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The nonlinear heating of a plasma which associates with the transfer of energy of magnetoacoustic

waves into that of the entropy mode, is analytically studied. A plasma is uniform and motionless at

equilibrium. Perturbations in a plasma are described by a system of ideal magnetohydrodynamic

equations. The equilibrium straight magnetic strength and the wave vector form a constant angle

which varies from 0 to p=2. There exist four magnetosound branches (two slow and two fast)

which differ by the speed and direction of propagation in this geometry. Various cases of a

nonlinear flow take place due to the kind of external source of energy. This may make plasma

isentropically or/and thermally unstable. We consider magnetoacoustic heating which is excited by

any one of the magnetosound perturbations in the different cases of a flow. The nonlinear

instantaneous equations, which describe the dynamics of the entropy mode in the field of intense

magnetoacoustic perturbations, are analytically derived and discussed in regard to some physically

meaningful cases. We use special projecting in order to derive weakly nonlinear evolutionary

equations. Published by AIP Publishing. https://doi.org/10.1063/1.5025030

I. INTRODUCTION

Perturbations of hydrodynamical variables in a plasma

are of great importance in astrophysical and technical applica-

tions. Among all variety of perturbations, special interest is

paid to wave processes since they may transfer momentum

and energy at large distances. The peculiarities of the wave

processes are of the crucial importance. In all open fluid’s

flows, including flows of a plasma, waves may enhance in the

course of propagation.1–3 That occurs due to some kind of

heating-cooling function which consists of inflow of energy

and radiative losses, in the case of isentropical instability of a

flow.4–6 Nonlinear phenomena may prevent enlargement in

magnitudes of perturbations. Nonlinear attenuation at the

fronts of waves with discontinuities makes their magnitude to

decrease. The mechanical attenuation and thermal conduction

enhance nonlinear damping. Discontinuities are usually

resolved in reality by diffusive effects that become important

on smaller length-scales. In the case of isentropical instability,

wave perturbations enlarge but may be damped by all kinds of

attenuation. Stable waveforms, that is, auto-waves, may form.

They have been predicted in other wave processes in open

systems which are described by the similar evolution equa-

tions.7,8 Independently on isentropical stability or instability,

an open system may be unstable thermally. That means that

the perturbations specifying the entropy mode, enlarge with

time. In general, perturbations in a plasma consist of these

belonging to wave processes and to the non-wave ones, such

as vorticity and entropy modes. Perturbations of infinitely

small magnitudes evolve independently, but disturbances of

finite magnitudes do interact in nonlinear flows. The wave

perturbations undergo nonlinear distortions themselves, they

may interact with other wave processes, and they may give

rise to the non-wave modes.9–11

The starting point is the system of ideal MHD (magneto-

hydrodynamic) equations which include the equation of state

for an ideal gas in a flow with external inflow (or outflow) of

energy. We should discuss briefly the validity of the MHD

equations. MHD equations impose that temporal and spatial

scales of a flow must be much larger than gyro-kinetic scales.

Ideal magnetohydrodynamics is the basic single-fluid model

which deals with macroscopic equilibrium quantities of mag-

netized plasma. The model is valid for the Maxwellian distri-

bution function for particles and equal temperatures of

electrons and ions. The MHD system ignores relativity, quan-

tum mechanics, and displacement current in the Ampere’s

law.12,13 Ideal magnetohydrodynamics is a reasonably good

approximation in most flows of astrophysical plasmas. The

solar atmosphere, Earth’s magnetosphere, and neutron star

magnetospheres belong to systems that are described reason-

ably well by MHD equations. They have limited applicability

in the problems which relate to kinetic effects, magnetic

reconnection, some laboratory plasmas, weakly ionized plas-

mas, solar photosphere and chromosphere, coronal loops,

Earth’s ionosphere, cosmic rays, and molecular clouds. The

equation of state for an ideal gas is almost always used in

astrophysical applications with the exception of planetary and

stellar interiors, that is, in applications dealing with dilute

(i.e., weakly coupled) plasmas. Gases in thermonuclear reac-

tors, the solar corona, the solar atmosphere, and the interstellar

gas are examples of weakly coupled plasmas. We consider

phenomena which associate with energy balance in an open

flow of a plasma. As for the damping due to mechanical vis-

cosity and thermal conduction, they may be readily involved

into consideration. The impacts of these phenomena taken

alone are well-understood. The damping phenomena may be

included as corrections to the results.14,15

The general nonlinear dynamics of perturbations in a

plasma is not far well studied in view of complexity of thea)anna.perelomova@pg.edu.pl

1070-664X/2018/25(4)/042116/9/$30.00 Published by AIP Publishing.25, 042116-1

PHYSICS OF PLASMAS 25, 042116 (2018)

 20 M
arch 2024 08:25:41

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.1063/1.5025030
https://doi.org/10.1063/1.5025030
mailto:anna.perelomova@pg.edu.pl
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5025030&domain=pdf&date_stamp=2018-04-27
http://mostwiedzy.pl


MHD system of equations which imposes coexistence of

slow, fast sound modes, and Alfv�en modes, along with the

non-wave modes. A flow of magnetic gas depends strongly on

the geometry of a flow, features of magnetic field, and energy

balance. The fast mode is an acoustic wave in which both

magnetic and hydrodynamic pressure contribute. The slow

mode is also an acoustic longitudinal wave. It is strongly

guided by the magnetic field. The Alfv�en modes have a coun-

terpart in waves in elastic strings propagating due to magnetic

tension. Nonlinear evolution of individual wave MHD pertur-

bations is well understood. The first particular cases which

were studied concern planar flows along and across the

straight magnetic field.16–18 Nakariakov and co-authors in

Ref. 19 analysed the planar propagation of various MHD

wave perturbations for arbitrary angle between the straight

magnetic field and the wave vector. They derived a weakly

nonlinear evolutionary equation for individual slow and fast

acoustic mode in an open plasma. The conclusion about the

possibility of self-organization of MHD waves into stable

shock autowaves was made by Chin and co-authors of Ref.

15. The conclusions concern progressive perturbations with-

out taking into account the transfer of wave energy and

momentum into that of non-wave modes. This nonlinear trans-

fer is of interest from the two points of view: distortions of the

wave itself and the new equilibrium thermodynamic parame-

ters or bulk flows which form the new background of wave’s

propagation. In particular, thermal inhomogeneities and vorti-

ces may in turn have an impact on wave processes. If condi-

tions of ideal magnetohydrodynamics are valid for description

of wave perturbations, they are satisfied a fortiori for the

entropy perturbations which are much slower and long-scale

comparatively to magnetic sound which induces them.

The subject of this study is the nonlinear generation of the

entropy mode in the field of individual slow and fast magneto-

sound perturbations. In the description of nonlinear phenomena

responsible for the interaction between different modes, we

face with mathematical difficulties much serious as compared

to the case of nonlinear distortions of individual wave modes.

The analytical method of the study is the projecting technique,

which has been exploited by the author in many problems of

fluid flows.14,20,21 Briefly, it allows to derive coupling nonlin-

ear equations for interacting modes in weakly nonlinear flows.

The initial point is a system of conservative equations which

describes the evolution of perturbations of infinitely small

magnitudes. The projecting operators are established. The

number of projectors equals the number of independent modes

in a flow. The projectors decompose corresponding specific

perturbation from the total vector of perturbations. They

decompose also evolution equations for the individual modes

when applied at the system of conservation equations in the

differential form. The projecting allows deriving a system of

equations for interacting modes, if we apply a projector at the

system of MHD equations which includes nonlinear terms. As

usual, quadratic nonlinear terms are of major importance in the

weakly nonlinear flows. They represent the products of differ-

ent specific perturbations. The nonlinear parts of equations are

valid for any composition of the total perturbation but may be

considerably simplified if one mode is dominative. In this par-

ticular case, all cross products which include other specific

perturbations, are small. Only dominative products may be

considered in the leading order. Hence, the linear dynamic

equation for a secondary mode is enriched by means of projec-

ting with dominative nonlinear terms responsible for the non-

linear excitation. The projecting points a way to derive

evolutionary equations with any desired accuracy.

In the context of nonlinear acoustics, sound is domina-

tive. The problem is fairly complex in magnetoacoustics

where fast and slow magnetosound modes coexist, and they

strongly vary in dependence on the angle between the straight

magnetic field and the wave vector. In particular, projecting

results in equations of scattering of sound by sound and sound

on thermal inhomogeneities which associate with the entropy

mode. We consider instantaneous excitation of the entropy

perturbations in the field of intense magnetic sound. Only one

wave mode is supposed to be dominative for simplicity.

Nonlinear dynamic equations, which are derived in this study,

are approximate. They include only quadratic nonlinear terms,

that is, these proportional to the squared Mach number, M2.

Nonlinear phenomena may occur unusually in the adiabati-

cally or thermally unstable flows in a plasma. Acoustic heat-

ing in all acoustically active media are unusual independently

on the physical reason for acoustical activity.7,8 The reason

for nonlinear interaction of modes is irreversible transfer of

energy and momentum, along with external inflow or outflow

of energy, which disturbs the adiabaticity of a flow. Following

Nakariakov and co-authors, we consider some generic

heating-cooling function. It determines whether a flow is adia-

batically or thermally stable. The effects of plasma’s bound-

aries are not considered.

II. MODES IN THE LINEAR MHD FLOW

In the ideal MHD approximation, we consider a fluid as

a perfect electrical conductor. We remind the full set of ideal

MHD equations which includes the continuity equation, the

momentum equation, the energy balance equation, and com-

pleting electrodynamic equations

@q
@t
þ ~r � ðq~vÞ ¼ 0;

q
D~v

Dt
¼ �~rpþ l0ð~r � ~BÞ � ~B;

Dp

Dt
� c

p

q
Dq
Dt
¼ ðc� 1ÞLðp; qÞ;

@~B

@t
¼ ~r � ð~v � ~BÞ;

~r � ~B ¼ 0; (2.1)

where p, q, ~v; ~B are hydrostatic pressure and density of a

plasma, its velocity, the magnetic field strength, and l0 is the

permeability of free space. The fourth equation from the set

is the ideal induction equation, and the fifth one is the

Maxwell’s equation ensuring the solenoidal character of ~B.

The heating-cooling function Lðp; qÞ may disturb the isentro-

picity of wave perturbations in a plasma.19 The third equa-

tion in the set (2.1) is valid for an ideal gas with the ratio of

specific heats under constant pressure and constant density c,

c ¼ CP=CV .
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We consider the same geometry of a planar flow as in

Ref. 19. The equilibrium magnetic strength ~B0 forms a con-

stant angle h (0 � h � p=2) with the positive direction of

axis z, and its y-component is zero, so as

B0;x ¼ B0 sin ðhÞ; B0;z ¼ B0 cos ðhÞ; B0;y ¼ 0:

Axis z points the direction of wave propagation. Figure 1

recalls the geometry of a planar flow.

All thermodynamic quantities are expanded in the vicin-

ity of the equilibrium state as f ðz; tÞ ¼ f0 þ f 0ðz; tÞ. We

consider initially homogeneous stationary plasma with zero

bulk flows, so that~v0 ¼~0. Primes by perturbations of com-

ponents of velocity and magnetic strength are omitted every-

where ahead in the text.

System (2.1) displays the essential nonlinearity of

MHD. Along with purely hydrodynamic nonlinearity, which

is mainly responsible for the complexity of fluid dynamics,

other nonlinear terms are of importance. The leading-order

equations which include, among linear, only quadratic non-

linear terms, follow from Eqs. (2.1)

@q0

@t
þq0

@vz

@z
¼�q0

@vz

@z
�v

@q0

@z
;

@vx

@t
� B0;z

q0l0

@Bx

@z
¼�vz

@vx

@z
� B0;z

q0l0

q0
@Bx

@z
;

@vy

@t
� B0;z

q0l0

@By

@z
¼�vz

@vy

@z
� B0;z

q0l0

q0
@By

@z
;

@vz

@t
þ 1

q0

@p0

@z
� B0;x

q0l0

@Bx

@z
¼�q0

q0

@p0

@z
� B0;z

q0l0

q0
@Bx

@z
� 1

q0

@

@z

B2
xþB2

y

2l0

 !
�vz

@vz

@z
;

@p0

@t
þc2q0

@vz

@x
�ðc�1ÞðLpp0 þLqq

0Þ¼ ðc�1Þð0:5Lppp02þ0:5Lqqq
02þLpqp0q0Þ�cp0

@vz

@z
�vz

@p0

@z
;

@Bx

@t
þ @

@z
B0;xvz�B0;zvxð Þ¼�Bx

@vz

@z
�vz

@Bx

@z
;

@By

@t
� @

@z
B0;zvyð Þ¼�By

@vz

@z
�vz

@By

@z
; (2.2)

where

Lp ¼
@L

@p
; Lq ¼

@L

@q
; Lpp ¼

@2L

@p2
; Lqq ¼

@2L

@q2
;

Lpq ¼
@2L

@p@q

are corresponding partial derivatives of the heating-cooling

function Lðp; qÞ with respect to its variables evaluated at the

equilibrium state (p0,q0). Equations (2.2) is an initial point

for further evaluations. The dispersion relations follow from

the linearized equations (2.2). We look for solutions of the

linearized equations in the form of a sum of planar waves

proportional to exp ðixðkzÞt� ikzzÞ, where kz designates the

wave number, so as

f 0ðz; tÞ ¼
ð1
�1

~f ðkzÞ exp ðixðkzÞt� ikzzÞdkz:

The dispersion relations reflect the solvability of the linear-

ized version of Eqs. (2.1)

x1;2 ¼ 6CA;zkz; xj ¼ Cjkz þ i
Sj

c2
0

ðc2
0Lp þ LqÞ;

x7 ¼
iðc� 1ÞLq

c2
0

;

(2.3)

where j ¼ 3;…6, Cj is one from four roots of the equation

C4
j � C2

j ðc2
0 þ C2

AÞ þ c2
0C2

A;z ¼ 0; (2.4)

CA ¼
B0ffiffiffiffiffiffiffiffiffiffi
l0q0

p ; c0 ¼
ffiffiffiffiffiffiffi
cp0

q0

r

designate the Alfv�en speed and the acoustic speed in unmag-

netized gas in equilibrium, and

Sj ¼ �
C2

j ðC2
j � C2

AÞðc� 1Þ
2ðC4

j � c2
0C2

A;zÞ
; CA;z ¼ CA cos ðhÞ:FIG. 1. The geometry of a planar flow. ~B0 is the equilibrium magnetic

strength, and ~k denotes the wave vector.
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The first two roots x1, x2 specify the Alfv�en waves.

Perturbations which specify these modes are zero with

except for perturbations in transversal magnetic strength and

transversal fluid’s velocity which are related as

By;1 ¼
B0

CA
vy;1; By;2 ¼ �

B0

CA
vy;2:

The next four roots relate to slow and fast magnetosound

waves of different directions of propagation, and the last root

x7 corresponds to the entropy mode. For any non-zero mag-

netosound speed Cj, the denominator in the expression for Sj

differs from zero

C2
j ð2C2

j � c2
0 � C2

AÞ ¼ ðC4
j � c2

0C2
A;zÞ

¼ Cj

2
Pn¼3;…66¼jðCj � CnÞ:

Zero Cj is one of the roots of Eq. (2.4) which corresponds to

CA;z ¼ 0 and slow perturbations. This limiting case does not

reflect any wave process. The last seventh mode is not pro-

gressive and also does not represent a wave process. The

magnetosound modes may not be the wave processes if

strongly attenuated. We consider a weak attenuation (or

enhancement) during a wave period

jCjjkz �
Sj

c2
0

ðc2
0Lp þ LqÞ

����
����:

This condition determines actually the domain of magneto-

sound wave numbers to be considered in the case of slow

and fast magnetosound perturbations. The dispersion rela-

tions Eqs. (2.3) and (2.4) have been established by

Nakariakov and co-authors.15,19 They have been used in the

analysis of propagation of individual wave perturbations in a

plasma. The conditions of acoustic (isentropical, adiabatic)

and thermal instabilities are common in all flows in open

systems1,2

c2
0Lp þ Lq > 0; Lq < 0: (2.5)

Magnetosound perturbations of infinitely small magnitude

enhance in the course of propagation in the case of isentropi-

cal instability. The finite-magnitude perturbations may be

suppressed by nonlinear attenuation at the front of a shock

wave. Thermal instability means enhancement of perturba-

tions in the entropy mode in a linear flow.

The total disturbances are represented by the sums of

perturbations specifying every dispersion relation

vx ¼
X7

j¼j

vx;j; vy ¼
X7

j¼1

vy;j; vz ¼
X7

j¼1

vz;j; Bx ¼
X7

j¼1

Bx;j;

By ¼
X7

j¼1

By;j; p0 ¼
X7

j¼1

pj; q0 ¼
X7

j¼1

qj:

Index j in summation denotes the ordering number of indi-

vidual modes. Links of perturbations in any individual mode

are determined by the corresponding dispersion relation. In

particular, four magnetosound branches are established by

the links (j ¼ 3;…6)

wj ¼

q0

vx

vy

vz

p0

Bx

By

0
BBBBBBBB@

1
CCCCCCCCA

j

¼

q0

Cj
� q0Sjðc2

0Lp þ LqÞ
C2

j c2
0

ð
dz

c2
0CA;z

C2
j CA;x

� CA;z

CA;x
� CA;zðc2

0Lp þ LqÞðc� 1þ 2SjÞ
C3

j CA;x

ð
dz

0

1

c2
0q0

Cj
� ðc

2
0Lp þ LqÞðc� 1þ SjÞ

C2
j

ð
dz

ðC2
j � c2

0ÞB0

CjCACA;x
þ
ðc2

0Lp þ LqÞðc2
0ðc� 1Þ þ SjðC2

j þ c2
0ÞÞB0

C2
j c2

0CACA;x

ð
dz

0

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

vz;j: (2.6)

Four acoustic waves are “p” modes, which rely on compress-

ibility. The upper limit of integration is z, and the lower one

depends on the physical context of a flow. The transversal

components of velocity and magnetic strength, vx;j and Bx;j,

equal zero if CA;x ¼ 0 in any magnetosound mode. This is

the case of longitudinal propagation which has a little inter-

est, because this case corresponds to the Alfv�en speed of the

MHD perturbations or to acoustic speed, jCjj ¼ c0, when

magnetic field does not impact on fluid’s dynamics at all.

The following relations specify the entropy mode:

w7 ¼

q0

vx

vy

vz

p0

Bx

By

0
BBBBBBBB@

1
CCCCCCCCA

7

¼

1

ðc� 1ÞCA;xLq

CA;zc2
0q0

ð
dz

0

ðc� 1ÞLq

c2
0q0

ð
dz

0

0

0

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

q7; (2.7)
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vx;7 ¼ 0 if CA;z ¼ 0. The projecting rows may be established

which distinguish an excess density in the individual modes,

except for the two first modes which are isochoric. They fol-

low from the system of algebraic equations:

Pj q0 vx vy vz p0 Bx By

� �T ¼ qj; j ¼ 3;…7:

The projecting rows onto the Alfv�en modes may be readily

established by choice as a reference variable By or vy, which

are non-zero.

III. EXCITATION OF THE ENTROPY PERTURBATIONS
IN THE FIELD OF AN INTENSE MAGNETOSOUND
MODE

A. Nonlinear dynamics of an individual
magnetoacoustic wave

The dynamic equation for an individual magnetosound

wave may be obtained by means of anyone from four magne-

toacoustic projecting rows. The projecting row ordered as j
(j ¼ 3;…6) reads

Pj ¼

�
ðc� 1ÞCjðC2

j � C2
AÞ

2c2
0ðC4

j � c2
0C2

A;zÞ
Lq

ð
dz

� CA;xCA;zCjq0

2ðC4
j � c2

0C2
A;zÞ
� c2

0Lp þ Lq

� � ðc� 1ÞCA;xCA;zq0

2c2
0ðC4

j � c2
0C2

A;zÞ

ð
dz

0

CjðC2
j � C2

A;zÞq0

2ðC4
j � c2

0C2
A;zÞ
þ ðc� 1Þ c2

0Lp þ Lq

� �
C2

j

C4
j þ ðc2

0 þ C2
AÞC2

A;z � ðC2
A þ 2C2

A;zÞC2
j

2c2
0ðC4

j � c2
0C2

A;zÞ
2

ð
dz

C2
j � C2

A;z

2ðC4
j � c2

0C2
A;zÞ
þ ðc� 1ÞLqC3

j

5C4
j � 10C2

j C2
A þ 3C4

A � 2c2
0ðC2

j � 2C2
AÞ

4c4
0ðC4

j � c2
0C2

A;zÞ
2

ð
dz

þðc� 1ÞLpC3
j

C4
j þ 2c2

0C2
A � 4C2

j C2
A þ C4

A

4c2
0ðC4

j � c2
0C2

A;zÞ
2

ð
dz

C2
j CA;xC2

Aq0

2B0CAðC4
j � c2

0C2
A;zÞ
� c2

0Lp þ Lq

� � ðc� 1ÞC3
j CA;xCAð2c2

0 � 3C2
j þ C2

AÞq0

4B0c2
0ðC4

j � c2
0C2

A;zÞ
2

ð
dz

0

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

T

: (3.1)

In the context of nonlinear acoustics, distortions and nonlin-

ear phenomena of intense waves are of the major impor-

tance. This means that magnetosound perturbations are much

larger than that of other modes, at least in some temporal

and spacial domains under consideration. We suppose that

only one magnetosound wave is dominative with the linear

speed Cj which is arbitrary of four roots of Eq. (2.4). It may

correspond to slow of fast wave of any direction of propaga-

tion along axis z. The dynamic equation which describes the

nonlinear distortion of magnetoacoustic wave is a result of

application of the projecting row Pj (j ¼ 3;…; 6) at the sys-

tem (2.2). The weakly nonlinear equation which governs the

longitudinal component of velocity vz;j in the individual

MHD wave mode, takes the form

@vz;j

@t
þ Cj

@vz;j

@z
þ DjCjvz;j þ ejvz;j

@vz;j

@z
¼ 0; (3.2)

with

Dj ¼
SjCj

c2
0

ðc2
0Lpþ LqÞ;

ej ¼
ðcþ 1Þc2

0ðC2
j �C2

A;zÞ
2ðC4

j � c2
0C2

A;zÞ
þ

3C4
j C2

A;x

2ðC2
j �C2

A;zÞðC4
j � c2

0C2
A;zÞ

 !
:

In the absence of magnetic field and deviation from adiaba-

ticity, Eq. (3.2) coincides with the well-known equation for

velocity in the progressive Riemann’s wave with Dj¼ 0,

Cj ¼ c0; ej ¼ cþ1
2

.22 Equation (3.2) does not account for non-

linear interaction between modes but considers nonlinear

distortions of the dominative wave itself, that is, nonlinear

self-action of a wave. It recalls dynamic equations for pertur-

bations in other media which may be acoustically active due

to different reasons.7,8 Equation (3.2) for an isentropic flow

of an ideal fluid, that is, in the case Dj¼ 0, has been firstly

derived and analyzed in the context of propagation of a saw-

tooth impulse in Ref. 18.

B. Instantaneous magnetosonic heating (cooling)

The projecting row onto an excess density which speci-

fies the entropy mode, takes the form

P7 ¼ 1 � ðc� 1ÞCA;xq0

CA;zc4
0

ðc2
0Lp þ LqÞ

ð
dz 0

 

�ðc� 1Þq0

c4
0

ðc2
0Lp þ LqÞ

ð
dz � 1

c2
0

0 0

�
: (3.3)

Application of P7 at the system (2.2) leads to a weakly non-

linear evolutionary equation which describes dynamics of
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excess density which specifies the entropy mode, q7. Among

quadratic nonlinear terms, we will consider only these ones

which belong to one from four wave modes. They form the

“force” of magnetoacoustic heating or cooling. As the result

of application of P7, one arrives at the equation which gov-

erns an excess density in the entropy mode

@q7

@t
þ ðcþ 1ÞLq

c2
0

q7 ¼
ðc� 1Þq0

4C4c4
0CA;xðC4 � c2

0C2
A;zÞ

ð3C8ðCA;x þ CA;zÞðc2
0Lp þ LqÞ � c6

0C3
A;zðcþ 1Þðc2

0Lp þ LqÞ
�

�C4c2
0ðC2

A;zðcþ 1ÞðCA;x þ CA;zÞ þ c2
0ðð4� cÞCA;x þ ð2c� 7ÞCA;zÞ

�
ðc2

0Lp þ LqÞ

þC6c2
0ðCA;zððc� 8ÞLq � 2c4

0CA;xq0Lpp þ CA;xððc� 3ÞLq � 2q0LqqÞ
þc2

0ðCA;zðc� 8ÞLp � CA;xððcþ 1ÞLp þ 4q0LpqÞÞÞ þ C2c4
0CA;zðc4

0ððc� 2ÞLp þ 2CA;xCA;zq0LppÞ
þc2

0ð2ðcþ 1ÞC2
A;zLp þ ðc� 2ÞLq þ CA;xCA;zððcþ 3ÞLp þ 4q0LpqÞÞ þ CA;zð2CA;zðcþ 1ÞLq

þCA;xðð5� cÞLq þ 2q0LqqÞÞÞÞv2
z � 2C2c2

0CA;xð2cC4 � C2c2
0ðc� 1Þ

�ðcþ 1Þc2
0C2

A;zÞðc2
0Lp þ LqÞ

@vz

@z

ð
vzðz; tÞdz: (3.4)

The right-hand side of Eq. (3.4) represents the magnetoa-

coustic force of heating (or cooling), where C is anyone

from four solutions to Eq. (2.4). We drop index j by C and vz

for simplicity everywhere ahead in the text. Equation (3.4)

includes only instantaneous perturbations. It is valid in

description of heating excited by any kind of wave

excitation.

C. Magnetoacoustic heating caused by nearly
harmonic excitation in the case L(T)

Equation (3.4) is much simpler for analysis in the case

of harmonic or quasi-harmonic magnetoacoustic perturba-

tions. In the leading order

v2
z ¼ �

@vz

@z

ð
vzdz;

where the top line denotes the temporal average over period

of the magnetoacoustic wave. We consider the case when the

heating-cooling function depends exclusively on tempera-

ture, L ¼ LðTÞ. Making use of notations, dL
dT � LT ;

d2L
dT2 � LTT

and equalities

Lp ¼
LT

CVðc� 1Þq0

; Lq ¼ �
c2

0LT

CVðc� 1Þcq0

;

Lpp ¼
LTT

C2
Vðc� 1Þ2q2

0

; Lpq ¼ �
CVðc� 1ÞcLT þ c2

0LTT

C2
Vðc� 1Þ2cq2

0

;

Lqq ¼
c2

0ð2CVðc� 1ÞcLT þ c2
0LTTÞ

C2
Vðc� 1Þ2c2q2

0

; (3.5)

where all derivatives are evaluated at the equilibrium tem-

perature, one may readily rearrange Eq. (3.4) into the

dynamic equation

@q7

@t
� ðcþ 1Þ

CVðc� 1Þcq0

LTq7 � Fms ¼
ðc� 1ÞLT

4cC4c2
0CA;xðC4 � c2

0C2
A;zÞCV

ð3C8ðCA;x þ CA;zÞ � ðcþ 1Þc6
0C3

A;z þ C6c2
0ðCA;x

þðc� 8ÞCA;z þ 3cCA;xÞ þ C2c4
0CA;zððc� 2Þc2

0 � ðCA;x � 2ðcþ 1ÞCA;zÞCA;zÞ
þC4c2

0ðc2
0ðð7� 2cÞCA;z � ðcþ 2ÞCA;xÞ � ðcþ 1ÞC2

A;zðCA;x þ CA;zÞÞÞv2
z : (3.6)

In Eq. (3.6), the second order derivative LTT is omitted. That

is valid if jLTT j � c2

T0
jLT j: Equation (3.6) is still difficult for

analysis. Let v2
z ¼ 0:5V2

0 in the leading order for approxi-

mately harmonic excitation with the amplitude V0.

1. Small or large magnetic strengths

We consider weak magnetic fields with

CA

c0

¼
ffiffiffiffiffi
2

cb

s
� 1;

where b is plasma’s beta, and the opposite case of strong

magnetic strength (this is the case of the solar corona with

b ¼ 3:5� 10�3)

c0

CA
¼

ffiffiffiffiffi
cb
2

r
� 1:

In the first case, the fast magnetosound propagates with

approximate absolute speed

jCsmallj ¼ c0 þ
1� cos2ðhÞ

2c0

C2
A;

042116-6 Anna Perelomova Phys. Plasmas 25, 042116 (2018)

 20 M
arch 2024 08:25:41

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


and the magnetosonic force of heating is as follows:

Fms¼
c2�1

4CVc2
0c

LTV2
0�
ðc�1Þðc�3Þð1�cos2ðhÞÞ

4CVc2
0c

2b
LTV2

0 : (3.7)

In the opposite case of strong magnetic field, the fast magne-

toacoustic waves propagate with absolute speed

jClargej ¼ CA þ
1� cos2ðhÞ

2CA
c2

0:

Cases of small and large magnetic strengths (which corre-

spond to small or large
ffiffiffiffi
2
cb

q
) are represented by Figs. 2(a)

and 2(b).

The conditions of isentropical and thermal instability

differ in general. In the case of L which depends exclusively

on temperature, they coincide and read

LT > 0:

If a gas is acoustically active, the plasma’s background tem-

perature gets smaller. It associates with T7 which decreases

if q7 increases during an isobaric process. Sound enhances in

a medium taking energy from the background. Equation

(3.6) is readily integrated for zero initial condition with the

result

q7 ¼
CVðc� 1Þcq0

ðcþ 1ÞLT
exp

ðcþ 1ÞLT

CVðc� 1Þcq0

t

	 �
� 1

	 �
Fms: (3.8)

The production of excess temperature associating with the

entropy mode may be suppressed by the nonlinear transfer of

energy between different modes in dependence on the ratio

of their intensity and nonlinear attenuation at the fronts of

waves with discontinuities.

2. Nearly perpendicular or parallel orientation of the
magnetic strength and the wave vector

The magnetoacoustic force of heating may be simplified

in the case of almost perpendicular orientation [this is the case

of cos ðhÞ 	 0], and in the limiting case of almost parallel ori-

entation [this is the case of sin ðhÞ 	 0]. In the first case, the

fast modes propagate with approximate absolute velocity

jCperpj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

0 þ C2
A

q
� c2

0C2
A

2ðc2
0 þ C2

AÞ
3=2

cos2ðhÞ;

and the magnetoacoustic force of heating equals

Fms ¼
ðc� 1Þð6þ c2bð3þ 2:5bþ 0:5b2Þ þ cbð10þ 4:5bþ 0:5b2Þ þ cos ðhÞð6þ cbþ c2bÞÞ

2cCVc2
0ð2þ cbÞ3

LTV2
0 : (3.9)

In the case of nearly parallel propagation

jCparj ¼ c2
0 þ

c0C2
A

2ðc2
0 þ C2

AÞ
sin2ðhÞ;

and

Fms ¼
ðc2� 1Þ
4cCVc2

0

LTV2
0

þ ðc� 1Þð2þ 3cb� cðcb� 2ÞÞ
4cCVc2

0ðcb� 2Þ2
sin2ðhÞLTV2

0 : (3.10)

Figure 3 shows the magnetoacoustic forces of heating (cool-

ing, in dependence on the sign of LT), in two limiting cases of

almost parallel or perpendicular orientation of the magnetic

strength and the wave vector. Dynamics of an excess density

which specifies the entropy mode is given by Eq. (3.8).

IV. CONCLUSION

The main result of this study is the nonlinear instanta-

neous dynamic equation Eq. (3.4). It describes excitation of

FIG. 2. Dimensionless magnetoacoustic force of heating (cooling)
2CV c2

0

LT V2
0

Fms. Cases of small (a) and large (b) magnetic strengths.
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the excess density which specifies the entropy mode in the

field of intense magnetosound waves. Section III C studies

the case of excitation if the longitudinal velocity of the

MHD wave in a plasma is harmonic. This is the simplest

approximation. The exact solution of Eq. (3.2) which is sinu-

soidal at z¼ 0 with frequency X, reads

vz ¼ V0 exp ð�DzÞ

�
X1
n¼1

2JnðnKðexp ð�DzÞ � 1ÞÞ sin ðnXðt� z=CÞÞ
nKðexp ð�DzÞ � 1Þ ;

(4.1)

where K ¼ � eV0X
DC . It is valid before forming of a discontinu-

ity,7 that is, if

0 < z < �lnð1þ 1=KÞD�1:

A discontinuity always forms if D< 0 (that is, in the isentro-

pically unstable flow) and never forms in the stable flow if

K � �1. The solution (4.1) introduces dependence of the

magnetoacoustic force on z: in all formulas on Fms, in this

case,
V2

0

2
should be replaced by 2V2

0

P1
n¼1 ð

JnðnKðexp ð�DzÞ�1ÞÞ
nKðexp ð�DzÞ�1Þ Þ

2:

We consider non-adiabaticity due to the heating-cooling

function exclusively, which along with nonlinearity, is a rea-

son for transfer of the wave energy into that of the entropy

mode.

Magnetoacoustic heating, in turn, has impact on the char-

acter of MHD wave perturbations. Enlargement in equilibrium

temperature results in enlargement in c0, and hence, in C. In

isentropically unstable flow, C gets smaller. Ceteris paribus,
enlargement in c0 means enlargement of plasma-b.

Magnetosound speed of the fast modes is always larger than

that of slow modes at any b and any h. They are equal only at

b ¼ 2=c, if h¼ 0, that is, in the case of parallel propagation.

The difference between speeds of fast and slow MHD pertur-

bations constantly enlarges with growth of plasma-b if

b > 2=c. That means that fast and slow modes undergo an

additional discrepancy in the isentropically stable plasma due

to magnetoacoustic heating. That may be exploited as an indi-

cator of kind of the external inflow of energy into a plasma,

which corresponds to an isentropically stable or unstable flow.

Variations in the speed of quick perturbations are the main

manifestation of wave’s thermal self-action which may occur

unusually in the acoustically active media. In particular, ther-

mal lenses in multidimensional flows may lead to focusing

and self-focusing of a beam, also anomalous.23–25

The only limitations of this study are

(1) Validity of ideal MHD equations;

(2) The planar geometry of a flow with constant equilibrium

magnetic strength which forms a constant angle with the

wave vector;

(3) The weak nonlinearity of a flow;

(4) Weak distortions associating with non-isentropicity of a

wave over its characteristic period in the course of

propagation.

There is no restriction concerning strength of the mag-

netic field in this study and hence, the plasma-b. The results

may be addressed to various sorts of a plasma: a cold molec-

ular ISM gas (T < 103 K) or a hot atomic plasma (T > 104

K) and to different kinds of the function Lðp; qÞ. The radia-

tion function also contributes in L. Various models of coro-

nal radiative losses and coronal heating are listed in Refs. 4

and 26 and referred therein references. Variations of equilib-

rium temperature due to magnetoacoustic heating may pro-

vide data for analytical predictions of L. The results apply

also to pulsed MHD wave perturbations.

The Alfv�en modes are not excited by the magnetosound

modes, at least, the coupling is very weak: the Alfv�en modes

are determined exclusively by non-zero vy and By, while the

magnetoacoustic mode are specified by non-zero all other

field perturbations. That has been pointed by Nakariakov and

co-authors in Ref. 19.
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FIG. 3. Dimensionless magnetoacoustic force of heating (cooling)
2CV c2

0

LT V2
0

Fms as a function of h and
ffiffiffiffi
2c
b

q
in the cases of almost perpendicular (a) and parallel (b)

orientation of the magnetic strength and the wave vector.
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