
Vol.:(0123456789)1 3

Archives of Civil and Mechanical Engineering           (2023) 23:94  
https://doi.org/10.1007/s43452-023-00631-9

ORIGINAL ARTICLE

Machine learning‑based seismic response and performance 
assessment of reinforced concrete buildings

F. Kazemi1  · N. Asgarkhani1 · R. Jankowski1

Received: 19 November 2022 / Revised: 2 February 2023 / Accepted: 26 February 2023 
© The Author(s) 2023

Abstract
Complexity and unpredictability nature of earthquakes makes them unique external loads that there is no unique formula 
used for the prediction of seismic responses. Hence, this research aims to implement the most well-known Machine Learn-
ing (ML) methods in Python software to propose a prediction model for seismic response and performance assessment of 
Reinforced Concrete Moment-Resisting Frames (RC MRFs). To prepare 92,400 data points of training dataset for develop-
ing data-driven techniques, Incremental Dynamic Analyses (IDAs) were performed considering 165 RC MRFs with two-, 
to twelve-Story elevations having the bay lengths of 5.0 m, 6.1 m, and 7.6 m assuming near-fault seismic excitations. Then, 
important structural features were considered in datasets to train and test the ML-based prediction models, which were 
improved with innovative techniques. The results show that improved algorithms have higher R2 values for estimating the 
Maximum Interstory Drift Ratio  (IDRmax), and two improved algorithms of artificial neural networks and extreme gradient 
boosting can estimate the Median of IDA curves (M-IDAs) of RC MRFs, which can be used to estimate the seismic limit-state 
capacity and performance assessment of existing or newly constructed RC buildings. To validate the generality and accuracy 
of the proposed ML-based prediction model, a five-Story RC building with different input features was used, and the results 
are promising. Therefore, graphical user interface is introduced as user-friendly tool to help researchers in estimating the 
seismic limit-state capacity of RC buildings, while reducing the computational cost and analytical efforts.

Keywords Machine learning method · Maximum interstory drift ratio · Seismic limit-state capacity · Predicting seismic 
performance · Seismic probabilistic assessment

1 Introduction

The vulnerability of a building can be evaluated either by 
in-situ technique of data analysis with non-constructive 
methods, known as structural health monitoring, or numeri-
cal analysis of structural models. The main idea of using 
such methods is to evaluate the building performance in the 
operating condition. Although in-situ technique can pro-
vide a wide range of data, some practical limitations such 

as implementing the sensors or actuators and mechanical 
problems during the time can prevent the performance 
assessment of structures [1–3]. Therefore, this method can 
be improved by response prediction methods for buildings 
subjected to seismic excitations.

Nowadays, the seismic probabilistic assessment of a 
building needs to perform complicate analysis using precise 
finite element model, which may need a time-consuming 
process for evaluating different limit states (e.g., see [4, 
5]). Due to the unpredictable nature of ground motions, 
it is essential to predict the nonlinear structural response 
during seismic loads to take precautions for reducing the 
probability of collapse risk. There are some approaches 
that can be employed to perform nonlinear analysis. The 
nonlinear static analysis, known also as pushover analy-
sis, can provide information about the base shear versus 
top floor displacement. While the nonlinear time history 
analysis uses the pre-recorded earthquakes and performs 
analysis considering the scale factors defined based on the 
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acceleration spectrum prescribed by design code. Hence, the 
most accurate approaches of estimating seismic response are 
conducted by the nonlinear time history analysis and Incre-
mental Dynamic Analysis (IDA) using prior seismic events 
and finite element methods [6–8]. The prediction of seismic 
response using these approaches need to prepare complex 
models and perform time-consuming analysis, while using 
simplified models (e.g., single-degree of freedom model) are 
computationally efficient with low performance and behav-
ior compared to the real structures. Therefore, there is a need 
to introduce a novel Machine Learning (ML)-based method 
to efficiently and accurately predict the seismic response of 
RC frames.

Finding the seismic capacity of buildings can help 
engineers to find a preliminary prediction for the perfor-
mance levels of the designed building. Kazemi et al. [9, 
10] proposed factors for modifying and estimating the col-
lapse capacity of colliding steel Moment-Resisting Frames 
(MRFs) and colliding Reinforced Concrete (RC) and steel 
frames [11]. It should be noted that the proposed factors 
were achieved from complex modeling and analysis; there-
fore, there is a need to propose a prediction model to avoid 
such prohibitively complex analysis. Recently, ML algo-
rithms are applied in many civil engineering areas such as 
failure mode of steel base-plate connection [12], damage 
identification of bridge [13], damage state of steel frames 
[14], and RC beams [15]. ML methods are divided into 
two main parts of supervised and unsupervised algorithms, 
which the seismic response prediction can be considered 
as supervised learning using training and testing datasets 
with the possibility of assuming n-features for n-samples. 
Therefore, in this method, it is possible to take the important 
features into account [16–18]. Huang et al. [19] proposed 
a backpropagation neural network to predict the seismic 
response of structures. Yinfeng et al. [20] used the Support 
Vector Machine (SVM) algorithm for predicting the nonlin-
ear time history response of structures. Then, Lagaros and 
Papadrakakis [21] improved neural networks for predicting 
the nonlinear time history response of a three-dimensional 
building using six seismic excitations. De Lautour and 
Omenzetter [22] developed a methodology for estimating 
the structural responses using pattern recognition of dam-
ages. ML algorithms are in the interest of some researchers 
to use for nonlinear modal analysis [23], predicting seismic 
responses for achieving fragility curves [24], and predict-
ing maximum displacements of isolated pendulum system 
[25]. Oh et al. [26] developed a neural network model for 
predicting the seismic response of buildings based on the 
correlation of records using 2700 artificial records. Luo and 
Paal [27] proposed a novel artificial methodology for seismic 
response prediction of RC structures using 272 RC columns 
datasets.

It is confirmed that there is no unique formula for the 
prediction of Maximum Interstory Drift Ratio  (IDRmax) and 
Median of IDA curves (M-IDAs) for any type of RC build-
ings. The purpose of this research is to develop a powerful 
ML-based tool with employing the innovative data sampling 
and hyperparameter optimization methods such as fine-tune 
method, halving search strategy, grid search method, and 
k-fold cross-validation. For this purpose, a wide range of 
data points containing 165 RC MRFs with different length 
and number of bays were numerically determined to pre-
pare training dataset. Then, the ML-based prediction model 
can be used for estimating the seismic response and seismic 
limit-state capacities of RC buildings that can be further 
applied for a preliminary estimation of  IDRmax and M-IDAs 
of existing and newly constructed buildings. The seismic 
response prediction results would help designers to find out 
the behavior of the designed building, and regarding the 
behavior, it is possible to control the performance of struc-
tural elements for postponing the seismic damages. In other 
words, estimating the  IDRmax can be used for predicting 
the maximum deformation of buildings, and predicting the 
Sa(T1) of M-IDAs can be applied for seismic performance 
levels assessment. Finally, the results of research were used 
for introducing an estimation tool based on the developed 
ML algorithms.

2  Structural response prediction model

2.1  Artificial neural network

Due to the high ability of Artificial Neural Networks (ANNs) 
for prediction, they can be trained for different problems, 
such as positioning site facilities [28], the seismic limit-state 
performance of bridge piers [29], estimating the fracture 
toughness of rocks [30], optimizing the consumption of 
energy [31], estimating the compressive strength of steel 
fiber-reinforced concrete [32], seismic vulnerability assess-
ment of RC frames [33], and seismic response prediction of 
structures [34]. ANNs contain three main parts of the input 
layer, hidden layers, and output layer, which are connected 
by some nonlinear function with the adjusted weight. The 
weight of each neuron can increase or decrease the strength 
of connection for purpose of minimizing the loss function 
or error (i.e., the difference between the predicted and actual 
values). Backward and forward propagation methods can 
be used for recalculating the weights of each neuron in the 
previous iteration to minimize the error; then, the process 
can be repeated with new adjusted weights to achieve a reli-
able model. The backward propagation method is presented 
in Fig. 1. In this study,  IDRmax and Sa(T1) were defined 
as targets for backward and forward propagation ANNs. 
Moreover, Multi-layer Perceptron Regressor (MLPReg) 
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considers the linear function to predict seismic responses 
of RC structures.

2.2  Random decision forest

Random decision Forest (RF) can be employed for both 
regression and classification problems. RF algorithm uses 
an ensemble multiple bagging models parallel to a different 
train subset from train data, and achieves the final result 
based on the majority voting. Figure 2 presents the RF algo-
rithm with the bagging principle.

Although the RF algorithm can be classified as a deci-
sion tree, the RF method considers subsets of data to solve 
the overfitting problem while selecting random observa-
tions instead of a set of formulas [35]. It should be noted 
that different parameters were selected by trial and error to 
find the lower bias and higher variance values to overcome 
the overfitting problem and achieve an optimized predic-
tion model. Moreover, different types of RF algorithms 
known as An Extra-Trees Regressor (ETReg), which 
randomly selects decision tree to fit input data, and An 
Extremely Randomized Tree Regressor (ERTReg), which 
uses the random tree selection to improve the calculations 

Fig. 1  Functioning of the back-
propagation method in ANNs
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Fig. 2  RF algorithm with the bagging principle
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speed [36], and Bagging Regressor (BReg), which aggre-
gate individual predictions were used to find the best pre-
diction model [37].

2.3  Boosting algorithms

Boosting principle is another way of using RF methods. In 
this principle, weak learners combine in sequential order 
to create a strong model with higher accuracy of predic-
tion. Adaptive Boosting (AdaBoost) algorithm combines 
strong base learners such as decision trees with a single 
split to weight the data points for improving the accuracy 
of estimation [38]. Gradient Boosting Machine (GBM) 
comes from the idea of improving the weak learners to 
enhance their final results by minimizing the loss function. 
Moreover, Histogram-based Gradient Boosting Regression 
(HistGBR) considers the quantization method for splitting 
the features for prediction with a higher speed compared to 
GBM. To control the accuracy of the results, the follow-
ing formula can be used considering the initial probability 
equal to 0.5, and in each step, the value can be compared 
with the previous step to find an optimized model.

Extreme Gradient Boosting (XGBoost) is an improved 
algorithm of GBM with a regularize factor, λ, to reduce 
the effectiveness of small leaves [39, 40]. In this study, a 
fine-tune XGBoost model was used to change the trees 

(1)
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i
))
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i
)) + �
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number and parameters to find the best target based on the 
following formula:

2.4  Support vector machine

Support Vector Machine (SVM) is selected as a decision 
boundary method with the capability of using hyperplane 
based on the marginal distances for two-dimensional and 
three-dimensional spaces [41]. In addition, Nu-Support Vec-
tor Regression (NuSVR), which considers the ν parameter 
as the controlling number of vectors [42], and Linear Sup-
port Vector Regression (LSVR), which considers functions 
for loss and penalties [43], were assumed to find a suitable 
model for estimating  IDRmax and Sa(T1). To enhance the 
performance of ML methods during the training, and reduce 
the risk of losing the important datasets, the k-fold cross-val-
idation was employed. Figure 3 presents the k-fold cross-val-
idation methodology, in which, training and testing datasets 
are 70–80% and 30–20% of total data points, respectively 
[44]. It is worth mentioning that the k-fold cross-validation 
with different k was employed for assumed ML algorithms 
to find the suitable k with higher performance.

2.5  Regressors models

Some important regression algorithms can be used for 
 IDRmax prediction, which is a supervised regression model 
while not included in the abovementioned category. For 

example, these models are not using the hidden layers abil-
ity (i.e., ANNs) or boosting methods (i.e., XGBoost); there-
fore, this subsection is defined to include the ML algorithms 
used in this research with different ability of predictions. 

Build Model

....

...
......
...

...
......
...

...
...

....

....

....

....

Response

Data

Training

Data

Test Data

Split 1 Fold 1 Fold 2 Fold 3 Fold 4 Fold k

Split 2 Fold 1 Fold 2 Fold 3 Fold 4 Fold k

Split 3 Fold 1 Fold 2 Fold 3 Fold 4 Fold k

Split 4 Fold 1 Fold 2 Fold 3 Fold 4 Fold k

Split k Fold 1 Fold 2 Fold 3 Fold 4 Fold k

Evaluate Model

Fig. 3  Architecture of k-fold cross-validation
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Response Prediction in Voting Regressor (VReg) is based 
on the average of the individual results, while K-Nearest 
neighbor Regression (KNR) assume linear estimation on the 
mean of data points. On the other hand, Gaussian Process 
Regression (GPReg) renormalizes the targets to find a zero 
mean for the maximum log marginal of data points. Lin-
ear Regression (LReg) considers a linear estimation model 
to minimize a target of residual sum defined as squares of 
predicted and actual values. In addition, Gamma Regressor 
(GReg) uses the strategy of combining data points with an 
inverse function and their logarithmic unit deviance [45]. 
The algorithm that uses the strength of estimators for finding 
the final estimator to solve the prediction model is known 
as Stacking Regressor (SReg) (see more detail [46]). Partial 
Least Squares Regression (PLSReg) is another regression 
model that has the ability to assume maximum multidimen-
sional direction for data points to achieve fundamental rela-
tions between inputs and outputs [47]. Since Python libraries 
provide a great possibility for developing the ML algorithms 
as well as the free access of this software, the Python soft-
ware as a general-purpose programming language is selected 
for implementing ML methods. Therefore, all assumed ML 
algorithms were developed in Python software and differ-
ent resampling strategies, such as fine-tune method, halv-
ing search strategy, grid search method, and k-fold cross-
validation were used to improve them as a prediction model.

3  Modeling process

To train the ML algorithms, eleven types of RC build-
ings including two to twelve-floor elevations (i.e., 2-, to 
12-Story buildings) having three bay length types (i.e., 5 m, 
6.1 m, and 7.6 m) with the plan presented in Fig. 4 were 
assumed. All buildings modeled in ETABS software based 
on the assumption of soil type D, acceleration parameters 
of  SD1 = 0.6 g and SDs = 1.0 g for the construction site of 
high seismic, and design parameters of R = 8, Cd = 5.5, and 

Ω = 3 in accordance with ASCE 7‐16 [48]. It is noteworthy 
that the acceleration parameters of the construction site were 
achieved based on the USGS website [49]. In addition, a 
floor dead load of 8.4 kN/m2 and a floor live load of 2.4 kN/
m2 were applied to all floor levels of buildings. To design 
structural elements, the concrete compressive strength of 
34.5 MPa (i.e., 5 ksi, see Table 6–2 in reference [50]) was 
used [51]. Details of structural elements of RC frames 
assuming the bay length of 6.1 m were presented in Figs. 5, 
6 and 7. To perform collapse analysis, all buildings were 
modeled as two-dimensional RC frames in Opensees [52] 
assuming the leaning column for those gravity columns not 
included in models to consider the P-delta effects [53–56]. 
In addition, the two-dimensional frames were modeled and 
verified with their corresponding buildings considering 
modeling procedures used by Haselton and Deierlein [50] 
and Kazemi et al. [9–11, 57, 58]. According to these proce-
dures, plastic hinge models for simulating seismic collapse 
presented in Fig. 4 were developed by Ibarra et al. [59] and 
Altoontash [60]. It should be noted that for considering the 
real condition of RC buildings, all panel zones were mod-
eled, and concentrate plastic hinge models were used in the 
ends of structural elements with possibility of achieving 
seismic collapse (for more detail on modeling see [50]).   

To train the ML algorithms, 165 RC MRFs were assumed 
to have one-, two-, three-, four-, and five-bays, and 2-, to 
12-Story elevations having the bay lengths of 5 m, 6.1 m, 
and 7.6 m. To assess  IDRmax in different intensity measures 
and seismic limit-state curves of all 165 RC MRFs, IDAs 
were performed based on the spectral acceleration in the 
period of the structure, Sa(T1), as intensity measure, and 
 IDRmax as engineering demand parameter, considering near-
fault Pulse-like (PL), and No-Pulse (NP) records introduced 
by FEMA-P695 [61]. To perform IDAs, an algorithm was 
developed to implement the hunt and fill methodology using 
both Opensees [52] and MATLAB [62] software to reduce 
the time of analysis. It is worth mentioning that the program-
ming code was developed in MATLAB [62] to control the 
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Fig. 4  RC MRFs plan and concentrated plasticity approach employed to model buildings
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entire analysis procedure; and in addition, to post-process 
the results of the analysis. Figure 8 presents the IDA curves 
of the 2-Story, 4-Story, 8-Story, and 12-Story RC frames 
having three bays with 6.1 m length including NP records. 
It should be noted that there is no restriction on the increas-
ing steps of the intensity measure selection in this study; 
therefore, the results are distributed with different ranges 
of the Sa(T1).

The training datasets were prepared with important fea-
tures of weight, aspect ratio, reinforcement ratio for beams 
and columns, story number, bay length and the total height 
of RC frames, Sa(T1), the direction and RSN number of 
record, fundamental period (T1), and  IDRmax in each step 
of the analysis, which achieved based on the trial and error. 
In addition, for seismic response prediction models, the 

 IDRmax of selected RC frames was considered as a target in 
the test dataset, and for seismic limit-state capacity predic-
tion models, the Sa(T1) of M-IDAs of selected RC frames 
were considered as a target of prediction in the testing data-
set. Therefore, two main training datasets were considered 
to train and test the prediction models. In addition, 92,400 
data points were considered in the training dataset that were 
achieved by performing IDAs.

4  Analytical procedure

The main purpose of this study is to train ML algorithms 
for accurate prediction of the  IDRmax and the seismic limit-
state capacity of RC frames using M-IDAs (e.g., presented 

6.1 m

76.2
71.12
12.7
0.0133
0.01

76.2
71.12
12.7
0.017
0.01

76.2
71.12
12.7
0.01
0.01

76.2
71.12
12.7
0.017
0.01

76.2
71.12
12.7
0.017
0.01

76.2
71.12
12.7
0.01
0.01

71
.1

2
71

.1
2

12
.7

0.
00

65
0.

00
75

0.
00

4

71
.1

2
71

.1
2

12
.7

0.
00

65
0.

00
75

0.
00

4

71
.1

2
71

.1
2

12
.7

0.
00

65
0.

00
75

0.
00

4

6.1 m

76.2
81.3
8.9
0.021
0.0085

76.2
81.3
8.9
0.01
0.0085

76.2
81.3
10.15
0.01
0.006

76.2
81.3
10.15
0.01
0.006

76.2
81.3
10.15
0.01
0.006

96.52
81.3
8.9
0.016
0.0112

96.5
81.3
8.9
0.01
0.008

96.5
81.3
8.9
0.01
0.008

96.5
81.3
8.9
0.01
0.008

61 81
.3

12
.7

0.
01

08
0.

01
23

0.
00

5

61 81
.3

12
.7

0.
01

0.
01

15
0.

00
5

61 81
.3

12
.7

0.
00

93
0.

01
80

0.
00

4

61 81
.3

12
.7

0.
00

5
0.

00
6

0.
00

3

96.5
81.3
8.9
0.01
0.008

61 81
.3

12
.7

0.
00

5
0.

00
6

0.
00

3

6.1 m

71.12
66.5
8.9
0.02
0.01

86.35
66.5
8.9
0.018
0.012

71.12
66
8.9
0.015
0.01

86.35
66
8.9
0.013
0.012

86.35
66
8.9
0.013
0.012

71.12
66
8.9
0.015
0.01

71.12
66
8.9
0.013
0.01

86.35
66
8.9
0.013
0.012

71.12
66
10.15
0.022
0.007

71.12
66
10.15
0.013
0.007

71.12
66
10.15
0.01
0.007

71.12
66
10.15
0.015
0.007

71.12
66
10.15
0.014
0.007

71.12
66
10.15
0.01
0.007

71.12
66
10.15
0.01
0.007

71.12
66
10.15
0.01
0.007

76
.2

66 12
.7

0.
00

7
0.

00
75

0.
00

42

76
.2

66
.5

16
.5

0.
00

73
0.

00
83

0.
00

45

76
.2

0
66

.0
4

12
.7

0.
00

7
0.

00
80

0.
00

43

76
.2

66 14 0.
00

63
0.

00
75

0.
00

4

76
.2

66 15
.2

5
0.

00
55

0.
00

7
0.

00
37

76
.2

66 16
.5

0.
00

4
0.

00
55

0.
00

31

76
.2

66 14 0.
00

32
0.

00
40

0.
00

25

76
.2

66 15
.2

5
0.

00
32

0.
00

32
0.

00
24

71.12
66
10.15
0.01
0.007

71.12
66
10.15
0.01
0.007

76
.2

66 15
.2

5
0.

00
32

0.
00

32
0.

00
24

4.
6 

m
4 

m
4 

m
4 

m
4 

m
4 

m
4 

m
4 

m
4 

m

6.1 m

76.2
81.3
8.9
0.02
0.0085

96.5
81.3
8.9
0.016
0.0112

76.2
81.3
8.9
0.01
0.0085

96.5
81.3
8.9
0.01
0.008

96.5
81.3
8.9
0.01
0.008

76.2
81.3
10.16
0.01
0.006

76.2
81.3
10.16
0.01
0.006

96.5
81.3
8.9
0.01
0.008

61 81
.3

12
.7

0.
01

08
0.

01
23

0.
00

5

61 81
.3

12
.7

0.
01

0.
01

15
0.

00
5

61 81
.3

12
.7

0.
00

93
0.

01
80

0.
00

4

61 81
.3

12
.7

0.
00

48
0.

00
60

0.
00

3

6.1 m

60
60
12.7
0.0133
0.01

60
60
12.7
0.017
0.01

60
60
12.7
0.01
0.01 60 60 12

.7
0.

00
65

0.
00

75
0.

00
4

60 60 12
.7

0.
00

4
0.

00
43

0.
00

3

h (cm)
b (cm)
s (cm)
p tot
p sh

h (cm)
b (cm)
s (cm)
p tot
p sh

h (cm)
b (cm)
s (cm)
p tot
p sh

h (cm)
b (cm)
s (cm)
p tot
p sh

h (cm)
b (cm)
s (cm)
p tot
p sh

h 
(c

m
)

b 
(c

m
)

s (
cm

)
p p  

sh
p´ h 

(c
m

)
b 

(c
m

)
s (

cm
)

p p 
sh

p´ h 
(c

m
)

b 
(c

m
)

s (
cm

)
p p  

sh
p´

h 
(c

m
)

b 
(c

m
)

s (
cm

)
p p  

sh
p´

h 
(c

m
)

b 
(c

m
)

s (
cm

)
p p  

sh
p´

Fig. 5  Structural documentation of the 2-Story, 3-Story, 4-Story, 5-Story, and 9-Story RC MRFs
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in pink color in Fig. 8). M-IDAs can be used to estimate 
the seismic performance levels of the structures assuming 
a different threshold of  IDRmax introduced by seismic pro-
visions. Therefore, the analytical procedure presented in 
Fig. 9 depicts four main parts used for preparing prediction 

models. The first part in the blue color is the modeling and 
validation of RC MRFs using ETABS and Opensees [52] 
softwares (see Sect. 3). The green part, explains the prepa-
ration of training and testing datasets based on the  IDRmax 
and M-IDAs as targets of prediction. In the red section, 
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Fig. 6  Structural documentation of the 10-Story, 11-Story, and 12-Story RC MRFs
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ML algorithms were implemented in Python software and 
improved based on some innovative methodologies for the 
prediction of the two aforementioned targets. After valida-
tion of predicting models, some important ML algorithms 
were selected for the violet part, which shows the second 
validation of prediction models for a new RC building to 
show the capability of the proposed ML-based model.

4.1  Data selection method

Although many features can influence the response predic-
tion of structures, introducing all these features can reduce 
the speed of calculations while increase the overfitting possi-
bility in the algorithms. Therefore, it is necessary to provide 
the important features while the prediction accuracy remains 
unchanged during the validations. To do this, different fea-
ture selection methods such as filter and wrapper methods, 
which contains the more suitable methods of forward feature 

selection, backward feature elimination, and exhaustive fea-
ture selection, were used to achieve the importance of input 
features. Figure 10 presents the relative importance of seven 
features with higher scores achieved by trial and error using 
the aforementioned methods. Other features were remove 
since their relative importance were less than these feature. 
For estimating the M-IDA curve, three main features of 
the number of bays, fundamental period of the frame, and 
 IDRmax have more scores compared to other features. On the 
other side, for predicting  IDRmax as a target, five features of 
number of stories, weight, fundamental period of the frame, 
number of bays, and Sa(T1) have scored more than 10%. 
According to Fig. 10, these seven features were selected in 
the training and testing datasets for prediction models.

It is noteworthy that to enhance the ability of the methods, 
the feature selection approaches were used simultaneously 
with embedded method to reduce the effects of those data 
points with low effects on the predictions of selected target. 
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Fig. 7  Structural documentation of the 6-Story, 7-Story, and 8-Story RC MRFs
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In other words, the developed embedded method reduces 
the number of data points for reasonable computational cost 
while increases the capability of ML algorithms and prevents 
the overfitting problem, which is the most important issue 
in the performance of models. Therefore, all ML methods 

improved based on the developed embedded method in pur-
pose of increasing their ability.

To compare the reliability and capability of the afore-
mentioned ML algorithms, the statistical metrics presented 
in Table 1 were used. The coefficient of determination,  R2, 
is widely used for presenting the accuracy of prediction and 

IDRmax

T1

No. Bay

No. Story

Weight

Length of Bay

Height of Frame

0 10 20 30 40 50
Score per input variables (%)

Sa(T1)

No. Bay

T1
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No. Story

Length of Bay

Height of Frame

0 10 20 30 40 50
Score per input variables (%)

Fig. 10  Relative importance achieved by trial and error for predicting M-IDA curve (left) and  IDRmax (right) as targets of models

Table 1  Statistical metrics used 
for evaluating the ML models
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can take values between 0.0 and 1.0 (or 0.0% and 100%) to 
show the spreads of predicted and actual data points from the 
x = y line. Other metrics compare the actual and predicted 
values to show the capability of models for minimizing the 
error, which is the difference between the actual and pre-
dicted values.

Twenty ML algorithms were implemented in Python 
software and used as a prediction model. A sensitivity 
analysis was performed using the 3-Story RC frame with 
three bays having bay lengths of 5.0 m subjected to PL 
records for both models of prediction based on the  IDRmax 
and Sa(T1) as a target. Table 2 shows the comparison of 
statistical metrics for the performance evaluation of ML 
algorithms for predicting  IDRmax. It can be seen that most 
ML algorithms achieved higher values of  R2, which shows 
the accuracy of these algorithms. In the  IDRmax as target 
of testing dataset, eight methods of PLSReg, SReg, VReg, 
LReg, GReg, MLPReg, SVM, and LSVR had  R2 values 
of 0.384, 0.386, 0.585, 0.350, 0.160, 0.205, 0.259, and 
0.232, respectively. Although their accuracy of prediction 
in the training dataset was higher than approximately 90%, 
their performance in the testing dataset is lower than other 
algorithms and cannot be considered as reliable models. 
In addition, In the Sa(T1) as target of testing dataset, five 
algorithms of LReg, PLSReg, LSVR, SReg, and GReg had 
 R2 values of 0.775, 0.774, 0.743, 0.614, and 0.313, respec-
tively. Therefore, these algorithms can be considered as 

not reliable models that cannot achieve  R2 values higher 
than 0.77. Comparing the metrics can provide a good 
information about the capability of the models and their 
power for estimating the targets. These tables also can be 
used for selecting the best ML methods. To better compare 
the metrics, the score marker were used, which provides 
the number from 1 to 20 for ranking the ML methods for 
each of the metrics. Then, in each ML methods, the scores 
of each metrics were determined to compare the capability 
of them. According to results of Table 2, the BReg, Hist-
GBR, ETReg, RF, ERTReg, GBM, and XGBoost methods 
achieved scores of 49, 49, 80, 82, 83, 86, and 98, respec-
tively, which are introduced as best methods. Moreover, 
the methods of PLSReg, LReg, NuSVR, LSVR, MLPReg, 
GReg, and SVM had the scores of 175, 176, 190, 199, 212, 
219, and 243, respectively, in the end of ranking list.

According to results of Table  3, the ANNs, Hist-
GBR, XGBoost, RF, NuSVR, BReg, and ETReg meth-
ods achieved scores of 49, 49, 66, 73, 81, 86, and 93, 
respectively, which are introduced as best models, while 
the methods of VReg, PLSReg, LReg, LSVR, SReg, and 
GReg with scores of 190, 215, 222, 236, 244, and 250, 
respectively, are introduced as weak prediction models. 
The statistical indicators used for calculating the error of 
methods depend on the actual and predicted values; there-
fore, the higher value of the error shows the dispersion 
of the predicted values. Although the SVM method had 

Table 2  Comparison of statistical metrics assuming the 3-Story RC frame with three bays having bay lengths of 5.0 m as test data for predicting 
 IDRmax

Model R2 MSE RMSE MAE MARE MSRE RMSRE RRMSE MBE erMAX SD t-stat U95

XGBoost 0.818 2.58 1.61 1.24 0.52 0.86 0.93 0.23 0.20 2.72 0.01 0.41 0.04
RF 0.901 3.42 1.85 1.35 0.21 0.08 0.28 0.26 − 0.12 0.73 0.01 0.21 0.04
BReg 0.898 2.06 1.44 1.04 0.16 0.04 0.21 0.23 0.50 0.52 0.01 1.24 0.03
ETReg 0.890 2.25 1.50 1.10 0.18 0.05 0.23 0.26 0.58 0.60 0.01 1.38 0.04
GBM 0.818 3.03 1.74 1.34 0.28 0.28 0.52 0.21 0.08 2.28 0.01 0.14 0.04
HistGBR 0.888 2.28 1.51 1.07 0.15 0.04 0.20 0.20 0.27 0.48 0.01 0.60 0.03
HistGBR(FN) 0.830 2.76 1.66 1.24 0.48 0.63 0.79 0.36 1.34 3.43 0.01 4.47 0.04
AdaBoost 0.864 5.0 2.24 1.74 0.47 0.39 0.62 0.38 0.05 1.51 0.02 0.07 0.06
KNR 0.795 3.17 1.78 1.17 0.16 0.05 0.21 0.24 0.68 0.57 0.01 1.37 0.04
PLSReg 0.384 6.61 2.57 2.07 1.11 5.09 2.26 0.35 0.07 6.72 0.02 0.09 0.06
SReg 0.386 6.60 2.57 1.89 0.33 0.23 0.48 0.38 0.10 1.47 0.02 0.13 0.06
VReg 0.585 3.14 1.77 1.38 0.52 0.86 0.93 0.23 0.20 2.72 0.01 0.37 0.04
LReg 0.350 6.75 2.60 2.05 0.93 3.32 1.82 0.32 0.08 5.42 0.02 0.10 0.06
GReg 0.160 7.67 2.77 2.36 1.98 19.36 4.40 0.50 − 0.21 13.19 0.02 0.25 0.07
MLPReg 0.205 8.00 2.83 2.22 0.73 4.70 2.17 0.37 − 0.78 10.49 0.01 0.96 0.06
SVM 0.259 11.38 3.37 2.90 3.43 61.48 7.84 0.58 0.58 23.54 0.03 0.58 0.09
NuSVR 0.800 5.37 2.32 1.90 0.78 2.21 1.49 0.32 0.64 5.95 0.02 0.96 0.06
LSVR 0.232 9.12 3.02 2.20 0.56 0.80 0.89 0.39 0.30 2.93 0.02 0.33 0.07
ERTReg 0.894 2.54 1.59 1.18 0.15 0.04 0.21 0.23 0.53 0.53 0.01 1.16 0.04
ANNs 0.863 3.22 1.79 1.35 0.36 0.37 0.61 0.26 0.99 2.18 0.01 2.21 0.04
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lower performance for predicting  IDRmax of the 3-Story 
RC frame, the SVM method achieved the  R2 value of 0.987 
for predicting Sa(T1) that proves the acceptable perfor-
mance of this method.

5  Performance of prediction models

The most important part of the prediction models is to pre-
pare the datasets according to the important features. The 
seven important features related to each type of prediction 
(i.e., Sa(T1) or  IDRmax) was plotted in Fig. 10. According 
to these targets, the training dataset contained 92,400 data 
points achieved by performing IDAs. In other words, 92,400 
nonlinear time history analyses were done based on increas-
ing the intensity measures (i.e., IDA) to prepare the large 
database for prediction. After preparing suitable datasets, the 
selected ML algorithms with higher accuracy of prediction 
(see Tables 2 and 3) were used for seismic response predic-
tion models. Figures 11 and 12 present prediction results of 
 IDRmax for the 6-Story and 8-Story RC MRFs assuming five 
types of bays including PL records. It should be noted that 
the selected RC MRFs were removed from training data-
sets during the prediction. For the 6-Story RC MRFs with 
one-, two-, three-, four-, and five-bays, the ML algorithms 
of HistGBR, ANNs, and BReg had higher accuracy of pre-
diction values of 90.2%, 93.5%, 94%, 95.4%, and 96.3%, 

respectively. For the 8-Story RC MRFs with one-, two-, 
three-, four-, and five-bays, the ML algorithms of ETReg, 
BReg, and ANNs had higher accuracy of prediction values 
of 93.8%, 94.3%, 93.4%, 95%, and 95.3%, respectively. It 
can be seen that in all results, the algorithms had the most 
precise prediction for  IDRmax of lower than 4.0% due to the 
points near the blue lines. Therefore, the mentioned algo-
rithms can be used as a precise prediction model for  IDRmax 
lower than 4.0% in all types of RC MRFs.

To present the estimation accuracy of M-IDA curve mod-
els, only having higher values of  R2 is not enough due to the 
relations between the values of before and after data points. 
Therefore, the best way to present the power of the algorithm 
is to plot both actual and predicted curves. Figures 13 and 14 
show the predicted M-IDAs versus the actual M-IDA curve 
of the 3-Story and 7-Story RC MRFs having five types of 
bays subjected to PL records. The two most precise predicted 
M-IDAs were plotted that show the accuracy of the predic-
tion models used in this study and can be used as a prelimi-
nary prediction of M-IDA curves of RC MRFs. 

6  Generality of prediction models

In Sect. 5, the capability of ML algorithms for predicting 
the  IDRmax and Sa(T1) of the aforementioned RC frames was 
presented. To present the overall accuracy of the proposed 

Table 3  Comparison of statistical metrics assuming the 3-Story RC frame with three bays having bay lengths of 5.0 m as test data for predicting 
Sa(T1)

Model R2 MSE RMSE MAE MARE MSRE RMSRE RRMSE MBE erMAX SD t-stat U95

XGBoost 0.984 1.37 3.70 3.29 0.04 0.005 0.07 0.02 − 1.06 0.32 0.02 0.99 0.08
RF 0.953 4.01 6.33 5.59 0.05 0.003 0.05 0.03 − 2.36 0.06 0.01 1.33 0.13
BReg 0.952 4.13 6.42 5.68 0.05 0.003 0.05 0.03 − 2.42 0.06 0.01 1.35 0.13
ETReg 0.966 2.92 5.41 5.09 0.06 0.004 0.06 0.04 − 3.00 0.08 0.02 2.21 0.11
GBM 0.951 4.16 6.45 5.92 0.07 0.011 0.10 0.04 − 1.33 0.44 0.03 0.70 0.14
HistGBR 0.984 1.33 3.64 3.32 0.03 0.001 0.04 0.02 − 1.31 0.08 0.01 1.28 0.07
HistGBR(FN) 0.986 1.20 3.46 2.99 0.11 0.018 0.13 0.06 − 4.35 0.44 0.02 – 0.08
AdaBoost 0.919 6.94 8.33 7.40 0.06 0.003 0.06 0.04 − 2.50 0.09 0.02 1.04 0.17
KNR 0.879 10.32 10.16 9.53 0.12 0.023 0.15 0.07 − 3.95 0.54 0.03 1.40 0.21
PLSReg 0.774 19.27 13.88 11.36 0.99 4.876 2.21 0.25 13.47 9.49 0.15 13.24 0.40
SReg 0.614 32.97 18.16 16.19 1.06 5.385 2.32 0.27 15.50 10.01 0.15 5.44 0.46
VReg 0.907 7.90 8.89 8.09 0.49 1.225 1.11 0.12 5.67 4.77 0.08 2.74 0.24
LReg 0.775 19.22 13.86 11.30 1.00 4.927 2.22 0.25 13.66 9.54 0.15 19.26 0.40
GReg 0.313 50.71 22.52 20.82 1.09 5.880 2.42 0.30 13.60 10.43 0.17 2.51 0.56
MLPReg 0.982 1.50 3.88 3.19 0.13 0.022 0.15 0.06 − 4.08 0.22 0.03 – 0.09
SVM 0.987 1.14 3.38 2.93 0.22 0.266 0.52 0.05 − 0.70 2.34 0.05 0.70 0.11
NuSVR 0.993 0.57 2.39 2.19 0.07 0.007 0.08 0.04 − 2.68 0.18 0.01 – 0.05
LSVR 0.743 21.94 14.81 12.40 1.05 5.348 2.31 0.26 14.82 9.92 0.15 0.42
ERTReg 0.947 4.51 6.72 6.22 0.06 0.004 0.07 0.04 − 2.92 0.10 0.02 1.60 0.14
ANNs 0.999 0.09 0.94 0.85 0.04 0.014 0.12 0.01 0.10 0.57 0.01 0.36 0.03
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Fig. 11  IDRmax prediction results for the 6-Story RC MRFs as testing datasets including PL records
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Fig. 12  IDRmax prediction results for the 8-Story RC MRFs as testing datasets including PL records
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ML-based prediction of  IDRmax and Sa(T1) as a target for the 
M-IDA curve, four case study RC buildings with different 
structural parameters were assumed to show the reliability 
and applicability of prediction models. Figure 15 presents 
the structural plan and documentation of beams and columns 
of a five-Story RC frame that was used for the performance 
evaluation of prediction models. It should be added that 
the testing dataset prepared for this RC frame should have 
same important features as the training dataset for predic-
tion models (see Fig. 10). Therefore, the selected RC frame 
was modeled in ETABS and Opensees [52] softwares, and 
IDAs were performed based on the targets of Sa(T1) and 
 IDRmax including assumed seismic records. The results of 
the analysis were prepared as a testing dataset; then, trained 
prediction models were used to estimate  IDRmax and Sa(T1) 
as a target.

Given that it is not possible to have an experimental sam-
ple to validate prediction models, to challenge the ability 
of proposed ML-based models, four cases of selected RC 
buildings assuming different input features were assumed. 
In Case A, the bay length of the five-Story RC frame was 
selected as equal to 6.5 m. In Case B, the bay length and 

story elevation of the five-Story RC frame were selected 
equal to 6.5 m and 3.8 m, respectively. For Case C and D, the 
weight of the five-Story RC frame was reduced by 10% and 
20%, respectively, compared to the aforementioned loads 
assumed in Sect. 3, while the bay length and story elevation 
were selected equal to 6.5 m and 3.8 m, respectively. These 
four cases have different input features to challenge the pos-
sibility of using proposed ML-based models for any type of 
RC frame including two record subsets. The fundamental 
periods of Case A, Case B, Case C, and Case D were equal 
to 1.351, 1.291, 1.225, and 1.156, respectively. Therefore, 
all input features of the assumed cases are different from 
the training models. Figure 16 presents the comparison of 
 R2 for ML algorithms to predict  IDRmax of the five-Story 
RC frames assuming PL records. Four algorithms of BReg, 
ETReg, ERTReg, and ANNs had higher values of predic-
tion accuracy equal to 95.7%, 93.19%, 90.27%, and 90%, 
respectively, for the prediction of  IDRmax in Case A, and 
had higher values of prediction accuracy equal to 92.78%, 
90.31%, 87.85%, and 90.1%, respectively, for prediction 
of  IDRmax in Case B. Moreover, in Case C, the ANNs and 
BReg algorithms achieved a prediction accuracy of 92.9% 
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Fig. 13  Predicted M-IDAs of the 3-Story RC MRFs as testing datasets including records
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Fig. 14  Predicted M-IDAs of the 7-Story RC MRFs as testing datasets including PL records
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and 89.76%, respectively, while in Case D, the BReg, 
ETReg, and ANNs algorithms had a prediction accuracy of 
92.5%, 89.93%, and 87.32%, respectively. Figure 17 depicts 
the scatter plots of predicted  IDRmax of four cases of the 
five-Story RC frames in the best ML algorithm including PL 
records. It should be noted that similar results were observed 
for NP records, while results regarding PL records were pre-
sented for brevity. 

Figure 18 presents the pie charts of ML-based mod-
els for estimating the M-IDA curve of the five-Story RC 
frames assuming PL records. ML methods achieved  R2 val-
ues higher than 0.97 for predicting testing datasets of four 
cases. Although the pie charts show the highest values of 
the predicted M-IDA curve with  R2 of more than 0.97, some 
of the ML algorithms cannot fit the actual M-IDA curve 
of RC frames. Therefore, ML algorithms were improved to 

achieve the best fitting curves. Figure 19 presents the fitted 
predicted M-IDAs by improved ML algorithms. The ANNs 
and XGBoost algorithms had the best fitting curves and can 
be considered the most reliable prediction models. 

To determine the seismic performance levels of the 
five-Story RC frames, the structural performance levels 
that were defined based on the allowable  IDRmax values of 
1.0%, 2.0%, and 4.0% corresponding to Immediate Occu-
pancy (IO), Life Safety (LS), and Collapse Prevention 
(CP) performance levels, respectively, were assumed. It 
is noteworthy that the limit states were described accord-
ing to the Table C1–3 in FEMA 356 [63] for limiting the 
damages states of primary structural elements of the lat-
eral force-resisting system. According to allowable perfor-
mance levels, Table 4 presents the actual values achieved 
by M-IDAs of the RC frames and those were predicted 
by improved ML algorithms. According to Table 4, the 
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Fig. 17  Predicted  IDRmax of the five-Story RC frames in the best ML algorithm including PL records
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predicted values in all performance levels are very close 
to the actual values; thus, the prediction models have the 
ability of reliable prediction and can be used by research-
ers for predicting RC frames.

7  Graphical user interface

The preliminary estimation of the performance levels can 
widely help designers to know about the weakness of the 
designed buildings, therefore, they can use the results for 
vulnerability assessments of structures. To prepare for 
better accessibility of the results of this research, Graphi-
cal User Interface (GUI) was introduced to receive input 
parameters related to the RC frame and seismic limitation 
of performance levels and provide the predicted Sa(T1) 
regarding the seismic limit-state performance levels of RC 
MRFs prescribed by FEMA356 [63]. It should be noted 
that the reliability of prediction models was discussed in 
Sect. 6, and the introduced GUI can plot the predicted 

ML-based M-IDA curve while mitigating the need for 
complex modeling and analyses. It is noteworthy that the 
input parameters can be easily achieved for the assumed 
structure, and in addition, for calculating the period of 
the structure, the formulas that have been provided by the 
seismic provisions (e.g., ASCE 07-16 [48]) can be used.

8  Conclusions

Recent studies confirm that complex modeling and analy-
sis should be performed to determine seismic responses 
and seismic performance levels of RC structures, while the 
most of analyses are time-consuming and need to be done 
by high-speed computer systems. In addition, the unpredict-
able nature of seismic events is another factor that affects 
seismic performance achievement. To overcome this issue, 
this research proposed ML-based prediction models to esti-
mate the  IDRmax and Sa(T1) for the M-IDA curve of the RC 
frames. The analysis results can be summarized as follows:
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Fig. 19  Predicted M-IDA curves of the five-Story RC frames in the best ML methods including PL records

Table 4  Predicted seismic performance levels of the five-Story RC frames based on the M-IDA curves including PL records

M-IDA curve Case A Case B

IO LS CP IO LS CP

Actual value 0.205 0.357 0.550 0.224 0.390 0.595
XGBoost predicted 0.197 0.351 0.537 0.213 0.378 0.603
ANNs predicted 0.193 0.346 0.548 0.222 0.383 0.601

M-IDA curve Case C Case D

IO LS CP IO LS CP

Actual value 0.257 0.444 0.673 0.281 0.492 0.751
XGBoost predicted – – – 0.278 0.479 0.753
NuSVR predicted 0.237 0.415 0.665 – – –
ANNs predicted 0.244 0.429 0.669 0.279 0.495 0.748
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• Assuming  IDRmax as the target of prediction, eight algo-
rithms of PLSReg, SReg, VReg, LReg, GReg, MLPReg, 
SVM, and LSVR had lower R2 values (i.e., less than 65%) 
and cannot be used as prediction models. On the other 
hand, eight algorithms of KNR, PLSReg, SReg, LReg, 
GReg, MLPReg, SVM, and LSVR had lower R2 values 
(i.e., less than 77%) for predicting Sa(T1) as a target. In 
addition, ML algorithms had the precise prediction val-
ues located exactly in the x = y line, assuming allowable 
 IDRmax of lower than 4.0%, that shows the ability of the 
proposed methods for estimating  IDRmax in all RC MRFs.

• Considering the curve plotting ability that improved in 
ML methods based on the allowable performance lev-
els (i.e.,  IDRmax values of 1.0%, 2.0%, and 4.0%), three 
algorithms of the XGBoost, ANNs, and NuSVR can pre-
dict the seismic performance levels of the five-Story RC 

frame using the predicted M-IDA curves. Therefore, they 
can be considered as proposed prediction models for any 
type of RC frame.

• Four case study RC buildings were assumed to check the 
reliability of prediction models. In Case A, the BReg, 
ETReg, ERTReg, and ANNs algorithms predicted the 
 IDRmax with the accuracy of 95.7%, 93.19%, 90.27%, 
and 90%, respectively, and in Case B, the accuracy of 
92.78%, 90.31%, 87.85%, and 90.1%, respectively, were 
achieved by prediction models. In Case C, the ANNs 
and BReg algorithms with the accuracy of 92.9% and 
89.76%, respectively, in Case D, the BReg, ETReg, and 
ANNs algorithms with the accuracy of 92.5%, 89.93%, 
and 87.32%, respectively, can be considered as best mod-
els of prediction.

Fig. 20  GUI introduced for pre-
dicting the seismic limit-state 
capacity of RC MRFs
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• Graphical User Interface (GUI) was proposed for pre-
liminary estimation of the seismic performance levels of 
RC frames based on the main important features that can 
be introduced as input parameters. In addition, the GUI 
can be able to plot the predicted M-IDA curve regard-
ing both seismic events and facilitate the seismic vulner-
ability assessment of RC buildings. Moreover, there is 
no limit for introducing the thresholds of the allowable 
 IDRmax, and the users can find the prediction results for 
the selected  IDRmax.

• For operating the GUI, (a) receives the main important 
structural features that affects the seismic response and 
seismic limit-state capacities, (b) receives the selected 
 IDRmax defined by user (e.g., four main  IDRmax were 
showed in Fig. 20), (c) predicts the M-IDA curve of 
introduced RC frames, and (d) presents the Sa(T1) cor-
responding to the selected  IDRmax.
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