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Abstract. We present examples of macroscopic systems entailing a quantum mechanical
structure. One of our examples has a structure which is isomorphic to the spin structure
for a spin 1/2 and another system entails a structure isomorphic to the structure of two spin
1/2 in the entangled singlet state. We elaborate this system by showing that an arbitrary
tensor product state representing two entangled qubits can be described in a complete way by a
specific internal constraint between the ray or density states of the two qubits, which describes
the behavior of the state of one of the spins if measurements are executed on the other spin.
Since any n-qubit unitary operation can be decomposed into 2-qubit gates and unary operations,
we argue that our representation of 2-qubit entanglement contributes to a better understanding
of the role of n-qubit entanglement in quantum computation. We illustrate our approach on two
2-qubit algorithms proposed by Deutsch, respectively Arvind et al. One of the advantages of the
2-qubit case besides its relative simplicity is that it allows for a nice geometrical representation
of entanglement, which contributes to a more intuitive grasp of what is going on in a 2-qubit
quantum computation.

1. Introduction
Richard Feynman has contributed to different fields of science in a fundamental way. Almost
30 years ago he wrote a paper on the possible advantages of using quantum systems for certain
computational tasks and by this became one of the founding fathers of the field of quantum
computation [1]. He described how simulating compound quantum systems on a classical
computer quickly becomes intractable as the number of particles becomes large, and suggested
how quantum systems themselves could be more suitable to implement such tasks [2]. Deutsch
defined the Quantum Turing Machine and provided a 2-qubit quantum algorithm, which could
solve a problem faster than possible on a classical digital computer [3]. The interest for quantum
algorithms got a boost when Shor presented a factoring algorithm for a quantum computer,
which has real life application since it would allow to break cryptographic codes faster than by
any means classical possible [4]. Grover showed the existence of a fast quantum algorithm for
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database search [5]. After the work of Deutsch, Shor, Grover and others it became clear that
the possible advantages of computers based on quantum principles could well go far beyond the
efficient simulation of quantum systems. Although still much work needs to be done on both
the theoretical and the experimental level before a real-life quantum computer can be built,
quantum computation has become over the last decade one of the most fascinating fields of
science, both on the level of applications (cracking codes) as well as on the more fundamental
philosophical level (Quantum Turing Machine). In our paper we would like to pay tribute to
Feynman’s groundbreaking ideas, by exploring what could be considered as the opposite of
Feynman’s original idea, namely how in principle certain macroscopic models could be used to
implement quantum algorithms. As we shall demonstrate, these macroscopic systems simulate
quantum behaviour in a specific way, inaccessible to classical, digital computers. Also, the
physical realization of such macroscopic devices is not a trivial task at all, such that these
‘macroscopic quantum-like computers’ are still in their preliminary steps.

We adopt an operational approach to quantum mechanics, in which a physical entity is
described by its set of states, its set of properties and a relation of ‘actuality’ between these two
sets which expresses which properties are actual when the system is in a specific state [6].
Following this operational approach, it is a natural step to consider models which exhibit
‘quantum behavior’ on a structural level, even if they are not microscopic in size. This has lead
to a ‘quantum-like’ model representing the spin properties of a quantum spin 1/2 particle [7].
Putting two such models together in a suitable way, one obtains a model for the singlet state of
two entangled spin 1/2 [8], which is crucial if one wants to implement quantum algorithms in
an efficient way (i.e. using the same number of steps as a quantum computer). By generalizing
this ‘putting together’ procedure in a more formal way, one recovers the full set of states of the
compound system of two entangled spin 1/2 [9]. This means that in principle one can represent
any entangled state of a 2-qubit quantum computer with this model. We illustrate this by two
quantum algorithms and show in which way the result is obtained by running the quantum
algorithm. The first algorithm is the famous algorithm of Deutsch [3]. It is well-known that
for the 2-qubit case this algorithm only uses product states and does not require entangled
states. This is why we consider a second algorithm, proposed by Arvind et al., which does
need entangled states to obtain the outcome [10, 11]. In this sense this algorithm is an ideal
candidate to show how problems could be solved on our model of a macroscopic 2-qubit quantum
computer. In general a quantum register contains n qubits. It can be shown that any n-qubit
interaction can be decomposed into 2-qubit gates and unary operations [12], so in a sense, the
2-qubit quantum computer is already sufficient to demonstrate the most elementary functioning
of a general quantum computer.

2. The SPS-formalism: an operational approach to quantum mechanics
The basic notions for the description of a physical entity S are as follows [6]. First, we consider
that at any moment the entity S is in a (known or unknown to the observer) state p ∈ Σ. Also,
S has a set of properties L, defined by the set of available experiments which can be performed
on S. A property a is either ‘actual’ or ‘potential’ for the entity S, meaning that if the property
a is actual in the state p, then whenever one would perform the corresponding experiment, one
finds the positive outcome with certainty. Between the set of states and (power)set of properties
is a relation ξ : Σ → P(L) of actuality that maps each state p ∈ Σ onto the set ξ(p) of those
properties that are actual in this state. Dually, one can consider the map κ : L → P(Σ), which
maps a property a ∈ L onto the set of states κ(a) that make this property actual. Depending
on the nature of the entity S, one obtains a different structure on the set of states Σ, the set
of properties L and the relation between these two sets. Hence, if we are only concerned with
the structural behaviour of an entity, we can focus on the triple (Σ,L, ξ). More abstractly, even
without an underlying physical entity S we can consider any two sets Σ and L and a function
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ξ : Σ → L : p → ξ (p) and study the emerging structure. We call (Σ,L, ξ) a State Property
Space (SPS). If one considers the SPS of a quantum entity, one observes that certain ‘quantum
axioms’ hold, i.e. the mathematical structure of the SPS needs to obey certain specific rules.
Conversely, one could start from an abstract SPS, and by imposing a suitable set of axioms
one can derive a quantum structure on the set of properties, i.e. it becomes isomorphic with
the Hilbert space representation of quantum mechanics. In Appendix A we briefly present these
quantum axioms to give an idea of how the operational approach works and how quantum
structure arises. In the operational SPS approach, a physical system is determined by the
structure on its set of states and properties, and the actuality map ξ between these two. This
means that it is not necessary (or even meaningful) to make a distinction between quantum and
classical systems on basis of their size (classical macroscopic versus microscopic quantum) but
rather on the different structure on their SPS.

3. ‘Quantum’ versus ‘classical’ systems
At this stage, it is useful to clarify what we mean by a ‘quantum-like system’ as compared
to a ‘classical’ system. Traditionally, one often refers to the size of the system to identify
it as a classical or quantum system. However, within the operational approach the concept of
‘classical’ versus ‘quantum’ have very different meanings depending on the context or framework
in which these concepts are used. If one considers the set of states, then quantum states
are represented by rays in a complex Hilbert space, while classical states are represented by
points (reflecting both position and momentum) in phase space. Quantum properties are
represented by closed subspaces in Hilbert space, and give rise to a non distributive lattice
(quantum logic). Classical properties on the other hand can be represented by subsets in
phase space and give rise to a Boolean algebra (i.e., distributive lattice). In classical theory,
probabilities can only arise due to a lack of knowledge about the state of the system which yields
a Kolmogorovian probability calculus [13]. On the other hand, quantum probabilities result in
a non Kolmogorovian probability calculus. Finally, also the description of compound systems
is fundamentally different for classical and quantum systems. The classical phase space of a
compound classical system is constructed using the Cartesian product, which means that only
product states occur. On the other hand, the Hilbert space of a compound quantum system
is given by the tensor product of the Hilbert spaces of the subsystems, such that non-product
states occur (so-called entangled states).

The possibility of (non)existence of quantum entangled states has been a long debate in
physics. Already in their seminal paper of 1935 [14], Einstein, Podolsky and Roosen (EPR)
argued that if such entanglement correlation is present in nature then quantum mechanics should
be considered an incomplete theory. This was the beginning of a long debate in which defenders
of local realism and hidden variable theories stood against defenders of the Copenhagen quantum
interpretation. For many years, this debate could be considered a philosophical debate, since
it was not clear at all how could be decided experimentally on the possible (non)existence of
underlying hidden variable theories for quantum mechanics. However, in 1964 Bell put forward
a set of inequalities which are violated in quantum mechanics, but which needs to hold if local
hidden variables exist [15]. This shifted the debate from a purely philosophical level to the
experimental level. Aspect and his team showed that indeed (generalized) Bell inequalities are
violated [16], which for many scientists seemed to close the debate in favour of Bohr and his
view on quantum mechanics, and against the beliefs of EPR. Also, on a more mathematical level
local hidden variable theories were shown to be incompatible with the structures of quantum
mechanics. Starting with the first no-go theorems (of von Neumann [17]) till the more elaborated
theorems of Kochen-Specker and others [18, 19], which showed that if such hidden variables
existed — giving quantum theory an underlying, hidden reality — that then these hidden
variables should at least be contextual, i.e. dependent on the measurement context. Again,
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for many people this seemed to close the debate since it was hard to imagine what the meaning
of such contextual variables could be, since they were no longer variables only pertaining to the
system.

However, these arguments didn’t convince everybody, and non-standard interpretations of
quantum mechanics were proposed. One of the more successful hidden variable theories is the
Bohm(-de Broglie) theory in which contextuality is reflected by the presence of a ‘strange’ or
‘spooky’ potential which implements the non-local behavior of quantum systems [20]. Another
interpretation is the Hidden Measurement Approach, in which (quantum) probabilities occur in
experiments due to an irreducible lack of knowledge on the interaction between system and
measurement apparatus [7]. More precisely, with each (quantum) experiment corresponds
a set of deterministic sub-measurements such that a lack of knowledge about which sub-
measurement occurs results in the quantum probability distribution. As a consequence, the
Hidden Measurement approach is contextual by its very nature. Within this approach various
macroscopic models have been constructed which have a quantum structure on their set of states
and properties, and a quantum probability distribution on the set of outcomes.

4. The single qubit
4.1. The quantum sphere model
The sphere model is a generalization of the Bloch sphere representation1 such that also the
measurements are represented [7, 21]. The main differences with the standard use of the
Bloch representation are as follows. First, in our approach all points of the Bloch sphere
represent states of the spin, such that points on the surface correspond to pure states, while
interior points correspond to density states. This is because an arbitrary point u(r, θ, φ),
r ∈ [0, 1], θ ∈ [0, π], φ ∈ [0, 2π], of the Bloch sphere can be expressed as a convex linear
combination

u(r, θ, φ) = ru(1, θ, φ) + (1− r)u(0, θ, φ)

from which follows the corresponding density state

D(r, θ, φ) = rD(1, θ, φ) + (1− r)D(0, θ, φ)

=
1
2

(
1 + r cos θ r sin θe−iφ

r sin θeiφ 1− r cos θ

)

In this expression D(1, θ, φ) = |ψ〉〈ψ| is the usual density state representation of a pure state,
while D(0, θ, φ) is the density matrix representing the center of the sphere (or, alternatively,
the singlet state). The spin up state (the pure state |0〉) corresponds with the ‘North pole’
D(1, 0, φ) = |0〉〈0| , while the spin down state (hence pure state |1〉) is represented by the ‘South
pole’ D(1, π, φ) = |1〉〈1|.

Next to this, the sphere model allows a representation of measurements (see Figure 1). The
experiments eu are defined as follows. We put an elastic of length 2 centered in the origin o of
the sphere S2 between the point u and its antipode −u. Let us denote the segment between u
and −u with the interval [−u, u] . Next, the particle falls from its initial position p orthogonally
onto the interval [−u, u] in the point p′ where it stays attached to the elastic. Then the elastic
breaks randomly in some point λ ∈ [−u, u] such that two possibilities can occur. If the elastic
breaks between p′ and −u, the elastic will pull the point particle towards u where it stays
attached and the experiment is said to yield the outcome ‘spin up’. If on the other hand the
elastic breaks between u and p′, then the elastic will pull the particle towards −u, where it stays
attached, and the measurement is said to yield outcome ‘spin down’. To make the description

1 In this representation, a qubit |ψ〉 = cos θ
2
e
−iφ
2 |0〉 + sin θ

2
e

iφ
2 |1〉 is represented by the point u(1, θ, φ) =

(sin θ cos φ, sin θ sin φ, cos θ) on the surface of a 3-dimensional sphere, called the Bloch sphere.
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o

u(1,0,0)

-u(1,0,0)

p�

p
l

Figure 1. The macroscopic spin 1/2 model.

of the experiment eu complete, one could specify that in the event that the elastic breaks at
exactly the point p′ where the particle is attached, we assume that the measurement always
yields the outcome ‘spin up’. Notice however that this event has measure zero to occur, and in
such sense it is physical irrelevant with respect to the resulting probability distribution over the
set of outcomes. Let θ denote the angle between the state p of the system and the direction u
of the measurement device. The probability for outcome ‘spin up’ is given by the length of the
elastic between the projection point p′ and the point −u, normalized by dividing by the total
length of the elastic. This yields following probability P (u | p) for the ‘spin up’ outcome and
corresponding state transition from initial state p towards final state u, eigenstate of the ‘spin
up’ outcome:

P (u | p) =
cos θ + 1

2
= cos2

θ

2
Similarly we can calculate the probability for the outcome ‘spin down’ as

P (−u | p) =
1− cos θ

2
= sin2 θ

2

These probabilities coincide with the quantum probabilities for a spin experiment on a spin-1
2

particle. Note that if one would have knowledge about where the elastic breaks, the measurement
procedure happens deterministic. If we call the measurement eλ

u the measurement that consists
in performing eu and such that the elastic breaks in the point λ for some λ ∈ [−u, u], then,
each time eu is performed, it is actually one of the eλ

u that takes place. We do not control this,
in the sense that the eλ

u are really ‘hidden measurements’ that we cannot choose to perform.
The probability µ(eu, p, o1) that the experiment eu gives the outcome o1 if the entity is in state
p is a randomization over the different situations where the hidden measurements eλ

u gives the
outcome o1 with the entity in state p. This is exactly the way we have calculated the probability
for the quantum sphere model. Remark that if we have a physical entity S and we have a lack
of knowledge about the state p of the physical entity S, then a theory describing this situation
is necessarily a classical statistical theory with a Kolmogorovian probability model. However, if
we have a physical entity S and a lack of knowledge about the measurement eu to be performed
on the physical entity S, and to be changing the state of the entity S, then we cannot describe
this situation by a classical statistical theory, because the probability model that arises is non
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Kolmogorovian. For the sphere model it can be shown that Bayes’ axiom is violated, rendering
the probability model non Kolmogorovian. Clearly, this is due to a lack of knowledge about
the measurement eu, which can be regarded as a ‘non pure’ measurement, in the sense that
there are hidden properties of the measurement, such that the performance of eu introduces
the performance of a ‘hidden’ measurement, denoted eλ

u, with the same set of outcomes as the
measurement eu. The measurement eu consists then in fact of choosing one way or another
between one of the hidden measurements eλ

u and then performing the chosen measurement eλ
u.

More generally, one could regard any quantum experiment as a class of ‘hidden measurements’
such that each hidden measurement by itself is deterministic, but a lack of knowledge about
which hidden measurement is actually going on leads to a lack of knowledge on the level of the
measurement outcomes, i.e. quantum probability can be explained as due to an uncontrollable
(and irreducible) lack of knowledge on the interaction between the measurement device and
the system. This interpretation of quantum mechanics is called the ‘hidden measurement
interpretation’ of quantum mechanics. Since it locates the lack of knowledge in the measurement
interaction, it goes beyond the reach of standard ‘no go theorems’ for hidden variable theories
for quantum mechanics. Indeed, by its very nature the hidden measurement approach is highly
contextual and hence non local from the very start.

4.2. The epsilon model
In principle, one could modify the sphere model by considering experiments in which the lack of
knowledge about which sub-measurement is occurring, is controlled by a couple of parameters
(ε, d) , such that ε controls the fluctuations on the measurement interaction and d controls
the ‘symmetry’ of the measurements [22]. The experiment eε,d

u is defined similarly as for the
quantum sphere model, but now an elastic of length 2ε is centered around the point d on the
interval [−u, u] (see Figure 2).

-u(1,0,0)

u(1,0,0)

u(d+e,0,0)

p(q,f)
l

u(d-e,0,0)

u(d,0,0)

o
q
up

q
down

-u(1,0,0)

u(1,0,0)

u(d+e,0,0)

p(q,f)
l

u(d-e,0,0)

u(d,0,0)
o

Figure 2. The epsilon model.

One can show that for this model, in contrast with the sphere model, quantum axioms can be
violated such that it is impossible to represent it in a 2-dimensional complex Hilbert space. More
precisely, the axioms of weak modularity and the covering law only hold in the quantum limit
(ε = 1) and the deterministic limit (ε = 0). In the intermediate cases (0 < ε < 1) of the epsilon
model these axioms are violated. This shows how within the hidden measurement approach
using the SPS formalism one can go beyond the reach of standard quantum mechanics. Such a
two-level state system was called a Contextual Bit (ConBit) [23], but we will not go deeper into
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this subject, because it would lead us too far away from the main scope of this paper, namely
simulating 2-qubit quantum computation on a macroscopic model. Also, it is still not clear to
the authors what kind of algorithms could be implemented using these ConBits, so we leave it
for future research.

5. Two entangled qubits
5.1. Description of compound systems
We consider the situation of a physical entity S that consists of two physical entities S1 and
S2. Let us consider two experiments e1 and e2 for the entity S1, S2 resp., from which we can
define the joint experiment e1 × e2 for the compound entity S which consists of performing the
experiment e1 on entity S1 and experiment e2 on entity S2. Experiments e1 and e2 are called
‘separated experiments’ iff for an arbitrary state p of S holds that (x1, x2) is a possible outcome
for the joint experiment e1 × e2 iff x1 is a possible outcome for e1 and x2 is a possible outcome
for e2. The entities S1 and S2 are ‘separated entities’ iff all experiments e1 on S1 are separated
from all experiments e2 on S2. It was an unexpected and also non trivial result that standard
quantum mechanics can not describe the situation of separated quantum systems. In fact, if
the compound system obeys the rules of quantum mechanics, then one of the subsystems needs
to be classical, i.e. all experiments are deterministic. This was proven within an operational
approach which was the predecessor of the SPS formalism (Aerts’ theorem [24]):

Theorem 1 Suppose Axioms 1, 2 and 3 are satisfied and (Σ,L, ξ) is the SPS describing S and
(Σ1,L1, ξ1) and (Σ2,L2, ξ2) the SPS describing S1 and S2 then:

• If Axiom 4 (covering law) is satisfied then one of the two entities S1 or S2 is a classical
entity.

• If Axiom 5 (weak modularity) is satisfied then one of the two entities S1 or S2 is a classical
entity.

It is important to notice that the result of this theorem points at a failure of standard
quantum mechanics, and is not just a characteristic of the axiomatic approach itself. Indeed,
one can show that the structure on the set of states and set of properties of a compound system of
two separated systems does not fit in Hilbert space, i.e., the quantum axioms are violated [25,26].
This also sheds new light on the claims of EPR, namely that quantum mechanics is incomplete.
This is true, but in a slightly different way: if separated quantum systems do exist, then the
corresponding compound system cannot be described with quantum mechanics.

5.2. Macroscopic violation of Bell inequalities
Let us consider a very simple example of a compound system, namely the vessels of water model
which is an example of a non-separated and non-micro model [27]. The entity S consists of
two vessels V1 and V2 connected by a tube containing 20 liters of transparent water (see Figure
3). Experiment e1 (resp. e3) consists of putting a siphon K1 (resp. K2) in the vessel V1 (resp.
V2) and pouring out water and collecting it in reference vessel R1 (resp. R2). If more than
10 liter is collected in the reference vessel, then the measurement yields outcome o1(up) (resp.
o3(up)). If less than 10 liter is collected, the measurement is said to yield the outcome o1(down)
(resp. o3(down)). Experiment e2 (resp. e4) consists of taking a spoonful of water from the
vessel V1 (resp. V2) and determining whether it is transparent or not. If the collected water
is transparent the measurement is said to yield outcome o2(up) (resp. o4(up)). Otherwise the
outcome is o2(down) (resp. o4(down)). In order to derive Bell inequalities, we consider joint
experiments eij , which consists of performing ei and ej together. Following Bell [15], we define
expectation values E(i, j) :

E(i, j) = +1.P (oi(up), oj(up)) + 1.P (oi(down), oj(down))
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−1.P (oi(up), oj(down))− 1.P (oi(down), oj(up))

V
1

V
2

R
1

R
2

Figure 3. The vessels of water model.

From the assumption that outcomes are either +1 or −1 and that E(i, j) can be written as
an integral over some hidden variable of a product of the two local assignments, one derives the
Bell inequalities:

|E(1, 3)− E(1, 4)|+ |E(2, 3) + E(2, 4)| ≤ 2

One can show that 2 entangled spin-1/2 particles in the singlet state yield a possible violation
of Bell inequalities with maximum value 2

√
2. However, if one calculates Bell inequalities for

the vessel of water model, one finds:

|E(1, 3)− E(1, 4)|+ |E(2, 3) + E(2, 4)| = 4

which is a stronger violation than quantum violation, namely value 4 instead of 2
√

2. This not
only shows that the quantum violation is not maximal, but also that Bell inequalities can be
violated in the non-micro world too.

Some will remark that the violation of Bell-inequalities has a different nature than the
quantum violation. Indeed, it is not obvious that the ‘faster than light aspect’ identified in
the quantum experiments is also present in this vessels of water experiment. Although the
correlations can be made to happen in two distinct regions of space, such that the correlated
events are not part of each others causal cones, also for the vessels of water experiment, what is
not clear for the vessels of water case is ‘which are the internal interactions which cause these
correlations’. A classical model, for example using fluid mechanics, of the vessels of water, will
only describe physical interactions of causal nature, propagating with a speed smaller than the
speed of light, and hence a priori will not be able to model the speed effects within the quantum
experiment. It might well be however that such classical models for the water are not complete
models and that other types of speed effects are also possible in water. However, apart from
this intriguing question about the nature of completeness of classical theories for the description
of macroscopic phenomena, we do not really have to focus on this aspect to make the point we
want to make in the realm of the present article. Indeed, it is not the speed effects present in
this entanglement correlation which is vital in a quantum computation, but rather its algebraic
structure. In this sense, if one could build a model of 2-qubit entanglement (even with ‘slower
than light’ implementation), it is this possibility to implement entanglement in the compound
system which makes it non-classical, and therefore impossible to implement by classical means.
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5.3. Macroscopic model of two entangled spin 1/2
Next, let us show how by putting together two sphere models one can construct a macroscopic
model for a compound system of two entangled spin 1/2 in the singlet state [8]. The compound
system consists of two point particles in the center of two sphere models for a single spin 1/2
which are connected by a rigid but extendable rod, centered in c, i.e. in the middle of the line
connecting the two point particles (see Figure 4). The joint experiment e(a, b) is performed as
follows. First, the two spheres reach the measurement apparatuses, with measurement direction
a respectively b chosen by the experimenter. The spin measurements ea and eb are defined
similarly as for the single sphere model. When one side is measured, the measurement apparatus
draws one of the entities to one of the two possible outcomes with probability 1/2 (because
initially the point particle is in the center of the sphere) (see Figure 5). Because of the rod the
other entity is drawn toward the opposite side of the sphere as compared with the first entity
(see Figure 6, in which we consider for the sake of illustration the event that ea has yielded
outcome ‘spin up’). The connecting rod is then taken away and the second spin measurement is
performed (see Figure 7). The measurement e(a, b) has 4 possible outcomes (a, b), (a,−b), (−a, b)
and (−a,−b). Giving value +1 for outcome (a, b) or (−a,−b), and value −1 for outcome (a,−b)
or (−a, b), one finds for the expectation value E(a, b) = −a.b, i.e. this corresponds with the
expectation value for the spin measurements along directions a, b on a compound system of two
entangled spin 1/2 particles in the singlet state.

s
1 s

2

c

Figure 4. The initial configuration of the
macroscopic model of two entangled spin 1/2
in the singlet state.

c
s
1 s

2

a(1,qa,fa)

-a(1,qa,fa)

Figure 5. The measurement ea is performed
on the left point particle, drawing it towards
the point a.

c

s
1

s
2

a(1,qa,fa)

-a(1,qa,fa) -a(1,qa,fa)

Figure 6. By means of the rigid rod, the
right point particle is drawn towards the point
−a on its sphere. Next, the connecting rod is
taken away.

s
1

s
2

b(1,qb,fb)
a(1,qa,fa)

-a(1,qa,fa)
-b(1,qb,fb)

Figure 7. Finally, the measurement eb is
performed on the right point particle.

The maximum value of the Bell inequality is obtained for coplanar measurement directions
a, a′, b, b′ with angles a.b = a′.b = a′.b′ = π

4 and a.b′ = 3π
4 . In such case, the expectation values
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are given by E(a, b) = −E(a, b′) = E(a′, b) = E(a′, b′) =
√

2
2 such that Bell inequality has value:

|E(a, b)− E(a, b′)|+ |E(a′, b) + E(a′, b′)| = 2
√

2

which is the maximum quantum violation of the Bell inequality.
There are two key-features of the singlet model. First, there is the rigid rod which expresses

the non-separable wholeness of the singlet joint experiment (cfr. the connecting tube between
the vessels of water). Secondly, there is an elastic that breaks during the measurements on the
sphere models. This represents the probabilistic nature of the outcomes (cfr. the siphon in the
vessels of water). To explore these two features this model was extended by introducing two
parameters [28], parameter ε controlling the amount of indeterminism in the measurements and
parameter ρ controlling the correlation between the two subsystems, i.e. the amount of change
induced on the state of one particle when measurements are performed on the other. The Bell
inequalities for this extended model have following value:

|E(a, b)− E(a, b′)|+ |E(a′, b) + E(a′, b′)| =
{

2
√

2ρ
ε if ε

ρ >
√

2
2

4 if ε
ρ ≤

√
2

2

from which two important conclusions can be drawn for the compound system of two sphere
models connected by a rigid rod. First of all, the correlation is the source of the violation. Let
us remark that the non-local connectedness plays a crucial role for these correlations to appear,
and not quantum indeterminism. In fact, if one increases the indeterminism in this model,
one decreases the value the inequality takes. Hence for minimal indeterminism and maximal
correlation, the modified model yields value 4, i.e., the same value as for the vessels of water
example.

6. Geometrical representation of two entangled spin 1/2
6.1. Representing entanglement by constraint functions
In the previous section we discussed a compound system consisting of two connected sphere
models which represented the singlet state of two entangled spin 1/2. In general, in a 2-qubit
quantum algorithm the register will be in other entangled states as well. In [9] we show how
this problem is solved for the coupled sphere models by introducing constraint functions. Let
us briefly recall how these functions are introduced and some of their properties.

Let C2
1 and C2

2 be two copies of C2, which we label with indices 1 and 2 with the sole purpose
of identifying them. A system of two entangled spin 1

2 is described by means of an arbitrary
unit vector |ψ〉 ∈ C2

1 ⊗ C2
2, which can always be written as the following linear combination

|ψ〉 =
∑

ij

λij |ei
1〉 ⊗ |ej

2〉

where λij ∈ C, and {|ei
1〉} and {|ej

2〉} are bases of C2
1 and C2

2 respectively. Following von
Neumann [17], when a measurement is performed on the first spin, it collapses into a spin
state described by the unit vector |x1〉 ∈ C2

1 corresponding with the observed outcome, thus
transforming the entangled state |ψ〉 into

(P|x1〉 ⊗ I)(|ψ〉)

where P|x1〉 is the orthogonal projector on |x1〉 in C2
1, and I is the unit operator in C2

2. The
result is that the entangled spins end up in the following product state

|x1〉 ⊗
∑

ij

λij〈x1, e
i
1〉|ej

2〉
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This means that as a consequence of the measurement on the first spin, collapsing its state to
|x1〉, the second spin collapses to the state

∑

ij

λij〈x1, e
i
1〉|ej

2〉

In an analogous way we can show that if a measurement is performed on the second spin,
resulting in a collapse to the state x2 ∈ C2

2, the state of the first spin becomes
∑

ij

λij〈x2, e
j
2〉|ei

1〉

Because of this, we arrive at the following definition.

Definition 1 (Constraint Functions) The constraint functions F12(ψ) and F21(ψ) related to
ψ are defined in the following way:

F12(ψ) : C2
1 → C2

2 : |x1〉 7→
∑

ij

λij〈x1, e
i
1〉|ej

2〉

F21(ψ) : C2
2 → C2

1 : |x2〉 7→
∑

ij

λij〈x2, e
j
2〉|ei

1〉

The constraint functions map the state where one of the spins collapses to by a measurement
to the state that the other spin collapses to under influence of the entanglement correlation. A
detailed study of the constraint functions gives us a complete picture of how the entanglement
correlation works as an internal constraint. Let us list some properties of the constraint functions:

• The constraint functions are canonically defined, i.e. the definition of F12(ψ) and F21(ψ)
do not depend on the chosen bases.

• F21(ψ) ◦ F12(ψ) = D1(ψ) is the partial trace density matrix over C2
2 and F12(ψ) ◦ F21(ψ) =

D2(ψ) is the partial trace density matrix over C2
1 :

D1(ψ) ≡ trC2
1
|ψ〉〈ψ|, D2(ψ) ≡ trC2

2
|ψ〉〈ψ|

6.2. Constraint functions and the Schmidt diagonal form
To derive a complete view of how entanglement works as an internal constraint for a 2-particle
system, we recall the relation between the Schmidt diagonal form [29] and the constraint
functions. We begin by choosing the base

|x1
1〉 = (cos

θ

2
e−i φ

2 , sin
θ

2
e

iφ
2 )

|x2
1〉 = (−i sin

θ

2
e−i φ

2 , i cos
θ

2
e

iφ
2 )

in C2
1. With respect to this basis, the expression for a general density matrix becomes

D1(ψ) =
1
2

(
1 + r 0

0 1− r

)

Define now the following basis
{|x1

2〉,|x2
2〉

}
in C2

2

{|x1
2〉,|x2

2〉
}

=

{ √
2√

1 + r
F12(ψ)(|x1

1〉),
√

2√
1− r

F12(ψ)(|x2
1〉)

}
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One finds that ‖x1
2‖ = ‖x2

2‖ = 1 and

D2(ψ)(|x1
2〉) =

1 + r

2
|x1

2〉,D2(ψ)(|x2
2〉) =

1− r

2
|x2

2〉

Hence |x1
2〉 and |x2

2〉 are normalized eigenvectors of D2(ψ) with eigenvalues 1+r
2 and 1−r

2
respectively. Therefore, with respect to the basis {|x1

2〉, |x2
2〉}, D2(ψ) is expressed as

D2(ψ) =
1
2

(
1 + r 0

0 1− r

)

Finally, let us find the expression for ψ with respect to the basis {|x1
1〉 ⊗ |x1

2〉, |x1
1〉 ⊗ |x2

2〉, |x2
1〉 ⊗

|x1
2〉, |x2

1〉 ⊗ |x2
2〉} of C2

1 ⊗ C2
2. In general, this expression is of the form

ψ = a|x1
1〉 ⊗ |x1

2〉+ b|x1
1〉 ⊗ |x2

2〉+ c|x2
1〉 ⊗ |x1

2〉+ d|x2
1〉 ⊗ |x2

2〉

However, since

F12(ψ)(|x1
1〉) = a|x1

2〉+ b|x2
2〉 =

√
1 + r√

2
|x1

2〉

F12(ψ)(|x2
1〉) = c|x1

2〉+ d|x2
2〉 =

√
1− r√

2
|x2

2〉

one obtains the Schmidt diagonal form of |ψ〉 given by

|ψ〉 =
√

1 + r√
2

|x1
1〉 ⊗ |x1

2〉+
√

1− r√
2

|x2
1〉 ⊗ |x2

2〉

6.3. Geometrical representation of entanglement
Let us remark that F12(ψ) does not conserve orthogonality (except for the basis vectors{|x1

1〉,|x2
1〉

}
which are mapped onto the orthogonal basis vectors

{|x1
2〉,|x2

2〉
}

and in the case
that r = 0, i.e. ψ is a product state). Also, F12(ψ) does not conserve the norm, since
‖F12(ψ)(|x〉)‖2 = 1

2 (1 + r cos θ). This means that we have to look at the normalized image
of a vector |x〉 = x(θ1, φ1). This vector is mapped to |y〉 = y(θ2, φ2) = 1

‖F12(ψ)(|x〉)‖F12(ψ)(|x〉).
One derives following expression:

y(θ2, φ2) · x1
2(θ, φ) =

r + cosθ1

1 + r cos θ1

from which one can deduce that straight lines containing the center o1 on the first sphere
are mapped to straight lines through the point u (r, 0, 0) in the second sphere. This gives
a geometrical representation of ‘stretching’ on the second sphere (see Figure 8). Hence the
entanglement correlation is represented by a rotation (reflecting the basis vectors in the Schmidt
diagonal form) and a stretching depending on the parameter r, i.e. ‘amount of entanglement’.

Vice versa, given a general entangled state |ψ〉 = λ00 |00〉 + λ01 |01〉 + λ10 |10〉 + λ11 |11〉
expressed in the canonical basis, we can derive the Schmidt diagonal form using the constraint
functions. From the reduced density matrix D1(ψ) = F21(ψ)◦F12(ψ) one can calculate the basis
vectors

{|x1
1〉,|x2

1〉
}

, and consequently also the second pair of basis vectors by
{|x1

2〉,|x2
2〉

}
=
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u(1,0,0)

u(1,p,0)

u(1,p/6,0)

u(1,p/3,0)

u(1,p/2,0)

u(1,4p/6,0)

u(1,5p/6,0)

u(r,0,0)

F
12

(y)[u(1,0,0)]

F
12

(y)[u(1,p,0)]

F
12

(y)[u(1,p/6,0)]

F
12

(y)[u(1,p/3,0)]

F
12

(y)[u(1,p/2,0)]

F
12

(y)[u(1,4p/6,0)]

F
12

(y)[u(1,5p/6,0)]

u(r,0,0)
F
12

(y)[u(1,p/2,p)]

u(1,p/2,p)

Figure 8. Geometrical representation of two entangled spin 1/2.

{ √
2√

1+r
F12(ψ)(|x1

1〉),
√

2√
1−r

F12(ψ)(|x2
1〉)

}
. In the canonical basis {|0〉 , |1〉} the reduced density

matrix has following form:

D1(ψ) =
(

a b
b 1− a

)
, a = |λ00|2 + |λ01|2 , b = λ00λ10 + λ01λ11

By expressing the reduced density matrix in the eigenvectors basis
{|x1

1〉,|x2
1〉

}
we obtain the

value for the parameter r, i.e. the amount of entanglement:

D1(ψ) =
(

1+r
2 0
0 1−r

2

)

7. Geometrical representation of 2-qubit algorithms
7.1. Deutsch problem
Deutsch problem is as follows [3]: given a {0, 1}-valued function f defined on a two-point domain
{0, 1}, determine with a single call of the ‘oracle’ whether f is constant or balanced. On a classical
digital computer, this problem is impossible to solve. However, on a quantum computer this is
possible. Consider preparing a quantum register of two qubits in an input state:

ψ0 = (H ⊗H) |01〉 =
|0〉+ |1〉√

2
⊗ |0〉 − |1〉√

2
=
|00〉+ |10〉 − |01〉 − |11〉

2
(1)

Calling the oracle corresponds with applying a suitable unitary transformation Uf which maps

|xy〉 onto Uf |xy〉 = |x(y ⊕ f (x))〉 . Denoting f (i) = f (i)⊕1 and noticing that |f (i)〉−
∣∣∣f (i)

〉
=

(−1)f(i) (|0〉 − |1〉) one obtains that ψ1 = Uf (ψ0) =
|0f(0)〉+|1f(1)〉−|0f(0)〉−|1f(1)〉

2 which can be
written as a product state:

ψ1 =

(
(−1)f(0) |0〉+ (−1)f(1) |1〉√

2

)
⊗ |0〉 − |1〉√

2
(2)

After applying a Hadamard transformation H⊗H on both qubits we obtain the following state:

ψ2 = (H ⊗H) Uf (ψ0) (3)
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• If f is constant, f (0) = f (1) and the state ψ2 can be rewritten as:

ψ2,c = (−1)f(0) |0〉 ⊗ |1〉 (4)

i.e. if f is constant, then the value of the first qubit is |0〉 .
• If f is balanced, f (1) = f (0)⊕ 1 then the state ψ2 can be rewritten as:

ψ2,b = (−1)f(0) |1〉 ⊗ |1〉 (5)

such that if f is balanced, then the first qubit is |1〉 .
This shows that a quantum computer solves Deutsch problem with 1 call of the oracle.

However, it does not achieve this task by calculating both values f (0) and f (1) ‘parallel’ and
compare them simultaneously, but rather by acting on the state of the 2-qubit system as a whole.
Also, it can be remarked that the final state of the second qubit is the same as its input state,
such that this qubit could be regarded as an auxiliary qubit. Finally, it is important to notice
that Deutsch algorithm uses product states only, which in principle makes it possible to simulate
it on a ‘classical’ computer based on the polarisation states of classical light beams [30].

7.2. Deutsch problem on the geometric model
The intermediate states in Deutsch algorithm are given by the product states (1–5) such that one
can represent these states in a trivial way on the geometric model (no entanglement is present,
so the state of the compound system can be represented by the states of the individual qubits
by their Cartesian product). Therefore, in the next section we consider a 2-qubit algorithm
exploiting non-product states, such that the geometrical representation by two correlated sphere
models becomes less trivial.

7.3. Arvind problem
The problem put forward by Arvind and his colleagues is the following [10, 11]: given a
{0, 1}-valued function f defined from a 2-qubit domain space to a one-bit range space (i.e.
f (x) : {0, 1}2 → {0, 1}), determine with 2 calls of the ‘oracle’ whether f is even or odd. Since
there are 4 possible input values (00) , (01) , (10) , (11) each of which has 2 possible output values
(0, 1) there are 16 possible functions f. These can be divided into sub-classes depending on the
number of values 0 respectively 1, i.e. [0, 4] , [1, 3] , [2, 2] , [3, 1] , [4, 0] . One has 8 ‘even’ functions
([0, 4] , [2, 2] , [4, 0]) and 8 ‘odd’ functions ([1, 3] , [3, 1]). Clearly, on a classical computer Arvind’s
problem is impossible to solve, since it would require calling the oracle four times. However,
Arvind et al. have shown how to solve this problem on a quantum computer. Again, calling the
oracle corresponds with applying a unitary transformation Uf : |x〉2−qubit → (−1)f(x) |x〉2−qubit

Uf =




(−1)f(00) 0 0 0
0 (−1)f(01) 0 0
0 0 (−1)f(10) 0
0 0 0 (−1)f(11)




There are 16 Uf matrices, of which 8 are separable and 8 are non-separable, i.e. they
are entangling, e.g. Uf [1, 1, 1,−1] . One could notice that the subclass of even functions
[0, 4] , [4, 0] , [2, 2] reflects the problem of constant or balanced functions in Deutsch problem.
Hence it should come as no surprise that for even f the matrix Uf is separable and no
entanglement is used in Arvind’s algorithm, just as in Deutsch algorithm. However, for odd
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f the matrix Uf is non-separable which shows that in that case entanglement is necessary to
solve Arvind’s problem.

Let the quantum register of two qubits be prepared in input state ψ0 = |00〉 , then the
consecutive unitary transformations in Arvind’s algorithm are as follows:

ψ0 = |00〉 → (H ⊗H) Uf (1⊗H) Uf (H ⊗H) |00〉

such that the consecutive ‘intermediate’ states in Arvind’s algorithm are given by

ψ1 =
|00〉+ |01〉+ |10〉+ |11〉

2

ψ2 =
(−1)f(00) |00〉+ (−1)f(01) |01〉+ (−1)f(10) |10〉+ (−1)f(11) |11〉

2

ψ3 =
1

2
√

2




(−1)f(00) + (−1)f(01)

(−1)f(00) − (−1)f(01)

(−1)f(10) + (−1)f(11)

(−1)f(10) − (−1)f(11)




ψ4 =
1

2
√

2




1 + (−1)f(00)+(01)

(−1)f(00)+(01) − 1
1 + (−1)f(10)+(11)

(−1)f(10)+(11) − 1




ψ5 =
1

2
√

2




(
(−1)f(00)⊕f(01) + (−1)f(10)+f(11)

)
|00〉

+2 |01〉
+

(
(−1)f(00)⊕f(01) − (−1)f(10)+f(11)

)
|10〉




• If f is even, (−1)f(00)⊕f(01) = (−1)f(10)+f(11) such that the final state becomes

ψ5,e =
1√
2

(± |00〉+ |01〉)

• If f is odd, (−1)f(00)⊕f(01) = − (−1)f(10)+f(11) and the final state becomes

ψ5,o =
1√
2

(± |10〉+ |01〉)

It is important to notice that although ψ5,e 6= ψ5,o, these states are not orthogonal, which
makes it not possible to distinguish them in the standard approach of quantum computation.
However, on a NMR based quantum computer these two states are distinguishable [11].

7.4. Arvind problem on the geometric model
The density matrices for the intermediate states ψi in Arvind’s algorithm are given by:

D1(ψi) =
(

a b
b 1− a

)

in which the respective values for ai, bi are given by following expressions.
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ai =
1
2
, i = 1, . . . , 4; a5 =

1
4

[
3 + (−1)

P
f(ij)

]

b1 =
1
2
, b2 = b3 =

1
4

[
(−1)f(00)+f(10) + (−1)f(01)+f(11)

]
,

b4 =
1
4

[
1 + (−1)

P
f(ij)

]
, b5 = 0

• If f is even: (−1)f(00)+f(10) = (−1)f(01)+f(11) =⇒ b2 = b3 = 1
2 (−1)f(00)+f(10) , b4 = 1

2 .
Hence the reduced density matrices D1 (ψi) for even f are given by:

D1(ψ1) =
(

1
2

1
2

1
2

1
2

)
, D1(ψ2) = D1(ψ3) =

(
1
2 (−)f(00)+f(10) 1

2

(−)f(00)+f(10) 1
2

1
2

)

D1(ψ4) =
(

1
2

1
2

1
2

1
2

)
, D1(ψ5) =

(
1 0
0 0

)

such that the set of eigenstates for each matrix D1 (ψi) is given by
{ |0〉+|1〉√

2
, |0〉−|1〉√

2

}
, i =

1, . . . , 4; the set of eigenstates for matrix D1 (ψ5) is {|0〉 , |1〉}. For instance, for D1(ψ2)
we can distinguish two cases: (−)f(00)+f(10) = +1 or −1. In the first case, we obtain
|0〉+|1〉√

2
eigenvector with eigenvalue 1 and its image through the constraint function yields

F12(ψ)(|x1
1〉) = (−)f(00) |0〉+(−)f(00)+f(01)|1〉√

2
. In the second case, i.e. (−)f(00)+f(10) = −1 we

obtain |0〉−|1〉√
2

as eigenvector with eigenvalue 1 and its image through the constraint function

given by F12(ψ)(|x1
1〉) = (−)f(00) |0〉+(−)f(00)+f(01)|1〉√

2
. Hence the consecutive states in Arvind’s

theorem are given by

ψ1 =
|0〉+ |1〉√

2
⊗ |0〉+ |1〉√

2

ψ2 =
|0〉+ (−)f(00)+f(10) |1〉√

2
⊗ (−)f(00) |0〉+ (−)f(00)+f(01) |1〉√

2

ψ3 =
|0〉+ (−)f(00)+f(10) |1〉√

2
⊗(−)f(00)

[
|0〉

(
1 + (−)f(00)+f(01)

2

)
+

(
1− (−)f(00)+f(01)

2

)
|1〉

]

ψ4 =
|0〉+ |1〉√

2
⊗

[(
(−)f(00)+f(01) + 1

2

)
|0〉+

(
(−)f(00)+f(01) − 1

2

)
|1〉

]

ψ5 = |0〉 ⊗ (−)f(00)+f(01) |0〉+ |1〉√
2

which in fact are all product states, making the representation by two coupled sphere models
trivial since ‘there is no entanglement correlation’.

• If f is odd: (−1)f(00)+f(10) = − (−1)f(01)+f(11) such that bi = 0, i = 2, . . . , 5.The reduced
density matrices D1 (ψi) for odd f are hence given by:

D1(ψ1) =
(

1
2

1
2

1
2

1
2

)
, D1(ψi) =

(
1
2 0
0 1

2

)
, i = 2, . . . , 5
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Again, ψ1 is a product state since applying the Hadamard gate on both qubits in the ground
state |00〉 results in a product state. However, for i = 2, . . . , 5 the reduced density matrices
D1 (ψi) correspond with an entangled state, namely the singlet state. There is no unique Schmidt
diagonal form for the singlet state and hence no unique representation of the intermediate states
in Arvind’s algorithm on the geometric model for odd f . Nevertheless, the fact that these are
singlet states also has an unexpected advantage, because these singlet states can be represented
by the rigid rod model in a mechanistic way, making it possible to represent Arvind’s algorithm
‘directly’ on the macroscopic singlet model.

8. Conclusions
In this paper, we adopt the operational SPS approach to quantum mechanics, making it
natural to consider macroscopic ‘quantum-like’ systems and their compositions. Although the
entanglement correlation present in these models is of a different nature (i.e., slower than light)
than quantum entanglement, they reproduce the same probability distributions over the set
of outcomes as the standard quantum mechanical systems. Hence in principle these models
can be used to represent entangled states in quantum algorithms. This results in a geometric
model for entanglement which allows to illustrate the key intermediate states in a quantum
algorithm. More specifically, we have shown how a compound system of two entangled qubits
in a non-product state can be described in a complete way by extracting entanglement into an
internal constraint between the two qubits. So-called constraint functions describe the behavior
of the state of one of the spins if measurements are executed on the other spin. Therefore the
non-product state can be substituted by means of the states of the individual qubits and this
internal constraint function, which models the entanglement which is present in a direct way.
By making use of the sphere model representation for the spin 1/2, this allows for an easy to
grasp visual support for the developed formalism.

We have discussed two elementary 2-qubit quantum algorithms and illustrated them on the
geometric model. As our geometric model illustrates nicely, Deutsch algorithm does not require
any entanglement between the two qubits. However, Arvind’s algorithm requires entangled
states, and we have illustrated the intermediate steps in this algorithm by means of the
corresponding entangled states in our geometric model. This shows how in principle modelling
entanglement through constraint functions allows for a rigorous method to follow its form and
effect in quantum computations. This is very important since at this stage it is not at all clear
how entanglement can be exploited in a systematic way. In this sense, our geometric model
is a step towards the better understanding of the exploitation of 2-qubit entanglement in a
quantum algorithm. To our surprise the considered intermediate entangled states in Arvind’s
theorem are all singlet states. On the other hand, this allows us to represent these states with
the macroscopic model in which a rigid rod explicitly realizes the entanglement correlation.

In future work we aim to study how the 2-qubit models can be generalized to represent the
n-qubit quantum computer. Since any quantum system with a measurable set of outcomes has
a Hidden Measurement representation [7,31], this approach should be in principle feasible. Also,
it is still an open question whether one can find a physical (rod-like?) implementation of the
constraint functions for the non-singlet states. In our opinion it is an interesting question at what
point, if any, this approach will encounter problems, i.e., whether there are some fundamental
reasons why a ‘quantum computer’ should not be realizable by macroscopic means. Do we really
need microscopic reality to construct non-classical computers?
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Appendix A. Quantum axioms and Piron’s representation theorem
In this appendix we briefly present the quantum axioms and show how quantum structure
arises. Consider a SPS (Σ,L, ξ). For properties a, b ∈ L we introduce an implication relation:
a < b ⇐⇒ κ (a) ⊂ κ (b) . Similarly, for states p, q ∈ Σ we introduce p < q ⇐⇒ ξ (q) ⊂ ξ (p). It
can be shown that for a SPS (Σ,L, ξ): (Σ,≤) and (L,≤) are pre-ordered sets.

Axiom 1 (Property determination) Consider a SPS (Σ,L, ξ). The axiom of property
determination is satisfied iff for a, b ∈ L :

κ(a) = κ(b) ⇒ a = b

If the axiom of property determination is satisfied, then L,≤ is a partial order relation on L.

Axiom 2 (Property completeness) Consider a SPS (Σ,L, ξ). The axiom of property
completeness is satisfied iff ∃ generating subset T ⊆ L such that ∀(ai)i ⊆ T , ∃a ∈ L:

κ(a) =
⋂

i

κ(ai) (A.1)

and ∀a ∈ L : ∃(ai)i ⊆ T such that (A.1) is satisfied.

The property a is called the meet of (ai)i, denoted as a =
∧

i ai.

Axiom 3 (State completeness) Consider a SPS (Σ,L, ξ). The axiom of state completeness
is satisfied iff ∃ generating subset Γ ⊆ Σ, such that ∀(pj)j ⊆ Γ : ∃p ∈ Σ:

ξ(p) =
⋂

j

ξ(pj) (A.2)

and ∀p ∈ Σ : ∃ subset (pj)j ⊆ Γ such that (A.2) is satisfied.

Γ ⊆ Σ is called the generating set of states of SPS (Σ,L, ξ), the state p is called the join of
the set of states (pj)j , denote as p =

∨
j pj . Consider a state property space (Σ,L, ξ) for which

axioms of property determination and property completeness are satisfied. Then (L, <,∧,∨) is
a complete lattice.

Axiom 4 (Orthocomplementation) Consider a SPS (Σ,L, ξ) for which axioms of property
determination and property completeness are satisfied. The axiom of orthocomplementation is
satisfied iff for a generating set of properties T ⊆ L there exists a function

⊥ : T → T a 7→ a⊥

such that for a ∈ T we have

(a⊥)⊥ = a

κ(a)⊥ ⊆ κ(a⊥) ⊆ Σ \ κ(a)

Definition 2 (Property state) Consider a SPS (Σ,L, ξ) for which axioms of property
determination and completeness are satisfied. ∀p ∈ Σ: the ‘property state’ is the property
s(p) =

∧
a∈ξ(p) a.

Theorem 2 (Orthocomplemented lattice) Consider a SPS (Σ,L, ξ) for which axioms of
property determination, property completeness and orthocomplementation are satisfied. Then
(L,≤,∧,∨) is a complete orthocomplemented lattice.
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Axiom 5 (Covering Law) Consider a SPS (Σ,L, ξ). The covering law is satisfied iff for
a, x ∈ L and p ∈ Σ:

a < x < a ∨ p ⇒ x = a or x = a ∨ p

Axiom 6 (Weak Modularity) Consider a SPS (Σ,L, ξ). The orthocomplemented lattice L
is weakly modular, i.e. ∀a, b ∈ L : a < b ⇒ (b ∧ a⊥) ∨ a = b.

Axiom 7 (Atoms) Consider a SPS (Σ,L, ξ). The element a ∈ L is called an atom iff
∀x ∈ L : 0 < x < a ⇒ x = 0 or x = a, i.e. a covers 0.

Axiom 8 (Plane Transitivity) Consider a SPS (Σ,L, ξ). The orthocomplemented lattice L
is plane transitive. This means that for atoms s, t ∈ L, ∃ two distinct atoms s1 6= s2 and a
symmetry f such that f

∣∣
[0,s1∨s2] is the identity and f(s) = t.

The SPS (Σ,L, ξ) of quantum and classical mechanical entities is such that L is a complete
orthocomplemented lattice that satisfies the covering law, and is weakly modular and plane
transitive. This can be checked straightforward from the Hilbert space representation of L
by the lattice of closed subspaces in Hilbert space for quantum systems, or the phase space
representation for classical mechanical entities. The reverse statement is less easy to prove. In
fact, even the formulation of the correct set of axioms which force the quantum structure on
the set of properties has been a scientific endeavour which lasted over a few decades. However,
in honour of Constantin Piron who proved the first ‘almost finished’ representation theorem of
quantum (and classical) systems, we name it here after him [32,33]:

Theorem 3 ((generalized) Representation theorem of Piron) Consider a SPS (Σ,L, ξ)
such that L contains at least 4 elements and is a complete orthocomplemented lattice that satis-
fies the covering law, is weakly modular and plane transitive. Then L is isomorphic to a family
of lattices (with superselection rules) of closed subspaces in a Hilbert space over the field of reals,
complex numbers or the division ring of quaternions.
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