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Abstract. Engineering collective intelligence is paramount in current industrial times. This research proposes and presents 
case studies for collective knowledge structures required in the industry field. Knowledge structures such as Set of Experience 
and Decisional DNA are extended into more advanced knowledge structures for manufacturing processes.  These structures are 
called Virtual Engineering Object, Virtual Engineering Process and Virtual Engineering Factory. All knowledge structures are 
implemented and tested in two industrial manufacturing cases of collective knowledge, plus one more case of manufacturing 
innovation where the case study results proved them as practical standards for engineering collective intelligence. 
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1. Introduction

Collective Intelligence (CI) has been defined in
several areas of the human action, from humanistic to 
technocratic points of view. In a general form, we 
take the definition given by [10] as “Group(s) of in-
dividuals doing things collectively that seem intelli-
gent; Groups addressing new or trying situations; 
Groups applying knowledge to adapt to a changing 
environment”. Moreover, CI has been proposed in 
several fields such as arts, business, health, finance, 
IT, etc. [19, 21]. However, CI, when implemented, 
has been within a single organization or group of 
them that work together in a closed form; therefore, 
limiting CI by operating in an specific domain and/or 
following a vendor specification. Moreover, most of 
these implementations are leveraged by internet tech-
nologies and the support of the semantic web, but, CI 
lacks of accepted standards and not even an organiza-

tion that promotes techniques or frameworks for col-
lective intelligence. 

The most advanced standardization examples that 
support CI are provided by the World Wide Web 
Consortium (W3C). Different technologies and meta-
languages such as XML or HTML have overcome the 
vendor barrier to turned into accepted standards im-
plemented in numerous applications, softwares, and 
industry fields. However, little can be said about par-
ticular collective intelligence technologies which are 
vendor/domain/company independent, and conse-
quently,  there are limitation on creating a consistent 
and real collective intelligence. Hence, we identified 
that CI requires the construction of established stand-
ards to achieve a greater intelligence that can be cre-
ated in a collective way as it is expected. 

In the engineering field, several approaches to a 
collective intelligence have been proposed an imple-
mented; mostly in the areas of product design, prod-
uct marketing and industrialization. They can be cata-
logued within the field of Cyberphysical systems 
(CPS), and in a more elaborated way, Europe has 
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proposed Factory 4.0.  Under these circumstances, 
still remains the idea that standards must be created 
and if Europe, with its Factory 4.0 proposal, is going 
to lead, it will require structures/models to collect 
engineering knowledge in a collective form. This 
paper respond to such need. 

This paper presents a group of knowledge struc-
tures able to collect and share collective intelli-
gence/knowledge related to engineering.  Such tech-
nologies involve Set of Experience Knowledge Struc-
ture and Decisional DNA as the basis for more ad-
vanced structures: Virtual Engineering Object (VEO), 
Virtual Engineering Process (VEP) and Virtual Engi-
neering Factory (VEF). 

The paper is structure as follows. In Section 2, we 
will present the knowledge structures that will sup-
port engineering CI, Sections 3, 4 and 5 introduce 
case studies and applications of the mentioned struc-
tures, and in Section 6, we will conclude and estab-
lish some future work. 

2. Knowledge Structures 

Industrial manufacturing is a highly complex, crea-
tive, and knowledge intensive process that involves 
collaborative information exchange from various 
sources with continuous production conditions 
changes. Thus, for representing such dynamic envi-
ronment, a flexible knowledge structure capable of 
handling fluctuating parameters at each level is re-
quired. The knowledge representation structure facili-
tating experience based intelligence as the technolog-
ical base for this work are Set of Experience 
Knowledge Structure (SOEKS) and Decisional DNA 
(DDNA). SOEKS-DDNA [22, 23] is a unique and 
single structure for collecting, storing, improving, 
and reusing experience of intelligent decision-
making. SOEKS is composed of variables, functions, 
constraints and rules associated in a DNA shape per-
mitting the development of the Decisional DNA of an 
organization which embodies its collective intelli-
gence. Variables normally implicate representing 
knowledge using an attribute-value language (i.e. by 
a vector of variables and values). Variables are the 
centre root of the structure and starting point for the 
SOEKS. Functions represent relationships between a 
set of input variables and a dependent variable; 
moreover, functions can be used for optimal state 
reasoning. Constraints are another way of associa-
tions among the variables. They are restrictions of the 
feasible solutions, limitations of possibilities in a 

decision event, and factors that restrict the perfor-
mance of a system. Finally, rules are relationships 
between a condition and consequence linked by the 
logical statements IF-THEN-ELSE. They are condi-
tional relationships that control the universe of varia-
bles. 

Decisional DNA is a metaphor related to natural 
DNA and the way it transfers genetic information and 
knowledge among individuals through time. The 
DDNA consists of stored experienced decision events 
(i.e. experiential knowledge) that can be grouped 
according to areas of decision or categories. In other 
words, each SOE (short form for SOEKS) built after 
a formal decision event can be categorized and acts 
similarly to a gene in DNA. A gene guides hereditary 
responses in living organisms, as a SOE directs re-
sponses of certain areas of the organization. Further-
more, assembled genes create chromosomes and hu-
man DNA, as groups of categorized SOE create deci-
sional chromosomes and Decisional DNA. 

Furthermore, dynamic structures of SOEKS and 
DDNA provide flexibility to the structures of VEO, 
VEP and VEF. Thus, the broad aim of this research is 
to develop engineering fingerprint or engineering 
DNA of a company which is built through engineer-
ing collective intelligence. 

This work aims at demonstrating that structures 
such as SOEKS and DDNA are required to achieve 
higher levels of collective intelligence and therefore 
respond to the above presented need. Structures that 
collect and replicate knowledge and experience of a 
manufacturing factory and represent it virtually. As 
shown in Figure 1, the physical manufacturing sce-
nario can be divided into three levels: resources, pro-
cesses and factory. In the manufacturing domain, a 
factory performs various manufacturing processes, 
and a process in turn uses different resources. For the 
comprehensive knowledge representation (KR) of a 
manufacturing system, we divided it into three levels; 
the first is the resource/object level or VEO, the se-
cond is the process level or VEP and the third is the 
factory/system level or VEF. VEO, VEP and VEF, all 
store collective experience captured in the forms of 
SOEKS-DDNA, captured during the normal opera-
tion of the system. Thus, all the three virtual KR are 
built on SOEKS-DDNA and have mechanisms to 
store and reuse collective experience related to ob-
jects, processes and factory. Different KR models of 
these levels have been developed both separately and 
in conjunction with each other. KR of engineering 
objects, processes and system collected in an intelli-
gent manner will help optimise assets, machines and 
the whole system, respectively. Critical, effective and 
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creative decisions can be made based on these intelli-
gent virtual manufacturing levels. 

A VEO is a representation at the individual ob-
ject/resource/artefact level, and represents all infor-
mation at the resource level such as in a machine, the 
machining parameters, tolerances and surface condi-
tions; or a tool, tool parameters, and functionality. 
The VEP deals with information at the process or 
shop-floor level, such as operation sequences, process 
parameters, time and cost. The VEF stores the expe-
rience and formal decisions related to various aspects 
at the system level, such as material handling, stor-
age, quality control and transportation. Besides repre-
senting knowledge at the factory level, the VEF also 
contains VEOs and VEPs. The combination of VEOs, 
VEPs and the VEF constitutes the virtual industrial 
manufacturing platform for collecting engineering 
collective intelligence. 

 

Fig 1 Correlation of physical and virtual manufacturing world 

Complete concepts of VEO, VEP and VEF are al-
ready developed, implemented and tested [19-21]. 
For completeness, the next section presents a brief 
description of them. 

2.1. Virtual Engineering Object (VEO) 

A VEO is a KR of an engineering artefact and it 
has three main features: (i) the embedding of the de-
cisional model expressed by the SOE (ii) a geometric 
representation, and (iii) the necessary means to relate 
this virtualization to the physical object being repre-
sented [ 9, 17, 19, 20]. 

A Virtual Engineering Object is a living represen-
tation of an object capable of capturing, adding, stor-
ing, improving, sharing, and reusing knowledge 
through experience in a way similar to a human ex-
pert. A VEO can encapsulate knowledge and experi-
ence of every important feature related to an engi-
neering object. This can be achieved by gathering 
information from six different aspects (manufacturing 

chromosomes) of an object namely VEO-
Characteristics, VEO-Functionality, VEO-
Requirements, VEO-Connections, VEO-Present State 
and VEO-Experience. 

Virtual Engineering Object is developed on the 
cradle-to-grave approach, which means that the con-
textual information and decision making regarding an 
engineering object right from its inception until its 
useful life is stored or linked in it. The SOEKS-
DDNA technique allows VEO not to adhere to any 
rigid arrangement of parameters which provides dy-
namicity and flexibility to the structure; such a fea-
ture enables VEO to represent complex and discrete 
engineering objects. 

2.2. Virtual Engineering Process (VEP) 

A VEP is a KR of a manufacturing process or pro-
cess planning of an artefact that gathers and stores all 
shop-floor-level knowledge regarding the operations 
required, their proper sequence and the resources 
(VEOs) needed to manufacture it. The VEP selects 
the necessary manufacturing operations and deter-
mines their sequences, as well as selecting the manu-
facturing resources needed to transform a design 
model into a physical component. In addition to this, 
information of all the VEOs of the resources associ-
ated with the process is also linked into VEP. There-
fore, to encapsulate knowledge of the above men-
tioned areas, the VEP is designed with the following 
three main modules: 

1. VEP-Operations: it stores all of the information 
related to the operations that are required to 
manufacture an engineering component. This in-
cludes knowledge in the form of SOEKSs relat-
ed to operational processes and scheduling as 
well as functional dependencies between opera-
tions. 

2. VEP-Resources: it stores information based on 
past resources’ experience used to manufacture a 
component mentioned in the VEP-Operations 
module. Moreover, the VEO information cate-
gorised under VEO-Characteristics, VEO-
Requirements, VEO-Functionality, VEO-Present 
State, VEO-Connections and VEO-Experience 
is also linked in this module. 

3. VEP-Experience: it stores links to SOEKSs of 
VEOs along with VEPs containing past formal 
decisions relating to manufacture engineering 
components. Thus, the information in this mod-
ule represents links to SOEKSs based on past 
experience of that particular machine perform-
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ing a given operation along with operational and 
routing parameters. 

As well as in the VEO, the SOEKS-DDNA tech-
nique allows VEP not to adhere to any rigid arrange-
ment of parameters providing dynamicity and flexi-
bility to the structure. 

2.3. Virtual Engineering Factory (VEF) 

VEF is KR of a complete manufacturing process 
and it is an extension of the VEO-VEP concept to a 
factory level. A manufacturing factory is a collection 
of integrated equipment and human resources whose 
function is to perform one or more processing and/or 
assembly operations starting with a raw material, 
part, or set of parts. The main components of a manu-
facturing system can be broadly classified as: 
− production machines and tools, 
− material handling and work-positioning devices, 
− computer systems and 
− human resources required to keep the system 

running. 
The architecture of VEF is conceived based on the 

components and their functionality at a factory level. 
Hence, a VEF comprises five elements, each linked 
to the associated VEPs and VEOs representing all of 
the collective knowledge and experience related to a 
manufacturing factory. The arrangement of these six 
VEF elements, along with their VEOs and VEPs, is 
shown in Figure 2. The VEF elements are as follows: 

4. VEF-Loading/Unloading: it stores information 
related to loading and unloading work units at 
each station along with the positioning of work 
units at each station. 

5. VEF-Transportation: This module stores 
knowledge associated to transporting work units 
between stations in a multistation system. Work 
units either flow through the same sequence of 
workstations or are moved through a variety of 
different station sequences. 

6. VEF-Storage: This module stores all knowledge 
related to the permanent and temporary storage 
of tools, objects, raw materials and work during 
the manufacturing process. 

7. VEF-Quality Control: This module contains the 
quality control strategy adopted, its implementa-
tion method and outcome. 

8. VEF-Experience: it stores the entire history of 
formal decision events made at the factory level, 
along with links to the VEPs and VEOs related 
to those decisions. In other words, all past col-
lective experience is captured in this module. 

Each factory level experience (i.e. VEF-SOEK) is 
associated with a component (VEP-SOEKS) to be 
manufactured and that component in turn needs re-
sources/objects (VEO-SOEKS) for its manufacturing. 
This idea is shown in Figure 2; VEF-DDNA is creat-
ed by collecting, connecting, and linking VEF-
SOEKS, VEP-SOEKS and VEO-SOEKS. Therefore, 
a VEF can be defined as collective experience-based 
manufacturing DNA or manufacturing footprints 
bearing traces of all decisions made at the product, 
process and factory levels. 

 

Fig 2 VEF architecture linking VEOs and VEPs 

2.4. Salient Features of proposed virtual engineering 
object, process and factory 

As mentioned in the previous sections VEO, VEP 
and VEF are based on the knowledge representation 
technique of SOEKS and Decisional DNA. This 
technique is capable of creating engineering manu-
facturing DNA (collective computational manufactur-
ing intelligence) as it has manufacturing nucleotides 
(variables, function, constraints, rules), manufactur-
ing genes (collection of SOEKS), manufacturing 
chromosomes (collections of manufacturing genes 
namely VEO-Characteristics, VEO-Requirement, 
VEO-Functionality, VEO-Present State, VEO-
Connections, VEO-Experience, VEP-Resources, 
VEP-Operations, VEP-Experience, VEF-
Loading/Unloading, VEF-Transportation, VEF-
Storage, VEF-Quality Control, VEF-Experience).  
Experimental case-studies [19-21] have proven that a 
DDNA-based VEO-VEP-VEF knowledge system has 
the following features: 
− a versatile and dynamic knowledge structure, 

which provides the flexibility necessary to 
change according to the situation; 

VEPs 

VEOs 
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− the ability to store day-to-day explicit collective 
experiences in a single structure, which will con-
tinuously evolve; 

− transportable, adaptable and shareable 
knowledge; 

− prediction and decision-making abilities based 
on collected past experience, and 

− the ability to achieve decisional trust by having 
the right quality and quantity of knowledge at 
the right time. 

As shown in Figure 2, the VEO-VEP-VEF system 
is also envisaged on a cloud computing platform to 
facilitate the operation of engineering collective intel-
ligence relating to multifaceted interrelationships. 

3. Case-Study: Creating Engineering DNA 

The following case study presents a model for col-
lecting collective engineering DNA by the means of 
the proposed knowledge structures presented in Sec-
tion 2: SOEKS-DDNA, VEO, VEP, and VEF. This 
system creates manufacturing DNA with retaining, 
predicting, and decision making capabilities based on 
the collected past collective experience.  

In this case study, the VEF concept is demonstrat-
ed and implemented in a manufacturing system to 
produce an engineering component. This case study 
extends the previous VEP and VEO case studies 
[19,20], which were based on manufacturing a simple 
combustion chamber in a conventional machining 
setup. The basic operations required to manufacture 
this combustion chamber are taper turning, turning, 
and drilling; such information is stored in a VEP, 
which is shown as a work-in-process assignment 
(‘WIPA’) in Figure 3. The manufacturing setup in 
this case study has two different lathe and drilling 
machines each. Factory-level information about 
work-piece loading/unloading, quality control, trans-
portation, storage, and previous experience are stored 
in the VEF and within it as SOEKS. 

First, VEOs of the machines required to produce 
the engineering component are developed. Then, the 
VEPs to produce an engineering component are built 
based on the case-specific collective experiences of 
that manufacturing unit. Finally, the VEF having all 
of the factory-level knowledge along with links to the 
VEPs and VEOs is constructed. The VEOs along 
with collective experience of the engineering pro-
cesses (VEPs) form the experience repository of a 
manufacturing unit. Files storing formal decisions 
related to VEF-Loading/Unloading, VEF-

Transportation, VEF-Storage, VEF-Quality Control, 
and VEF-Experience were built for the component to 
be made, that is, a combustion chamber. CVS, TXT, 
XML or OWL formats can be used for managing and 
storing data; we proposed SOEKS-XML format as 
data transfer among applications [5]. Since VEO-
DNA and VEP-DNA were already developed and 
presented in previous case studies, the next step was 
to develop VEF-DNA and link it with VEO-DNA 
and VEP-DNA to create a complete Manufacturing 
DNA. 

 

Fig 3 Case study framework involving the elements of VEF 

Our platform was written in Java, and uses 
SOEKS-XML to transfer information; however, it 
has the capacity to read from any other file formats 
mentioned above. The platform parsers the collective 
experiences into the knowledge structures in Java. 
Each file representing a category, and a collection of 
SOEKS of the same category forms a chromosome of 
either a VEO, VEP or VEF. Even though our plat-
form was developed in Java, all the Virtual Engineer-
ing structures, SOEKS and DDNA can be developed 
in any other programming language (a Python library 
has also been developed). Then, the collection of all 
chromosomes forms a Decisional DNA of a VEF, i.e. 
VEF-DNA. Once the VEF-DNA is constructed, 
DDNA has feature capabilities of being queried [16, 
21]. 

DDNA includes similarity metrics for its elements; 
therefore, given a set of parameters and a repository 
of DDNA, the platform is able to calculate distances 
among the parameters and collected experiences and 
find the most suitable experiences for a defined que-
ry[3]. However, other similarity metrics can be ap-
plied such as [15]. In those terms, the platform allows 
generating a query by a GUI, which is then pro-
grammatically converted into a query SOE 
(querySOE). Depending whether it is related to the 
object, process or factory level, the platform calcu-
lates the similarity of the querySOE with each 
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SOEKS stored in the VEF-DNA. Finally, the calcu-
lated similarities are sorted and the five most similar 
SOEKSs are presented to the user. 

Collective manufacturing experience is produced 
on day-to-day basis and stored in a repository of ex-
periences; the one that is going to be queried. When 
there is a need to produce a new component, the VEF 
repository is scanned for similar components (a com-
bustion chamber in this case). The VEF reads the 
experience of that component in its repository and 
returns information relating to the previous most sim-
ilar collective manufacturing experience stored. Next, 
the query relating to specific factory-level details 
required for the component is specified. For this que-
ry, the VEF returns VEP-SOEKS for process/process 
planning and VEOs for each operation, along with 
the SOE that best suits the queried resources details. 
The most similar VEO-SOEKSs are gathered and 
combined with the most similar VEP-SOEKSs. This 
information combined with the most similar VEF-
SOEKSs forms the solution to the query. 

A simple user friendly GUI (see Figure 7) is de-
signed to build queries; user specifies information 
regarding the product, its variables and variable val-
ues. Information is extracted from the VEF-DNA for 
most similar VEF-SOEKS and further details of 
VEP-SOEKS and VEO-SOEKS corresponding of 
that experience can be viewed through GUI. In the 
results section of the GUI, the user can see the simi-
larity indexes along with codes of the most similar 
VEF, VEP and VEO SOEKS according to the to the 
query. The user can also view the complete VEF-
SOE, as well as the VEP-SOEs and the VEO-SOEs 
associated to such VEF. 

Principles of this case-study can be followed to ef-
fectively scale-up the knowledge representation of 
complex industrial set-ups. Thus, flexible and dynam-
ic structures of SOEK-DDNA, VEO, VEP and VEF 
are capable of representing and gather experience in a 
collective approach from any manufacturing envi-
ronment. 

3.1. Results and discussion 

The implementation of this study was carried on a 
DELL laptop with the Windows 7 Enterprise operat-
ing system, Intel (R) Core (TM) i5-3210M CPU @ 
2.50 GHz processor and 8 GB of RAM. The signifi-
cance of the VEO-VEP-VEF models used in the case 
study are analysed by doing the following: 

− assessing the time taken to create SOEKSs from 
the VEO, VEP and VEF files 

− obtaining the most similar SOE to a query and 
calculating query execution time 

− analysing changes in similarity patterns due to 
varying query input parameters. 

3.1.1. Time taken to create SOEKSs from the VE ob-
ject, process and factory files 

The present VEF study comprises SOEKSs from 
VEF-Loading/Unloading, VEF-Transportation, VEF-
Storage, VEF-Quality Control and VEF-Experience 
having a minimum of 47 variables and 10 constraints. 
In addition, VEP-DNA comprises SOEKSs from 
VEP-Resources, VEP-Operations and VEP-
Experience, having 20 variables and 12 constraints. 
Moreover, the VEO-DNA comprises SOEKSs from 
VEO-Characteristics, VEO-Functionality, VEO-
Requirements, VEO-Present State, VEO-Connections 
and VEO-Experience, having 53 variables, 3 func-
tions and 28 constraints. For testing purposes, we 
queried VEO-Drilling Machine from a repository of 
2256 SOEKSs, VEO-Lathe Machine from 1920 
SOEKSs, VEP from 320 SOEKSs and VEF from 26 
SOEKSs. 

The parsing process of the VEF, VEP and VEO 
decisional chromosomes were executed, producing a 
parsing time of 664.0 ms for VEO_Drilling, 504.0 ms 
for VEO_Lathe, 161.0 ms for the VEP and 10 ms for 
the VEF (see Figure 4). This is considered an excel-
lent time taking into account the fact that these SOEs 
are very complex due to the number of variables, 
functions and constraints involved, adding up to a 
total of 141 key features per formal decision event. 
The model is fairly effective as far as the time taken 
to parse VEO, VEP and VEF is concerned. 

3.1.2. Time taken to respond to a query 
Different queries were designed as a way to test 

the platform, some with varying the number of varia-
bles or some with the same number of variables as it 
can be seen in [21]. For example, a query VEF simi-
larity is calculated for ‘Combustion Chamber’ where 
MST = 528 min, WIP = 146 mins, Machining Time = 
109 mins and Idle Time = 273. 

Figure 5 illustrates the time results of this query. 
VEF-DNA returns the five most similar SOEKSs 
having similarities 0.43934, 0.45154, 0.45384, 
0.45537 and 0.45654, respectively. The time taken to 
execute this query is 6.766 ns which is fairly short. 
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Fig 4 Time taken to parse VEO, VEP and VEF 

To determine the performance and robustness of 
our model, a set of queries having a decreasing num-
ber of variables while all other parameters were the 
same was executed. As illustrated in Figure 5, as the 
number of query variables decreases the similarity 
value increases, which validates the efficiency of the 
model. 

Fig 5 Calculating similarity for queries and corresponding response 
time for query execution 

3.1.3. Analysing the change in similarity pattern with 
varying query input parameters 

The behaviour of the model was also analysed by 
executing queries having input variables varied. As 
presented above, a similar pattern of the five most 
similar SOEKSs for each query was calculated as 
depicted in Figure 6. The similarity calculation was 
found to be quite accurate and the execution time of 
this set of queries was fairly short as well. 

3.2. Case Study Conclusion 

The main contribution of this work is to demon-
strate and implement a collective knowledge based 
virtual engineering environment. The Manufacturing 

DNA which is the representation of manufacturing 
process collective computational intelligence is creat-
ed by capturing experience of engineering objects, 
engineering processes, and factory by the means of 
Virtual Engineering Object, Process and Factory. Set 
of Experience Knowledge Structure and Decisional 
DNA were applied as the knowledge representation 
structure for gathering the experience. Further, VEF-
VEP-VEO were used as a tool for decision making 
processes that can enhance different manufacturing 
systems with predicting capabilities and facilitate 
knowledge engineering processes. The platform 
copes with self-organizing production and control 
strategies; being this a significant example of linking 
product lifecycle management, industrial automation,  
and semantic technologies. 

Fig 6 Similarity calculation for varying variable values 

4. Case Study: CI and Factory 4.0 

This case study contributes to the intelligent facto-
ry concept proposing a model that entails rapid trans-
fer of new collective knowledge into industrial pro-
cesses and products. In our work, we focus on the 
knowledge based conceptual model, architecture and 
key elements needed for the support of Industrie 4.0. 
The proposed framework (see Figure 7) follows four 
stages: (i) Data Collection and Communication plat-
form (ii) Data preparation or Basic Data Analysis (iii) 
Semantic Analysis and (iv) Real-time visualization. 

The architecture for intelligent factory can serve to 
create horizontal value networks at a strategic level, 
provide end-to-end integration across the entire value 
chain of the business process level and enable verti-
cally integrated and networked design of manufactur-
ing systems. 
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Fig. 7. Architecture for the intelligent factory 

4.1. Data Collection and Communication platform 

In all industrial applications, data/information 
plays a very important role. Standardization and lan-
guages for standardization of communications in a 
machine-to-machine context like OPC (Object Link-
ing and Embedding - OLE for Process Control) and 
more recently OPC-UA (Unified Architecture), using 
a unified architecture not dependent on OS, play a 
very important role. The benefits of using the afore-
mentioned approaches are quite evident in the sense 
that an abstraction layer from the manufacturer’s 
programming interface and proprietary languages in 
the PLC’s, sensors and actuators are simplified acting 
as an inter-language for communication. The data 
collection in the OPC-UA approach is representation-
al state transfer (REST) oriented, client-server im-
plemented and provides a mechanism to subscribe to 
data changes in an asynchronous manner. Data col-
lection then can be serialized and the gathered data 
stored in different databases that will be implemented 
as clients consuming the data. Analysis in terms of 
data changes and event changes are also benefited, as 
the synchronous/asynchronous need of a given appli-
cation is a feature that will become easy to handle 
and maintain. 

4.2. Data preparation 

Once the data is collectively collected, it is neces-
sary to prepare it for its exploitation. First of all, there 
is a necessity of some filtering, as not all the raw data 
is useful. The outliers and any other fragment of data 
that is considered noise are eliminated here. Then, the 
data is standardised. Here, we use AutomationML 
[1], which is an open standard based on XML for the 
storage and exchange of plant engineering infor-

mation. AutomationML describes real plant compo-
nents as objects encapsulating different aspects. An 
object can consist out of other sub-objects, and can 
itself be part of a bigger composition. 

Finally, the data is aligned and synchronized. 
Since sensors do not normally have a real-time clock, 
as computers have, it is the responsibility of the de-
vice that is capturing to set a time reference. Moreo-
ver, each sensor has its own sample time that depends 
on the dynamic of the system that is monitoring. So, 
all the captured data is organised and rearranged in 
this module to send it to the cloud in a synchronous 
pace. 

4.3. Semantic Analysis 

The semantic enhanced intelligent factory model 
agglutinates the entire reasoning process. The seman-
tization process starts with an IN/OUT module that 
synchronizes the information to be enriched with the 
communication layer messages/serialized-responses 
maintained between the server and the client. 

As presented above, the knowledge representation 
technique of Set of experience knowledge structure 
(SOEKS)-Decisional DNA (DDNA) is used for de-
veloping VEO and VEP models and it is the sematic 
reasoner adopted. 

4.4. Real-Time Visualization 

Visual techniques are increasingly being used for 
exploratory analysis and to quickly identify patterns 
in industrial processes. As Visual Analytics are espe-
cially suited for complex real world problems with 
large amounts of data, they fit perfectly in this field. 
The proposed framework contains a Visual Analytics 
module that offers a graphical output to the semanti-
cally enhanced collective experience stored in the 
architecture. 

In our approach, we implemented a flexible dash-
board system instead of a single universal visualiza-
tion. The diversity of problems that can appear in a 
manufacturing environment is too high to create a 
unique type of visualization. It is better to build an 
interactive tool that can create customized visualiza-
tions. The user can visualize in real time different 
variables, graphs and charts, and compose its own 
visualization configuration. 

The visualization module is based on Bokeh, 
which is a Python interactive visualization library 
that targets modern web browsers. Its goal is to pro-
vide elegant, concise construction of novel graphics 
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in the style of D3.js (another library for data visuali-
zation), but also deliver this capability with high-
performance interactivity over very large or stream-
ing datasets [2]. 

4.5.  Methodology 

Experience is collected from four sensors, measur-
ing different parameters: temperature, pressure, spin-
dle-speed and metal removal rate. These are key op-
eration parameters as they affect surface finishing, 
machining time and other output indicators; thus, 
they must be monitored and analysed. Total number 
and type of these sensors may vary according to dif-
ferent machining conditions. Some of the salient fea-
tures of the case study implementation are: 
− Using CPS-like devices and OPC-UA to support 

collective experience captured coming from sen-
sors and actuators recording specific activities of 
the machines. 

− Standardising data representation by using Au-
tomationML. 

− Using SOEKS converting machine experience 
stored in database (Offline) as Set of Knowledge 
Experience Structure (SOEKS). 

− Using SOEKS to create VEO and VEP accord-
ing to their format. 

− Plotting streaming data in the client using visu-
alization API based on BOKEH. 

4.6. Results 

As illustrated in Figure 8, collective experience is 
continuously being pushed from machines. Storing 
streaming data is effective for the evaluation of ma-
chine performance and for its maintenance. Any sig-
nificant change to the status of the monitored ma-
chine can be detected. The change can be defined as a 
dramatic variation (high and low) in machine health 
value, a maintenance action or a change in the work-
ing regime. During the life cycle of a machine, these 
streaming data will be accumulated and used to con-
struct the time-machine history of the particular asset. 
This active time-machine record will be used for 
peer-to-peer comparison between assets. Once the 
asset is failed or replaced, its relative time-machine 
record will change status from active to historical and 
will be used as similarity identification and synthesis 
reference. 

 

 

Fig. 8. Visualization of streaming data 

Experience coming from four sensors is captured 
and arranged in the SOEKS format to represent for-
mal decisions taken while operating the machine. To 
compare the current machine behaviour, similarity 
with each past SOEKS of the machine is calculated 
[3]. 

Figure 9 shows similarity index calculated for each 
SOEKS in the repository with the query SOEKS. The 
SOEKS marked with a red dot indicates the most 
similar SOE. Once the patterns are matched, future 
behaviour of the monitored system can be predicted 
more accurately. 

 

 

Fig. 9. Similarity identification for each SOEKS 

For each SOE, functions calculate machine health 
index and tool life. Figure 10 illustrates correspond-
ing machine health index and tool life for each 
SOEKS. Predicting remaining useful life of assets 
helps to maintain just-in-time maintenance strategy in 
the manufacturing plant. In addition, life prediction 
along with historical time machine records can be 
used to improve the asset utilization efficiency based 
on its current health status. Historical utilization pat-
terns of similar asset at various health stages provide 
required information to simulate possible future utili-
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zation scenarios and their outcome for the target as-
set. Among those scenarios, the most efficient and yet 
productive utilization pattern can be implemented for 
the target asset. 

 

 

Fig. 10. SOEKS Functions evaluation for each formal decision 

4.7. Case Study Conclusion 

In this case study, a framework for building a col-
lective intelligent factory is presented. The collective 
intelligent factory concept holds a huge potential as it 
enables dynamic manufacturing business last-minute 
changes to production and delivers the ability to re-
spond flexibly to disruptions and failures. End-to-end 
transparency is provided over the manufacturing pro-
cess, facilitating optimised decision-making. The 
presented case study has prospects to facilitate build-
ing of bigger environments of Industry 4.0. 

5. Smart Engineering Innovation 

5.1. Genetic structure of a product 

First the artefact, or the product, is structured in 
terms of a hierarchy of nested parts [11]. The product 
is divided into a number of systems performing some 
specific function of that product, which can be repre-
sented as subsystem level 1. Similarly, subsystem 
level 1 can be subdivided into further subsystems, 
represented as subsystem level 2 which are subas-
semblies associated with some sub-function that col-

lectively perform the function at subsystem level 1. 
This nesting continues until the subsystem level 
reaches the component level. The number of subsys-
tems is different for any particular system performing 
a particular function of the product and can go up to 
level 10 or more [14] to reach the component level. 
Moreover, the level of each subsystem in the same 
product does not need to be the same, as it depends 
upon the complexity of the system. Consider the au-
tomobile car as a product, it can be divided into sub-
systems level 1 like car body, engine, fuel system, 
suspension system, braking system, electrical system 
and so on. At subsystem level 2, it can be a piston 
and so on until it reaches the component level which 
can be a simple pressure ring under the engine system 
or a self-locking nut in car body system. 

There are inter-relationships among the systems, 
subsystems and components [18]. These relationships 
can be at the same level in the same system like pis-
ton and cylinder in the engine system, or it can be 
between subsystems at the same or different level 
under different systems. 

5.2. Decisional DNA and Product Innovation 

Organizations involved in manufacturing products 
need to find out new ideas and innovate continuously 
to survive and prosper [6]. Innovation is defined as 
the process of making changes to something estab-
lished by introducing something new that add value 
to users and contributes to the knowledge store of the 
organization [13]. A systematic and proper approach 
in product innovation can increase the life of the 
product.  

Based on innovative objectives, organizations can 
find out which features or functions of the product 
need to be upgraded, which ones may be excluded 
and which new features or functions may be added to 
the product. These features and functions are attribut-
ed to some systems of the product. Innovative chang-
es in the product can be performed by modifying one 
or more systems of the product. These modifications 
or changes can be at system, subsystem or component 
level. Accordingly, the required changes can be in-
corporated into the product to complete the innova-
tion process. 

An architecture for product innovation DDNA is 
shown in Figure 11. It is the knowledge representa-
tion of a product which is capable of capturing, stor-
ing, adding, improving, sharing as well as reusing 
knowledge in decision making in a way similar to an 
innovator or entrepreneur. The product innovation 
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DDNA contains knowledge and experience of each 
important feature of a product. This information is 
stored in eight different modules of a product: Char-
acteristics, Functionality, Requirements, Connec-
tions, Process, Systems, Usability, and Cost. The first 
five modules come under the decisional DNA of vir-
tual engineering objects / virtual engineering process 
(VEO / VEP). The information and experiential 
knowledge from VEO/VEP can be easily shared and 
used for innovation process. 

 

Fig. 11. Architecture of a Product innovation DDNA 

Characteristics represents knowledge about the 
physical system, subsystems and components of the 
product as well as some operation attributes. 

Functionality represents knowledge about the 
basic object action (object collectively represents 
system, subsystem or a component of the product) 
and its operational principles. 

Connections represents the knowledge about the 
relations between the VEOs in conjunction with the 
manufacturing scenario. 

Requirements represents knowledge about the 
VEO limitations for its precise working. 

Process represents the knowledge about the manu-
facturing process/process planning of the artefact, 
VEP. 

All the knowledge represented by the above men-
tioned five modules can be extracted from the 
VEO/VEP DDNA. Further, three more modules are 
introduced which are described as follows; 

Systems represents not only the knowledge about 
the relationships between various systems, subsys-
tems and components like their hierarchy and de-
pendability so as to represent a complete product but 
also stores the past history of every system, subsys-
tem and component that were used for performing the 
same function. It also stores the possible alternative 
systems, subsystems or components that have the 
potential of replacing the current one. This module is 

continuously updated with the alternative systems 
used in advanced products as well as the new techno-
logical systems, inventions and advanced materials. 
This is the most important module for innovation 
process. 

Usability represents the knowledge about the use 
of a particular system, subsystem or component of 
the product in other products. This will help in as-
sessing its performance in other products. Infor-
mation like which products have stopped using this 
system or component and in which products it has 
been introduced recently and its effect on the perfor-
mance, popularity, sales or price of the product. 

Cost represents knowledge about total cost of all 
systems, subsystems and components. It will help in 
comparing and selecting the optimum manufacturing 
process on cost basis. 

The query based on innovative objectives is fed in-
to the SOEKS/DDNA system. This query is convert-
ed to a SOEKS containing a unique combination of 
variables, functions, constraints and rules. The sys-
tem will look for the most similar SOEKS for com-
parison and based on the similar experiences will 
provide proposed solutions. For example, the innova-
tive objectives suggests possible changes in five 
functions or sub-functions. The system will relate 
these functions and sub-functions with some systems 
and subsystems of the product. Comparing the expe-
riences from the past having some common innova-
tive objectives, the system will provide the set num-
ber of possible solutions. Based on the solutions of 
the past SOEKS, proposed solutions are obtained 
suggesting possible changes in some subsystems or 
components of the product. 

The system will then compare the alternatives 
available in the systems and usability module. The 
best solution is chosen and stored in the decisional 
DNA of the product innovation as a SOEKS that can 
be used for solving innovative problem in future. In 
this way the system also gains some experiential 
knowledge and, with time, it will behave as an expert 
innovator/entrepreneur having knowledge equivalent 
to a group of experts, capable of taking quick and 
smart decisions. 

6. Conclusions 

This paper presents a group of knowledge struc-
tures able to collect and share collective intelli-
gence/knowledge related to engineering.  Such tech-
nologies involve Set of Experience Knowledge Struc-
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ture and Decisional DNA as the basis for more ad-
vanced structures: Virtual Engineering Object (VEO), 
Virtual Engineering Process (VEP) and Virtual Engi-
neering Factory (VEF). Through out the presented 
case studies, the afore mentioned structures are pre-
sented as technologies to manage any collective 
knowledge based virtual engineering environment. 
The idea is to make experience shareable and trans-
ferable among different manufacturing set-ups as 
required by the future generation of cyber-physical 
systems.  
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