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A B S T R A C T   

Air pollution remains a considerable contemporary challenge affecting life quality, the environment, and eco-
nomic well-being. It encompasses an array of pollutants—gases, particulate matter, biological molecule-
s—emanating from sources such as vehicle emissions, industrial activities, agriculture, and natural occurrences. 
Nitrogen dioxide (NO2), a harmful gas, is particularly abundant in densely populated urban areas. Given its 
detrimental impact on health and the environment, precise monitoring of NO2 levels is crucial for devising 
effective strategies to mitigate risks. However, precise measurement of NO2 presents challenges as it traditionally 
relies on expensive and heavy (therefore, stationary) equipment. This has led to the pursuit of more affordable 
alternatives, though their dependability is frequently questionable. This study introduces an innovative tech-
nique for precise calibration of low-cost NO2 sensors. Our methodology involves statistical preprocessing of 
sensor measurements to align their distributions with reference data. The core of the calibration model is an 
artificial neural network (ANN), trained to synchronize sensor and reference time series measurements. It in-
corporates environmental variables such as temperature, humidity, and atmospheric pressure, along with 
readings from redundant NO2 sensors for cross-referencing, and short time series of primary sensor NO2 mea-
surements. This enables efficient learning of typical sensor changes over time in relation to these factors. 
Additionally, an interpolative kriging model serves as an auxiliary surrogate to enhance the correction process’s 
reliability. Validation using an autonomous monitoring platform from Gdansk University of Technology, Poland, 
and public reference station data gathered over five months shows remarkable calibration accuracy, with a 
correlation coefficient close to 0.95 and RMSE of 2.4 µg/m3. These results position the corrected sensor as an 
attractive and cost-effective alternative to conventional NO2 measurement methods.   

1. Introduction 

Nitrogen dioxide (NO2) pollution, originating from sources such as 
vehicle emissions, industrial processes, and combustion, remains a 
critical environmental issue. As part of nitrogen oxides (NOx), this gas 
significantly affects air quality, leading to health issues (e.g., respiratory 
problems, aggravating asthma, exacerbating lung diseases), but also 
environmental damage. NO2 reacts in the atmosphere to form harmful 
particles and ozone impacting ecosystems, and even contributing to 
climate change [1–8]. NOx emissions notably contribute to the forma-
tion of photochemical smog, the onset of acid rain, and ecological 
deterioration in water reservoirs [9]. Additionally, elevated NOx levels 
can raise O3 levels, adversely impacting agriculture, also causing harm 

to materials, such as accelerating the corrosion of various metals [10]. 
Monitoring and mitigating NO2 levels are crucial for addressing their 
detrimental impact on both human health and the environment [13]. 
Rigorous regulations, like the CAFE Directive, aim to control NO2 con-
centrations, setting an annual average below 40 µg/m3 and restricting 
hourly levels to not surpass 200 µg/m3 for more than 18 h per year [11]. 
Even stricter limits have been suggested by the World Health Organi-
zation (WHO) [12]. Despite these measures, nearly fifteen percent of 
European monitoring stations report NO2 levels exceeding these limits, 
notably in urban areas and along transportation routes. The economic 
repercussions of air pollution, including NO2, are substantial [2,12]. An 
interesting study on raising awareness of air quality issues and the ne-
cessity for developing collective air monitoring platforms can be found 
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Fig. 1. Autonomous air monitoring platform designed at Gdansk University of Technology, Poland: (a) block diagram, (b) included sensors, (c) internals (top view), 
(d) internals (bottom view), (e) the system mounted in weather-proof enclosure, (f) major specifications of the NO2 sensors. (See above-mentioned references for 
further information.) 

Fig. 2. Outputs of the monitoring platform of Section 2.1: (a) NO2 reading from the low-cost sensor under calibration (ys). The sensor also produces auxiliary outputs: 
auxiliary NO2 readings (S1 and S2), outside and inside temperature (To and Ti, respectively), outside and inside humidity (Ho and Hi, respectively), and atmospheric 
pressure (P); (b) symbols of data produced by the platform’s sensors; N stands for the total number of data samples obtained from the platform, further divided into 
training and testing sets. 
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in Kosmidis et al. [71]. 
Conventional NO2 measurement techniques rely on stationary and 

heavy equipment, requiring controlled environments and frequent up-
keep. Commonly employed methods include photofragment chem-
iluminescence [14], cavity ring spectroscopy [15], long-range 
differential optical absorption spectroscopy [16], and laser-induced 
fluorescence [17]. While these techniques offer high sensitivity, some 
come with limitations such as unsuitability for localized monitoring [16] 
or the need for sophisticated hardware (e.g., a vacuum system and a 
pulsed laser [17]). The drawbacks associated with traditional mea-
surement techniques have driven the development of more affordable 
and user-friendly alternatives. Significant efforts have been focused on 
creating portable platforms, particularly beneficial in urban areas 
characterized by uneven pollutant distribution [18–20]. However, 
inexpensive sensors, while cost-effective, often suffer from notable 
inaccuracies [21–23], owing to factors like instability [24], sensitivity to 
other gases [25–27], manufacturing variations [28,29], and suscepti-
bility to environmental conditions such as temperature and humidity 
[30,31]. Despite these challenges, integrating low-cost sensors alongside 
sparsely positioned reference stations [32] can be valuable [72,73], 
especially in establishing comprehensive sensor networks [33,34], 
whether deployed on ground or aerial vehicles [35,36,74]. 

Enhancing the dependability of cost-efficient sensors remains crucial 
for reliable and portable air quality monitoring. Extensive research has 
been dedicated to developing effective calibration methods, broadly 

categorized into laboratory-based and field-based approaches [37]. 
While laboratory methods are theoretically more reliable, they often 
lack practicality as sensor performance in controlled lab settings differs 
from real-world conditions [21,22]. As a result, field-based methodol-
ogies are currently prevalent, relying on reference data obtained from 
high-performance public monitoring stations. Calibration itself 
commonly involves conventional regression models or more advanced 
machine learning techniques, often leveraging environmental factors 
such as temperature and humidity. For instance, in Nowack et al. [38], 
multivariate linear regression (MLR), support vector regression (SVR), 
and random forest regression (RFR) were utilized to calibrate electro-
chemical NO and NO2 sensors. Another study, [39], employed ridge 
regression, random forest regression (RFR), Gaussian process regression 
(GPR), and MLR to correct low-cost NO2 and PM10 sensors. Furthermore, 
in Jain et al. [40], MLR was used for the calibration of a chem-
iluminescence NO-NO2-NOx analyzer. Numerous other research works 
have explored a variety of regression models for sensor calibration, as 
documented in the literature, e.g., [41–46,75,76]. 

Recently, artificial intelligence methods, particularly neural net-
works (NNs) and various machine learning techniques, have garnered 
increased attention for achieving more accurate correction of low-cost 
sensors. For instance, in Han et al. [32], single linear regression (SLR), 
multivariate linear regression (MLR), random forest regression (RFR), 
and long short-term memory networks (LSTM) were employed to cali-
brate CO, NO2, O3, and SO2 sensors. Comparative analysis highlighted 

Fig. 3. Reference monitoring stations used to gather reference data: (a) station locations in the city of Gdansk, (b) a photograph of the selected station with the low- 
cost platform mounted in the vicinity. 

Fig. 4. Division of the reference and low-cost sensor data into training and testing set.  
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the superior performance of LSTM over traditional regression methods. 
Additionally, in Yu et al. [18], convolutional neural networks (CNNs) 
and recurrent neural networks (RNNs) were used to correct CO and O3 
sensors, leveraging temperature and humidity data, showcasing ad-
vantages over various regression techniques. In another study, [47], a 
multi-layer perceptron was employed for temporal correction of PM2.5 
sensors, demonstrating its efficiency compared to other methods. 
Moreover, in [48], calibration of a three-electrode NO2 electrochemical 
sensor revealed the superior effectiveness of neural network-based 
correction over diverse regression methods. The literature contains 
numerous studies demonstrating the application of various NN surro-
gates, such as Bayesian NNs, shallow NNs, or dynamic NNs, for low-cost 
sensor calibration [49–52], as well as combinations of ANN with other 
correction mechanisms, e.g., global response correction [70]. A 
comprehensive study involving a comparison of different low-cost 
sensor calibration techniques, both regression-based (MLR, RFR, SVM) 
and AI-based (ANN), has been provided in Suriano and Penza [77]. 

Within this study, a novel technique for accurate calibration of low- 

cost NO2 sensors is introduced. This method involves statistical pre-
processing of sensor measurements to initially match their distributions 
with reference data. The primary calibration model is an artificial neural 
network (ANN), trained to align sensor and reference (short) time series 
measurements. It utilizes inputs encompassing environmental variables 
like temperature, humidity, and pressure, along with readings from 
supplementary NO2 sensors to facilitate cross-referencing. Incorporating 
and matching prior NO2 readings enables the ANN metamodel to un-
derstand typical temporal sensor changes as a function of these factors. 
Additionally, an interpolative kriging model serves as an auxiliary sur-
rogate, enhancing the overall reliability of the correction process. The 
proposed calibration approach underwent validation by applying it to 
an NO2 sensor integrated into an autonomous monitoring platform 
developed at Gdansk University of Technology, Poland. This platform 
incorporates electronic circuitry for managing air monitoring processes 
and facilitating wireless data transfer. Reference data used for validation 
was collected from high-precision public stations situated in Gdansk. 
The results underscore the remarkable dependability of our calibration 

Fig. 5. Low-cost sensor calibration: (a) identification of the calibration model by solving a nonlinear regression problem that aims at matching the corrected sensor 
time series with the respective reference ones; (b) the overall flow of sensor calibration. Auxiliary data and sensor time series ys.Nt are used to evaluate the calibration 
model output MCAL(ys.Nt,zs;p), which is then used to compute the corrected sensor output yc. 

Fig. 6. ANN surrogate used as the core calibration model. Here, we employ a multi-layer perceptron (MLP) with three fully-connected hidden layers.  
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technique. Achieving a correlation coefficient of 0.95 with reference 
data and an RMSE of 2.4 µg/m3 across a wide range of NO2 measure-
ments (from zero to sixty µg/m3) demonstrates the robustness of our 
method. Extensive comparative experiments highlight the significance 
of all correction mechanisms integrated into our framework, affirming 
their substantial contribution to the quality of sensor correction. 

2. Hardware: NO2 monitoring platform 

The calibration methodology outlined in this study will be demon-
strated through an autonomous monitoring platform developed at 
Gdansk University of Technology, Poland. Section 2.1 details the hard-
ware specifications, while Section 2.2 delves into the output data 
generated by the sensors installed on this platform. 

2.1. Hardware 

The considered monitoring platform is an integrated setup equipped 
with various sensors to measure environmental variables (temperature, 
humidity, atmospheric pressure), as well as nitrogen dioxide levels using 
a primary sensor and two redundant sensors. Furthermore, it in-
corporates a GSM modem to transmit measurement data wirelessly to 
the cloud. Coordinating the air quality monitoring protocols are off-the- 
shelf components managed by the BeagleBone® Blue microprocessor 
system [53], hosting a 1 GHz ARM® Cortex-A8 processor, 512 MB DDR3 
RAM, and 4 GB eMMC memory, running on the Linux operating system. 
The platform includes a rechargeable 7.4 V/4400 mA battery, which 

allows for sustaining operations for at least twenty hours without the 
necessity of using external power. 

Fig. 1 displays the platform’s block diagram and specifications of the 
employed sensor (Fig. 1(b)). Wireless data transmission is facilitated 
through the GSM modem, allowing the measurement data to be acces-
sible online. The system is installed on a polyethylene terephthalate base 
plate, as shown in Fig. 1(c). Gas sensors (ST, SGX, MICS) are positioned 
in close proximity to internal environmental sensor (cf. Fig. 1(c)), 
ensuring the monitoring of their operational conditions. An additional 
environmental sensor is positioned at the edge of the device. The in-
clusion of auxiliary sensors is aimed at managing disparities between 
external and internal temperatures and humidity, largely influenced by 
heat produced by the electronic circuitry. Additionally, an Intel USB 
Stick module is integrated for potential on-board execution of calibra-
tion procedures. The entire platform is housed within a weatherproof 
enclosure, as depicted in Fig. 1(e). 

2.2. Autonomous monitoring platform: Output data 

The monitoring platform described in Section 2.1 acquires NO2 
measurements from the primary sensor and two auxiliary sensors, along 
with environmental parameters (temperature, humidity, atmospheric 
pressure). These outputs are visually depicted in Fig. 2(a). Fig. 2(b) 
provides the notation used across the paper. It is important to highlight 
that the platform captures both internal (near the NO2 sensors) and 
external (at the platform’s edge) environmental data. The internal and 
external temperature and humidity differ due to the heat produced by 

Fig. 7. Time series alignment obtained using the ANN surrogate for Nt = 6. Shown are the raw (uncorrected) low-cost sensor data (black), reference time series (red), 
and ANN-predicted sensor time series (blue). Significant improvement of the data alignment can be observed: (a) selected training points, (b) selected testing points. 
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the electronic circuitry. Given their impact on sensor operation, incor-
porating both sets of data could bolster the reliability of the calibration 
process. Additionally, while the auxiliary NO2 sensors may lack accu-
racy, their readings still offer indirect but valuable insights into factors 
influencing the primary sensor, particularly its cross-sensitivity to other 
gases. 

3. Reference data. Public monitoring stations 

The data used for calibrating the low-cost NO2 sensor originates from 
high-precision public monitoring stations operated by the ARMAG 
Foundation [58] in Gdansk, Poland. These stations’ locations are indi-
cated in Fig. 3(a). Housed within air-conditioned containers, these sta-
tions are equipped with air monitoring instruments. 

Specifically, AM1 and AM3 utilize Thermo Environmental 43C 
chemiluminescent NOx analyzers, while AM8 uses API Teledyne 200E 
chemiluminescent NOx analyzer. ARMAG provides open access to the 
monitoring data (https://armaag.gda.pl/en/). These stations conduct 
measurements hourly, and the data is accessible on the foundation’s 
website for three days. To extend data collection, a custom script au-
tomates the acquisition of this information into a text file hosted on a 
dedicated server. 

The low-cost measurement platforms were placed in close proximity 
to the corresponding reference stations to ensure that they work under 
the same environmental conditions and that the NO2 concentration is 
similar. In most cases, the portable measurement platform was placed on 
the roof of the reference station as illustrated in Fig. 3(b). The platform 
was placed on the fence surrounding the reference station in one case. 
The low-cost platforms were placed around two meters above the 
ground level in all cases. 

4. Calibration using ANN surrogates and time series matching 

In this part of the article, we introduce the proposed cost-efficient 

sensor calibration methodology. The calibration problem is formulated 
in Section 4.1. Sections 4.2 and 4.3 elucidate an artificial neural network 
(ANN) surrogate and kriging interpolation being the primary and sup-
plementary calibration models, respectively. Section 4.4 discusses sta-
tistical data pre-processing, which is an auxiliary step carried out before 
launching the main calibration step, and greatly improving the reference 
and low-cost measurement alignment. The complete correction work-
flow is summarized in Section 4.5. 

4.1. Formulation of the calibration problem 

Calibration of the low-cost sensor is based on datasets from two 
sources. The first one includes NO2 readings obtained from the reference 
stations outlined in Section 3. The reference samples are denoted as yr

(j), 
j = 1, …, N, where N is the total number of points. The second dataset 
encompasses measurements provided by the autonomous platform of 
Section 2 (cf. Fig. 2). The NO2 readings from the sensor ys

(j), j = 1, …, N, 
accompanied by environmental parameters and auxiliary nitrogen di-
oxide measurements, jointly marked as zs = [To

(j) Ti
(j) Ho

(j) Hi
(j) P(j) S1

( j) 

S2
( j)]T, j = 1, …, N. In addition to that we also consider short time series of 

prior NO2 measurements from the reference stations and the low-cost 
sensors, denoted as yr.Nt and ys.Nt, respectively, where Nt stands for the 
time series length. More specifically, we have 

yr.Nt
= [yr(− NtΔt) yr(− (Nt − 1)Δt) ... yr(− 2Δt) yr(− Δt) yr(0)]T (1)  

and 

ys.Nt
= [ys(− NtΔt) ys(− (Nt − 1)Δt) ... ys(− 2Δt) ys(− Δt) ys(0)]T (2)  

where Δt is the time interval between measurements, yr(0) and ys(0) 
denote the most recent reading, whereas yr(–kΔt) and ys(–kΔt) denote 
readings taken k time intervals earlier. In particular, the vector yr.Nt

(j) 

contains the reading yr
(j) as well as Nt readings taken before it. 

Data partitioning into training and testing sets has been illustrated in 

Fig. 8. Surrogate modelling using kriging interpolation.  
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Fig. 9. Reference versus low-cost sensor data: (a) selected subsets of reference and low-cost sensor training data showing considerable disparity between typical NO2 
reading levels; (b) histograms of the reference NO2 readings (top) and raw (uncorrected) low-cost sensor NO2 measurements (bottom), obtained for the complete 
training datasets. The statistical distribution for the low-cost sensor is shifted towards lower values, which corroborates that the typical readings are lower than for 
the reference. 

Fig. 10. Statistical pre-processing of low-cost sensor data.  
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Fig. 4. The testing set encompasses several two-week sequences gath-
ered at various time intervals over the five-month measurement 
campaign, as described in Section 5. The calibration model to be dis-
cussed in Section 4.3 is identified using the the training datasets 
{yr0.Nt

(j)}, {ys0.Nt
(j)}, and {zs0

( j)}, j = 1, …, N0 (cf. Fig. 4). The calibration 
model output is denoted as yc.Nt = MCAL(ys.Nt,zs;p), where p denotes the 
calibration model hyper-parameters, i.e., it returns the complete Nt-long 
time series, which is necessary for model identification. However, the 
final outcome if the calibration process is only yc(0), i.e., the prediction 
of the current corrected NO2 reading. It will be denoted as yc =

FCAL(MCAL(ys.Nt,zs;p)) = FCAL(yc); thus FCAL simply extract the last 
component of the vector yc produced by MCAL.Fig. 5. 

Using this terminology, the calibration problem is posed as a 
nonlinear regression task of the form 

p* = argmin
p

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N0

j=1

⃦
⃦
⃦y(j)

r0.Nt
− MCAL

(
y(j)

s0.Nt
, z(j)

s0 ; p)
)⃦
⃦
⃦

2

√
√
√
√ (1) 

In other words, the calibration model is trained to match the cor-
rected low-cost sensor time series with those of the reference across the 
entire training set. The matching is understood in the least-square sense. 

4.2. Primary calibration model: Artificial neural network 

The primary calibration model utilized in this study employs an 
artificial neural network (ANN) surrogate. Although recurrent neural 

networks (RNNs) are commonly used for handling time series data [59], 
the fixed length Nt of vectors yr.Nt and ys.Nt in our case favours the 
suitability of feedforward networks. Specifically, we utilize a multi-layer 
perceptron (MLP) [60,61] comprising three fully connected hidden 
layers, each incorporating twenty neurons with a sigmoid activation 
function, as depicted in Fig. 6. Training of the model involves the use of a 
backpropagation Levenberg-Marquardt algorithm [62] (setup: 1000 
learning epochs, assessment of performance via mean-square error 
(MSE), randomized division of training/testing data). The simplicity of 
the ANN’s structure allows for efficient identification and faster pro-
cessing. With a substantial training dataset (approximately 10,000 
samples), the surrogate acts effectively as a regression model, facili-
tating noise reduction inherent in both reference and low-cost sensor 
outputs. 

As elucidated in Section 4.1, the calibration model inputs are 
auxiliary parameters (vector zs) and the low-cost sensor time series ys.Nt. 
The output of the ANN surrogate is the predicted time series MCAL(ys.Nt, 
zs;p). In Section 5, we will analyse the impact on calibration efficacy by 
exploring different subsets of the vector zs as inputs, aiming to illustrate 
how the input configuration influences the calibration process. 

For the sake of illustration, Fig. 7 shows the selected time series of the 
raw (uncorrected) low-cost sensor, as well as the corresponding refer-
ence time series, and predictions made by the ANN calibration model. 
The data shown corresponds to Nt = 6. As indicated in the pictures, 
surrogate model predictions greatly improve the alignment between the 
reference and the low-cost sensor for the training data (Fig. 7(a)), which 

Fig. 11. Smoothened histograms: (a) reference and raw low-cost sensor, (b) reference and pre-processed low-cost sensor. Note that pre-processing aligns the 
measurement distributions of the low-cost sensor, thereby making isit better prepared for further calibration. 

Fig. 12. The effects of statistical pre-processing: (a) comparison between the reference data (red) and pre-processed (blue) low-cost sensor histogram (overlapping 
data marked purple); good alignment between the two datasets can be observed; (b) improvement of NO2 reading alignment illustrated for two selected subsets of the 
training data. 
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carries over to the testing data as well (Fig. 7(b)). This alignment, 
combined with other correction mechanism to be discussed later, en-
sures excellent performance of the calibration process. 

4.3. Secondary calibration Model: Kriging interpolation 

The ANN surrogate outlined in Section 4.2 is supported by a kriging 
interpolation model [63], utilized as a supplementary correction tool. 

Kriging is an immensely popular approach to behavioural modelling 
with countless engineering and scientific applications, e.g., [64–69]. 
Fig. 8 provides a brief formulation of kriging (here, using Gaussian 
correlation functions) assuming scalar outputs. In our case, independent 
models are rendered for each component of the vector yc.Nt. As indicated 
in Fig. 8, kriging encapsulates a regression part g(x)Tβ (typically, based 
on zero-, first- or second-order polynomials), and a stochastic part, 
which represents local departures from the regression model. The 

Fig. 13. Low-cost sensor calibration procedure as proposed in this study. Pre-processing of the sensor readings is followed by generating prediction of the calibrated 
time series MTOT using the combination of ANN and kriging surrogates. The final output yc is extracted as the last entry of the vector produced by the surrogates. 

Fig. 14. Details of the training and testing data gathered to calibrate the low-cost sensor of Section 2.  
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kriging hyper-parameters θk are obtained by means of maximum like-
lihood estimation. 

The kriging model inputs are identical to those utilized by the ANN 
surrogate (cf. Section 4.2). The output is denoted as MKR(ys.Nt,zs;pKR). 
Recall that kriging is interpolative, i.e., it ensures perfect approximation 
of the training data. However, its generalization capability is limited. 
Combining the two models enables better control over the balance be-
tween approximation and generalization. In practical realization, we use 
a convex combination of the NN and kriging surrogates, defined as 

MTOT(ys.Nt , zs, pTOT) = βMCAL(ys.Nt, zs, p)+ (1 − β)MKR(ys.Nt , zs, pKR) (2)  

where pTOT = [p pKR] is the overall parameter vector. Our initial ex-
periments indicate that the recommended setup of the convex combi-
nation coefficient, ensuring the best calibration quality, is β = 0.7. 

4.4. Auxiliary correction by statistical pre-processing of low-cost sensor 
readings 

In this study, we investigate an added correction method: statistical 
pre-processing of the low-cost sensor measurements. Fig. 9(a) indicates 
notable discrepancies in NO2 readings between the reference and low- 
cost sensors, evident in the histograms depicted in Fig. 9(b). Specif-
ically, the statistical distribution of the low-cost sensor data skews to-
wards lower values. The aim of this introduced pre-processing scheme is 
to mitigate this misalignment by initially adjusting the scaling of the 
sensor outputs. The specifics of the procedure are outlined in Fig. 10. 
Fig. 11 displays the smoothed histograms before and after pre- 
processing, demonstrating significant improvement in alignment. 

Direct comparisons between raw (non-smoothed) histograms are 
illustrated in Fig. 12(a), while Fig. 12(b) highlights the impact of pre- 
processing on selected subsets of the training data. Pre-processing 
serves as the initial calibration step, succeeded by surrogate-assisted 
correction. 

4.5. NO2 monitoring using calibrated low-cost sensor 

This section encapsulates the operational flow of NO2 monitoring 
utilizing the calibrated low-cost sensor. The measurement procedure 
incorporates the mechanisms delineated in Sections 4.2, 4.3, and 4.4. 
The initial phase involves pre-processing, as elucidated in Section 4.4, 
employing nonlinear scaling P(ys,s) derived from aligning reference and 
low-cost sensor histograms. Following this, the ANN and kriging sur-
rogates predict the (local) time series of corrected model outputs. Both 
predictions are blended in the form of convex combination. The final 
result—the NO2 sensor reading at the current time point is extracted as 

the last entry of the vector produced by the surrogates. A flow diagram 
detailing the complete process is presented in Fig. 13. 

The calibration models, including ANN and kriging, were imple-
mented in Matlab [78], the primary programming environment for 
conducting numerical experiments and generating the output data and 
visualizations. In particular, build-in Matlab’s capabilities (specifically, 
the Deep Learning Toolbox [78]) were used. No input data normaliza-
tion was employed, i.e., all calibration model inputs were presented to 
the respective calibration models without any modifications (e.g., 
normalization, etc.). 

5. Results and discussion 

This section showcases the implementation of the suggested cali-
bration methodology for the low-cost NO2 sensor integrated into the 
autonomous monitoring platform detailed in Section 2. The content in 
this section of the article is structured as follows: Section 5.1 elaborates 
on the reference and sensor datasets, followed by the presentation of 
results for various calibration model setups in Section 5.2. Section 5.3 
encapsulates a summary of the study’s findings. 

5.1. Reference and low-cost sensor datasets 

The validation of the proposed calibration procedure utilized data-
sets sourced from the reference stations (as detailed in Section 3) and the 
monitoring platforms (outlined in Section 2). The data was collected 
hourly spanning from March to August 2023, cf. Fig. 14. Fig. 15 show-
cases selected subsets of the reference and uncorrected low-cost sensor 
training and testing data, highlighting notable disparities between the 
readings from the reference and the sensor. These disparities pose a 
significant challenge to the calibration process. 

5.2. Results 

This section compiles the calibration outcomes for the low-cost NO2 
sensor integrated into the monitoring platform from Section 2. Multiple 
calibration setups are examined to showcase the importance of specific 
correction mechanisms. These include constraints on the number and 
nature of input parameters in the calibration model, as well as the se-
lective activation/deactivation of the auxiliary (kriging interpolation) 
surrogate and statistical data pre-processing. All configurations under 
review are listed in Table 1. Each configuration underwent ten inde-
pendent training cycles of the ANN surrogate, and the model with the 
best set of hyper-parameters was selected as the definitive surrogate. 

The calibration setups are split into four groups. Group G1 utilizes 
various combinations of calibration model inputs as indicated in Table 1. 

Fig. 15. Selected subsets of NO2 readings from the reference stations and the raw (uncorrected) low-cost sensors: (a) training data, (b) testing data.  
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Also, the sensor correction is arranged as affine scaling of the type yc = A 
(ys + D), with the correction coefficients predicted by the calibration 
surrogates. The last two setups (G1.8 and G1.9) additionally utilize 

Table 1 
Input setups of the calibration model considered in verification experiments.  

Calibration 
setup 

Calibration 
model 

Calibration input variables Pre- 
processing 

Auxiliary 
data 

NO2 

reading 
from 
primary 
sensor (ys) 

Time 
series 
ys.Nt 

G1.1 ANN Restricted 
(To, Ti, Ho, 
and Hi) 

× × ×

G1.2 ANN Restricted 
(zs without 
P) 

× × ×

G1.3 ANN +
Kriging 

Restricted 
(zs without 
P) 

× × ×

G1.4 ANN Restricted 
(zs without 
P) 

✓ × ×

G1.5 ANN +
Kriging 

Restricted 
(zs without 
P) 

✓ × ×

G1.6 ANN Complete zs ✓ × ×

G1.7 ANN +
Kriging 

Complete zs ✓ × ×

G1.8 ANN +
global 
scaling 

Complete zs ✓ × ×

G1.9 ANN +
Kriging +
global 
scaling 

Complete zs ✓ × ×

G2.1 ANN Complete zs ✓ ✓(Nt 

= 1) 
×

G2.2 ANN Complete zs ✓ ✓(Nt 

= 2) 
×

G2.3 ANN Complete zs ✓ ✓(Nt 

= 3) 
×

G2.4 ANN Complete zs ✓ ✓(Nt 

= 4) 
×

G2.5 ANN Complete zs ✓ ✓(Nt 

= 5) 
×

G2.6 ANN Complete zs ✓ ✓(Nt 

= 6) 
×

G2.7 ANN Complete zs ✓ ✓(Nt 

= 7) 
×

G2.8 ANN Complete zs ✓ ✓(Nt 

= 8) 
×

G2.9 ANN Complete zs ✓ ✓(Nt 

= 9) 
×

G2.10 ANN Complete zs ✓ ✓(Nt 

= 10) 
×

G3.1 ANN Complete zs ✓ ✓(Nt 

= 1) 
✓ 

G3.2 ANN Complete zs ✓ ✓(Nt 

= 2) 
✓ 

G3.3 ANN Complete zs ✓ ✓(Nt 

= 3) 
✓ 

G3.4 ANN Complete zs ✓ ✓(Nt 

= 4) 
✓ 

G3.5 ANN Complete zs ✓ ✓(Nt 

= 5) 
✓ 

G3.6 ANN Complete zs ✓ ✓(Nt 

= 6) 
✓ 

G3.7 ANN Complete zs ✓ ✓(Nt 

= 7) 
✓ 

G3.8 ANN Complete zs ✓ ✓(Nt 

= 8) 
✓ 

G3.9 ANN Complete zs ✓ ✓(Nt 

= 9) 
✓ 

G3.10 ANN Complete zs ✓ ✓(Nt 

= 10) 
✓ 

G4.1 ANN +
Kriging 

Complete zs ✓ ✓(Nt 

= 1) 
✓ 

G4.2 ANN +
Kriging 

Complete zs ✓ ✓(Nt 

= 2) 
✓  

Table 1 (continued ) 

Calibration 
setup 

Calibration 
model 

Calibration input variables Pre- 
processing 

Auxiliary 
data 

NO2 

reading 
from 
primary 
sensor (ys) 

Time 
series 
ys.Nt 

G4.3 ANN +
Kriging 

Complete zs ✓ ✓(Nt 

= 3) 
✓ 

G4.4 ANN +
Kriging 

Complete zs ✓ ✓(Nt 

= 4) 
✓ 

G4.5 ANN +
Kriging 

Complete zs ✓ ✓(Nt 

= 5) 
✓ 

G4.6 ANN +
Kriging 

Complete zs ✓ ✓(Nt 

= 6) 
✓ 

G4.7 ANN +
Kriging 

Complete zs ✓ ✓(Nt 

= 7) 
✓ 

G4.8 ANN +
Kriging 

Complete zs ✓ ✓(Nt 

= 8) 
✓ 

G4.9 ANN +
Kriging 

Complete zs ✓ ✓(Nt 

= 9) 
✓ 

G4.10 ANN +
Kriging 

Complete zs ✓ ✓(Nt 

= 10) 
✓  

Table 2 
Sensor calibration performance: correlation coefficients and RMSE.  

Calibration 
setup 

Training data Testing data 

Correlation 
oefficient r 

RMSE 
[μg/m3] 

Correlation 
coefficient r 

RMSE 
[μg/m3] 

G1.1  0.82  4.0  0.702  5.6 
G1.2  0.89  3.0  0.811  4.3 
G1.3  0.95  2.2  0.819  4.4 
G1.4  0.91  2.8  0.838  4.0 
G1.5  0.95  2.0  0.849  3.9 
G1.6  0.93  2.5  0.859  3.9 
G1.7  0.96  1.8  0.861  3.8 
G1.8  0.94  2.4  0.878  3.6 
G1.9  0.96  1.7  0.883  3.5 
G2.1  0.95  2.0  0.915  2.9 
G2.2  0.96  1.8  0.928  2.8 
G2.3  0.96  1.8  0.930  2.7 
G2.4  0.96  1.9  0.932  2.7 
G2.5  0.96  1.9  0.932  2.7 
G2.6  0.96  2.0  0.934  2.7 
G2.7  0.96  2.0  0.934  2.7 
G2.8  0.96  2.0  0.932  2.7 
G2.9  0.96  2.0  0.932  2.7 
G2.10  0.96  2.0  0.930  2.7 
G3.1  0.95  2.0  0.920  2.9 
G3.2  0.96  1.9  0.933  2.8 
G3.3  0.96  1.8  0.933  2.7 
G3.4  0.96  1.9  0.936  2.6 
G3.5  0.96  1.9  0.935  2.6 
G3.6  0.96  1.9  0.937  2.6 
G3.7  0.96  1.9  0.939  2.5 
G3.8  0.96  2.0  0.937  2.6 
G3.9  0.96  1.9  0.938  2.6 
G3.10  0.96  1.9  0.935  2.6 
G4.1  0.96  2.0  0.929  2.7 
G4.2  0.97  1.6  0.939  2.5 
G4.3  0.98  1.4  0.939  2.5 
G4.4  0.97  1.5  0.940  2.5 
G4.5  0.98  1.4  0.942  2.4 
G4.6  0.98  1.5  0.945  2.4 
G4.7  0.97  1.5  0.945  2.4 
G4.8  0.97  1.5  0.940  2.5 
G4.9  0.97  1.6  0.940  2.5 
G4.10  0.97  1.6  0.938  2.7  
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global data scaling of the form yc = AG(ys + DG), where the coefficients 
AG and DG are established to improve the symmetry of the scatter plot for 
the complete training dataset. The remaining three groups of setups 
employ the calibration procedure described in this article, with different 
lengths of the time series Nt from one to ten. Group G2 only utilizes the 
ANN surrogate and does not employ pre-processing. Group G3 uses ANN 
and pre-processing, whereas group G4 employs all correction mecha-
nisms (ANN combined with kriging, and pre-processing). Experimenting 

with different Nt values enables us to identify the most effective time 
series length. 

The numerical data is available in Table 2, featuring correlation 
coefficients and modeling error values (RMSE) for both training and 
testing datasets. Definitions for these metrics can be found in Fig. 16. 
Visual representation of the data is presented for three specific cali-
bration setups: G1.2, G1.8, and G4.6. Fig. 17 exhibits the reference, raw 
low-cost sensor, and calibrated sensor NO2 measurements (training 

Fig. 16. Definitions of the correlation coefficient r and RMSE.  

Fig. 17. Sensor calibration performance for selected subsets of the training data: (a) setup G1.2, (b) setup G1.8, (c) setup G4.6.  
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data) for two selected eight-week periods. Fig. 18 illustrates similar in-
formation for testing data over three two-week periods, while Fig. 19 
demonstrates scatter plots for the testing data. 

5.3. Discussion 

The experiments detailed in Section 5.2 aimed to validate the overall 

effectiveness of the calibration process, particularly within group G4 
setups that encompass all correction mechanisms introduced in this 
study. Furthermore, we delved into the significance of specific compo-
nents (pre-processing, time series, integration of supplementary kriging 
surrogate) and their impact on key performance indicators, notably the 
correlation coefficient and sensor error (RMSE). As the proposed cali-
bration methodology leverages matching of time series of prior NO2 

Fig. 18. Sensor calibration performance for selected subsets of the testing data: (a) setup G1.2, (b) setup G1.8, (c) setup G4.6. Reference – red, raw sensor – black, 
calibrated sensor – blue. 

Fig. 19. Scatter plots for the testing data (uncorrected – gray, corrected – black): (a) setup G1.2, (b) setup G1.8, (c) setup G4.6.  
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readings from the reference and the low-cost sensor, investigating the 
effects of the time series length Nt was another point of interest. Given 
the substantial initial misalignment between the low-cost sensor and 
reference measurements, as well as the broad range of NO2 levels (from 
almost zero to sixty µg/m3) and their rapid changes, the calibration task 
proved to be highly challenging. 

The outcomes summarized in Table 2 underscore the remarkable 
performance achieved by the calibration methodology introduced in this 
study. The most effective configurations, specifically G4.5, G4.6, and 
G4.7, encompass all correction methodologies outlined in Section 4. 
These setups incorporate statistical data pre-processing, a comprehen-
sive set of input variables (including environmental parameters and 
readings from primary and redundant NO2 sensors), alongside medium- 
length time series of prior nitrogen dioxide measurements. Notably, for 
configuration G4.6, the correlation coefficient nears 0.95, and RMSE 
stands as low as 2.4 µg/m3 for the testing data, equivalent to a relative 
RMS error of approximately ten percent across the entire NO2 level 
spectrum. The calibrated low-cost sensor’s precision is evident through 
its excellent alignment with the reference data, observed in both the 
training (Fig. 17(c)) and testing data (Fig. 18(c)), as well as in the scatter 
plot (Fig. 19(c)). 

The analysis of the results obtained from different calibration setups 
corroborates the significance of all incorporated correction mechanisms. 
Notably, the assessment emphasizes the pivotal role played by the 
testing data. Within this dataset, comparisons among various configu-
rations within group A reveal substantial effects on both the correlation 
coefficient, increasing from around 0.7 to nearly 0.89, and the RMSE, 
declining from 5.6 to 3.5 µg/m3. These changes occur with the inclusion 
of additional calibration model inputs, integration of primary sensor 
readings, and the use of supplementary kriging surrogates. Comparative 
evaluations across setups G2, G3, and G4 highlight that statistical data 
pre-processing consistently enhances the correlation coefficient by at 
least 0.02 and reduces RMSE by an average of nearly 0.8 µg/m3. 
Simultaneous incorporation of the auxiliary kriging surrogate further 
bolsters the correlation coefficient by an additional 0.01 and decreases 
RMSE by 0.2 µg/m3. 

These improvements manifest vividly in Figs. 17, 18, and 19, where 
the transition from simpler configurations (G1.2 and G1.8) to the 
optimal setup (specifically, G4.6) notably enhances the alignment be-
tween the reference and corrected low-cost sensor readings. This 
advancement also visibly centres the scatter plots closer to the identity 
function, indicating a more accurate representation of the sensor data. 

A distinct investigation was conducted within the configurations of 
group G2, G3, and G4, aimed at pinpointing the most advantageous 
length, Nt, for the time series of prior NO2 measurements employed in 
the calibration process. The analysis of both the correlation coefficient 
and RMSE consistently indicates an optimal range between four and 
seven. For very short time series (Nt = 1 or 2), the benefits derived from 
incorporating additional data segments are less prominent. Similarly, 
using Nt > 8 marginally reduces the performance enhancements 
compared to Nt within the optimal range. However, this effect is less 
conspicuous within group G4, suggesting that when all correction 
mechanisms are active, the calibration process becomes less sensitive to 
the specific length of the time series. 

The analysis conducted in this section affirms the remarkable effi-
cacy of the proposed calibration technique. The corrected data from the 
low-cost sensor exhibits strong correlation with the reference data, 
showcasing minimal measurement error even across a broad spectrum of 
nitrogen dioxide levels, notably in the optimal configurations (such as 
G4.5 through G4.7). Implementing sensor correction can be achieved 
offline, serving as an intermediary step between data retrieval and 
presentation to the user, or can be integrated within the platform using 
its built-in computational capabilities. 

6. Conclusion 

In this research, we introduced an innovative approach to accurately 
calibrate affordable nitrogen dioxide sensors. Our method utilizes sta-
tistical pre-processing of sensor data to align it with reference data, 
incorporating two data-driven surrogate models for predicting corrected 
sensor NO2 readings. The primary model, an artificial neural network 
(ANN), works in tandem with a supplementary kriging interpolation 
model. Input variables encompass environmental parameters like tem-
perature, humidity, pressure, redundant NO2 sensor readings, and short 
time series of previous NO2 readings from the main sensor. 

The proposed approach was put to the test on an independent 
monitoring platform developed at Gdansk University of Technology, 
Poland. This platform integrates primary and secondary NO2 detectors, 
environmental sensors, and custom electronic systems for implementing 
data transmission and monitoring protocols. The validation relied on 
data from public monitoring stations in Gdansk collected over five 
months. Extensive comparative studies across various calibration model 
configurations highlighted the importance of all integrated correction 
mechanisms. Particularly, the most advanced setups, encompassing all 
aforementioned algorithmic components, exhibited remarkable reli-
ability, achieving a correlation coefficient near 0.95 between reference 
and corrected sensor data, with a low RMSE of only 2.4 µg/m3. This level 
of effectiveness reaffirms the practical feasibility of employing low-cost 
NO2 monitoring, at least within the specific hardware context discussed 
in this study. 

Future efforts will prioritize enhancing the accuracy of calibrated 
low-cost NO2 monitoring. One possible approach involves integrating 
additional gas detectors such as SO2, CO, and O3 into the monitoring 
platform. Utilization of their readings may be used as supplementary 
data sources, refining the calibration model, especially concerning cross- 
sensitivity factors. Exploration of advanced machine learning method-
ologies, in particular, convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs), is another part of the future research 
plan. RNNs, specialized in handling time series of varying lengths, could 
significantly boost monitoring reliability by leveraging such data. 
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