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Abstract
We construct a single smooth orthogonal projection with desired localization whose
average under a group action yields the decomposition of the identity operator. For
any full rank lattice � ⊂ R

d , a smooth projection is localized in a neighborhood of
an arbitrary precompact fundamental domain R

d/�. We also show the existence of a
highly localized smooth orthogonal projection, whose Marcinkiewicz average under
the action of SO(d), is a multiple of the identity on L2(Sd−1). As an application we
construct highly localized continuous Parseval frames on the sphere.
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1 Introduction

Smooth projections on the real line were introduced in a systematic way by Auscher,
Weiss, and Wickerhauser [2] in their study of local sine and cosine bases of Coifman
andMeyer [8] and in the construction of smooth wavelet bases in L2(R), see also [21].
While the standard procedure of tensoring can be used to extend their construction to
the Euclidean space R

d , an extension of smooth projections to the sphere S
d−1 was

shown by the first two authors in [4]. A general construction of smooth orthogonal
projections on a Riemannian manifold M , which is based partly on the Morse theory,
was recently developed by the authors [5]. We have shown that the identity operator
on M can be decomposed as a sum of smooth orthogonal projections subordinate to an
open cover of M . This result, which is an operator analogue of the ubiquitous smooth
partition of unity of a manifold, can be used to construct Parseval wavelet frames on
Riemannian manifolds [6].

The goal of this paper is to show the existence of a single smooth projection with
desired localization properties and whose average under a group action yields the
decomposition of the identity operator. We show such result in two settings. In the
setting ofR

d we construct a smooth orthogonal decompositions of identity on L2(Rd),
generated by translates of a single projection, which is localized in a neighborhood of
an arbitrary precompact fundamental domain. In other words, a characteristic function
of a fundamental domain K of R

d under the action of a full lattice � ⊂ R
d , can be

smoothed out to a projection Hestenes operator localized in a neighborhood of K . In
the setting of the sphere S

d−1 we show the existence of a single smooth orthogonal
projectionwhich has arbitrarily small support andwhoseMarcinkiewicz average under
the action of SO(d) is a multiple of the identity on L2(Sd−1). We also show that the
same decomposition works for other function spaces on S

d−1. More precisely, we
have the following theorem.

Theorem 1.1 Let B be a ball in S
d−1. Let μ = μd be a normalized Haar measure on

SO(d). For b ∈ SO(d) and a function f on S
d−1, let Tb f (x) = f (b−1x). Then the

following holds.
(i) There exist a Hestenes operator PB localized on B such that PB : L2(Sd−1) →

L2(Sd−1) is an orthogonal projection and for all f ∈ L2(Sd−1)

∫
SO(d)

Tb ◦ PB ◦ Tb−1( f )dμ(b) = c(PB) f , (1.1)

where c(PB) is a constant depending on PB; the integral in (1.1) is understood as
Bochner integral with values in L2(Sd−1).

(ii) Let X be one of the following quasi-Banach spaces: Triebel-Lizorkin space
Fs
p,q(S

d−1), 0 < p, q < ∞, s ∈ R, Besov space Bs
p,q(S

d−1), 0 < p, q < ∞, s ∈ R,

Sobolev space Wk
p(S

d−1), 1 ≤ p < ∞, and Ck(Sd−1), k ≥ 0. Then the formula (1.1)
holds for all f ∈ X with the integral in (1.1) understood as the Pettis integral. In the
case X is Banach space the integral is Bochner integral.

In the literature there are two approaches to construct a continuous frame on
L2(Sd−1). A purely group-theoretical construction startedwith a paper byAntoine and

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Journal of Fourier Analysis and Applications (2022) 28 :75 Page 3 of 31 75

Vandergheynst [1]. A continuous wavelet on the sphere is a function g ∈ L2(Sd−1)

such that the family

{TbDt g : (b, t) ∈ SO(d) × R+},

is a continuous frame in L2(Sd−1), where Dt is a dilation operator. The existence of
such g is highly non-trivial already for S

2 and was investigated by [9]. The second
approach involves a more general wavelet transform, where dilations are replaced by
a family of functions {gt : t > 0} ⊂ L2(Sd−1). This family generates a continuous
Parseval frame if wavelet transform

W ( f )(b, t) =
∫
Sd−1

gt (b
−1x) f (x)dσd−1(x), W : L2(Sd−1) → L2(SO(d)

×R+, dμdda/a)

is an isometric isomorphism, see [22, Theorem III.1]. If functions gt are zonal, that
is gt (x) = g̃t (〈y, x〉) for some y ∈ S

d−1, then wavelet transform takes a simplified
form

W ( f )(ξ, t) =
∫
Sd−1

g̃t (〈ξ, x〉) f (x)dσd−1(x), W : L2(Sd−1) → L2(Sd−1

×R+, dσd−1da/a)

Such transforms were studied for d = 3 in [14, 15]. For more general weights on R
+,

see [23, Theorem 3.3]. A general approach to construct continuous frame wavelets on
compact manifolds was done by Geller and Mayeli [17].

As an application of Theorem 1.1 we construct a highly localized continuous frame
in L2(Sd−1). Unlike earlier constructions of continuous wavelet frames on S

d−1, the
“dilation" space R

+ is replaced by a parameter space X of a local continuous Parseval
frame. Moreover, our continuous wavelet frames have arbitrarily small support. A
recent solution of discretization problembyFreeman and Speegle [16] yields a discrete
frame on sphere [3, 13].

The main novelty of the paper compared with our earlier works on the sphere [4]
and on Riemannian manifolds [5, 6] is the presence of a single smooth projection
which generates a decomposition of the identity operator on L2 under a group action.
Our previous construction of such decomposition is generated by a family of smooth
projections parametrized by an open precompact cover of a Riemannian manifold. In
contrast, a Parseval frame constructed in this paper is generated by a single localized
window function unlike our earlier construction on the sphere [4], which requires a
family of generators.

Geller and Pesenson [18] have constructed localized Parseval frames on compact
symmetric Riemannian manifolds. This suggests that Theorem 1.1 might have a gen-
eralization when the sphere S

d−1 is replaced by compact or non-compact symmetric
Riemannian manifolds. These are Riemannian manifolds which admit an involutive
and transitive group action of isometries [19, 20]. However, it is an open problem
whether, and to what extent, Theorem 1.1 holds in such setting.
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The paper is organized as follows. In Sect. 2 we recall the definition of Hestenes
operators and Marcinkiewicz averages. In Sect. 3 we show the existence of a smooth
orthogonal decomposition of identity on L2(Rd) generated by a single projection. In
Sects. 4 and 5 we study Marcinkiewicz averages of smooth orthogonal projections on
the sphere. This culminates in the proof of the first part of Theorem 1.1 in Sect. 6.
The proof of the second part of Theorem 1.1 dealing with function spaces is shown in
Sect. 7. In Sect. 8 we construct a continuous Parseval frame on the sphere.

2 Preliminaries

We recall the definition of Hestenes operators [5, Definition 1.1] and their localization
[5, Definition 2.1]. Although the following two definitions make sense when M is a
Riemannian manifold, in this paper we only consider M = R

d or S
d−1.

Definition 2.1 Let � : V → V ′ be a C∞ diffeomorphism between two open subsets
V , V ′ ⊂ M . Let ϕ : M → R be a compactly supported C∞ function such that

suppϕ = {x ∈ M : ϕ(x) �= 0} ⊂ V .

We define a simple H -operator Hϕ,�,V acting on a function f : M → C by

Hϕ,�,V f (x) =
{

ϕ(x) f (�(x)) x ∈ V

0 x ∈ M \ V .
(2.1)

Let C0(M) be the space of continuous real-valued functions vanishing at infinity.
Clearly, a simple H -operator induces a continuous linear map of the space C0(M)

into itself. We define a Hestenes operator to be a finite combination of such simple
H -operators. The space of all H -operators is denoted byH(M).

Definition 2.2 We say that an operator T ∈ H(M) is localized on an open setU ⊂ M ,
if it is a finite combination of simple H -operators Hϕ,�,V satisfying V ⊂ U and
�(V ) ⊂ U .

By [5, Lemma 2.1] an operator T is localized onU ⊂ M if and only if there exists
a compact set K ⊂ U such that for any f ∈ C0(M)

supp T f ⊂ K , (2.2)

supp f ∩ K = ∅ �⇒ T f = 0. (2.3)

For any function f on S
d−1, define its rotation by b ∈ SO(d) as

Tb( f )(x) = f (b−1x), x ∈ S
d−1.

Let D = C
∞(Sd−1) be the space of test functions. Let D′ be the dual space of

distributions on S
d−1.
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Definition 2.3 Let X be a quasi Banach space on which X ′ separates points such that:

(1) we have continuous embeddings D ↪→ X ↪→ D′ and D dense in X ,
(2) there is a constant C > 0 such that for all b ∈ SO(d)

‖Tb‖X→X ≤ C,

Let P : X → X be a bounded linear operator. We define the Marcinkiewicz average
S(P) as the Pettis integral

S(P)( f ) =
∫
SO(d)

Tb ◦ P ◦ Tb−1( f )dμ(b), f ∈ X , (2.4)

where μ = μd is the normalized Haar measure on SO(d).

Remark 2.4 Marcinkiewicz has considered such averages in the context of interpola-
tion of trigonometric polynomials, see [28, Theorem 8.7 in Ch. X]. In Sect. 7 we will
show that the mapping

SO(d) � b �→ Tb ◦ P ◦ Tb−1( f ) ∈ X

is continuous. Hence, in the case X is a Banach, (2.4) exists as the Bochner integral
by [11, Theorem II.2]. In particular, when X = C(Sd−1) we can interpret (2.4) as the
Bochner integral.

Lemma 2.5 Let ψ ∈ C∞(Sd−1). Let Mψ be a multiplication operator, i.e. Mψ( f ) =
ψ f . Then for f ∈ C(Sd−1) and ξ ∈ S

d−1,

S(Mψ) f (ξ) = C(ψ) f (ξ), where C(ψ) =
∫
Sd−1

ψ(ξ)dσ(ξ).

Proof Note that

S(Mψ) f (ξ) = f (ξ)

∫
SO(d)

ψ(b−1(ξ))dμ(b).

Letting G = SO(d) and H = {b ∈ SO(d) : b(1) = 1} ⊂ SO(d), we have
G/H = S

d−1. Hence, by [12, Theorem 2.51]

C(ψ) =
∫
SO(d)

ψ(b−1(ξ))dμ(b) =
∫
Sd−1

ψ(ξ)dσ(ξ).

��
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2.1 Marcinkiewicz Averages in L2(Sd−1)

Let Hd
n be the linear space of real harmonic polynomials, homogeneous of degree n,

on R
d . Spherical harmonics are the restrictions of elements in Hd

n to the unit sphere,
see [10, Definition 1.1.1]. Let

projn : L2(Sd−1) → Hd
n

denote the orthogonal projection. Since L2(Sd−1) is the orthogonal sum of the spaces
Hd

n , n = 0, 1, . . ., we can definemultiplier operator with respect to spherical harmonic
expansions [10, Definition 2.2.7].

Definition 2.6 A linear operator T : L2(Sd−1) → L2(Sd−1) is called a multiplier
operator if there exists a bounded sequence {λn}n≥0 of real numbers such that for all
f ∈ L2(Sd−1) and all n ≥ 0

projn(T f ) = λnprojn f .

Conversely, any bounded sequence {λn}n≥0 defines a multiplier operator on
L2(Sd−1)

T f =
∞∑
n=0

λnprojn f for f ∈ L2(Sd−1).

The following result characterizes Marcinkiewicz averages on the sphere, see [10,
Proposition 2.2.9].

Theorem 2.7 Let T : L2(Sd−1) → L2(Sd−1) be a bounded linear operator. The
following are equivalent:

(i) T is a multiplier operator.
(ii) T is invariant under the group of rotations, that is, T Tb = TbT for all b ∈ SO(d),
(iii) S(T ) = T .

3 Orthogonal Decomposition by Shifts of a Localized Projection

In this section we will show the existence of smooth orthogonal decompositions of
identity on L2(Rd), which are generated by translates of a single projection, which is
localized in a neighborhood of an arbitrary precompact fundamental domain.

Let s ∈ C∞(R) be a real-valued function such that

supp s ⊂ [−δ,+∞) for some δ > 0,

s2(t) + s2(−t) = 1 for all t ∈ R.
(3.1)
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Following [4, eq. (2.9)] and [21, eqs. (3.3) and (3.4) in Ch. 1], for a given α < β and
δ <

β−α
2 , we define an orthogonal projection P[α,β] : L2(R) → L2(R) by

P[α,β] f (t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 t < α − δ,

s2(t − α) f (t) + s(t − α)s(α − t) f (2α − t) t ∈ [α − δ, α + δ],
f (t) t ∈ (α + δ, β − δ),

s2(β − t) f (t) − s(t − β)s(β − t) f (2β − t) t ∈ [β − δ, β + δ],
0 t > β + δ.

(3.2)

Let Tk be the translation operator by k ∈ R given by Tk f (x) = f (x − k). Note that
for all functions f and all α < β, k ∈ R, we have

P[α+k,β+k]( f )(x) = (Tk P[α,β]T−k) f (x). (3.3)

By [21, Theorem 1.3.15] we have the following sum rule for projections on adjacent
intervals corresponding to the same δ < min((β − α)/2, (γ − β)/2),

P[α,β] + P[β,γ ] = P[α,γ ]. (3.4)

Let K ⊂ R
d be a fundamental domain ofR

d/�, where� ⊂ R
d is a full rank lattice.

That is, {K + γ : γ ∈ �} is a partition of R
d modulo null sets. Define an orthogonal

projection onto L2(K ) by P f (x) = 1K (x) f (x). Then, we have a decomposition of
the identity operator I on L2(Rd),

∑
γ∈�

Tγ PK T−γ = I.

The following theorem shows that there exists a smooth variant of an operator PK ,
satisfying the same decomposition identity, which is an H -operator localized on a
neighborhood of K .

Theorem 3.1 Let � ⊂ R
d be a full rank lattice. Let K ⊂ R

d be a precompact fun-
damental domain of R

d/�. Then for any ε > 0, there exists a Hestenes operator P,
which is an orthogonal projection localized on ε-neighborhood of K , such that

∑
γ∈�

Tγ PT−γ = I. (3.5)

Here the convergence is in the strong operator topology in L2(Rd). In particular,
projections Tγ PT−γ , γ ∈ �, are mutually orthogonal.

Proof Wewill show first that it suffices to prove the theorem for the latticeZ
d . Assume

momentarily that Theorem 3.1 holds in this special case. An arbitrary full rank lattice
� ⊂ R

d is of the form � = MZ
d for some d × d invertible matrix M . If K ⊂ R

d is a
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precompact fundamental domain ofRd/�, thenM−1(K ) is a precompact fundamental
domain of R

d/Z
d since

{M−1(K + γ ) : γ ∈ �} = {M−1(K ) + k : k ∈ Z
d}

is a partition ofRd modulo null sets. Hence, for any ε > 0, there exists aHestenes oper-
ator P ′, which is an orthogonal projection localized on ε-neighborhood of M−1(K )

such that

∑
k∈Zd

Tk P
′T−k = I.

Define a Hestenes operator P = DM−1 P ′DM , where DM is a dilation operator
DM f (x) = f (Mx). Since | det M |1/2DM is an isometric isomorphism of L2(Rd)

we deduce that P is an orthogonal projection. Since TkDM = DMTMk , we have

∑
γ∈�

Tγ PT−γ =
∑
k∈Zd

TMkDM−1 P ′DMT−Mk =
∑
k∈Zd

DM−1Tk P
′T−k DM

= DM−1 ◦
( ∑

k∈Zd

Tk P
′T−k

)
◦ DM = I.

Since P ′ is localized on ε-neighborhood U of M−1(K ) we deduce that P =
DM−1 P ′DM is localized in M(U ), which is contained in ||M ||ε-neighborhood of
K . Since ε > 0 is arbitrary, this concludes the reduction step.

Next we will show the theorem in the special case when the lattice � = Z
d and

the fundamental domain is the unit cube K = [0, 1]d . Let P[0,1] be the orthogonal
projection on L2(R), which is given by (3.2), and localized on open interval (−δ, 1+δ).
Since P[0,1] has opposite polarities at the endpoints, by (3.3) and (3.4) we have

∑
k∈Z

Tk P[0,1]T−k = I, (3.6)

where the convergence is in the strong operator topology in L2(R), see [21, Formula
(3.18) in Ch. 1]. Define PK as the d-fold tensor product PK = P[0,1] ⊗ . . . ⊗ P[0,1],
see [4, Lemma 3.1]. That is, PK is defined initially on separable functions

( f1 ⊗ . . . ⊗ fd)(x1, . . . , xd) = f1(x1) · · · fd(xd), for x = (x1, . . . , xd) ∈ R
d ,

by

PK ( f1 ⊗ . . . ⊗ fd) = P[0,1]( f1) ⊗ . . . ⊗ P[0,1]( fd)

and then extended to a Hestenes operator on R
d . Then, PK is an orthogonal projection

localized on a cube (−δ, 1 + δ)d . Then, using (3.6) we can verify its d-dimensional
analogue for separable functions
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∑
k∈Zd

Tk PK T−k( f1 ⊗ . . . ⊗ fd)

=
∑

(k1,...,kd )∈Zd

Tk1 P[0,1]T−k1( f1) ⊗ . . . ⊗ Tkd P[0,1]T−kd ( fd)

= f1 ⊗ . . . ⊗ fd .

(3.7)

Since linear combinations of separable functions are dense in L2(Rd), the above
formula holds for all functions in L2(Rd). Choosing δ > 0 such that

√
dδ < ε yields

the required projection P = PK satisfying (3.5).
By the scaling argument we obtain the same conclusion for the lattice � = n−1

Z
d ,

and the fundamental domain n−1[0, 1]d , where n ∈ N. That is, define a projection
P ′ = DM−1 P[0,1]d DM , where M = n−1Id is a multiple of d × d identity matrix
Id . That is, P ′ is a Hestenes operator, which is an orthogonal projection on L2(Rd)

satisfying

∑
k∈n−1Zd

Tk P
′T−k = I. (3.8)

Let K be an arbitrary precompact fundamental domain of R
d/Z

d . Choose n ∈ N

such that

(
√
d + 2)/n < ε. (3.9)

Let P ′ be a Hestenes operator, which is orthogonal projection localized on 1/n-
neighborhood of n−1[0, 1]d such that (3.8) holds. Let

F0 = {k ∈ n−1
Z
d : (n−1[0, 1]d + k) ∩ K �= ∅}. (3.10)

Since K is a fundamental domain of R
d/Z

d we have

⋃
l∈Zd

(l + F0) = n−1
Z
d . (3.11)

We define an equivalence relation on F0: k, k′ ∈ F0 are in relation if k−k′ ∈ Z
d . Then,

we choose a subset F1 ⊂ F0 containing exactly one representative in each equivalence
class. Hence, the family {l + F1 : l ∈ Z

d} is a partition of the lattice n−1
Z
d . Define a

Hestenes operator

P =
∑
k∈F1

Tk P
′T−k .

Since projections Tk P ′T−k , k ∈ n−1
Z
d , are mutually orthogonal, P is also an

orthogonal projection on L2(Rd). Since the operator Tk P ′T−k is localized on 1/n-
neighborhood of the cube n−1[0, 1]d + k, whose diameter is < ε by (3.9), we deduce
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w1

w2

e1

e2

Fig. 1 Sets K and M−1K

by (3.10) that P is localized on ε-neighborhood of K . Combining (3.8) with the fact
that {l + F1 : l ∈ Z

d} is a partition of the lattice n−1
Z
d yields

∑
l∈Zd

Tl PT−l =
∑
l∈Zd

∑
k∈F1

Tk+l P
′T−(k+l) = I.

The convergence is in the strong operator topology in L2(Rd). ��
The following example illustrates Theorem 3.1 by an example. Let K be a hexagon

with the vertices:

p1 = (1, 0), p2 = (1/2,
√
3/2), p3 = (−1/2,

√
3/2),

p4 = −p1, p5 = −p2, p6 = −p3.

The set K is a fundamental domain for the lattice � = MZ
2, where

M = [w1|w2], w1 =
[
0√
3

]
, w2 =

[
3/2√
3/2

]
.

Then we transform K so that M−1K is a fundamental domain for the lattice Z
2, see

Fig. 1.
Next we consider a grid 1/nZ

2, where n is a scaling parameter. We color all cubes
which have nonempty intersection with M−1K . If a scaling parameter n is sufficiently
small we have all cubes in ε neighborhood of M−1K , see Fig. 2. To construct orthog-
onal projection from Theorem 3.1 we need to choose cubes that form a fundamental
domain for the lattice Z

2 by eliminating redundant cubes, see Fig. 2.

Corollary 3.2 Let B be a ball in the torus T
d = R

d/Z
d . Then there exists a discrete

subgroupG ⊂ T
d andaHestenes operator P,which is orthogonal projection localized

on B, such that
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Fig. 2 Construction in Theorem 3.1 for scaling parameter n = 10

∑
γ∈G

Tγ PT−γ f = f for all f ∈ L2(Td).

In particular, projections Tγ PT−γ , γ ∈ �, are mutually orthogonal.

Proof Let p : R
d → T

d = R
d/Z

d be the quotient map. Then, a ball B in the torus
T
d = R

d/Z
d is of the form B = p(B(x, r)), where B(x, r) is a ball in R

d . Without
loss of generality, we can assume that r < 1/(2

√
d), so that the balls B(x + k, r),

k ∈ Z
d , are disjoint. Choose sufficiently large n ∈ N such x + [0, 1/n]d ⊂ B(x, r).

Then, K = x + [0, 1/n]d is a fundamental domain of R
d/�, where � = n−1

Z
d . By

Theorem 3.1 there exists a Hestenes operator P ′ on R
d , which is localized in B(x, r),

such that P ′ is an orthogonal projection satisfying (3.8). Define Z
d -periodization of

P ′ by

P =
∑
k∈Zd

Tk P
′T−k .

We can treat P as a Hestenes operator on T
d , which is an orthogonal projection on

L2(Td) localized on B. This follows from the fact that P ′ is localized in B(x, r) and
the balls B(x + k, r), k ∈ Z

d , are disjoint. Hence, we obtain the conclusion for the
group G = (n−1

Z
d)/Z

d . ��
We end this section with a continuous analogue of Theorem 3.1 on the real line,

which motivates results in subsequent sections.

Proposition 3.3 For fixed δ > 0 and α < β satisfying β−α
2 > δ, let P[α,β] be a smooth

orthogonal projection given by (3.2). For any continuous function f : R → R and
any t ∈ R, we have

∫
R

Tξ P[α,β]T−ξ f (t)dξ =
∫
R

P[ξ+α,ξ+β] f (t)dξ = (β − α) f (t).
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Proof The first equality follows by (3.3). By (3.2) we have

∫
R

P[ξ+α,ξ+β] f (t)dξ

=
∫ t−α−δ

t−β+δ

f (t)dξ +
∫ t−α+δ

t−α−δ

s2(t − (α + ξ)) f (t)

+ s(t − (α + ξ))s(α + ξ − t) f (2(α + ξ) − t)dξ +
∫ t−β+δ

t−β−δ

s2(β + ξ − t) f (t)

− s(t − (β + ξ))s(β + ξ − t) f (2(β + ξ) − t)dξ.

Since P[α,β] has opposite polarities at endpoints, the change of variables yields

∫
R

P[ξ+α,ξ+β] f (t)dξ = f (t)(β − α − 2δ) + 2 f (t)
∫ δ

−δ

s2(u)du

= f (t)(β − α − 2δ) + 2 f (t)
∫ δ

0
(s2(u) + s2(−u))du

= (β − α) f (t).

The last equality follows from (3.1). ��

4 Averages of Smooth Projections on S
1

In this section we show that the Marcinkiewicz average of a smooth projection on an
arc in S

1 = {z ∈ C : |z| = 1} is a multiple of the identity.

Definition 4.1 Let P be aHestenes operator onR, localized on (a, b)with b−a < 2π .
Take ρ such that ρ < a < b < ρ + 2π . Define an operator P̃ acting on a function
f : S

1 → R by

P̃ f (eit ) = P( f ◦ �1)(t), t ∈ [ρ, ρ + 2π),

where �1(t) = eit . Then P̃ is a Hestenes operator on S
1, localized on an arc Q =

�1((a, b)) ⊂ S
1. In particular, localization of P on (a, b) implies that P̃ f (w) = 0

for w ∈ S
1 \ Q. This implies that definition of P̃ does not depend on ρ, provided

ρ < a < b < ρ + 2π .

Fix α < β and 0 < δ <
β−α
2 . Define an operator Rα acting on functions f on R

by

Rα f (t) = s(t − α)s(α − t) f (2α − t) for t ∈ R.
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Define a multiplication operator M f (t) = m(t) f (t), with

m(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for t < α − δ,

s2(t − α) for t ∈ [α − δ, α + δ],
1 for t ∈ (α + δ, β − δ),

s2(β − t) for t ∈ [β − δ, β + δ],
0 for t > β + δ.

Then, the operator P[α,β], given by formula (3.2), satisfies

P[α,β] = M + Rα − Rβ. (4.1)

Observe M , Rα , and Rβ are simple Hestenes operators localized on intervals (α −
δ, β + δ), (α − δ, α + δ), and (β − δ, β + δ), respectively. Note that

Tξ RαT−ξ f (t) = s(t − (α + ξ))s(α + ξ − t) f (2(α + ξ) − t) = Rα+ξ f (t). (4.2)

Hence,

Tξ P[α,β]T−ξ = Tξ MT−ξ + Rα+ξ − Rβ+ξ ,

and Tξ MT−ξ f (t) = m(t − ξ) f (t).
In the sequel, we need to consider both translation operators on R and on S

1. To
distinguish between these two operators, we denote a translation (rotation) operator
τz on S

1 by τz f (w) = f (z−1w), where f : S
1 → R and z, w ∈ S

1.

Lemma 4.2 Let P be a Hestenes operator localized on an interval (a, b) with b−a <

2π . Define a Hestenes operator P̃ on S
1 by Definition 4.1. Then, Pξ = Tξ PT−ξ is a

Hestenes operator localized on (a + ξ, b + ξ) and P̃ξ is defined as well. Moreover,
we have

P̃ξ = τz P̃τz−1 , where z = eiξ . (4.3)

Proof The fact that Pξ is a Hestenes operator localized on (a+ ξ, b+ ξ) follows from
an explicit formula for Pξ when P is a simple Hestenes operator. To verify (4.3), take
f : S

1 → R. Observe first that for u ∈ R,

Tu( f ◦ �1) = (τeiu f ) ◦ �1.

Indeed, we have

Tu( f ◦ �1)(t) = ( f ◦ �1)(t − u) = f (eit e−iu)

= (τeiu f )(e
it ) = (τeiu f ) ◦ �1(t).
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Fix ρ such that ρ < a < b < ρ + 2π . Clearly, ρ + ξ < a+ ξ < b+ ξ < ρ + ξ + 2π ,
and t ∈ [ρ + ξ, ρ + ξ + 2π) if and only if t − ξ ∈ [ρ, ρ + 2π) Therefore, for
t ∈ [ρ + ξ, ρ + ξ + 2π)

P̃ξ f (e
it ) = Pξ ( f ◦ �1)(t) = Tξ PT−ξ ( f ◦ �1)(t)

= P(T−ξ ( f ◦ �1))(t − ξ) = P((τe−iξ f ) ◦ �1)(t − ξ)

= P̃(τz−1 f )(ei(t−ξ)) = P̃(τz−1 f )(eit z−1) = τz P̃τz−1 f (eit ).

��
Since SO(2) ≈ S

1 with normalized Haar measure μ, the Marcinkiewicz average
of an operator P is given by

S(P) f (w) =
∫
S1

τz Pτz−1 f (w)dμ(z), w ∈ S
1.

Theorem 4.3 Let α < β be such that β − α < 2π . Let δ > 0 be such that

2δ < min(β − α, 2π − (β − α)). (4.4)

For Q = �1([α, β]), consider an operator PQ = P̃[α,β] as in Definition 4.1. Then,
for any continuous function f : S

1 → R and any w ∈ S
1, the Marcinkiewicz average

satisfies

S(PQ)( f )(w) = β − α

2π
f (w). (4.5)

Proof Denote κ = β − α and v = eiκ . By (4.2)

Rβ = Rα+κ = Tκ RαT−κ ,

and consequently by Lemma 4.2 we have

R̃β = τv R̃ατv−1 . (4.6)

Therefore,

τz R̃βτz−1 = τzτv R̃ατv−1τz−1 = τzv R̃ατ(zv)−1 . (4.7)

Observe that M̃ f = mQ f , where mQ is a function on S
1 given by

mQ(eit ) =

⎧⎪⎨
⎪⎩
s2(t − α) t ∈ [α − δ, α + δ],
1 t ∈ (α + δ, β − δ),

s2(β − t) t ∈ [β − δ, 2π + α − δ).
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By (4.1) and (4.6) we have

PQ = P̃[α,β] = M̃ + R̃α − τv R̃ατv−1 .

By (4.7) this implies that

τz PQτz−1 = τz M̃τz−1 + τz R̃ατz−1 − τzv R̃ατ(zv)−1 .

Further, note that

τz M̃τz−1 f (w) = mQ(wz−1) f (w).

Summarizing, we get

τz PQτz−1 f (w) = mQ(wz−1) f (w) + τz R̃ατz−1 f (w) − τzv R̃ατ(zv)−1 f (w). (4.8)

By the invariance of Haar measure applied to g(z) = τz R̃ατz−1 f (w) we see that

∫
S1

τz R̃ατz−1 f (w)dμ(z) =
∫
S1

τzv R̃ατ(zv)−1 f (w)dμ(z).

Therefore, integrating (4.8) over S
1 we obtain

∫
S1

τz PQτz−1 f (w)dμ(z) = f (w)

∫
S1
mQ(wz−1)dμ(z) = f (w)

∫
S1
mQ(z)dμ(z).

The conclusion follows from the fact that

∫
S1
mQ(z)dμ(z) = 1

2π

∫ 2π+α−δ

α−δ

m(t)dt = 1

2π

∫
R

m(t)dt = β − α

2π
.

��

5 Latitudinal Projections on Sphere

In this section we define latitudinal operators, whose action depends only on latitude
variable, by transplanting one dimensional Hestenes operators to meridians. We also
show that the Marcinkiewicz average of latitudinal projection is a multiple of the
identity.

For k ≥ 2, we define a surjective function

�k : [0, π ] × S
k−1 → S

k

by the formula

�k(ϑ, ξ) = (ξ sin ϑ, cosϑ), where (ϑ, ξ) ∈ [0, π ] × S
k−1. (5.1)
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Note that �k is a diffeomorphism

�k : (0, π) × S
k−1 → S

k \ {1k,−1k},

where 1k = (0, . . . , 0, 1) ∈ S
k is the “North Pole". Let dg be Riemannian metric on a

sphere and let 1 = 1d−1. Note that for ξ ∈ S
d−1, dg(1, ξ) = t , where 〈1, ξ 〉 = cos t .

Definition 5.1 Let P : C[0, π ] → C[0, π ] be a continuous operator. For fixed k ≥ 2,
let I be the identity operator on C(Sk−1). Define an operator

P ⊗ I : C([0, π ] × S
k−1) → C([0, π ] × S

k−1),

acting on a continuous function g on [0, π ] × S
k−1 by

(P ⊗ I)g(t, y) = P (g(·, y)) (t), (t, y) ∈ [0, π ] × S
k−1.

It can be checked by direct calculations that if P, Q : C[0, π ] → C[0, π ], then

(P ⊗ I) ◦ (Q ⊗ I) = (P ◦ Q) ⊗ I. (5.2)

Definition 5.2 Let

C0([0, π ]) = { f ∈ C([0, π ]) : f (0) = f (π) = 0}.

Let P : C[0, π ] → C[0, π ] be a continuous linear operator such that

P(C0[0, π ]) ⊂ C0[0, π ]. (5.3)

We define a latitudinal operator acting on f ∈ C(Sk) by

P# f (ξ) =

⎧⎪⎨
⎪⎩

(P ⊗ I( f ◦ �k)) (�−1
k (ξ)), ξ ∈ S

k \ {1k,−1k}
P ⊗ I( f ◦ �k)(0, 1k−1), ξ = 1k

P ⊗ I( f ◦ �k)(π, 1k−1), ξ = −1k .

Lemma 5.3 If P : C[0, π ] → C[0, π ] satisfies condition (5.3), then P# : C(Sk) →
C(Sk).

Proof Denote

Cb([0, π ] × S
k−1)

= {g ∈ C([0, π ] × S
k−1) : ∃a0,aπ ∀ξ∈Sk−1g(0, ξ) = a0, g(π, ξ) = aπ }.

Let f be a function on S
k . Then f ∈ C(Sk) if and only if f ◦�k ∈ Cb([0, π ]×S

k−1).
Indeed S

k is homomorphic with the quotient space [0, π ]×S
k−1/ ∼, which identifies

{0} × S
k−1 and {π} × S

k−1 with single points corresponding to poles 1k and −1k ,
respectively.
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The assumption P(C0[0, π ]) ⊂ C0[0, π ] guarantees that

P ⊗ I(Cb([0, π ] × S
k−1)) ⊂ Cb([0, π ] × S

k−1).

Indeed, let g ∈ Cb([0, π ] × S
k−1) and a0 = g(0, 1k−1) and aπ = g(π, 1k−1). Define

p(t, y) = π−t
π

, q(t, y) = t
π
and

h(t, y) = g(t, y) − a0 p(t, y) − aπq(t, y), (t, y) ∈ [0, π ] × S
k−1.

Consequently for all y ∈ S
k−1

h(0, y) = h(π, y) = 0.

Hence

P ⊗ I(h)(0, y) = P ⊗ I(h)(π, y) = 0.

We conclude that

P ⊗ I(g)(0, y) = a0(P ⊗ I)(p)(0, y) + aπ (P ⊗ I)(q)(0, y).

Since p and q do not depend on y ∈ S
k−1, functions (P ⊗ I)(p)(0, y) and (P ⊗

I)(q)(0, y) also do not depend on y ∈ S
k−1. Hence, P⊗I(g) is constant on {0}×S

k−1.
The same argument shows that P ⊗ I(g) is constant on {π} × S

k−1. ��
Lemma 5.4 If P, Q : C[0, π ] → C[0, π ] both satisfy condition (5.3), then

(P ◦ Q)# = P# ◦ Q#. (5.4)

Proof By (5.2) and Definition 5.2 the formula (5.4) holds for continuous functions f
on S

k which vanish on poles. Let p and q be as in the proof of Lemma 5.3. Likewise,
(5.4) holds for p◦�−1

k and q ◦�−1
k . Since any function f on S

k is a linear combination
of p ◦ �−1

k , q ◦ �−1
k , and a function vanishing on poles, the formula (5.4) holds for

all f ∈ C(Sk). ��
For further reference let ρ : C([0, π ]) → C([0, π ]) be a reflection operator given

by

ρ f (t) = f (π − t) for f ∈ C([0, π ]).

Let R = ρ ⊗ I, where I is the identity operator on C(Sk−1). Then

Rg(t, y) = g(π − t, y) for g ∈ C([0, π ] × S
k−1).

By Definition 5.2 we have

ρ# f (ξ) = f (ξ1, . . . , ξk,−ξk+1) for ξ = (ξ1, . . . , ξk+1) ∈ S
k, f ∈ C(Sk).
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Lemma 5.5 Fix k ≥ 2. Let L : C[0, π ] → C[0, π ] be a continuous operator and
η ∈ SO(k + 1). Then,

TηL
#Tη−1 =

{
L# if η(1) = 1,
ρ#L#ρ# if η(1) = −1.

(5.5)

Proof Suppose thatη(1) = −1. Thenη is a block diagonalmatrixwith twoblocks:C ∈
O(k) and −1 in the last diagonal entry. Hence, for parametrization ξ = �k(t, y) of
sphereS

k , we haveη(ξ) = �k(π−t,Cy) for a certainmatrixC ∈ O(k). Consequently

η−1(ξ) = �k(π − t,C−1y).

Take f ∈ C(Sk). Letting g = f ◦ �k , we have

Tη f (ξ) = f (η−1ξ) = g(π − t,C−1y).

Let gη = Tη−1 f ◦ �k . Then we have

Tη

(
L#Tη−1 f

)
(ξ) = L#Tη−1( f )�k(π − t,C−1y)

= L ⊗ I(Tη−1 f ◦ �k)(π − t,C−1y) = R(L ⊗ I)(gη)(t,C
−1y).

Since gη(t ′, y′) = Rg(t ′,Cy′) and operators R and L ⊗ I act only on the first variable
t , we have

(L ⊗ I)(gη)(t,C
−1y) = L(gη(·,C−1y))(t) = L(Rg(·, y))(t) = (L ⊗ I)Rg(t, y).

Therefore, R = ρ ⊗ I yields

TηL
#Tη−1 f (ξ) = R(L ⊗ I)(Rg)(t, y) = (ρLρ ⊗ I)g(t, y).

Hence, by Definition 5.2 and Lemma 5.4

TηL
#Tη−1 f (ξ) = (ρLρ)# f (ξ) = ρ#L#ρ# f (ξ).

In the case η(1) = 1, the proof follows similar arguments using a representation
η(ξ) = �k(t,Cy) for a certain matrix C ∈ SO(k). ��
Corollary 5.6 Fix k ≥ 2. Let L : C[0, π ] → C[0, π ] be a continuous operator which
satisfies condition (5.3). Let K = L − ρLρ. Then for f ∈ C(Sk) and ξ ∈ S

k ,

S(K #) f (ξ) =
∫
SO(k+1)

TbK
#Tb−1 f (ξ)dμk+1(b) = 0.
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Proof Take any η ∈ SO(k + 1) such that η(1) = −1. By Lemma 5.5 we have

ρ#L#ρ# = TηL
#Tη−1 (5.6)

Then, the invariance of measure μk+1 yields

S(ρ#L#ρ#) = S(TηL
#Tη−1) = S(L#).

��
Let ϑ, δ be such that 0 < ϑ − δ < ϑ + δ < π . Define

Lϑ f (t) = s(t − ϑ)s(ϑ − t)

(
sin(2ϑ − t)

sin t

)(k−1)/2

f (2ϑ − t).

It can be checked by a direct calculation that

Lπ−ϑ = ρLϑρ.

Next, for 0 < ϑ < π/2 and suitable δ > 0, define function ψϑ by formula

ψϑ(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 t < ϑ − δ,

s2(t − ϑ) t ∈ [ϑ − δ, ϑ + δ],
1 t ∈ (ϑ + δ, π − ϑ − δ),

s2(π − ϑ − t) t ∈ [π − ϑ − δ, π − ϑ + δ],
0 t > π − ϑ + δ.

Define

Pϑ = Mψϑ + Lϑ − Lπ−ϑ = Mψϑ + Lϑ − ρLϑρ,

where Mψϑ ( f ) = ψϑ f denotes the multiplication operator.
Next, observe that there is a function ψ#

ϑ ∈ C∞(Sk) such that

(Mψϑ )# = Mψ#
ϑ
.

Let

Kϑ = Lϑ − Lπ−ϑ = Lϑ − ρLϑρ.

Define and operator U : C(Sk) → C(Sk) by

U = P#
ϑ = (Mψϑ )# + K #

ϑ = Mψ#
ϑ

+ K #
ϑ .
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Theorem 5.7 Fix k ≥ 2. Let ϑ, δ be such that 0 < ϑ − δ < ϑ + δ < π/2. Then, U is
a Hestenes operator localized on the latitudinal strip �k((ϑ − δ, π −ϑ + δ)×S

k−1),
U extends to an orthogonal projection on L2(Sk), and

S(U ) f (ξ) = C(ψ#
ϑ) f (ξ) for all f ∈ C(Sk), ξ ∈ S

k . (5.7)

Proof Let Eϑ be an AWW operator from [4, Definition 3.4], see also [4, (3.5),(3.6)].
That is, for g : [0, π ] → C we define

Eϑ(g)(t) =
{
g(ϑ) t > ϑ + δ,

0 t < ϑ − δ.
(5.8)

For t ∈ [ϑ − δ, ϑ + δ] we define

Eϑ(g)(t) =s2(t − ϑ)g(t)

+ s(t − ϑ)s(ϑ − t)

(
sin(2ϑ − t)

sin t

)(k−1)/2

g(2ϑ − t).
(5.9)

The above formula also holds for t outside of [ϑ−δ, ϑ+δ], since s(t−ϑ)s(ϑ−t) = 0
and we can ignore the second term in (5.9).

By [4, Lemma3.3] the operator (Eϑ )# ∈ H(Sk) and (Eϑ)# extends to an orthogonal
projection on L2(Sk). Since Pϑ = Eϑ − Eπ−ϑ , we have

U = E#
ϑ − E#

π−ϑ .

The fact that U is an orthogonal projection follows from [4, Lemma 3.4]. By
Lemma 2.5 and Corollary 5.6 we deduce (5.7). ��

6 Averages of Smooth Orthogonal Projections on Sphere

In this section we complete a construction of a smooth orthogonal projection, which
is localized on arbitrarily small ball, such that its average is a multiple of the identity
operator. To achieve this we will use the lifting procedure [4, Definition 4.1].

Definition 6.1 For k ≥ 2, let

C0(S
k) = { f ∈ C(Sk) : f (1k) = 0 = f (−1k)}.

Suppose that T : C(Sk−1) → C(Sk−1). We define the lifted operator T̂ : C0(S
k) →

C0(S
k) using the relation

T̂ ( f )(t, ξ) =
{
T ( f t )(ξ) (t, ξ) ∈ (0, π) × S

k−1,

0 t = 0 or t = π.
(6.1)
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where

f t (ξ) = f (t, ξ), (t, ξ) ∈ (0, π) × S
k−1 ≈ S

k \ {1k,−1k}.

It is easy to verify from (6.1) that if f ∈ C0(S
k), then T f ∈ C0(S

k). Moreover, the
operator norms of T and T̂ are the same.

For P : C(Sk) → C(Sk) denote

Sk(P) f (ζ ) =
∫
SO(k+1)

Tb ◦ P ◦ Tb−1 f (ζ ) dμk+1(b) for f ∈ C(Sk), ζ ∈ S
k .

Lemma 6.2 Let k ≥ 2. Let P : C(Sk−1) → C(Sk−1) be a continuous linear operator
such that

Sk−1(P)h = c(P)h for h ∈ C(Sk−1). (6.2)

Let L : C[0, π ] → C0[0, π ] be a continuous linear operator. Then the composition
operator

P̂ ◦ L# : C(Sk) → C(Sk),

satisfies

Sk(P̂ ◦ L#) f = c(P)Sk(L
#) f for f ∈ C(Sk). (6.3)

Proof Let G = SO(k + 1), H = {b ∈ SO(k + 1) : b(1) = 1} ⊂ SO(k + 1). We can
identify G/H = S

k . For x ∈ S
k \ {1k,−1k}, let bx ∈ SO(k + 1) be a rotation in the

plane spanned by {1, x} such that bx (1) = x . Note that b· is a continuous selector of
coset representatives of G/H ,

x ∈ S
k \ {1k,−1k} → bx ∈ SO(k + 1).

Let σk be a normalized Lebesgue measure on S
k . By Weyl’s formula [12, Theorem

2.51] for any F ∈ C(G), we have

∫
SO(k+1)

Fdμk+1 =
∫
Sk

∫
H
F(bxa)dμk(a)dσk(x), (6.4)

where μk is a normalized Haar measure on SO(k), which can be identified with H .
That is, any a ∈ H is a block diagonal matrix with two blocks: a′ ∈ SO(k) and 1 in
the last diagonal entry.

We claim that for h ∈ C0(S
k) we have

∫
H

(
Ta ◦ P̂ ◦ Ta−1

)
h(ζ )dμk(a) = c(P)h(ζ ), ζ ∈ S

k . (6.5)
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Since Ta(C0(S
k)) ⊂ C0(S

k) for all a ∈ H , the formula (6.5) holds trivially for ζ =
1k,−1k .Otherwise, any ζ ∈ S

k\{1k,−1k} canbe identifiedwith (t, ξ) ∈ (0, π)×S
k−1

through diffeomorphism �k . Hence, for any (t, ξ) ∈ (0, π) × S
k−1 we have

∫
H

(
Ta ◦ P̂ ◦ Ta−1

)
h(t, ξ)dμk(a) =

∫
H
P((Ta−1h)t )((a′)−1ξ)dμk(a)

=
∫
SO(k)

P(T(a′)−1ht )((a′)−1ξ)dμk(a
′)

=
∫
SO(k)

(
Ta′ ◦ P ◦ T(a′)−1

)
ht (ξ)dμk(a

′)

= c(P)h(t, ξ).

The last equality is a consequence of the assumption (6.2). Hence, (6.5) holds.
Let f ∈ C(Sk) and ζ ∈ S

k . By (6.4) we have

Sk(P̂ ◦ L#) f (ζ ) =
∫
Sk

∫
H
Tbxa ◦ P̂ ◦ L# ◦ T(bxa)−1 f (ζ )dμk(a)dσk(x)

=
∫
Sk

∫
H
Tbx Ta ◦ P̂ ◦ Ta−1Ta ◦ L# ◦ Ta−1Tb−1

x
f (ζ )dμk(a)dσk(x).

By (5.5) the above equals

∫
Sk

∫
H
Tbx

(
Ta ◦ P̂ ◦ Ta−1

)
L#Tb−1

x
f (ζ )dμk(a)dσk(x)

=
∫
Sk

∫
H

(
Ta ◦ P̂ ◦ Ta−1

)
L#Tb−1

x
f (b−1

x ζ )dμk(a)dσk(x).

Hence, by (6.5)

Sk(P̂ ◦ L#) f (ζ ) =c(P)

∫
Sk

(L#Tb−1
x

f )(b−1
x ζ )dσk(x)

=c(P)

∫
Sk

Tbx ◦ L# ◦ Tb−1
x

f (ζ )dσk(x).

Applying again (5.5) and (6.4) yields

Sk(P̂ ◦ L#) f (ζ ) = c(P)

∫
Sk

∫
H
Tbx Ta ◦ L# ◦ Ta−1Tb−1

x
f (ζ )dσk(x)

= c(P)Sk(L
#) f (ζ ). ��

By the lifting lemma on the sphere [4, Lemma 4.1], or its generalization on Rie-
mannian manifolds [5, Lemma 5.3], we have the following result.

Lemma 6.3 Let k ≥ 2. Let ϑ, δ be such that 0 < ϑ − δ < ϑ + δ < π/2. Let U be
a latitudinal orthogonal projection as in Theorem 5.7. Let PQ be a Hestens operator
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on S
k−1, which is localized on an open subset Q ⊂ S

k−1, such that it induces an
orthogonal projection on L2(Sk−1). Then

P� = P̂Q ◦U = U ◦ P̂Q

is a Hestens operator on S
k , which is localized on � = �k((ϑ − δ, π − ϑ + δ) × Q),

and it induces an orthogonal projection on L2(Sk).

Let

�k : [0, π ]k−1 × [0, 2π ] → S
k

be the standard spherical coordinates given by the recurrence formula

�1(t) = (sin t, cos t), t ∈ [0, 2π ],
�k+1(t, x) = (ξ sin t, cos t), (t, x) ∈ [0, π ] × ([0, π ]k−1 × [0, 2π ]), (6.6)

where �k(x) = ξ ∈ S
k .

To construct a Hestenes operator satisfying Theorem 1.1 we will use two symmetric
interior patches

Q = �k−1([ϑk−1
1 , ϑk−1

2 ] × · · · × [ϑ2
1 , ϑ2

2 ] × [ϑ1
1 , ϑ1

2 ]),
� = �k([ϑk

1 , ϑk
2 ] × · · · × [ϑ2

1 , ϑ2
2 ] × [ϑ1

1 , ϑ1
2 ]),

where 0 < ϑ
j
1 < ϑ

j
2 < 2π for j = 1, and 0 < ϑ

j
1 < ϑ

j
2 < π , ϑ

j
2 = π − ϑ

j
1 for

j = 2, . . . , k. For sufficiently small δ > 0 define δ-neighborhoods of � and Q by

Qδ = �k−1([ϑk−1
1 − δ, ϑk−1

2 + δ] × · · · × [ϑ2
1 − δ, ϑ2

2 + δ] × [ϑ1
1 − δ, ϑ1

2 + δ]),
�δ = �k([ϑk

1 − δ, ϑk
2 + δ] × · · · × [ϑ2

1 − δ, ϑ2
2 + δ] × [ϑ1

1 − δ, ϑ1
2 + δ]).

Theorem 6.4 Let � be a symmetric interior patch in S
k , k ≥ 2. Then there exist δ > 0

and Hestenes operator P�δ , which is an orthogonal projection localized on �δ , such
that for all f ∈ C(Sk),

∫
SO(k+1)

Tb ◦ P�δ ◦ Tb−1( f )dμk+1(b) = c(P�δ ) f , (6.7)

where c(P�δ ) is a constant depending on P�δ .

Proof Let

� = �k([ϑk
1 , ϑk

2 ] × · · · × [ϑ2
1 , ϑ2

2 ] × [ϑ1
1 , ϑ1

2 ])
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be a symmetric interior patch. For j = 2, . . . , k, letU j = E#
ϑ

j
1

−E#
ϑ

j
2

be the latitudinal

projection corresponding to the interval [ϑ j
1 , ϑ

j
2 ] and acting on the space C(S j ) as in

Theorem 5.7.
Suppose that k = 2. Let Q = {�1(t) = eit ∈ C : t ∈ [ϑ1

1 , ϑ1
2 ]} be an arc inS

1 ⊂ C.
We choose δ > 0 such that 2δ < ϑ1

2 − ϑ1
1 , 2δ < 2π − (ϑ1

2 − ϑ1
1 ), and ϑ2

1 − δ > 0.
Then by Theorem 4.3 the operator PQ satisfies assumption (6.2) of Lemma 6.2 with

constant c(PQ) = ϑ1
2−ϑ1

1
2π . Applying Lemmas 6.2 and 6.3 the operator

P(2) = U 2 ◦ P̂Q

satisfies conditions of Theorem 6.4 with constant c(P(2)) = c(U 2)c(PQ).
For k ≥ 3, we can assume by induction that we have an operator P(k−1) satisfying

conclusions of Theorem 6.4. Applying Lemmas 6.2 and 6.3 for sufficiently small
δ > 0, the operator

P�δ = P(k) = Uk ◦ P̂(k−1)

satisfies conclusions of Theorem 6.4 with constant c(P(k)) = c(Uk)c(P(k−1)). ��
We finish this section by showing a preliminary variant of Theorem 1.1.

Theorem 6.5 LetB be a ball in S
d−1. Letμ be a normalized Haar measure on SO(d).

There exist Hestenes operator PB localized on B and a constant c = c(PB) such that
PB : L2(Sd−1) → L2(Sd−1) is an orthogonal projection and for all f ∈ C(Sd−1),

∫
SO(d)

Tb ◦ PB ◦ Tb−1( f )dμ(b) = c f . (6.8)

Proof Take any geodesic ballB with radius r > 0. For ε > 0, we choose ϑ
j
1 < ϑ

j
2 and

δ > 0, such that ϑ j
2 − ϑ

j
1 + 2δ < ε for all j = 1, . . . , k. Choose ε > 0 small enough

such that symmetric interior patch �δ has diameter less than r . Let a ∈ SO(d) be
such that a(�δ) ⊂ B. Define PB = Ta P�δTa−1 , where P�δ is as in Theorem 6.4. Then
PB is both Hestenes operator and orthogonal projection and moreover PB is localized
in B. Indeed, for any f ∈ C(Sd−1), supp PB f = a(supp(P�δ ◦ Ta−1 f )) ⊂ a(�δ).
Likewise, if supp f ∩ B = ∅, then PB f = 0. Hence, the localization of PB follows
from [5, Lemma 2.1]. Since P�δ satisfies (6.8) for f ∈ C(Sd−1), so does PB. ��

7 Proof of Theorem 1.1

In this section we give a proof of Theorem 1.1, which is a consequence of Theorem 6.5
and the following two propositions. LetD be the test space of C∞ functions on S

d−1.
Let D′ be the dual space of distributions on S

d−1.
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Proposition 7.1 Let P be Hestenes operator such that there is a constant c = c(P)

such that for all f ∈ C(Sd−1) and for all ξ ∈ S
d−1 the following reproducing formula

holds
∫
SO(d)

Tb ◦ P ◦ Tb−1( f )(ξ)dμ(b) = c f (ξ). (7.1)

Let X be a quasi Banach space on which X ′ separates points such that:

(1) we have continuous embeddings D ↪→ X ↪→ D′ and D dense in X,
(2) there is a constant C > 0 such that for all b ∈ SO(d)

‖Tb‖X→X ≤ C,

(3) the operator P : X → X is bounded.

Then the integral reproducing formula

∫
SO(d)

Tb ◦ P ◦ Tb−1( f )dμ(b) = c f . (7.2)

holds for all f ∈ X in the sense of Pettis integral. In the case X is Banach space the
integral is Bochner integral.

Proof Observe that the mapping SO(d) × D � (b, f ) �→ Tb f ∈ D is continuous.
This follows from

|∇kTb f (x)| = |∇k f (b−1x)| where x ∈ S
d−1, b ∈ SO(d), k ≥ 0, (7.3)

which can be seen from explicit formulas for covariant derivative∇ on the sphere [10,
(1.4.6) and (1.4.7)].

By [4, Lemma 3.2] or [5, Theorem 2.6], the operator P : D → D is continuous.
By an argument as in the proof of [25, Theorem 5.18], the Pettis integral on the left
hand side of (7.2) exists and defines a continuous operator in the Fréchet spaceD. By
the assumption (7.1), this operator is a multiple of the identity operator by a constant
c = c(P). Hence, (7.2) holds for f ∈ D.

Note that conditions (1) and (2) imply that

SO(d) × X � (b, f ) �→ Tb f ∈ X is continuous. (7.4)

Since D ⊂ X is dense, for any f0 ∈ X and ε > 0, there exists g ∈ D such that
|| f0 − g||X < ε. Since D ↪→ X is a continuous embedding, for sufficiently close
b1, b2 ∈ SO(d), we have ‖Tb1g − Tb2g‖X < ε. By the triangle inequality for a quasi
Banach space there exists a constant K ≥ 1 such that

‖Tb1 f0 − Tb2 f0‖X
≤ K (‖Tb1 f0 − Tb1g‖X + K (‖Tb1g − Tb2g‖X + ‖Tb2g − Tb2 f0‖X ))

≤ K (Cε + K (C + 1)ε).
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In the last step we used the assumption that operators Tb are uniformly bounded. On
other hand, for any f ∈ X such that || f − f0|| < ε we have

‖Tb1 f0 − Tb2 f ‖X ≤ K (‖Tb1 f0 − Tb2 f0‖X + ‖Tb2 f0 − Tb2 f ‖X ).

Combing the above estimates yields (7.4).
Take any f ∈ X and � ∈ X ′. Then, the function

SO(d) � b �→ �TbPTb−1 f ∈ X is continuous. (7.5)

Hence, we can define a linear functional

�( f ) :=
∫
SO(d)

�TbPTb−1 f dμd(b).

Moreover,

|�( f )| ≤
∫
SO(d)

|�TbPTb−1( f )| dμd(b) ≤ C2||�|| · ||P||X→X || f ||X .

Thus, � ∈ X ′. Since �( f ) = c�( f ) holds for f ∈ D, it follows that the same holds
for f ∈ X , and the conclusion follows by the definition of Pettis integral. Finally, if
X is a Banach space, then the integrand in (7.2) is continuous, and hence, the integral
exists in the Bochner sense. ��
Proposition 7.2 The following spaces satisfy conditions (1)–(3) of Proposition 7.1:

• Triebel-Lizorkin space Fs
p,q(S

d−1), 0 < p < ∞, 0 < q < ∞, s ∈ R,

• Besov space Bs
p,q(S

d−1), 0 < p < ∞, 0 < q < ∞, s ∈ R,

• the Lebesgue space L p(Sd−1) and Sobolev space Wk
p(S

d−1), 1 ≤ p < ∞, k ≥ 1,
• the space Ck(Sd−1), k ≥ 0.

Proof The condition (1) is a standard fact in function spaces, whereas (3) follows
from [5, Theorem 2.6] and [6, Theorem 3.1 and Corollary 3.6]. The condition (2) is
immediate for the spaces L p, Wk

p , and Ck from (7.3). The condition (2) is a conse-
quence of a general result on smooth atomic decomposition for Fs

p,q and Bs
p,q spaces

due to Skrzypczak [26]. Indeed, if a is a smooth (s, p)-atom on S
d−1 centered in

B(x, r), then its rotation Tba is also a smooth atom centered in B(b−1x, r), see [26,
Definition 6]. Hence, the atomic decomposition of f ∈ Fs

p,q (or f ∈ Bs
p,q ) of the

form f = ∑∞
j=0

∑∞
i=0 s j,i a j,i as in [26, Theorem 3] yields the atomic decomposition

Tb f = ∑∞
j=0

∑∞
i=0 s j,i Tba j,i . While the centers of the family of atoms {a j,i } have

changed after the rotation, they correspond to another uniformly finite sequence of cov-
erings of S

d−1 with the same parameters. Then, the equivalence of the norm || f ||Fsp,q
(or || f ||Bs

p,q
) with its atomic decomposition norm is independent of the choice of such

uniformly finite sequence of coverings. This can be seen by analyzing the proof of
[26, Theorem 3] to see that equivalence constants depends only on the parameters of a
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uniformly finite sequence of coverings. Alternatively, any such sequence of coverings
can be mapped to a fixed uniformly finite sequence of coverings (albeit with enlarged
parameters). ��

Combining Theorem 6.5 with Propositions 7.1 and 7.2 yields Theorem 1.1.

8 Continuous Parseval Frame on Sphere

In this section we construct a continuous wavelet frame on S
d−1. Unlike earlier con-

structions [1, 9, 14, 22, 23], our continuous wavelet frames have arbitrarily small
support. We start by recalling the definition of continuous frame.

Definition 8.1 LetH be a separable Hilbert spaces and let (X , ν) be a measure space.
A family of vectors {φt }, t ∈ X is a continuous frame over X forH if:

• for each f ∈ H , the function X � t → 〈 f , φt 〉H ∈ C is measurable, and
• there are constants 0 < A ≤ B < ∞, called frame bounds, such that

A‖ f ‖2H ≤
∫
X

|〈 f , φt 〉H|2dν ≤ B‖ f ‖2H for all f ∈ H (8.1)

When A = B, the frame is called tight, and when A = B = 1, it is a continuous
Parseval frame. More generally, if only the upper bound holds in (8.1), that is even if
A = 0, we say that {φt }, t ∈ X is a continuous Bessel family with bound B.

The following elementary lemma shows the existence of a local continuous Parseval
frame in L2(Rk). For an alternative construction of a local Parseval frame, see [5,
Theorem 4.1].

Lemma 8.2 Let ε0 > 0. There is a collection ψt , t ∈ X, of functions in L2(Rk) such
that:

• for all t ∈ X

suppψt ⊂ [−1 − ε0, 1 + ε0]k,

• for all f ∈ L2(Rk) with supp f ⊂ [−1, 1]k we have
∫
X

|〈 f , ψt 〉L2(Rk)|2dν(t) = ‖ f ‖2L2(Rk )
.

Proof Take any system which is continuous Parseval frames in L2(Rk), i.e. for all
f ∈ L2(Rk) we have

∫
X

|〈 f , ψt 〉L2(Rk)|2dν(t) = ‖ f ‖2L2(Rk )
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Next take a smooth function ϕ on R
k such that

ϕ(x) =
{
1 x ∈ [−1, 1]k,
0 x /∈ [−1 − ε0, 1 + ε0]k . (8.2)

It is easy to check that ψtϕ satisfies both conclusions of the lemma. ��
We present three examples of Parseval frames in L2(Rk) for which Lemma 8.2 can

be applied.

(1) Let E = {0, 1}k \ {0} be the non-zero vertices of the unit cube [0, 1]k . Let
{ψe

j,k : e ∈ E, j ∈ Z, k ∈ Z
k} be a multivariate wavelet basis of L2(Rk),

see [27, Proposition 5.2]. Then, the wavelet basis is a continuous Parseval frame
parameterized by X = E × Z × Z

k equpped with counting measure.
(2) Let ψ ∈ L2(Rk) has norm one ‖ψ‖2 = 1. Then a continuous Gabor system

ψ(t,s)(x) = e2π i t ·xψ(x − s), (t, s) ∈ X = R
k × R

k

is a continuous Parseval frame parameterized by X equipped with the Lebesgue
measure [7, Corollary 11.1.4].

(3) Letψ(x,t), (x, t) ∈ X = R
k ×((0, 1)∪{∞}), be an admissible continuous wavelet

introduced by Rauhut and Ullrich [24, Definition 2.1]. Then for any f ∈ L2(Rk)

we have

∫
Rk

(
|〈 f , ψ(x,∞)〉L2(Rk)|2dx +

∫ 1

0
|〈 f , ψ(x,t)〉L2(Rk)|2

dt

tk+1

)
dx = ‖ f ‖2L2(Rk)

.

The concept of a local Parseval frame can be transferred to the sphere. Let

�d−1 : [0, π ]d−2 × [0, 2π ] → S
d−1

be the standard spherical coordinates given by the recurrence formula (6.6). Fix a
symmetric interior patch � of the form

� = �d−1(�) where � = ([ϑd−1
1 , ϑd−1

2 ] × · · · × [ϑ2
1 , ϑ2

2 ] × [ϑ1
1 , ϑ1

2 ]),

where 0 < ϑ
j
1 < ϑ

j
2 < 2π for j = 1, and 0 < ϑ

j
1 < ϑ

j
2 < π , ϑ

j
2 = π − ϑ

j
1 for

j = 2, . . . , d − 1. For sufficiently small δ > 0, define enlargement of � by

�δ = �d−1(�δ), where �δ := [ϑd−1
1 − δ, ϑd−1

2 + δ] × · · · × [ϑ1
1 − δ, ϑ1

2 + δ]).
(8.3)

Lemma 8.3 There is a collection φt , t ∈ X, of functions in L2(Sd−1) such that:

• for all t ∈ X

suppφt ⊂ �δ,

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Journal of Fourier Analysis and Applications (2022) 28 :75 Page 29 of 31 75

• for all f ∈ L2(Sd−1) with supp f ⊂ � we have

∫
X

|〈 f , φt 〉L2(Sd−1)|2dν(t) = ‖ f ‖2L2(Sd−1)
.

Proof We use approach from [4], where the localized wavelet system is transferred to
the sphere via the spherical coordinates. Consider the change of variables operator [4,
Section 6.2]

T : L2([0, π ]d−2 × [0, 2π ]) → L2(Sd−1)

given by

T(ψ)(u) = ψ(�d−1
−1(u))√

Jd−1(�
−1
d−1(u))

, u ∈ S
d−1,

where Jd−1 is the Jacobian of �d−1

Jd−1(θd−1, θd−2, . . . , θ1) = | sind−2 θd−1 sin
d−3 θd−2 · · · sin θ2|.

Since the set where �d−1 is not 1-1 has measure zero, by the change of variables
formula, T is an isometric isomorphism.

Let Y : R
d−1 → R

d−1 be an affine transformation such that for sufficient small ε0

Y ([−1, 1]d−1) = �, Y ([−1 − ε0, 1 + ε0]d−1) ⊂ �δ

In a similar way we define the change of variables operator TY which is an isometry

L2([−1 − ε0, 1 + ε0]d−1)
TY−→ L2(�δ)

We transfer a local Parseval frame ψt , t ∈ X from Lemma 8.2 to the sphere by
isometric isomorphisms TY and T

L2([−1 − ε0, 1 + ε0]d−1)
TY−→ L2(�δ) ⊂ L2([0, π ]d−2 × [0, 2π ]) T−→ L2(Sd−1).

Namely, we let φt = TTYψt . Then the conclusion follows from Lemma 8.2 since any
f ∈ L2(Sd−1) with supp f ⊂ � is of the form f = TTY g for some g ∈ L2(Rd−1)

with supp g ⊂ [−1, 1]d−1. ��
Theorem 8.4 Let {φt }t∈X be a local continuous Parseval frame as in Lemma 8.3. Then,
there exists a Hestenes operator P, which is an orthogonal projection localized on
�, such that the family {Tb−1 Pφt }(b,t)∈SO(d)×X is a continuous Parseval frame over
(SO(d) × X , μd × ν) for L2(Sd−1).
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Proof We apply Theorem 6.4 for k = d − 1 and for a shrunk symmetric patch

�−δ = [ϑd−1
1 + δ, ϑd−1

2 − δ] × · · · × [ϑ1
1 + δ, ϑ1

2 − δ]

for sufficiently small δ > 0. This yields a Hestenes operator P , which is an orthogonal
projection localized on �. Moreover, by Proposition 7.1 applied for P , for any f ∈
L2(Sd−1) we have

c(P)‖ f ‖2 =
∫
SO(d)

〈Tb ◦ P ◦ Tb−1( f ), f 〉dμd(b)

=
∫
SO(d)

〈PTb−1( f ), PTb−1 f 〉dμd(b)

=
∫
SO(d)

‖Tb ◦ P ◦ Tb−1( f )‖2dμd(b).

By Lemma 8.3

∫
X

|〈 f , Tb−1 Pφt 〉|2dν(t) =
∫
X

|〈PTb f , φt 〉|2dν(t) = ‖PTb f ‖2 = ‖Tb−1 PTb f ‖2.

Integrating the above over SO(d) yields

∫
SO(d)

∫
X

|〈 f , Tb−1 Pφt 〉|2dν(t)dμd(b) = c(P)‖ f ‖2.

��
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