

The target molecule is constrained to its equilibrium
structure that belongs to the C2v symmetry. The molecular
geometry and the ground-state molecular orbitals are generated
with the GAUSSIAN 09 program package employing the PBE
density functional and aug-cc-pVTZ basis set [14]. The
computed molecular dipole moment is 2.32 Debye, which
compares well with the experimental value of 2.28 Debye
listed in Vaughan [15]. Our computed rotational constants
are A = 6.25 GHz, B = 6.04 GHz, and C = 3.08 GHz. This
is in good agreement with the corresponding experimental
values of Kisiel et al. [16]: 6.28, 6.07, and 3.08 GHz. With
the PBE functional the elements of the polarizability tensor
are computed to be αxx = 37.7 bohr3, αyy = 69.8 bohr3, and
αzz = 73.1 bohr3. These values are in good agreement with
computations by Hättig et al. [17] (31.5, 67.8, and 70.2
bohr3) using ab initio coupled cluster response theory and
computations by Jansik et al. [18] (37.0, 67.9, and 70.6 bohr3)
using the B3LYP functional. The isotropic polarizability can
be obtained by α0 = 1

3 (αxx + αyy + αzz), and the anisotropic
polarizability by α2 = −αxx + 1

2 (αyy + αzz).
The single-center expansions of the molecular electron

density and of the potential are done with an improved version
of the SCELIB3.0 computational library [19], to which we
have added the correlation-polarization potential specific for
modeling the interactions of the molecular electrons with slow
positrons. The coupled scattering equations are solved by
Volterra integration, using an improved version of the VOLSCAT

program package [20]. More specifically the VOLSCAT suite
of codes computes the integral cross section in the BF
frame (denoted previously as σcc) and therefore generates the
necessary body-fixed K matrices.

The body-fixed K matrices are then processed by the
program package POLYDCS [21], another in-house suite of
codes, that transforms the body-fixed K matrices into the
space-fixed K matrices and further applies the Born correction,
as outlined in our earlier publication by Sanna and Gianturco
[21]. From the space-fixed K matrices obtained in this way
we can further generate the state-to-state rotationally elastic
and inelastic differential and integral cross sections. During
the frame transformation step of the present calculations the
rotational eigenfunctions and eigenvalues for the asymmetric
top are in turn generated using the program ASYMTOP of Jain
and Thompson [22] with our computed rotational constants.

III. RESULTS AND DISCUSSION

A. Differential cross sections

In Figs. 1–6 the experimental and computed differential
cross sections (DCS) are reported for collision energies of
1, 3, 6, 10, 14, and 20 eV. In Fig. 5 the computed DCS at
14.0 eV is compared with the experimental DCS at 15.0 eV.
At all other energies the computations are done for the same
energies as in the experiments. The scattering machine at ANU
produces differential cross sections, that are folded at 90◦ (i.e.,
the value shown at 80◦ is the sum of the values at 80◦ and
100◦). Therefore we folded our computed data also at 90◦
and the same with the theoretical data given in Palihawadana
et al. [4]. The data of Palihawadana et al. [4] are shown by
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FIG. 1. (Color online) Differential cross sections (DCS) for
positron scattering off gas-phase pyrimidine at a collision energy
of 1.0 eV. The DCS is folded at 90◦. Computed results are shown by
the solid black line. The experimental data by Palihawadana et al. [4]
is given by the red diamonds. See text for more details.

the red diamonds. The error bars show the statistical errors
of the experiments, but not their total error. The uncertainty
in the energy is estimated to be ± 25 meV [4]. Our computed
differential cross section is given by the solid black line.

In all cross sections one can easily see the strong increase
of these cross sections in the forward scattering direction, i.e.,
at smaller angles. It is reassuring to see that the shape and
magnitude of the two compared cross sections are in good
agreement with each other.

At all energies the experiments have slightly higher values
than the theory for scattering angles below about 30◦.

The experiments were performed by temperatures of 24◦ ±
2◦C. Due to the finite energy resolution in the experiments,
rotational and vibrational inelastic collisions cannot be dis-
tinguished from elastic collisions. In our computations we
are considering only rotational transitions from the rotational
ground state into the lowest five rotational levels. Therefore
the rotational temperature in our computations is 0 K. Further-
more we do not consider any vibrational inelastic processes.
However, we estimate these effects to be small in comparison
with the experimental uncertainties. In the appendix we show
that for a rigid rotor with the same parameters as the molecule
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FIG. 2. (Color online) Same as Fig. 1 for a collision energy of
3.0 eV.
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FIG. 3. (Color online) Same as Fig. 1 for a collision energy of
6.0 eV.

under consideration, the temperature effects are rather small
for collisional energies between 1 and 20 eV.

On the whole, however, we can say that the present
calculations follow rather closely, both in size and angular
behavior, the existing experimental DCS for the present
system.

B. Integral cross sections

Figure 7 now reports the computed integral cross sections
for various partial wave expansions that we have tested in
the present computational runs. The thick lines in the lower
part of the panel show the cross sections computed in the BF
frame, while the thin lines show the integral cross sections
after applying the Born dipole correction in the SF reference
frame and summing over the rotational elastic and inelastic
channels as described in detail in the POLYDCS code [21]. When
performing the summation over rotational channels, the zeroth
level is included as the initial state and the first five states are
also included as final rotational channels. One can see that the
convergence of the results in the body frame is fairly slow with
respect to the partial wave expansion: This slow convergence
with respect to the increase in size of the partial wave expansion
is well known for molecular systems with large permanent
dipole moments. In the SF calculation we also clearly see that
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FIG. 4. (Color online) Same as Fig. 1 for a collision energy of
10.0 eV.
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FIG. 5. (Color online) Same as Fig. 1, but showing calculations
at collision energy of 14.0 eV and experimental data at 15.0 eV.

all the computed cross sections are instead very close to each
other and the convergence with respect to the partial wave
expansion is occurring much faster. In fact, the results for
lmax = 20 are nearly coincident with the results for lmax = 50.

In Fig. 8 our computational results are compared with the
experimental ICS of Zecca et al. [3] and two sets of data
measured Palihawadana et al. [4]. The experimental raw data
is shown by the solid symbols with error bars. The open
symbols show the experimental data after doing the correction
for forward scattering, which is described below.

In our computations, shown by the solid black line, we
use the partial wave expansion up to lmax = 50 and include
the Born dipole correction. The results are therefore obtained
within the SF frame as discussed before and we therefore car-
ried out a summation over all the rotational elastic and inelastic
channels included to reach convergence in the expansion.

All the experimental cross section, discussed below as
elastic integral cross sections also contain contributions, not
resolved, from transitions to the accessible rotational and
vibrational inelastic channels: This is due to the limited energy
resolution of the experimental setups used by Zecca et al. [3]
and Palihawadana et al. [4].

The experimental data by Zecca et al. [3] are shown by
the red circles. The paper by Palihawadana et al. [4] actually
contains two sets of data, which can be used to represent the
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FIG. 6. (Color online) Same as Fig. 1 for a collision energy of
20.0 eV.
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FIG. 7. (Color online) Computed integral cross sections for
positron scattering off gas-phase pyrimidine using different partial
wave expansions. The thick lines in the lower part represent computa-
tions in the body-fixed (BF) frame. The thin lines are the calculations
done in the space-fixed (SF) frame including Born dipole correction
and summation over rotational elastic and inelastic channels.

elastic integral cross sections. The data shown by the blue
diamonds have been calculated as

σ diff
E = σT − σPs − σI, (18)

which we obtained by subtracting the measured cross sections
for positronium formation σPs and ionization σI from the
measured total cross sections σT. The error bars shown are
the statistical errors (�σT) given in Palihawadana et al. [4] for
the total cross sections. The paper by Palihawadana et al. [4]
contains another set of data from a direct measurement of the
elastic integral cross sections, which is shown by the solid
green squares.

All the experiments are using a linear transmission tech-
nique. Scattering events with a scattering angle smaller
than a certain angle θmin cannot be distinguished from the
unscattered particles of the positron beam. Therefore in the
linear transmission experiments all scattering events within
this angular cone in forward direction are missing in the elastic
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FIG. 8. (Color online) Computed and measured elastic integral
cross sections for positron scattering. The new computational data
are shown by the solid black line. The uncorrected experimental data
are shown by solid symbols, the corrected experimental data by open
symbols. (Zecca et al. [3], red circles; Palihawadana et al. [4], blue
diamonds and green squares). See text for further details.
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cross sections (see, e.g., Sullivan et al. [23] for a general
discussion). The scattering machines in Trento and at ANU
are using a retarding potential technique. For such a machine
Kauppila et al. [24] and Kwan et al. [25] are suggesting to
estimate the angle θmin as a function of the retarding potential
�V and the collision energy E by the following relation:

θmin = sin−1

√
e�V

E
. (19)

Here e is the elementary charge. The physical idea behind
this equation is as follows: After the collision the positron
velocity has a component in axial direction and a component
in transversal direction. The corresponding contributions of
the kinetic energy are Eaxial = E cos2 θ and Etrans = E sin2 θ .
The retarding potential is located between the scattering cell
and the detector. The potential affects only the axial part of the
kinetic energy. All scattered particles with a transversal kinetic
energy, that is, larger than the retarding potential are reaching
the detector, and, hence, are counted as unscattered particles.
The minimal transversal kinetic energy for this to happen is

Etrans = eδV, (20)

which gives the expression above for the angular discrimina-
tion error θmin.

In order to correct the experimental data for the particles
scattered into the forward cone, we have added to the
experimental data the following part:

σ forward
E = 2π

∫ θmin

0

dσcalc

d�
sin θdθ, (21)

which contains the integral over our computed differential
cross sections dσcalc

d�
carried out between the forward direction

and the angular discrimination angle θmin.
In the experiments by Zecca et al. the retarding potential is

�V = 90 mV. The experimental values of Zecca et al., cor-
rected by this procedure, are given by the open red circles. Most
of the experimental values we have corrected with computed
data at the same energies. However, experimental data at the
collision energies of 2.35, 3.15, 7.8, 10.3, 20.3, and 25.15 eV
are corrected with computational data, which were carried out
at the energies of 2.5, 3.0, 8.0, 10.0, 20.0, and 25.0 eV.

For the two data sets in the experiments by Palihawadana
et al. [4] different retarding potentials have been used. In the
data set, which is obtained as the difference between total
cross section and the cross sections for positronium formation
and ionization, the retarding potential is �V = 72.8 mV. The
corrected data points are shown by the open blue diamonds. In
the direct measurement of the elastic cross section the retarding
potential is �V = 378 mV. The correction data points are
shown by the open green squares.

As mentioned in the previous subsection the molecular gas
in the experiments close to standard room temperature (at
24◦ ± 2◦ C) and contains rotational and vibrational inelastic
and elastic cross sections. In contrast, in our computations
we do not consider vibrational effects and all molecules are
initially in the rotational ground state. We estimate that at
collisional energies above 1 eV these effects are rather small
compared to other uncertainties in the experiments and in the
modeling. A more detailed analysis of the temperature effects
can be found in the Appendix.

We see that, after correcting for the angular discrimination
error in the three experimental data sets, all measured data
sets are in good agreement with each other and also with our
present calculated values: Such a result is certainly a reassuring
confirmation for the quality of the quantum scattering model
we have employed. It is interesting to note that even after
adding the corrections to the experimental data, the corrected
data points are below the computed values, whereas in the
differential cross sections the experimental values are above
the computed values. One reason might be that the angular
discrimination error is larger than value for θmin by using
Eq. (19) and the given values for the retarding potential �V .
Another reason might be differences in the experimental setup
in the measurement of the differential and the integral cross
sections and a different calibration of the absolute values.

IV. PRESENT CONCLUSIONS

This work reports quantum scattering calculations for the
low-energy positron scattering from gas-phase molecules of
pyrimidine. The details of our method have been provided
summarily in Sec. II and indicate that one needs to pay
special attention to the cross sections computed under the
additional difficulties which are imposed by the presence of
the permanent dipole moment in the pyrimidine target. In the
recent literature we found that there are three sets of data from
two different sources which report experimental determination
of the integral cross sections [3,4] and one set of additional
data at several energies which give experimental values for the
differential cross sections [4].

The three experimental sets of integral cross sections differ
in value among each other at energies below 5 eV. After
correcting the experimental cross-section data for the errors
related to the indeterminacy of the measured flux in the
regions of the forward angle scattering, the three modified
data sets are seen to be in good agreement with each other
and also with our calculated cross section. The corrections
for the forward angular cone turned out to be different for
each data set because the angular discrimination errors in the
experimental setups are in fact different in each case. We have
shown that one way of introducing the necessary corrections
involves an integral of the computed differential cross section
over the angular cone where the actual flux is being missed in
the experiments. This analysis clearly shows the importance
of having computed differential cross sections available for
the interactive evaluation of experimental findings. The good
accord between our calculations and the three experiments,
after correcting them for the above angular flux analysis,
indeed further confirms the reliable quality of the experimental
data by reproducing them well by using our quantum method.

We further show the remarkable reliability of our computed
differential cross sections in Sec. III by comparing them
in some detail with the available experimental DCS of
Palihawadana et al. [4]. We found, in fact, that the overall
agreement between measured and computed DCS data is rather
good, even if the experimental data tend to show larger cross
sections at angles between 10◦ and 20◦, which is also the region
of greater experimental difficulties in applying flux corrections
to the measured intensity of the beam of positrons.
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APPENDIX: SIMULATION OF FINITE
TEMPERATURE EFFECTS

The computed results, which are presented in the main
section of the text, are valid for a temperature T = 0 K.
In contrast the experiments have been performed with the
molecular gas at room temperature.

In this Appendix we want to study the effects of a finite
temperature on the total cross section. For this purpose we
have set up a simple model system. The rotating molecule
is represented by a rigid rotor instead of the more correct
asymmetric top. The population of the rotational levels follows
a Boltzmann distribution. The total cross section for a given
collision energy Escat and a given temperature T of the
molecular gas is given by

σ (Escat,T ) = 1

Z

(
Jmax∑
J=0

(2J + 1)e− EJ
kT σ (Escat,J,J + 1)

+
Jmax∑
J=1

(2J − 1)e− EJ
kT σ (Escat,J,J − 1)

)
,

(A1)

where

Z =
Jmax∑
J=0

(2J + 1)e− EJ
kT . (A2)

The rotational energy levels are those of the rigid rotor,

EJ = BeffJ (J + 1), (A3)

where we have chosen the effective parameter Beff so that
the energy differences for the first dipole allowed rotational
transition from the rotational ground state are the same for
the rigid rotor and the asymmetric top as computed with the
Hamiltonian of Jain and Thompson [22]. In the first Born
approximation the rotational inelastic cross section caused by
the dipole moment D is given by [21]

σ (Escat,J,J ′) = 8πD2

3k2
ln

k + k′

|k − k′| , (A4)
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FIG. 9. (Color online) Computed integral cross sections. The
close-coupling data are shown by the solid black line. The Born-dipole
cross section at T = 0 K is shown by the broken black line. The
Born-dipole cross sections for five different temperatures are shown
by the thin red lines. The highest red line shows the cross section at
T = 100 K; the following lines show the data for temperatures 200 K,
300 K, 500 K, and 1000 K.

where

k =
√

2Escat, (A5)

and

k′ =
√

2(Escat + EJ − EJ ′ ). (A6)

In Fig. 9 we compare the close-coupling results and the
Born-dipole approximation at T = 0 K with results obtained
with our simple model at five different temperatures: 100 K,
200 K, 300 K, 500 K, and 1000 K. The effects of the
temperature on the Born-dipole cross section are so small,
that they are hardly visible in the figure. In Fig. 10 we present
the same data sets, this time using a logarithmic scale for the
cross section. It can be seen that an increase of the temperature
molecular gas is causing the integral cross section to decrease.
In conclusion we can say that in the range of collisional
energies under consideration in this study, the effect of the
rotational temperature on the integral cross section should be
less than one percent and therefore we neglect it in our close-
coupling cross section. It should be noted that the influence
of the rotational temperature will be much larger at lower
collisional energies in the regime of a few meV and below.
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FIG. 10. (Color online) Same as Fig. 9 but in logarithmic scale.
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