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Abstract: In this paper a new machine learning algorithm for multi-agent systems is introduced. The algorithm 

is based on associative arrays, thus it becomes less complex and more efficient substitute of artificial neural 

networks and Bayesian networks, which is confirmed by performance measurements. Implementation of 

machine learning algorithm in multi-agent system for aided design of selected control systems allowed to 

improve the performance by reducing time of processing requests, that were previously acknowledged and stored 

in learning module. This article contains an insight into different machine learning algorithms and includes the 

classification of learning techniques regarding the criteria depicted by multi-agent systems. The publication is 

also an attempt to provide the answer for a question posted by Shoham, Powers and Grenager: „If multi-agent 

learning is the answer, what is the question?” 
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1. Introduction

Research from the past decades led that learning ability is no longer the domain only of living beings 

but also computer programs (such as software agents). This allowed extending the functionality of systems and 

devices, which nowadays appear to be intelligent and cooperate with each other. Machine learning (ML) is the 

subfield of computational intelligence that grew from computer science research related with pattern recognition 

[1]. Thanks to discussed discipline it became possible to build, among other, autonomous vehicles, voice-

controlled interfaces and applications for image recognition [2]. Moreover, in certain applications learning 

capable software excel above the people, experts in particular fields. Proper example might be the defeat of 

multiple champion in "GO" game with artificial intelligence developed by Google [3]. Thus, the systems 

equipped with machine learning algorithms begin to manifest the creativity and even an ability to predict human 

decisions. There are three basic types of machine learning (which also applies to multi-agent systems): 

supervised, unsupervised and reinforcement learning. 

Supervised learning is characterized by generalization of the problem and building more common 

hypothesis based on labeled training data [4]. Developed hypothesis is a subject to review by external source, 

which has necessary knowledge related with particular classification task. In this type of learning, a feedback 

regarding evaluation of the results is provided. Hence, learning objectives are known and their effects are 

measurable. The outcome of the learning process is correct classification of future input data based on previously 

learned patterns (supervised learning is widely used to effectively search the relationship, between inputs and 

corresponding outputs). Therefore, it improves the overall performance of multi-agent systems. The difference 

between supervised and reinforcement learning lies in the assumption, that in this case behavior of agent is not 

evaluated (supervised learning distinguishes the assessment of system outcome, not the agent’s behavior). Latest 

applications of supervised learning in multi-agent systems concerns the generation of a strategy for service 

oriented architecture adaptation in changing conditions [5]. 

This paper introduces a new methodology to implement machine learning capability in multi-agent 

systems, which is based on associative arrays. The motivation of using associative arrays instead of artificial 

neural networks or Bayesian networks was dictated by the fact that this data structure operates on input values of 

any type. Artificial neural networks and Bayesian networks using floating point numbers by default, whereas 

agents communicates using string messages standardized by FIPA-ACL language. Thus, adjusting these methods 

to retrieve native values from multi-agent system requires advanced techniques (such as bag-of-words model). 
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However, even with that there is still a demand of preliminary training of both networks on specified data sets in 

order to classify patterns received from agents properly. Proposed machine learning algorithm operates on string 

values and allows online learning, in which new knowledge is being acquired in real-time during multi-agent 

system execution. The main contribution of implemented method is improvement of multi-agent systems 

performance and higher computational efficiency of data extraction comparing with artificial neural networks 

and Bayesian networks. 

 The next Section presents the classification of machine learning techniques in multi-agent systems from 

different perspectives, taking into account the criteria and directions of several research investigations. The 

Section 3 describes the architecture of multi-agent system that was used as a playground for performance 

evaluation of different machine learning algorithms. The Section 4 provides a statement of the problem, which is 

addressed by implementation of machine learning algorithm. Furthermore, there is also an explanation, why the 

already available ML methods are not suitable for direct application in such cases. The Section 5 introduces the 

developed machine learning algorithm based on associative arrays. The Section 6 contains performance 

evaluation of different ML algorithms, which is the comparison of proposed solution with state-of-the-art. The 

Section 6 refers to Shoham et al. [6] that advice to defend the theoretical evaluation with an experimental one, 

since many algorithms that meet formal criteria fail in practice, and vice versa. The Section 7 concludes the 

accomplished research. 

 

2. State of the art 
 

Machine learning in multi-agent systems is a subject of intensive research in academic environment and 

R&D industry. Researchers have considered this aspect in many categories. Noteworthy is the classification of 

multi-agent learning (MAL) taking into account the system dispersion. Learning could be carried out in 

centralized manner, but also could have distributed nature. Another important attribute is the number of agents 

that take advantage from the learning process. In some cases, only one agent can acquire benefits, but in the 

other several agents achieve the improvement at the same time [7]. 

 Another classification criterion is the agents’ behavior during the learning process. Agents might 

cooperate with each other or gaining knowledge independently [8]. The cooperative learning is divided into two 

major subdivisions: team learning and concurrent learning [9]. In the team learning there is single agent, which 

acts as a mentor to enhance the potential of an entire team.  In the concurrent learning, every agent applies 

distinctive learning algorithms to improve only their individual capabilities. Nevertheless, both cooperative 

learning strategies will maximize the utility of agent groups. 

Learning in multi-agent systems can be classified according to the criterion for determining, whether 

agents in the system are aware of their own and other agents’ learning process. Crucial is also the homogeneity 

(or heterogeneity) of learning algorithms in multi-agent system [10]. Finally, discussed issue can be divided due 

to the fact of model utilization, during the learning process. Usage of the models could give the agent a priori 

knowledge about environment in which it will operate, as well as the information referring to the dynamics of 

other agents [11]. Recently the aspects of interactive and on-line multi-agent learning in noisy and constantly 

changing environment was taken into account [12, 13]. 

In multi-agent systems, the learning aspect is sophisticated, due to the fact of system dispersion. 

Moreover, the multiplicity and behavior of individuals involved in the learning process introduce a challenging 

field for deployment of machine learning algorithms. There are certain, proven methods and techniques to 

implement machine learning algorithms. Some of them are based on nature observations (Artificial neural 

networks), others on probabilistic equations (Bayesian networks), yet another on theory of decision support 

(Decision trees). Depending on the requirements, different solutions are applied, nevertheless they often belong 

to these three major groups. 

Artificial neural networks (ANNs) are computational tools used for resolving and modelling of large-

scale, real-world problems [14]. This method follows the assumptions analogous to the biological neural 

network that appears in the brains of living beings. This approach uses similar mechanisms to those, occurring in 

the encephalon for solve complex problems, however does not imitate operations ongoing between neurons 

directly. For instance, analogical connections between artificial neurons (nodes) in particular layer are 

established. Furthermore, all of those connections have their own weights (comparable to the synapses). In 

addition, the activation threshold of artificial neuron represents biological cell transition to active state. Artificial 

neural networks are typically composed of several layers: input layer, output layer and hidden layers (that 

enables deep learning). ANNs has many advantages, among them can be distinguished computational 

parallelism, adaptability and nonlinearity that allows better estimation of real-world problems. Recent research is 

focused on the application of ANNs in multi-agent systems to solve the consensus dilemma, in which neural 

network learning is used to approximate the uncertain nonlinear dynamics [15, 16]. 
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Bayesian networks (BNs) are probabilistic representations of random variable’s set and its conditional 

probability tables depicted by the Directed Acyclic Graph [17]. Bayesian networks (aka Belief networks) legibly 

represent the probability distribution between corresponding random variables on each node. Variables on the 

nodes are conditionally independent from their successors. In opposite to the decision trees, it is not possible to 

find the path from one variable to another, because the nodes are not connected. Bayesian networks are 

associated with the Naive Bayes classifier (commonly and widely applied in machine learning applications). 

This classifier is feature-independence oriented special type of Bayesian network, in which particular variables 

have no parents. The main advantage of Bayesian networks is that, they are direct representations of the world, 

not of reasoning processes [18]. Distributed multi-agent learning based on Bayesian networks was taken into 

account in recent years [19]. 

Comprehensive and valuable surveys regarding machine learning in multi-agent systems were 

introduced over the past two decades [2, 9, 20]. In the last-mentioned reference, the authors accurately noticed 

that MAL is frequently discussed in the context of rather simple applications, usually in toy-world scenarios. 

Commonly, a significant MAL aspect is discussed on very simplified systems, consisting of only two agents [6]. 

There is the lack of practical applications for this mechanism in real-world scenarios. This motivated the 

implementation of machine learning algorithm in an agent-based system for aided design. 

 

3. Multi-agent system architecture 
 

The multi-agent system for aided design of selected control systems will be used to evaluate the 

performance of different ML algorithms. The system consists of independent software agents, which through 

realization of the unique algorithms and mutual communication solves design tasks regarding proper selection of 

the structure and various components of selected control systems [21]. 

Design process begins with gathering of design requirements from the user, relating to (inter alia): 

information about the control object, type of controllers, actuators, sensors, design restrictions, simulation 

parameters, etc. The next step involves loading the mathematical models of system components, creation of 

ready-made structure of the control system and simulation tests. Based on the control trajectory analysis and the 

model characteristics, as well as confrontation of these data with guidelines located in a knowledge base, the 

quality assessment of design solution is conducted [22]. 

After estimating the quality of the designed control system, a detailed report from the performed 

analysis is generated. The user can acknowledge the simulation results and eventually correct the provided 

design requirements and assumptions. The diagram of distributed multi-agent system for aided design of selected 

control systems is presented in the Figure 1. 

 

 
 

Fig. 1. Architecture of multi-agent system for aided design of selected control systems 

 

The multi-agent system consists of four agent types: user interface agent (Interface Agent), supervisory 

agent (Master Agent), simulation tests agent (Simulation Agent), design evaluation agent (Decision Agent). 

Additionally, agents utilize the information from database, knowledge base and learning module. Invoked 

instances of particular agents and external tools used by these instances creates logical layers. 
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Interaction between agents inside each layer practically does not occurs (only the inter layers cooperation is 

applied). Further part of the article describes an attributes of each component of multi-agent system and its role 

in the design process. The inter layers cooperation during requests processing is described as well. 

 

3.1 Interface Agent 

 The main purpose of the Interface Agent is gathering of requirements, assumptions and restrictions 

related to the design of control system. The interface gathers those data by generating the questions, 

corresponding with user’s expertise. The answer possibilities are diversified: starting with an indication of the 

preferred control system structure, by specifying the numerical parameters and simulation tests duration, ending 

with percentage range that determines the permissible deviations from the desired target value. The main menu 

of the interface including questions divided into several basic thematic groups, for instance: 

 Object: Allows to specify the entity, for which the control system is being implemented; 

 Components: Here the user could choose the elements included in the control system; 

 Structure: This category allows to select the preferred structure of the control system; 

 Simulation: Enables the user to define the parameters and execution time of simulation tests; 

 Database: Launches an application that allows the database access via ODBC to adjust the parameters 

of system component models. 

After collecting all necessary design requirements, occurs their insertion into the table that contains two columns 

(parameter and value). Then, the information is transferred to the supervisory agent (Master Agent). 

 

3.2 Master Agent 

 Master Agent is responsible for managing the design process. Distributed multi-agent system could 

consists with more than one user interface (usually from a few to several instances). Master handles the 

information from all interfaces, performs an initial validation of the received data and prioritizes tasks using the 

implemented queuing mechanism. 

 The supervisory agent mediates between user interfaces and the agents responsible for the dynamic 

calculations (Simulation Agent), as well as static evaluation (Decision Agent). Master transmits the encapsulated 

data to computational agents after receiving the affirmation, concerning a readiness to the request processing 

(method based on the token passing). 

 If the Master Agent has large number of queued design requests for an analysis and responses from 

computational agents are negative (in case of excessive system load), then Master is obligated to invoke another 

instance of the Simulation Agent. This additional agent is activated in order to restore the desired system 

performance (invocation is done only if required hardware resources are available). 

 Therefore, it is not necessary to use an expropriation mechanism of system resources, since the requests 

are being processed in parallel (starvation-free scheduling). Master Agent has also an ability to reduce the 

number of computational agents, when particular Interface Agent's request did not come for an amount of time, 

longer than established timeout (system idle state). 

 

3.3 Simulation Agent 

 Simulation Agent requires relatively large computational power comparing with other agents (quad-core 

CPU with >2.5GHz frequency and minimum 4GB of physical memory is recommended). Simulation Agent 

purpose is to carry out the dynamic calculations. After receiving design requirements from the Master Agent 

(which are obtained from the user of multi-agent system), Simulation Agent preliminarily analyzes this data to 

verify if all components necessary to build the control system are available. Thereafter, a method to run the 

simulation environment based on the Matlab Simulink software is invoked. Simulation Agent loads all control 

system components from Simulink model’s base to the workspace. Afterwards, connections between blocks are 

automatically generated. When the complete control system model is built, an algorithm that verifies the 

correctness of established structure is activated. This algorithm checks whether all inputs and outputs are 

coupled and if there is no unattached nodes (to avoid errors during the Matlab Simulink runtime). 

 The models loaded into the workspace from Simulink model’s base initially have default parameters. To 

set the target coefficients, it is necessary to read values saved by the user in database. Connection with external 

database is established via ODBC (Open DataBase Connectivity). ODBC is standard, which provides API 

(Application Programming Interface) to work with database, regardless of used application, programming 

language or the type of database. ODBC protocol is available natively in almost every operating system and 

requires no additional software installed. Therefore, waived from a strategy, to directly control the model’s base 

from the user interface level (otherwise, it would be required to install the Matlab Simulink on every 

workstation, where the Interface Agent is being instantiated). In this approach, mathematical models are generics 

and agnostics to the type of control system. Only if the connection with database is established and parameters 

adjusted by the user are loaded, models’ adaptation to particular task occurs. 
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The next step after loading all the parameters from database is to run simulation tests. User predefines 

the duration of these simulations in requirements. The longer the simulation is run, the results are more accurate 

and better reflect a real characteristics of the designed control system. However, setting too lengthy simulation 

timeout leads to a significant prolongation of the design process and causing delays in providing the test results 

(as well as unacceptable usage of system resources by single thread). Optimal simulation time depends on 

complexity of the designed control system and ranges from a few, up to several minutes. The final stage after 

completion of simulation tests is to save the results and send them to the decision-making agent in order to 

evaluate the simulation outcome. 

 

3.4 Decision Agent 

The main task of the Decision Agent is quality assessment of the modeled control system. Decision 

Agent performs static calculations that requires moderate computing capabilities and are less time-consuming 

compared to the dynamic simulations. Therefore, in the implemented multi-agent system, a ratio of evaluation 

agents to calculation agents is lower (generally, for one Decision Agent falls several Simulation Agents). 

After receiving the test results from the Simulation Agent, their confrontation with the design 

constraints occurs. These restrictions concern, in example: the range of exceeded reference value, the maximum 

setting time etc. This allows to verify the usefulness of obtained design solution. Decision Agent during the 

assessment utilizing the rules from a knowledge base. Those rules have following syntax: IF...THEN...ELSE 

Decision Agent generates the report from an analysis of the designed control system. This report 

contains, in addition to the quality assessment, the information regarding control system structure, components 

details, simulation results, and user guidelines (for instance the adjustments of controller settings or system 

structure modifications in order to improve the control trajectory and meet the designated quality criteria). 

Generated report includes as well more general information, such as the valuation of potential costs of 

building the designed control system (based on vendor’s catalog data) etc. At the end, a complete report is sent 

back to the Master Agent, which forwards it to an appropriate Interface Agent. After that, the user of multi-agent 

system can review a findings provided in the report (this solution strive for industry automation). 

 

3.5 Multi-Agent Platform 

 Implemented multi-agent system is dispersed between multiple workstations. Computers are connected 

by wireless LAN (Local Area Network). To maintain the system coherence in heterogeneous hardware 

environment, it was necessary to select the multi-agent platform that ensures stable and efficient system 

management, as well as constant supervision of the interaction between agents. The system was based on the 

universal multi-agent platform UMAP [23]. The platform creates the containers, inside which the agents’ 

processes are running in compliance with the specification of FIPA (Foundation for Intelligent Physical Agent). 

UMAP platform provides single, universal agent template, which is an abstract class. The definition of agent 

behavior is established by overriding four basic template methods as follows: 
 Run(); 

 OnActivate(); 

 OnDeactivate(); 

 HandleMessage(Message message); 

This solution allows to initialize the unlimited number of a given agent instances, which makes each system 

based on the UMAP platform very scalable. Another advantage is that the agent’s data transfer process 

(responsible for transport of serialized messages in XML format) and execution of inner algorithms are 

performed asynchronously in at least two independent threads (this solution is highly efficient and capable of an 

immediate request processing). Agents within the UMAP platform communicates with each other using Agent 

Communication Language (ACL), which is standard defined by FIPA (the other common agents’ language is 

Knowledge Query and Manipulation Language). It is noticeable that multi-agent system has higher 

predispositions to solve complex design challenges, comparing with centralized standalone applications. 

However, it has also some limitations. 

 

4. Problem statement 
 

 The multi-agent system for aided design of selected control system has been developed with the aim of 

effective work of many different users simultaneously [22]. It was desirable to assure and maintain an instant 

request processing in the system (close to real-time). Long waiting period for the request handling from 

particular user is not acceptable. While the multi-agent platform and computer network does not introduce 

a significant latency to the design flow, there might be situation (under certain circumstances) in which the user 

experience will be very disadvantageous. 
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 The total time needed to generate solution by multi-agent system depends on the duration of particular 

design steps. The most time-consuming are simulation tests after building the model of control system. 

Performing this type of calculations cause the inaccessibility of resources within particular workstation for other 

agents. Interval period ranging from a few to several minutes. If there is no workstation, which has the available 

bandwidth, then all incoming requests from the Interface Agents must be queued and wait for the release of 

resources to be handled. 

 Although it is possible to add an additional Simulation Agent in the system. However, as previously 

stated, this agent type due to substantial hardware requirements could be run only on high performance 

workstations. Moreover, even if design requirements from multiple users are identical or the same request has 

been processed in the past, an entire process of building the control system model and simulation tests will be 

conducted from the beginning. This limitation introduces a bottleneck in multi-agent system. Mentioned problem 

could be overcome by the use of an appropriate learning algorithm. Methods based on artificial neural networks 

and Bayesian networks have certain drawbacks, which makes them a sub-optimal solution in this situation. 

 ANNs and BNs requires an initial training on significant amounts of input data to properly classify a 

given patterns [14]. Hence, these learning algorithms would be inactive for certain period from the activation of 

multi-agent system (until the sufficient amount of training data will be gathered). In addition, there is no simple 

method to carry out the extraction of data (foreground) from the previously trained artificial neural network [24]. 

Some research indicates also that Bayesian networks performs poorly when the network was trained in standard 

manner [17]. Moreover, the computational cost of Bayesian network learning is relatively high. Taking into 

account the disadvantages of available solutions, a novel mechanism to enable machine learning was developed. 

 

5. Machine learning using associative arrays 
 

 Essential requirements regarding implementation of machine learning algorithm in distributed multi-

agent system are efficiency, simplicity and reliability. Furthermore, the learning algorithm should be 

autonomous and shall not require an involvement of multi-agent system users in the learning process, since the 

Interface Agent and learning module could operate on separate computers dispersed geographically (user may 

even have no access to computer where machine learning process takes place). 

 New machine learning algorithm is proposed, in which learning is based on historical data. An 

algorithm aggregates design requirements jointly with solutions generated by multi-agent system (associative 

learning). The purpose of the learning process is to load the previously completed report containing the control 

system analysis after recognition of identical design requirements, which were processed by the system in the 

past (without exigency to build the model and conduct simulation tests from the beginning). 

 Historical data is stored as associative arrays in *.dat file, created during initialization of the Master 

Agent instance. Associative array is an abstract data structure, which preserves the pair of variables: specific key 

and determined value that can be accessed after providing this key. Associative arrays are designed to collect the 

large amount of selected data, to which an immediate access is required. Therefore, this data structure has been 

applied also in database servers and Kademlia protocol [25]. 

 Form of the key in associative array can be arbitrary: starting with ordinal numbers, through strings, 

ending on tuple (the most important is that shall be the unique value). In the implemented algorithm, a hash was 

used (item obtained after application of hash functions). This solution was chosen due to the large size of input 

data (string containing input data comprises of more than 3,000 characters, whereas the hash of exactly 32). To 

calculate the hash, a popular cryptographic algorithm MD5 was applied. 

 Message-Digest algorithm 5 (MD5) allows generating 128-bit hash function from data sequence of any 

length. This algorithm was developed in 1992 by Ron Rivest (co-founder of RSA). Hashes with 128-bit length 

are slightly less complex compared with, i.e. SHA-1 (which consists of 160 bits), thus their calculation, 

serialization and saving in the file is more straightforward. The Figure 2 presents design requirements 

transmitted by the Interface Agent to Master Agent in form of string table and calculated MD5 hash value for 

this sequence (key): 

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


7 

 

 
 

Fig. 2. Design requirements in string table form and calculated MD5 hash value for this sequence 

 

 Software module that contains machine learning algorithm based on associative arrays has been placed 

in the supervisory layer of multi-agent system. The main reason for deployment of this approach is the fact that 

through supervisory layer all requests are passed – either from interface layer that contains design requirements 

from multi-agent system users, as well as from computational layers (both simulation and evaluation layer) that 

returns generated design solutions. As a result, it is possible to supervise learning module by the Master Agent 

directly, relieving the system user from this obligation. Learning module is created always on the same 

computer, where the Master Agent is invoked. Obviously, there is a possibility to place learning module in 

network location, however when an access to the module occur, then *.dat file will be buffered to local machine 

anyway. This solution would cause unnecessary delays during learning module access. Description of individual 

steps in implemented machine learning algorithm and its details are provided below, whereas on the Figure 3 a 

flowchart of the algorithm is presented: 

 

 Awaiting to receive the request with user assumptions from the interface layer 

 Download project requirements in string table form that contains the elements and its values 

 Calculation of the unique MD5 hash value (key) from downloaded string table 

 Searching *.dat file that consists of the historical data to find an identical hash 

 Verification, whether *.dat file contains the suitable hash key 

 

 The key was found 

 Extraction of the value associated with the key, which is previously calculated design solution 

for a given input 

 Sending of the complete report to an appropriate Interface Agent without necessity to conduct 

simulation tests from the beginning 

 

 The key was not found 

 Passing the design assumptions to the Simulation Agent and Decision Agent, model creation, 

simulation tests 

 Generation and sending the report from an analysis of the control system back to the 

supervisory layer 
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 Association of the MD5 hash calculated from project requirements with value, that contains the 

report concerning generated design solution 

 Saving of the created associative array in *.dat file as new line 

 Dispatching of the report to destination Interface Agent 

 

 
 

Fig. 3. Flowchart of implemented machine learning algorithm based on associative arrays 

 

 On the workstation’s mass storage device, with the activation of every Master Agent instance, a new 

*.dat file is created (due to the obligation to catalog the associative arrays, generated during the learning 

process). File with *.dat extension is established in OnActivate() method, invoked during the agent initialization 

process. Whereas, on the agent deinitialization, OnDeactivate() method is called and the code responsible for 

deleting the file (linked with a given instance of the Master Agent) is executed. Lifetime of every *.dat file is 

convergent with the activity period of the Master Agent instance. 

 More than one Master Agent could be active on single computer, thus to avoid errors caused by 

concurrency access to the resource (when one instance read *.dat file and another wants to perform write), each 

Master Agent creates the separate file. All files are stored in the same location, hence in order to distinguish 

them, every file incorporates the different identifier, which is automatically generated GUID (Globally Unique 

Identifier), for instance: 7527cd69-07ff-4557-aa07-af54523245d7.dat 
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 Performance of machine learning algorithm is determined mostly by the search time of matching string 

in *.dat file, which contains stored associative arrays. For searching purposes, StreamReader() class from 

mscorlib.dll assembly was applied. This class allows to reading characters from the bit stream in particular 

encoding (the default is UTF-8). During the declaration of new StreamReader() object, the machine learning 

module file (hashFile) is being specified as target stream. 

 Afterwards, the file is scanned line by line to find the desired key (hashKey). If a given line contains the 

key, an entire sequence will be loaded and divided into two fragments (the key and the value). As a separator 

sign, the hard space was used. Selected separator sign in Unicode is marked as \u00A0. In the next step, after 

deconcatenation, a feedback message for the Interface Agent is formulated. Content of reply message includes 

only the second part of deconcatenated string (report). After this step, the file search is completed and the stream 

is being closed. The implementation of described mechanism is presented in the Algorithm 1: 

 
System.IO.StreamReader sr = new System.IO.StreamReader(hashFile); 
 
while ((line = sr.ReadLine()) != null) 
{ 
    if (line.Contains(hashKey)) 
    { 
        string[] report = line.Split('\u00A0'); 
 
        Message reply = message.CreateResponse(); 
        reply.performative = Performative.inform; 
        reply.content = report[1].ToString(); 
        this.SendMessage(reply); 
 
        sr.Close(); 
        return; 
    } 
    counter++; 
} 
sr.Close(); 

 

Alg. 1. Algorithm of searching the key and response creation from associated value 

 

 It is hard to estimate the percentage of times when new calls may reuse previous solutions. Depending 

on different course of design processes, the results are non-deterministic. At the beginning of multi-agent system 

activity, the number of repetitions is equal zero. However, with the increase of system usage, an accumulation of 

new data sets occurs. Associative arrays are persistent, thus it enhance the reusability of previously collected 

information with the duration of system activity up to 100%. The Section 6 contains performance comparison of 

proposed machine learning algorithm with ANNs and BNs. 

 

6. Learning algorithm performance analysis 
 

 In order to verify the quality of proposed machine learning algorithm, its performance evaluation has 

been conducted. In the first stage of an analysis, the time required to generate design solution by multi-agent 

system (when learning algorithm was inactive) has been measured. In the next step assessed, how the enabling of 

learning algorithm will improve the overall performance of multi-agent system. Three directly consecutive 

requests, which contain identical design requirements (the same as presented in Figure 2) were sent. After that, 

the time needed to receive a response from the supervisory layer of multi-agent system has been measured. 

 Subsequently, the machine learning algorithm was enabled and the same measurement procedure has 

been carried out. To perform the tests 10 computers were involved (3x Interface Agent, 1x Master Agent, 3x 

Simulation Agent, 3x Decision Agent). Measurements were executed on the platforms with following hardware 

specification: Intel Core i7-6820HQ, DDRAM 2xDIMM 8GB, Intel SSDSCKJF180A5. Software requirements 

necessary to launch multi-agent system are Microsoft Windows and UMAP platform installed on each computer, 

as well as Matlab Simulink available on the units where Simulation Agent is invoked. 

 The multi-agent system was instantiated by load an assembly that including the agent classes and 

contain reference to an abstract class provided together with UMAP platform. This enables the identification of 

agents and their execution under control of UMAP container [23]. The results of multi-agent system 

performance evaluation (comprising the time in seconds, needed to develop design solution by the system), when 

an algorithm was inactive (first column), compared with active learning algorithm (second column) are presented 

in the Figure 4. 
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Fig. 4. Performance of multi-agent system with machine learning algorithm enabled vs disabled 

 

 Considering that execution times are non-deterministic, values from three iterations are provided. Time 

required to process the first pair of requests is similar to the circumstance, when machine learning algorithm was 

active, as well as with inactive learning algorithm. This arises from the fact that beforehand an algorithm did not 

acquire historical data, on which the learning process could base (the data was provided exactly in the first 

iteration). For the second and each subsequent requests, rapid increase of multi-agent system performance was 

observed. The time indispensable to generate the system report was reduced to less than a few seconds, needed 

to serialize the messages to XML format and transfer them between computers (on which agents were installed). 

Evidently, implementation of machine learning algorithm reflects on performance improvement at the level of 

respectively: 4682.83%; 5564.72%; 

 The next stage of this research involved the evaluation of implemented learning algorithm efficiency 

during searching a specific amount of associative arrays stored in learning module file. Measurements included 

time required to extract from *.dat file the value associated with obtained key and submit it to the Interface 

Agent. For testing purposes to assure the same initial conditions in every experiment, the data sets of historical 

workloads were simulated. The worst-case scenario, where searched entity is placed at the end of file, was 

assumed (the order of cataloged data is relevant during *.dat file searching process). Hardware parameters had a 

significant impact on performance results as well. The results of performance evaluation including time required 

to extract solution (measured in milliseconds) from various amount of associative arrays stored in *.dat file are 

presented in the Figure 5. 

 

 
 

Fig. 5. Performance of machine learning algorithm during searching the various amount of associative arrays 
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 In the final experiment, performance comparison of proposed machine learning algorithm based on 

associative arrays with artificial neural networks and Bayesian networks was carried out. To add support for 

those algorithms in learning module, the ready-made solutions were used. In case of artificial neural networks, 

the Encog3 was applied [26] and for Bayesian networks, the Naive Bayes test example was redesigned to solve 

defined classification problem [27]. By default, the training data was randomly created in runtime for both 

examples. The code was modified in such a way that the data sets are read from *.dat file. Moreover, the Encog3 

neural network has operated on numerical values. It was necessary to translate strings using the bag-of-words 

model to provide this data on neural network input. The results of performance comparison including time 

required to extract solution (measured in milliseconds) from various amount of training data stored in *.dat file 

are presented in the Figure 6. 

 

 

 
 

Fig. 6. Comparison of data extraction performance using different machine learning algorithms 

 

 With the increasing amount of training data, growing disparities in efficiency of machine learning 

algorithms can be observed. Artificial neural networks appear to be the least performant algorithm in conducted 

comparison. Bayesian networks are more efficient, however due to the prior training on the data sets this 

algorithm achieved worse performance than proposed solution based on associative arrays. For large amounts of 

training data, the differences are more noticeable. Nevertheless, even for smallest tested amount of the data sets, 

machine learning algorithm based on associative arrays was the most effective. During searching for solution 

within 10 entries, the time of data extraction with AAs, BNs, and ANNs was respectively: 1ms, 35ms, 42ms. The 

results of multi-agent system performance evaluation (comprising the time in milliseconds, needed to develop 

design solution by the system), when different fully trained ML algorithms were used by learning module are 

presented in the Figure 7. 

 

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


12 

 

 
 

Fig. 7. Comparison of multi-agent system performance using different machine learning algorithms 

 

7. Conclusions and further research 
 

 Proposed machine learning algorithm was based on associative arrays. An algorithm is less complex 

and more efficient substitute of artificial neural networks and Bayesian networks. In addition, it requires no prior 

learning on training data. Implementation of machine learning algorithm in multi-agent system for aided design 

of selected control systems allows to achieve the performance improvement in the range from 4682.83% to 

5564.72% by reducing time of requests processing at the level of 150 seconds. Furthermore, the process of 

solution extraction from learning module does not introduce relevant overhead in multi-agent system, even for 

relatively large number of associative arrays. 

 Subsequent research will focus on further grow of algorithm performance (which directly contribute to 

increase the overall multi-agent system productivity). This might be achieved through improvements in 

algorithm flow, for instance the promotion of frequently used solutions (transferring the most desired associative 

arrays at the beginning of *.dat file). Additionally, splitting of the key search between multiple threads will 

definitely reduce time of data extraction. Another method is to synchronize associative arrays in case when the 

system includes more than one Master Agent (synchronization could be conducted during system idle state). 

That will allow rapid collection of new training data and increasing the coverage of design solutions stored in 

associative arrays. Improvements might also be applied for the model of supervised learning, for instance by 

introducing new teacher in the learning process, which will provide an additional feedback regarding the quality 

of design solutions (it may be the administrator, who will intervene in the form of associative arrays, i.e. deleting 

incorrect entities). 

 In conclusion authors would like to refer to the question raised by the Shoham, Powers and Grenager: 

„If multi-agent learning is the answer, what is the question?”. An appropriate answer in this case seems to be: 

“How to improve the performance of multi-agent system?”. However, many questions in the context of machine 

learning in multi-agent systems still remain without the answer, many aspects are unexplored, many mechanisms 

and theories requires improvement, thus at the end authors wish good luck to all researchers in their studies and 

deployment of multi-agent learning. 
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