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Abstract 

Many studies have been performed to put quantifying uncertainties into the seismic risk assessment of reinforced 
concrete (RC) buildings. This paper provides a risk-assessment support tool for purpose of retrofitting and potential 
design strategies of RC buildings. Machine Learning (ML) algorithms were developed in Python software by 
innovative methods of hyperparameter optimization, such as halving search, grid search, random search, fine-tuning 
method, and the k-fold cross-validation, to derive the seismic fragility curve for accelerating seismic risk assessment. 
Proposed ML methods significantly reduced the computational effort compared to conventional procedure of seismic 
fragility assessment. The prediction results can be combined with considered hazard curves for the purpose of seismic 
risk assessment of RC buildings. To prepare the training dataset, Incremental Dynamic Analyses (IDAs) were 
performed on 165 RC frames to achieve 1121184 data points. Performance indicators showed that the algorithms of 
Artificial Neural Networks (ANNs), Extra-Trees Regressor (ETR), Extremely Randomized Tree Regressor (ERTR), 
Bagging Regressor (BR), Extreme Gradient Boosting (XGBoost), and Histogram-based Gradient Boosting 
Regression (HGBR) had higher performance, which achieved acceptable accuracy and fitted to actual curves. In 
addition, Graphical User Interface (GUI) was introduced as a practical tool yet reliable for seismic risk assessment 
of RC buildings. 
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1. Introduction 

Previous earthquakes proved that lateral load predictions of such capacity-based seismic codes 
could not fulfill seismic design expectations, and there is a need to shift the performance-based 
design methods. Therefore, there is possible to target a specific performance level and its probable 
risks and financial damages. Economic and social losses after seismic excitations are considered 
as an important factor that many researchers attempted to provide a general procedure for 
evaluating. The FEMA P-58 [1] developed by Applied Technology Council (ATC) is an effort 
toward the performance-based seismic guideline. This criterion developed the seismic collapse 
fragility and hazard curves, and quantitative performance assessment of structures. Seismic 
vulnerability and risk assessment of buildings have become more important research areas due to 
their importance for restoring the functionality of buildings after seismic events. Regarding this 
fact, the probabilistic approaches have been used for determining fragility functions that are useful 
for seismic vulnerability assessment of buildings [2]. Feng et al. [3, 4] proposed a PDEM-based 
method to determine the fragility function without pre-defined distribution of the demands 
assuming different failure modes and limit states. Cao et al. [5] compared four probabilistic 
fragility analyses and concluded that the least squares regression method is more efficient than 
other methods for its trends and accuracy assuming different limit states. Multiple‑stripe analysis, 
which performs analysis with similar Intensity Measures (IMs) [6, 7], and Incremental Dynamic 
Analysis (IDA), which performs analysis until the seismic collapse of structures assuming 
different IMs [8-10], are two popular methods to account record-to-record variability for 
evaluating seismic fragility curves. Seismic performance level assessment of buildings is also 
known as a preliminary vulnerability assessment of buildings that helps engineers to estimate the 
performance of constructed buildings for retrofitting purposes. Cao et al. [11] used fragility curves 
to investigate the retrofitting influence of a novel kind of buckling-restrained brace implemented 
on the RC frames. Moreover, Asgarkhani et al. [12] proposed optimal retrofitting strategy using 
viscous dampers based on the seismic performance level of steel and Reinforced Concrete (RC) 
structures. Kazemi et al. [13-15] performed a comprehensive investigation on the seismic limit-
state and collapse capacity prediction of steel and Reinforced Concrete (RC) frames assuming 
collision as external loads on the floor levels. They proposed the modification factors that can be 
used to predict the influence of a collision on the seismic limit-state and collapse capacity. In 
addition, they investigated the effects of infill masonry wall on the seismic performance of steel 
structures [16]. 

The seismic fragility curve can be considered as failure probability of structure regarding 
seismic performance level corresponding to the IMs. This curve can be widely used for any type 
of structure to show its failure probability. Yazdanpanah et al. [17] proposed a new procedure 
based on the Morlet and complex Morlet wavelets to estimate the seismic fragility curve of 
pounding structures. Machine Learning (ML) methods have been employed for civil engineering 
problems, and researchers have suggested some prediction models to estimate the failure of beam-
column joints [18], the failure mode of RC frames with infill walls [19], classification of 
reinforced masonry shear walls [20], the failure mode of RC shear walls [21], shear strength of 
RC beams [22], and derivation of seismic fragility curves [23]. Some studies have used ML 
methods to estimate the seismic fragility curves of structures using regression or classification 
techniques [24-27]. Mitropoulou and Papadrakakis [28] used Artificial Neural Networks (ANNs) 
for the fragility assessment of RC structures using 20 patterns for training the algorithms. Giovanis 
et al. [29] used IDAs with a Monte Carlo method to train ANNs for creating the IDA curves for 
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purpose of seismic fragility curve assessment. ML approaches were used for damage 
identification and fragility analysis had the advantage of reducing the computational cost while 
proposing results with higher accuracy of estimation. Most studies used predefined seismic limit 
states or only a limited number of structures and input parameters [see 30-32]. Hwang et al. [33] 
proposed a prediction model for estimating seismic response and seismic collapse of RC frames 
using both regression and classification methods implemented in boosting algorithms. Sainct et 
al. [34] proposed a seismic fragility curve estimator based on the Support Vector Machine (SVM) 
classifier with an active learning algorithm. Tang et al. [35] used 500 hypothetical steel frames to 
create a training model for seismic risk assessment based on the four ML algorithms of ANNs, 
SVM, Classification and regression tree, and Random Forest (RF). 

This study is focused on the comprehensive investigation using numerical simulations to 
propose a novel process for seismic risk assessment of RC buildings based on ML algorithms. In 
this study, there is no limitation for selecting the intensity level of IM and seismic limit-state 
threshold, while to show the ability of the proposed method, the results of only four prescribed 
seismic limit states have been presented. Compared with existing ML models, the random 
selection of seismic threshold is adopted, and twenty improved ML algorithms with innovative 
hyperparameter optimization methods were considered to predict seismic risk by exploring 
different ML advantages. The proposed ML-based models improved the surrogate model of 
seismic risk assessment. Although a limited number of data points can reduce the reliability of 
ML-based models, this study uses numerous data points (more than 1121184 data points) achieved 
by performing IDAs on 165 RC buildings assuming different types of input features to provide a 
powerful tool for seismic risk estimation of RC buildings. 

 

2. ML methods 

2.1. Artificial neural network 

ANNs can be trained for different types of engineering problems as well as unpredictable 
seismic responses. ANNs have three main parts of the input layer, which receives the parameters 
of data points, hidden layers, which are the part for functions and can be more than one layer, and 
the output layer, which is the outcome of the prediction. Fig. 1 illustrates the ANNs and its main 
parts. In the hidden layer, algorithms can have different layers and activation functions to achieve 
the higher result with lower bias [36].  
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Fig. 1. Artificial Neural Networks. 

To improve the algorithm, the hidden layers and type of functions play a crucial role, which is 
no direct formula to know about the number of hidden layers. In this study, three hidden layers 
were chosen based on trial and error, and the activation function of the Rectified Linear Unit 
(ReLU) was selected for the first and second layers, while the Sigmoid function was selected for 
the third layer [37]. In addition, the ANNs were developed by the back-propagation and feed-
forward methods. The back-propagation ANNs receive the values of input (e.g. Xi) and target data 
(e.g. Yi). For each neuron in the hidden layer, the function (e.g. ReLU) calculates the output, which 
is the input for the next layer (feed-forward), and this calculation affect the prediction error (e.g. 
Yi-Yi*). Then, the back-propagation calculates the error (i.e. loss) and updates the weight of the 
neurons. This process will improve the prediction accuracy. To have a better comparison, a Multi-
layer Perceptron Regressor (MLPR) was also considered with a linear activation function [38]. It 
can be noted that due to huge number of data points, forward and backward data point selection 
approach were developed to improve the speed of calculations, in which, the prediction model 
was fitted with small data points and the number of data points were increased or decreased (i.e. 
forward and backward) until no changing happened to model metrics.  

2.2. Random forest 

The RF algorithm has the ability of bagging ensemble to use multiple models with different 
training datasets selected from main data to achieve higher prediction accuracy. Fig. 2 illustrates 
the bagging principle applied in the RF algorithm. The ability of random selection of data can be 
used to solve overfitting issues in parallel processing of the structure-related uncertainty problems. 
Recently, different types of decision tree algorithms developed that can be effectively used in 
earthquake engineering. Extra-Trees Regressor (ETR) uses the random selection of data with 
different models of selection that improves the accuracy of prediction result. In addition, 
Extremely Randomized Tree Regressor (ERTR) has the ability of random selection while the 
speed of calculations was improved compared to ETR [39]. In addition, Bagging Regressor (BR) 
can be applied to decision tree methods to avoid overfitting problems [40]. BR can work with 
strong models to reduce the variance by aggregating the individual estimations and forming them 
as a final estimation. 
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Main Data
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Fig. 2. Bagging principle applied in RF method. 

2.3. Boosting algorithms 

Boosting algorithms, mostly known as Gradient Boosting Machine (GBM), employ a 
methodology to improve the performance of algorithms using weak learners in sequential order 
to minimize the loss function. Assuming the first probability equal to 0.5, Equation (1) can be 
used for GBM to compute the value of V that can be used for comparing the results of estimation 
until finding the optimal model: 

i i
1

i i
1

(Observed -Predicted )
V

(Previous Probability (1 Previous Probability ))

n

i
n

i






 




 (1) 

The improved type of GBM, which has a regularization parameter, λ, to control the small 
leaves in the algorithm, named as Extreme Gradient Boosting (XGBoost), which assumes the 
following equation to compute the value of V [36, 38]:  

i i
1

1
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V

(Previous Probability (1 Previous Probability ))

n

i
n

i i
i








  




 (2) 

In this study, the GBM and XGBoost were improved with a fine-tuning method of 
hyperparameter selection with the ability to change the parameters of trees to achieve higher 
values of prediction. In addition, the Histogram-based Gradient Boosting Regression (HGBR) 
that uses the quantization method to split the data features was improved with a fine-tuning 
method (i.e. HGBR(FN)), which had a higher computing time compared to GBM [41]. Moreover, 
Adaptive Boosting (AdaBoost), which uses the methodology of combining strong learners (e.g. 
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RF) to achieve data weights for estimation of the target, was implemented in Python software 
[42]. 

2.4. Support vector machine 

The Support Vector Machine (SVM) method has the ability to use boundary conditions based 
on the distances from an assumed hyperplane in both 2D and 3D spaces. To control the vectors, 
the parameter of ν can be assumed, and the algorithm is named the Nu-Support Vector Regression 
(NuSVR). Moreover, in this study, the Linear Support Vector Regression (LSVR) was 
implemented by assuming the loss and penalties function [43].  

2.5. Other prediction algorithms 

To investigate all possible ML algorithms for investigating the best prediction model, 
important regressor models are used, such as Voting Regressor (VR), which uses the average of 
predictions made by base regressors, Linear Regression (LR), which uses a linear function to 
explore the relation of input and output data, and Gamma Regressor (GR), which uses an inverse 
function to combine data points. Stacking Regressor (SR) is a method to use a regressor for 
computing the output of individual estimations (see [44]). K-Nearest neighbors (KNR) is a simple 
algorithm that finds the numbers of nearest neighbors and determines their distances. Partial Least 
Squares Regression (PLSR) is a methodology to reduce the variables to have a small set of 
predictors for performing a regression between inputs and outputs [45]. 

2.6. Data resampling methods 

In this research, all proposed algorithms were improved with resampling procedure, such as 
the k-fold cross-validation presented in Fig. 3, which has the ability to ensure that different 
portions of data were used in the training and testing dataset. Previous studies showed that k=10 
is the most applied value in the ML [46], which has the best results as well as the speed of 
calculation among other values. In addition, the capability of algorithms for data selecting were 
improved with methods of halving search, grid search, and random search, which are presented 
in Fig. 4. Due to having a large number of data points (i.e. 1121184 data points), the grid search 
and random search can help to enhance the time of execution, since these approaches have the 
ability to use a selected part of data points (see Fig. 4). It is noteworthy that, for each of the 
algorithms, the data resampling methods introduced in this section were implemented and the best 
method was selected for the ML algorithm. It is worth mentioning that, in order to improve the 
capability of aforementioned algorithms, innovative methods of hyperparameter optimization, 
such as pipe-line and fine-tuning methods were implemented in Python software [36-38].  
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Fig. 3. The k-fold cross-validation method. 

Grid Search Random Search
 

Fig. 4. Grid search and random search methods. 

 

3. Structural modeling 

The purpose of this research is to propose an ML-based seismic risk assessment methodology 
for the evaluation of RC buildings. To prepare datasets for ML algorithms, different RC buildings, 
having two to twelve-story elevations (i.e. 2-Story, 3-Story, 4-Story, 5-Story, 6-Story, 7-Story, 8-
Story, 9-Story, 10-Story, 11-Story, and 12-Story buildings) assuming five types of bays (e.g. one 
to five-bay frames) with the length of 5 m, 6.1 m, and 7.6 m, were modeled. ETABS 2016 software 
was used for structural modeling of buildings assuming the site with high-risk category and soil 
type D, and seismic parameters of SD1=0.6g and SDs=1.0g (i.e. SDS and SD1 are spectral response 
acceleration parameters at 0.2 and 1.0 seconds). Considering the special RC moment frames as a 
lateral resisting system, the design parameters of R=8, Cd=5.5, and Ω=3 were chosen following 
ASCE 7-16 [47]. For modelling, the structural plan presented in Fig. 5 was used with dead and 
live loads of 8.4 kN/m2 and 2.4 kN/m2, respectively, considering the concrete compressive 
strength of 345 MPa. In addition, the elements of beams and columns were defined using elastic 
beam-column element with zero-length in both ends of element (see Fig. 6) having the trilinear 
backbone curve behavior presented in Fig.5. To accurately model the effects of beam-to-column 
connection, the panel zone was modeled using the procedure proposed by Haselton and Deierlein 
[48]. In addition, the accuracy of the models were verified according to the models used by 
Haselton and Deierlein [48]. For brevity, the structural design of beams and columns of RC frames 
having a bay length of 6.1 m is illustrated in Figs. A-1 to A-3 in Appendix. To perform collapse 
analysis, the procedure considered by Haselton and Deierlein [48] and Kazemi et al. [13-15] was 
used to model two-dimensional frames in Opensees [49]. According to this procedure, each 
gravity columns was assumed as a leaning column to consider the P-delta effects [50-53] (see Fig. 
6). D
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Fig. 5. Plan of RC frames and concentrated plasticity model used for the modeling process. 
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Fig. 6. Schematic view of the modeling process in Opensees [49]. 

It is noted that in severe earthquakes, the deterioration at large displacements, which leads to 
sideway collapse, is important. To accurately model the structures with possibility of the stiffness 
and strength deterioration and sideway collapse, concentrated plastic hinges were used (see Fig 
5). To model structures, the concentrated plasticity model, that considers the hysteretic 
deterioration of the structural elements, was assumed in both ends of the elastic beam-column 
element. To assume the plasticity of the elements, the trilinear backbone curve model developed 
by Ibarra et al. [54] was used that can be defined based on the parameters shown in Fig. 5. This 
model was implemented in Opensees [49] by Altoontash [55] and it was used by some researchers 
(e.g. see [5, 10, 43]). 

ML methods were trained with 1121184 data points achieved by performing IDAs on the 165 
RC frames. It is noteworthy that the structural features can affect the seismic response of the 
structures. Therefore, all structural features of fundamental period, bay length, number of bays, 
total and story elevation, number of stories, spectral acceleration in the fundamental period, 
Sa(T1), story weight, dead and live loads, the RSN number, and record direction were assumed as 
input parameters in the training dataset. To perform IDAs, Sa(T1) and the Maximum Interstory 
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Drift Ratio (Max. IDR) were considered as Intensity Measure (IM) and structural demanding 
parameter, respectively, assuming three subsets of far-fault (including 44 records), near-fault 
pulse-like (including 28 records), and no-pulse (including 28 records) ground motions introduced 
by FEMA-P695 [56] (see Tables A-4B and A-6B in [56] for the details of the ground motions). It 
should be noted that, in order to reduce the time of analysis, the hunt & fill algorithm with three 
sub-steps was implemented in Opensees [49], in which, performing analysis was started with the 
small amplitude and increased by sub-steps to achieve the collapse state. Therefore, for each of 
the records, the number of analysis may vary due to different collapse states. For managing the 
analysis and processing the datasets, MATLAB [57] software was used. The IDA curves of the 
3-Story, 5-Story, 7-Story, and 9-Story RC frames assuming five bays with a length of 7.6 m 
including pulse-like records are presented in Fig. 7. The IDA curves can be consider to obtain the 
fragility curves assuming the lognormal distribution of seismic capacities of RC frames in the 
prescribed Max. IDR. 
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Fig. 7. IDA curves achieved for the RC frames assuming five bays with a length of 7.6 m including pulse-like 

records. 

4. Seismic vulnerability assessment 

A probability distribution can be widely used for describing probabilistic events. Two main 
curves that assign a possibility to each possible outcome can be known as Probability Density 
Function (PDF) and Cumulative Distribution Function (CDF), which is also known as the fragility 
curve. Fig. 8 presents the PDF and CDF curves.  
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Fig. 8. The PDF and CDF curves. 

According to Fig. 8, each value of the CDF curve is equal to the area under the PDF curve to 
the left of the value (highlighted part in PDF curve). Both of the curves can be used for probability 
assessments in earthquake engineering. Therefore, both curves were defined as targets of 
prediction. The probability of exceeding a specific Performance Level (PL) in the assumed IM 
can be determined as follows: 

1
ln

ln Sa lnSa( | ) { ( , , , ) | ( ( )}
PL

PL

Sa

P PL IM P PL IO LS CP C IM Sa T


 
      

 
 (3) 

where  () is known as CDF of the standard normal distribution, and the standard deviation and 

logarithmic mean are shown by ln PLSa and lnSaPL , respectively. To obtain these values, the 
following formula can be used [58]: 

1

1lnSa (ln )
i

n

PL PL
i

Sa
n 

   (4) 

0.5
2

ln
1

1 (lnSa ln Sa )
1PL i

n

PLSa PL
in




    
  (5) 

where n is the number of earthquake events and lnSa
iPL is the natural logarithmic value of Sa in 

the selected PL assuming the ith earthquake (for more detail, see [58]). The seismic risk in each 
selected PL can be calculated by the mean annual frequency, λPL, according to the following 
formula: 

0

( | ) ( )PL SaP PL Sa d Sa 


   (6) 

0

( )( | ) ( )
( )
Sa

PL
d SaP PL Sa d Sa

d Sa





    (7) 

Equation (7) was rewritten from Equation (6) by dividing and multiplying d(Sa) on the right 
side. The term of ( )

( )
Sad Sa

d Sa
  presents the slope of the assumed hazard curve; thus, it can be 

determined numerically by changing the equation to the following formula: 
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1
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d SaP PL Sa Sa
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
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    (8) 

Fig. 9 presents the graphical description of achieving the mean annual frequency, λPL, in the 
selected PL using the fragility curve and the hazard curve, which shows the mean annual 
frequency of exceeding earthquake intensities at the specific site (e.g. the site of structures, 
California). In each selected PL, the fragility curve describes the probability of PL (e.g. life safety) 
conditioned on the intensity of the earthquake. 
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Sa

 

)|( SaIMPLP 

 

Fig. 9. Fragility curve of assumed PL, hazard curve in numerical derivative, and λPL deaggregation curve. 

λPL presents the mean yearly rate of the PL, which is used to describe the occurrence probability 
(e.g. collapse occurrence) over the t years, R(t), considering a Poisson process according to: 

( ) 1 PLtR t e    (9) 
It should be noted that the R(t) was widely determined for collapse state to calculate the safe 

remaining lifetime for a building. For instance, assuming the collapse probability conditioned for 
a structure in the particular site is equal to 10% in the maximum considered earthquake (MCR). 
It is important to estimate the safe remaining lifetime of a building for allowable performance 
levels. Therefore, by rewriting Equation (9) and assuming 1% probability of collapse in 50 years, 
in accordance with FEMA P155 [59], and the R(t) equal to 0.01, the safe remaining lifetime of a 
structure, tR, considering the collapse state as PL can be calculated as follows: 

10.01R collapset    (10) 
The seismic risk assessment and estimating the safe remained lifetime, tR, require complex 

modeling processes and analytical difficulties. The main difficulty is to determine the fragility 
curve, while the hazard curve can be achieved according to the site of structures. Therefore, this 
study aims to propose a prediction model based on the ML methodology to estimate the PDF and 
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CDF curves of the RC frames in four considered PL, which can be used for determining λPL and 
tR. 

5. Analytical procedure 

This study explores a surrogate prediction model to reduce the analytical efforts and 
computational time for seismic risk assessment of RC buildings. After modeling the RC buildings 
in ETABS 2016 software and validating models in Opensees [49], IDAs were performed to obtain 
IDA curves of RC frames based on the assumed record subsets. Then, the training and testing 
datasets were prepared based on the aforementioned structural features of RC frames, and the 
PDF and CDF curves according to three prescribed allowable Max. IDR values of 1.0%, 2.0%, 
and 4.0% that shows the PL of Immediate Occupancy (IO), Life Safety (LS), and Collapse 
Prevention (CP) [60]. In addition, the flat part of the IDA curve that shows the seismic sideway 
collapse of structures was assumed as a total collapse (C) limitation. It should be noted that these 
four prescribed allowable Max. IDR were used for comparing the reliability of prediction models, 
while there is no limitation in the prediction models to select the intensity level and seismic limit-
state threshold. Fig. 10 presents the analytical procedures used for ML-based seismic risk 
assessment of RC buildings. First box is related to the modeling process of the RC structures and 
preparing the data points for ML models, and second box presents the process used in this research 
to estimate the λPL and R(t) using predicted PDF and CDF curves. 

 

 

Fig. 10. Analytical procedures used for ML-based seismic risk assessment of RC buildings. 

Although many structural features such as pulse-like effects of ground motions may affect the 
result of the prediction, forward and backward feature selection method were used to distinguish 
as low as possible features, in which the model metrics remained unchanged. This method can be 
used to verify the selected features and reduce the number of features that can be facilitated the 
use of prediction models for users. In general view, feature importance can identify the score of 
each input features based on their influence at predicting a target. The trial and error method was 
used to explore the important structural features that may affect the results of the prediction. Using 
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different innovative methods of hyperparameter optimization, such as halving search, grid search, 
random search, fine-tuning method, and the k-fold cross-validation for model evaluation showed 
that the main features of Sa(T1), fundamental period, number of stories, number of bays, story 
weight, bay length, and total elevation can play a key role in prediction.  

Fig. 11 illustrates the relative importance of input features determined by trial and error for 
PDF (left) and CDF (right) curves. For the PDF curve, Sa(T1), fundamental period, and the number 
of stories achieved scores of 70.7%, 17.18%, and 5.14%, respectively, while for the CDF curve, 
the scores of 57.46%, 20.38%, and 11.73%, respectively, were determined. It can be observed that 
three features of Sa(T1), fundamental period, and the number of stories had higher scores 
compared to other features in both curves. 

Sa(T1)

T1

No. Story

No. Bay

Bay Length
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Score per input variables (%)

Sa(T1)

T1

No. Story

Weight

No. Bay

Bay Length

Height

0 10 20 30 40 50 60

Score per input variables (%)

Fig. 11. Relative importance of input features determined by trial and error for PDF (left) and CDF (right) curves. 

To compare the results of prediction, statistical metrics of Mean Average Error (MAE), Mean 
Squared Error (MSE), Root Mean Squared Error (RMSE), and coefficient of determination (R2), 
were determined for twenty ML algorithms. The following formula can be used for calculations: 

Table 1 illustrates the statistical metrics determined for predicting the CDF curve of the 8-
Story RC frame assuming five bays with a length of 6.1 m including no-pulse records. 

Table. 1. Statistical metrics for predicting the CDF curve of the 8-Story RC frame assuming five bays with a length 
of 6.1 m including no-pulse records. 

Testing Training  
Model 

Score MAE (10-2) RMSE (10-2) MSE (10-2) R2 Score MAE (10-2) RMSE (10-2) MSE (10-2) R2  

24 1.330 1.719 0.030 0.998 18 0.845 0.264 0.016 0.999  XGBoost 

2

i i
1

1 (Actual -Predicted )
n

i

MSE
n 

   (11) 

2

i i
1
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n 
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40 2.310 3.092 0.096 0.993 44 3.194 5.024 0.252 0.980  RF 
9 0.652 0.852 0.007 0.999 8 0.155 0.304 0.001 0.999  BR 
12 0.683 0.082 0.012 0.999 8 0.002 0.003 0.003 0.999  ETR 
28 1.511 1.931 0.037 0.997 36 1.254 1.881 0.035 0.997  GBM 
7 0.581 0.783 0.006 0.999 23 0.685 1.051 0.011 0.999  HGBR 
36 1.703 2.428 0.059 0.995 28 0.798 1.249 0.016 0.999  HGBR(FN) 
44 3.510 3.891 0.151 0.988 48 4.604 5.531 0.306 0.976  AdaBoost 
55 5.721 8.335 0.695 0.947 19 0.419 0.694 0.005 0.999  KNR 
77 22.935 24.624 6.064 0.536 77 19.308 23.482 5.514 0.570  PLSR 
59 7.027 10.604 1.124 0.914 63 7.811 13.616 1.854 0.856  SR 
64 10.082 11.400 1.300 0.901 61 9.059 11.013 1.213 0.905  VR 
73 20.038 22.583 5.100 0.610 70 18.090 21.996 4.838 0.623  LR 
77 28.982 31.413 9.868 0.674 77 24.800 28.435 8.086 0.699  GR 
32 1.589 1.946 0.038 0.997 40 2.027 2.902 0.084 0.993  MLPR 
54 7.094 8.067 0.651 0.950 56 6.147 7.437 0.553 0.957  SVM 
48 5.281 6.271 0.393 0.970 52 5.479 6.522 0.425 0.967  NuSVR 
69 17.401 22.010 4.845 0.630 72 17.515 22.642 5.127 0.600  LSVR 
15 0.632 0.967 0.009 0.999 16 0.219 0.484 0.002 0.999  ERTR 
17 0.769 0.886 0.008 0.999 24 0.662 0.884 0.008 0.999  ANNs 

The score marker was used to rate each algorithm compare to others with a number from 1 to 
20. The ranking list provided by sorting the R2 in the highest to lowest values and for the MAE, 
RMSE, and MSE in the lowest to highest values, which shows the better the performance, the 
smaller the indicator. Finally, scores for four metrics are collected in training and testing datasets 
to show the reliability of the methods. It is noteworthy that the best method should achieve the 
lowest score which means its performance is better than others. According to scores calculated 
for the training dataset, algorithms of the BR, ETR, ERTR, XGBoost, KNR, HGBR, ANNs, 
HGBR(FN), and GBM achieved scores of 8, 8, 16, 18, 19, 23, 24, 28, and 36, respectively. For 
the testing dataset, the HGBR, BR, ETR, ERTR, ANNs, XGBoost, GBM, MLPR, and HGBR(FN) 
algorithms achieved scores of 7, 9, 12, 15, 17, 24, 28, 32, and 36, respectively. To conclude the 
comparison, these algorithms are introduced as the best prediction model for training and testing 
datasets. In addition, it is observed that the algorithms of VR, SR, LR, LSVR, GR, and PLSR had 
lower scores and cannot be able to be a prediction model.  

To better illustrate the results, all predicted CDF curves are plotted with the actual curve. Fig. 
12(a)-(c) shows the predicted CDF curves of the 8-Story RC frame assuming five bays with a 
length of 6.1 m including no-pulse records using twenty aforementioned ML models. According 
to Fig. 12(a), seven algorithms of the XGBoost, RF, BR, ETR, GBM, HGBR, and HGBR(FN), 
have the ability to estimate the CDF curves, while the XGBoost, BR, ETR, and HGBR algorithms 
were fitted on the actual CDF curve. In Fig. 12(b), there is no algorithm to exactly fit the actual 
CDF curve. In Fig. 12(c), three algorithms of the MLPR, ERTR, and ANNs have the ability to 
estimate the actual CDF curve of the 8-story RC frame. According to the sensitivity analysis that 
was done by plotting the predicted CDF curves, the XGBoost, BR, ETR, MLPR, ERTR, ANNs, 
and HGBR algorithms have higher accuracy of curve fitting, and these seven improved algorithms 
were used as ML-based prediction model to estimate the PDF and CDF curves.  
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Fig. 12. Predicted CDF curves of the 8-Story RC frame assuming five bays with a length of 6.1 m including no-

pulse records. 
 
 

6. Performance evaluation of models 

According to Section 4, eight algorithms had acceptable results in both train and test datasets 
and can be assumed as a prediction model. In this section, to better evaluate the analysis results, 
three performance indicators of mean absolute relative error (MARE), mean squared relative error 
(MSRE), and root mean squared relative error (RMSRE) were also determined to evaluate the 
performance of ML algorithms for a new set of the testing dataset to predict CDF and PDF curves. 
The MARE, MSRE, and RMSRE can be calculated as follows [36, 61]: 
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Table 2 illustrates the results of loss functions for eight selected algorithms assuming the 6-
Story RC frame assuming four bays with the length of 7.5 m in the performance level of LS 
including no-pulse records. For the predicted CDF curve, the algorithms of ETR, ERTR, BR, 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


ANNs, HGBR, and XGBoost had total scores of 17, 20, 26, 29, 31, and 36, respectively, while 
two algorithms of HGBR(FN) and GBM achieved higher scores of 44 and 49, respectively. For 
the predicted PDF curve, the algorithms of ERTR, ETR, ANNs, BR, HGBR, and XGBoost had 
total scores of 16, 17, 27, 31, 32, and 37, respectively, while two algorithms of GBM and 
HGBR(FN) achieved higher scores of 45 and 47, respectively. Therefore, for predicting both 
curves of CDF and PDF, the performance of six algorithms is higher than for other assumed ML 
algorithms, and they are introduced as the best prediction models. 

Table 2. Performance indicators of predicted CDF and PDF curves of the 6-Story RC frame assuming four bays 
with the length of 7.5 m in the performance level of LS including no-pulse records. 

CDF as a testing dataset   
Model 

Score RMSRE MSRE MARE MAE (10-2) RMSE (10-2) MSE (10-2) R2  

36 1.652 2.729 0.387 2.770 3.863 0.149 0.988  XGBoost 
26 0.928 0.862 0.287 2.121 3.182 0.101 0.992  BR 
17 0.561 0.315 0.148 1.316 1.714 0.029 0.998  ETR 
49 35.31 1247.35 5.497 4.708 6.887 0.474 0.963  GBM 
31 0.998 0.996 0.293 2.151 3.254 0.106 0.992  HGBR 
44 4.411 19.453 0.741 3.259 4.711 0.222 0.983  HGBR(FN) 
20 0.756 0.572 0.175 1.289 1.894 0.036 0.997  ERTR 
29 3.502 12.267 0.446 0.613 0.786 0.006 0.999  ANNs 

PDF as a testing dataset    

37 0.566 0.320 0.401 8.147 10.604 1.124 0.978  XGBoost 
31 0.476 0.227 0.218 7.589 10.862 1.180 0.977  BR 
17 0.314 0.098 0.166 3.394 4.203 0.177 0.997  ETR 
45 0.662 0.438 0.377 11.620 17.152 2.942 0.943  GBM 
32 0.433 0.187 0.295 9.738 13.620 1.855 0.964  HGBR 
47 0.815 0.664 0.472 11.326 17.031 2.901 0.944  HGBR(FN) 
16 0.202 0.041 0.129 3.946 6.082 0.370 0.993  ERTR 
27 0.474 0.225 0.243 5.227 7.673 0.589 0.989  ANNs 

Since different values of hyperparameters can considerably influence the results and 
performance of algorithms, the hyperparameters of algorithms were optimized in order to achieve 
higher percentage of prediction. For reproducibility of the algorithms, Table 3 illustrates the 
hyperparameters used for the definition of the six selected algorithms. 

Table. 3. Hyperparameters of the best prediction ML algorithms. 

Value Parameter Model Value Parameter Model Value Parameter Model 

2000 No. of estimators 

ERTR 

3000 No. of estimators 

HistGBR(FN) 

2500 No. of estimators 

XGBoost 
10 Min sample leaf 0.001 Learning rate 0.01 Learning rate 
2 Min sample split 8 Min sample leaf 10 Min sample leaf 

3000 Random state 8 Min sample split 10 Min sample split 
MSE Loss 

ANNs 

4 Max depth 4 Max depth 
10 (Relu) Hidden layer 1 300 No. of estimators 

BR 
3000 No. of estimators 

GBM 
and 

HistGBR 

10 (Relu) Hidden layer 2 0 Random state 0.01 Learning rate 
5 (Sigmoid) Hidden layer 3 300 No. of estimators 

ETR 

10 Min sample leaf 
Invscaling Learning rate 0 Random state 10 Min sample split 

Adam Optimizer 5 Min sample leaf 5 Max depth 
3000 Max iterations 10 Min sample split   

Figs. 13 and 14 present the predicted CDF and PDF curves of the 6-Story RC frames assuming 
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five types of bays with the length of 7.5 m in the performance level of LS including no-pulse 
records, respectively. It can be observed that the predicted curve by ANNs precisely fitted the 
actual curve. 
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Fig. 13. Predicted CDF curves of the 6-Story RC frames with the length of 7.5 m in the performance level of LS 
including no-pulse records. 
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Fig. 14. Predicted PDF curves of the 6-Story RC frames with the length of 7.5 m in the performance level of LS 
including no-pulse records. 

To present the normally distributed collected data points from analyses, the Quantile-Quantile 
(Q-Q) plot, which shows the standard normality of data points, was determined [62]. Fig. 15 
presents the Q-Q plot related to the CDF and PDF data points. As shown, the CDF and PDF follow 
the normal distribution due to approximately well-spread points in the bisector. 
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Fig. 15. Q-Q plot of normality test corresponding to CDF (left) and PDF (right) data points. 
 
 
 

7. General ability of ML-based model 

In Section 3, the models were defined to provide a wide range of the RC structures for training 
and testing the ML methods. According to previous sections, the prediction models have shown 
their acceptable accuracy of estimation based on the aforementioned RC structures. In this section, 
the validation of prediction models is discussed to use ML-based models in a general way for 
seismic risk assessment of RC buildings. Fig. 16 presents the structural plan of the four-story RC 
frame used by Haghollahi and Behnamfar [63], and the twelve-story RC frame used by 
Allahvirdizadeh et al. [64], which are used for estimating seismic risk assessment. 
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Fig. 16. Structural plan of a) the four-story RC frame used by Haghollahi and Behnamfar [63], and b) the twelve-

story RC frame used by Allahvirdizadeh et al. [64]. 

The selected structures are used to check the applicability of the ML-based models for 
predicting the CDF and PDF curves. For designing the four-story frame, the length of bays and 
each story elevation were assumed 6 m and 4 m, respectively. The frame was assumed as a 
residential building with a special lateral-resisting frame founded on soil type D, having dead, and 
live loads of 7 kN/m2 and 2.5 kN/m2, respectively. 
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Fig. 17. IDA curves of the four and twelve-story RC frames. 
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The location of the building is assumed in California with seismic parameters of Ss and S1 equal 
to 1.5g and 0.6g, respectively (for more detail see [63]). The twelve-story frame is assumed for 
residential use with story height and bay length equal to 3.2 m and 5 m, respectively. The floors 
were assumed one-way slab, and seismic design parameters of Ss and S1 equal to 1.96g and 0.69g, 
respectively, were selected regarding a site in California with soil type D (for more detail see 
[64]). The fundamental period of four and twelve-story RC frames are equal to 1.33 sec and 1.72 
sec, respectively. To determine the PDF and CDF of both frames, the IDAs were performed 
considering three record subsets using Opensees [49] software. Fig. 17 presents the IDA curves 
of the four and twelve-story RC frames in two record subsets. 

The accuracy of proposed prediction models is the main topic of this section. Thus, the PDF 
and CDF curves of the selected RC frames are converted into the target of the testing dataset. 
Then, the proposed ML methods are used for estimating the CDF and PDF curves. It is worth 
noting that the training dataset was assumed from the results of 165 RC frames subjected to three 
record subsets. Figs. 18 and 19 present the ML-based CDF (left) and PDF (right) curves compared 
to those of the four and twelve-story RC frames assumed in this section (i.e. shown by actual 
legends) subjected to no-pulse records, respectively. It can be observed that the ML algorithms 
have the ability of curve fitting and can be used as a powerful tool for predicting the CDF and 
PDF curves that can be used for seismic risk assessment of the general structures. It should be 
said that there are no unique algorithms to estimate all CDF or PDF curves; therefore, the 
aforementioned best models can be considered, and the best-fitted curve can be used for seismic 
risk assessment. Similar results were observed assuming other records. 
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Fig. 18. ML-based CDF (left) and PDF (right) curves of the four-story RC frame under no-pulse records. 
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Fig. 19. ML-based CDF (left) and PDF (right) curves of the twelve-story RC frame under no-pulse records. 

To determine the seismic risk of the assumed RC frames, the hazard curves were obtained from 
the USGS hazard tool application [65], and the procedure proposed by Eads [66] was considered 
to extract the hazard curves of Sa(T1=1.33 sec) and Sa(T1=1.72 sec) corresponding to the four and 
twelve-story RC frames. Fig. 20 presents the seismic hazard curves of the four and twelve-story 
RC frames assuming the selected site. 
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Fig. 20. Seismic hazard curves of the four and twelve-story RC frames assuming the selected site. 

To achieve λPL deaggregation curves, the procedure introduced in Fig. 9 was used. Figs. 21 and 
22 compare the predicted and actual λPL deaggregation curves of the four and twelve-story RC 
frames determined by ML algorithms. 
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Fig. 21. Seismic risk assessment of the four-story RC frame, λPL deaggregation curves assuming four seismic 

limit states. 
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Fig. 22. Seismic risk assessment of the twelve-story RC frame, λPL deaggregation curves assuming four seismic 

limit states. 
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According to the figures, it is obvious that the predicted λPL deaggregation curves have 
acceptable accuracy and fit the actual curves in four selected limit-states. Therefore, in the next 
step, these curves were used for seismic risk assessment. The mean yearly rate of the PL, λPL, 
which can be used to describe a probability of occurrence (e.g. four seismic limit-states of IO, LS, 
CP, and C) over the t years, R(t), was calculated based on the Equation of (8) and (9), respectively. 
Figs. 23 and 24 compare the ML-based predictions of λPL (left) and R(t) (right) for the four and 
twelve-story RC frames. 
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Fig. 23. Comparison of ML-based predictions of λPL (left) and R(t) (right) for the four-story RC frame. 
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Fig. 24. Comparison of ML-based predictions of λPL (left) and R(t) (right) for the twelve-story RC frame. 

For brevity, only the results of no-pulse records were presented, while similar trends and 
figures were obtained for other records. Therefore, ML models have acceptable capability and 
reliability for prediction. Table 4 illustrates the results of the Sa(T1) corresponding to the 
maximum value of the λPL deaggregation curves, λPL, and R(t) achieved by actual curves and ML-
based predicted curves assuming four seismic performance levels including no-pulse records. By 
comparing the values of Sa(T1) corresponding to the maximum value of the λPL deaggregation 
curves in both four and twelve-story RC frames assuming four seismic limit-states of IO, LS, CP, 
and C, it can be seen that the predicted values and actual values have a good agreement, which 
proves the accuracy of the ML-based models. Similarly, there are small differences in the 
predicted and actual values of λPL and R(t). In general conclusion, it can be said that the proposed 
ML-based prediction models have the ability for predicting the λPL deaggregation curves, which 
can be used for determining the values of λPL and R(t). By validating the ML models with the case 
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study RC structures, proposed ML-based models can be used as a preliminary tool to evaluate the 
seismic risk of RC structures assuming different types of structural parameters.  

Table 4. Results of the Sa(T1) corresponding to the maximum value of the λPL deaggregation curves, λPL, and 
R(t) assuming four seismic performance levels including no-pulse records. 

Twelve-story Four-story  
Sa(T1) 

C CP LS IO C CP LS IO  

0.76 0.57 0.38 0.21 1.08 0.81 0.58 0.34  Actual value 
0.74 0.57 0.37 0.22 0.96 0.80 0.59 0.35  Predicted value 

Twelve -story Four-story  λPL 

0.166 0.504 1.681 5.985 3.32E-5 1.01E-4 3.39E-4 1.23E-3  Actual value 

0.169 0.527 1.627 5.600 3.62E-5 1.07E-4 3.28E-4 1.15E-3  Predicted value 

Twelve -story Four-story  R(t) 

0.152 0.537 2.334 8.675 3.05E-5 1.07E-4 4.72E-4 1.82E-3  Actual value 

0.149 0.574 2.557 8.663 3.04E-5 1.15E-4 5.18E-4 1.81E-3  Predicted value 

8. Graphical user interface 

To prepare the accessibility of results for use as a preliminary evaluation of the seismic risk of 
RC structures, Graphical User Interface (GUI) was developed based on the selected important 
structural features (see Fig. 25) as input parameters, and the plotting ability of the CDF and PDF 
curves on the selected limit-state threshold. The GUI has the ability to predict the curves without 
limitation on the random selection of seismic threshold; thus, in any seismic performance 
limitation (e.g. life safety), it is possible to have the CDF and PDF curves. According to Fig. 25, 
four predefined seismic performances were used. In order to provide a guideline for user, the 
‘Default’ option can fill in the input parameters. Then, by introducing the seismic hazard curve of 
the selected RC structure using the ‘Browse’ option, the predicted CDF curve can be used for 
determining the λPL deaggregation curve, and the value of λPL according to Equation (8). By 
assuming the R(t) as input parameter (e.g. R(t) equal to 0.01 assuming 1% probability of collapse 
in 50 years), it is possible to estimate the safe remained lifetime, tR, for collapse state according 
to Equation (10). The users should consider the reliability of predictions made by ML models 
discussed in this research. The GUI was introduced to mitigate computing time and complicated 
analysis for seismic risk assessment of RC structures (new updates including the database will be 
added). 
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Fig. 25. Graphical user interface for the preliminary seismic risk assessment of RC structures available at 
https://github.com/FarzinKazemi 

9. Conclusions 

This research proposes an ML-based prediction model for seismic risk and vulnerability 
assessment of RC buildings. Seismic risk assessments require the CDF curve of the structure that 
can be determined by performing IDAs assuming severe earthquakes. IDAs need high-speed 
computers and, in most cases, complicate the modeling process to assess collapse state. To 
accelerate the seismic risk assessment, ML algorithms were developed by innovative methods of 
hyperparameter optimization, such as halving search, grid search, random search, fine-tuning 
method, and the k-fold cross-validation, to derive the PDF and CDF curves of RC frames. In other 
words, the CDF and PDF curves derived from ML-based prediction models are used for seismic 
risk assessment to speed the procedure and reduce the time and effort. For this purpose, twenty 
ML algorithms were developed and trained based on the 1121184 data points achieved by 
performing IDAs on the 165 RC frames. Following points illustrate the main results: 

 The relative importance of input features showed that three structural features of Sa(T1), 
fundamental period, and the number of stories had higher effects, as compared to other 
features. For the PDF curve, Sa(T1), fundamental period, and the number of stories achieved 
scores of 70.7%, 17.18%, and 5.14%, respectively, while for the CDF curve, the scores of 
57.46%, 20.38%, and 11.73%, respectively, were determined. 

 According to sensitivity analysis performed on twenty ML algorithms using four statistical 
metrics of R2, MSE, RMSE, and MAE, the algorithms of BR, ETR, ERTR, XGBoost, KNR, 
HGBR, ANNs, HGBR(FN), and GBM with scores of 8, 8, 16, 18, 19, 23, 24, 28, and 36, 
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respectively, were the best models for the train dataset. For the test dataset, the HGBR, BR, 
ETR, ERTR, ANNs, XGBoost, GBM, MLPR, and HGBR(FN) algorithms achieved scores 
of 7, 9, 12, 15, 17, 24, 28, 32, and 36, respectively. In addition, seven improved algorithms 
of the XGBoost, BR, ETR, MLPR, ERTR, ANNs, and HGBR had higher accuracy of curve 
fitting in both the PDF and CDF curves. 

 According to seven statistical metrics of R2, MSE, RMSE, MAE, MARE, MSRE, and 
RMSRE, the algorithms of ETR, ERTR, BR, ANNs, HGBR, and XGBoost had total scores 
of 17, 20, 26, 29, 31, and 36, respectively, while two algorithms of HGBR(FN) and GBM 
achieved higher scores of 44 and 49, respectively, for predicting CDF curve. In addition, the 
algorithms of ERTR, ETR, ANNs, BR, HGBR, and XGBoost had total scores of 16, 17, 27, 
31, 32, and 37, respectively, while two algorithms of GBM and HGBR(FN) achieved higher 
scores of 45 and 47, respectively, for predicting PDF curve. Therefore, the performance of 
six algorithms is higher than for other assumed ML algorithms, and they are introduced as 
the best prediction models. 

 To generalize the achievements, two case studies focused on RC buildings were conducted. 
According to the results, the predicted λPL deaggregation curves had acceptable accuracy and 
they fitted to the actual curves in four selected limit-states. The results illustrated that the 
Sa(T1) corresponding to the maximum value of the λPL deaggregation curves, λPL, and R(t) 
achieved by actual curves and ML-based predicted curves had a good agreement, which 
proves the accuracy of the ML-based models. 

 By validating the ML models with the case studies dealing with RC structures, the proposed 
ML-based models can be used as a preliminary tool for estimating the seismic risk of RC 
structures. To conveniently access the results of this study, GUI was introduced to prepare 
the predicted CDF and PDF curves, the Sa(T1) corresponding to the maximum value of the 
λPL deaggregation curves, λPL, and R(t) values, which facilitates the seismic risk assessment 
of existing or newly constructed RC structures. 
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Appendix 

The structural design parameters of the RC frames having a bay length of 6.1 m are summarized 
in Figs. A-1 to A-3. 
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Fig. A-1. Design parameters of the 2-Story, 3-Story, 4-Story, 5-Story, and 9-Story RC frames with 6.1 m bay 
length. 
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Fig. A-2. Design parameters of the 6-Story, 7-Story, and 8-Story RC frames with 6.1 m bay length. 
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Fig. A-3. Design parameters of the 10-Story, 11-Story, and 12-Story RC frames with 6.1 m bay length. 
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