
Maximizing SDN resilience to node-targeted 
attacks through joint optimization of the primary 
and backup controllers placements

Michał Pióro1 | Mariusz Mycek2 | Artur Tomaszewski2

| Amaro de Sousa3,4

1Faculty of Electronics,
Telecommunications and Informatics,
Gdańsk University of Technology, Gdańsk,
Poland
2Institute of Telecommunications, Warsaw
University of Technology, Warsaw, Poland
3Instituto de Telecomunicações, Aveiro,
Portugal
4Universidade de Aveiro – DETI, Aveiro,
Portugal
Correspondence
Michał Pióro, Faculty of Electronics,
Telecommunications and Informatics,
Gdańsk University of Technology, Gdańsk,
Poland
Email: michal.pioro@pw.edu.pl
Funding information
POB Research Centre Cybersecurity and
Data Science of Warsaw University of
Technology within the Excellence Initiative
Program – Research University (ID-UB),
Poland.
FCT/MCTES, Portugal, through National
Funds and when applicable co-funded by
EU funds under the Project
UIDB/50008/2020-UIDP/50008/2020.

In Software Defined Networks (SDN) packet data switches 

are configured by a limited number of SDN controllers, which 

respond to queries for packet forwarding decisions from 

the switches. To enable optimal control of switches in real 
time the placement of controllers at network nodes must 
guarantee that the controller-to-controller and switch-to-
controller communications delays are bounded. Apart from 

the primary controllers that control the switches in the nom-
inal state, separate backup controllers can be introduced 

that take over when the primary controllers are unavailable, 
and whose delay bounds are relaxed. In this paper we present 
optimization models to jointly optimize the placement of 
primary and backup controllers in long-distance SDN net-
works, aimed at maximizing the network’s resilience to node-
targeted attacks. Applying the models to two well-known 

network topologies and running a broad numerical study 

we show that, when compared with the standard approach 

of using only primary controllers, the use of backup con-
trollers provides significant resilience gains, in particular in 

case of strict delay bounds.
K E Y W O R D S
SDN, controllers placement, node-targeted attacks, resilience, 
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1 | INTRODUCTION

The Software Defined Network (SDN) concept is a key paradigm in the evolution of communications networks, intro-
duced to provide increased network management flexibility and enhanced services’ support [10]. The concept has
been investigated and applied in different networking contexts such as wide area networks [2, 28], 5G networks [5],
data center networks [7], smart grids [18], or industrial Internet of Things (IoT) networks [29].

In SDN, the control and data planes of the transport network are separated. While the data plane is composed of a
large number of switches and their interconnecting links, the control plane consists of a limited number of controllers,
which control packet forwarding decisions at the switches, and are thus necessary for their operation. Although the
SDN control plane can be equipped with a single controller, in practice it is based on multiple controllers physically
distributed across the network. Still, while a data switch is placed at every network node, there are usually only
a limited number of nodes where controllers are actually deployed. The problem of deciding where to place the
controllers, known as Controller Placement Problem (CPP), was originally introduced in [9].

Each switch is assigned one controller to interact with and query for routing decisions. A new traffic flow arriving
at the switch triggers a query from the switch to the switch’s controller, making the latter respond with a routing
decision on how to forward the flow. The controller must also send the information on the routing decision it makes
to all other controllers, thanks towhich their information about the network state is constantly updated and consistent.

The communication between switches and controllers uses the data plane network. While each controller is
connected to the data plane by being connected to the switch at the same network node (a node that contains both
a switch and a controller is called a controller node), each switch is typically controlled by a controller that can be
connected to the switch via the least communications delay data plane path, in particular by the controller located at
the same network node as the switch. Then, on one hand, the maximum switch-to-controller (SC) communications
delay (i.e., signalling message transfer time between the switch and its controller) must be bounded so that switches
do not wait too long for routing decisions. And, on the other hand, the maximum controller-to-controller (CC) delay
must also be bounded so that it does not take too long for the controllers to become aware of the current, updated
network state. In long-distance SDN networks, delays between switches and their assigned controllers as well as
delays between controllers can be significant, imposing constraints on the placement of the controllers. A trade-off in
controller placement can be seen: placing more controllers makes meeting SC delay bounds easier, and meeting CC
delay bounds more difficult.

It is well known that SDN has the potential to enhance network security as the centralization of the control
plane facilitates maintaining a complete view of the network state, thus the identifying and resolving possible threats
[1]. However, apart from the known implications of data plane programmability on network security [8], also the
separation of the control and data planes poses security challenges as a switch can function properly only if it can
communicate with at least one controller. This makes the SDN network vulnerable to attacks that disrupt commu-
nication between switches and controllers. While the control plane-related aspects of this communication can be
effectively protected [15], protecting the communication in the data plane is more troublesome. First, attacks can
cause data plane link disruptions by exploiting vulnerability of the optical network infrastructure to fibre cuts or in-
sertion of harmful optical signals [26]. Second, attacks can cause data plane node disruptions as SDN switches are
usually simple switching devices susceptible to remote intrusion and shutdown. Data plane node disruptions are more
damaging than link disruptions since apart from the switch being shut down also all data plane links terminated at the
switch cease to exist, and the controller at this particular network node becomes disconnected from the network and
unavailable as well; as a result the entire network node of the switch becomes unavailable. Therefore, in this paper we
consider attacks that make network nodes completely inaccessible, regardless of reason for this situation. We assume
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M. Pióro et al. 3

that the attack targets a set of network nodes and refer to the considered class of attacks as (network) node-targeted
attacks.

The controller is the primary controller of a given switch if it controls the switch in the nominal state of the net-
work, i.e., when there are no network disruptions. When such a primary controller is not available, another controller
must be assigned to the switch, which becomes the switch’s backup controller (note that, depending on the network
state, different backup controllers can be assigned to the switch depending on the state of the network). In general,
for an SDN network to be resilient to node-targeted attacks, more controllers than the minimum number required to
meet the SC and CC delay bounds should be used. However, when all controllers act as primary controllers for the
closest switches, the resilience gains can be limited as all pairs of primary controllers must obey the CC delay bound.
To overcome this disadvantage, backup controllers separate from primary controllers can be used [4]. In the event
of an attack leading to network disruptions, backup controllers take over the functions of primary controllers for the
switches that can no longer communicate with their primary controllers. Backup controllers do not participate in the
routing decisions in the nominal network state and are expected to serve a limited number of switches in case of the
attack. Therefore, they do not require significant computational resources, and furthermore, their placement does not
have to meet the bounds on the CC delays (and, for that matter, the bounds on the SC delays): although in the nominal
state, the backup controllers also maintain complete view of the network state, they do not act as primary controllers
for any switch and do not make any routing decisions, so the time interval in which their view of the network must
be updated can be mitigated. In a non-nominal state this may lead to slower network state updates, less accurate
state information and sub-optimal routing decisions at the controllers, which however is considered acceptable in
non-nominal network states.

In this paper, we present models for joint optimization of the primary and backup controllers placements, aimed
at maximizing the resilience of the SDN network against a list of node-targeted attacks. We consider two alternative
optimization models: a compact model and a non-compact one. The compact model is useful when the SDN operator
imposes no additional constraints, other than delay constraints, on the placement of primary controllers, while the non-
compact model is useful when the SDN operator considers a limited list of predefined primary controllers placements
and needs to select one placement from the list. To express the resilience of a network to a single attack or to a set
of node-targeted attacks, we introduce two network availability measures. The measures are defined using a notion
of a metric of a subset of network nodes. In the paper we consider two simple metrics: (i) a linear metric expressing
the number of nodes in the set, and (ii) a quadratic metric expressing the number of node pairs. For each metric, we
define optimization models that maximize either the worst-case or the average network availability measure among
the considered set of node-targeted attacks.

We apply the introduced optimization models to twowell-known long-distance network topologies. We compare
the results between the standard approach, i.e., using only primary controllers, and the new approach of using also
backup controllers, demonstrating the resilience gains obtainedwith the new approach. We analyze how the resilience
levels achieved with backup controllers depend on SC and CC delay bounds. Finally, we examine the impact of the
size of the list of the node-targeted attacks on both the computational scalability of the optimization models and on
the resilience level of the optimal network solutions.

The paper is organized as follows. Section 2 summarizes related work on SDN resilience to node-targeted attacks.
Section 3 describes the basic concepts behind our approach. Section 4 presents the developed optimization models
for the combined primary and backup controller placement problem. Additional formulations of the problems needed
to obtain numerical results are provided in Appendix A. Section 5 presents a summary of a numerical study of two
selected network instances, based on the introduced models. A detailed description and discussion of the numerical
results obtained for both networks is presented in Appendix B. Final remarks are given in Section 6.
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4 M. Pióro et al.

Finally, we note that thematerial presented in this paper is a far-reaching extension of the research ideas discussed
in our conference papers [13] and [17]. In the current paper we extend, improve and compare the optimizationmodels
introduced therein, and thoroughly examine both the problem and the models by means of a broad, comprehensive
numerical study.

2 | RELATED WORK

Most of the works dealing with the problem of SDN network resilience against node-targeted attacks assume that
the attacker has full knowledge of the topology of the data plane network, but not about the actual location of the
controllers, and knowingly selects the attacked nodes (and in this way constructing a node-targeted attack) so as to
achieve the most damaging effect on the network graph connectivity; such attacks are also called topological attacks
or critical targeted attacks, see [4]. Recently, [23] presented an assessment of the resilience of long-distance SDN
networks to node-targeted attacks. The paper compares the resilience of different controllers placement solutions
to node-targeted attacks and to node attacks of non-targeted nature (in particular, random attacks), and one of the
findings of this research is that node-targeted attacks are much more damaging. It is also worth noting that some
work has recently been on SDN resilience to link disruption, such as [12] and [30], which deal with the problem of
optimizing controllers placements that are resilient to k -link failures (the so called k -RCP problem) and, more generally,
to both single-link and multiple-link failures.

A controllers placement algorithm that improves SDN resilience against node-targeted attacks is proposed in [19].
For a given data plane network, first, the most damaging attack is computed, and then, based on the required number
of controllers and the type of themost damaging attack, the subset of least vulnerable network nodes is selected as the
best controllers placement. Two methods of defining the most damaging attack are considered — simultaneous and
sequential, each with two node centrality metrics (node degree and node betweenness). For simultaneous method,
the metric values are calculated for all nodes in the network graph once and the nodes with the highest metric values
are selected. For sequential method, the nodes to be attacked are selected one by one — each time the metric values
are computed for all nodes in the current network graph and the node with the highest metric value is selected (and
deleted from the graph). The proposed approach is applicable to small SDN networks but it cannot be used for long-
distance networks as, in general, the identified set of least vulnerable network nodes might contain no subset defining
the controllers placement that respects the required SC and CC delay bounds.

To maximize the resilience of the SDN network to node-targeted attacks, in [21, 22, 20] the controllers placement
is required not only to meet given SC and CC delay bounds but also to guarantee a so called placement robustness
property, which ensures that the shutdown of all but one controller node still enables each of the surviving switches
to connect to one of the surviving controllers. The solution approach which is common to those works is based on two
steps: first, all controllers placements compliant with the above constraints are enumerated; then, the resilience of
each placement is evaluated for different node-targeted attacks (corresponding to different strategies of the attacker),
and the best placement is selected. The resilience evaluation of controllers placements differs among theworks. In [21,
22], potential placements are evaluated based on the number of surviving switches that can connect to surviving
controllers, and three most damaging attacks are defined using the sequential strategy but a different node centrality
metric (degree, closeness and betweenness). In [20], potential placements are evaluated by the number of surviving
pairs of switches that can connect to a common surviving controller (representing the number of switch pairs still able
to offer service), and apart from the three most damaging attacks described above, a fourth one is also considered,
where the targeted nodes are the critical nodes of the data plane network graph.
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M. Pióro et al. 5

When dealing with node-targeted attacks, all of the work mentioned above assume that the attacker is not aware
of the placement of the controllers and thus their placement has no influence on the choice of nodes to attack. (As far
as we know, only paper [16] considers the more general case, namely that when selecting targeted nodes, the attacker
takes into account not only the network topology, but also probabilistically predicts the set of network nodes chosen
by the network operator to place controllers.) Therefore, we developed the concept of defining the controllers place-
ment and the node-targeted attack in terms of a game involving the network operator and the network attacker. We
also formalized the notion of the SDN network resilience to node-targeted attacks by introducing a set of probabilistic
network availability measures and associated network metrics, considering in particular linear and quadratic metrics
to express, respectively, the number of switches and pairs of switches that can access the controller. We defined an
optimization model that determines potentially most dangerous node-targeted attacks the attacker might launch, and
an optimization model that determines the best placement of controllers that maximizes the availability of network
services with respect to that set of attacks.

Then, in [27] we formulated a pair of symmetric problems of finding the most dangerous node-targeted attack
and the best controller placement, defining them in terms of the min-max and max-min optimization, and proposed
iterative optimization algorithms of solving the problems based on generation of, respectively, best placements and
most dangerous attacks. However, focusing on the effect the attacks have on data plane network connectivity by
partitioning the network into a set of connected components, we did not consider the aspect of the communications
delays between switches and controllers or between controllers. And we did not introduce the distinction between
primary and backup controllers either.

As far as we know, our conference paper [13] is the first work dealing with joint optimization of primary and
backup controllers placements. For that purpose, an optimization model that maximizes network resilience against a
given list of node-targeted attacks is proposed. The optimizationmodel is non-compact as it considers a predefined list
of allowable primary controllers placements. Then, in [17] we provided an alternative compact optimization model,
which appeared much more efficient in cases when standard constraints (like delay bounds) on primary controllers
placements are considered. Both models were applied to a medium size network instance showing that the SDN
network resilience to node-targeted attacks can be significantly improved with only a few backup controllers.

The use of backup controllers to improve SDN resilience against node-targeted attacks was also addressed in [6,
3, 4]. However, these works assume that the placement of primary controllers is given (for example the placement
actually deployed in the network or determined by the SDN network operator according to some preferences), and
investigate the problem of adding a number of backup controllers in order to increase network resilience against
a given predefined list of node-targeted attacks. The list is generated by means of various centrality metrics and
also based on generating the above mentioned topological attacks. The resilience is measured with the number of
surviving switches that can connect to a surviving controller, averaged over a set of generated attacks. In paper [4], the
research from two previous papers [6, 3] is extended to provide more insight into optimization models — how they can
be adapted to other resilience criteria, how different types of attacks affect SDN resilience, and how node-targeted
attacks degrade communication delays when backup controllers have to be used.

3 | NETWORKS, CONTROLLERS PLACEMENTS, ATTACKS,
AVAILABILITY MEASURES

The considered network is modeled bymeans of an undirected graph G = (V, E) , with the set of node locations (called
locations or nodes in short) V, and the set of links E ⊆ V |2| interconnecting the locations. (The notation we use is
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6 M. Pióro et al.

TABLE 1 Summary of general notation
G = (V, E) network graph

V set of (node) locations (V := |V |)
E set of links interconnecting node locations (E := | E |)

δ (v ) set of links incident to node v ∈ V (δ (v ) := {{v ,w } ∈ E : w ∈ V \ {v }} )
P set (called also list) of primary controllers placements

V(p ) set of primary controller locations of placement p ∈ P (V (p ) = |V (p ) |)
BSC ,BCC upper bounds (limits) on the SC delay (SCD) and the CC delay (CCD), respectively
d (v ,w ) the least path-delay among the paths between v and w

d (G) diameter of the network graph with respect to d (v ,w ) (d (G) := max{d (v ,w ) : v ,w ∈ V})
W(v ) set of nodes w with d (v ,w ) ≤ BSC (v ∈ V)
U set of node-pairs {v ,w } ∈ V |2| with d (v ,w ) > BCC

B set of backup controllers placements
V(b ) set of backup controller locations of placement b ∈ B (V (b ) = |V (b ) |)
V(p, b ) joint set of controller locations for p ∈ P, b ∈ B, where V(p ) ∩ V(b ) = ∅ (V (p, b ) = |V (p, b ) |)

A set (called also list) of attacks
w (a ) weight of attack a ∈ A

V(a ) set of nodes affected by attack a ∈ A (V (a ) = |V (a ) |)
G(a ) graph surviving attack a

C(a ) set (family) of components c resulting from attack a ∈ A

V(c ) set of nodes of component c (V (c ) := |V (c ) |)
Y (a, c ) binary indicator equal to 1 if, and only if, component c ∈ C(a ) contains a controller: V(c ) ∩ V(p, b ) , ∅

f (c ) metric of component c (f (c ) =V (c ) or f (c ) =
(V (c)

2

))
M(a ) network availability measure defined for attack a

M(A) network availability measure defined for set of attacks A

X |2| set of all 2-element subsets of a given set X
|X| number of elements in set X
:= equal by definition
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M. Pióro et al. 7

summarized in Table 1 while the basic notions are illustrated in Figures 1-2). Each location v ∈ V contains a data plane
node (switch in short) and optionally a control plane node (controller in short); the locations containing a controller will
be called controller locations. The basic functionality of switches is to realize connections for data transmission, i.e.,
the transport-related function. In order to be able to perform this function, switches must have access to controllers
— the devices necessary in the process of setting up the connections in question. For the switch in a given location
v ∈ V such an access is provided by means of a path in graph G connecting v with one of the controller locations.
(Note that the switch in a controller location has a direct access to the collocated controller.)

It is important that the set of controllers used in the nominal state of network operation (such controllers are
called primary controllers) fulfil the requirements on the maximum switch-to-controller delay (SCD: for a given switch,
SCD is equal to the lowest transmission delay observed among the paths connecting this switch to any of the primary
controllers), and the maximum controller-to-controller delay (CCD: for a given pair of primary controllers, CCD is equal
to the smallest transmission delay observed among the paths connecting their locations).

A particular assignment of primary controllers to node locations will be called primary controllers placement and
denoted by p . Such a placement is feasible if it fulfils the SCD and CCD requirements described above. The set of
feasible primary controllers placements will be denoted by P. Note that this set may be further limited by additional
requirements, such as the minimum and maximum number of controllers it consists of. The set of primary controllers
locations of a given placement p ∈ P will be denoted by V(p ) (where V(p ) ⊆ V). An example of a 3-node primary
controllers placement for the cost266 network (which will be studied in the numerical section) is shown on the right
side of Figure 1.

Let d (v ,w ) denote the lowest transmission delay among the paths connecting a given pair of node locations
v ,w ∈ V (note that d (v ,v ) := 0), and let the assumed maximum values of SCD and CCD be denoted by BSC and
BCC , respectively. Now we define the following sets
• W(v ) := {w ∈ V : d (v ,w ) ≤ BSC }, v ∈ V (note that v ∈ W(v ))
• U := {{v ,w } ∈ V |2| : d (v ,w ) > BCC }

and note that a primary controllers placement p satisfies the SCD and CCD requirements (i.e., p is feasible with
respect to BSC ,BCC ) if, and only, if for each switch v ∈ V the set W(v ) contains at least one controller (i.e.,
W(v ) ∩ V(P ) , ∅), and for any two controllers v ,w ∈ V(p ) , {v ,w } < U. This characterization will be used in the
problem formulations presented in the following sections. In the following, quantity d (G) := max{d (v ,w ) : v ,w ∈
V} will denote diameter of the network graph with respect to node-pair delays.

In addition to primary controllers, the network is provided with backup controllers that are activated in the event
of an attack. Backup controllers are placed in locations disjoint with the primary controllers locations and they are
not subject to the SCD and CCD restrictions. A particular assignment of backup controllers to node locations will be
called backup controllers placement and denoted by b (b ∈ B, where B is a given set of such placements). The set of
backup controller locations of a given placement b ∈ B will be denoted by V(b ) (where V(b ) ⊆ V). Note that when
primary controllers placement p and backup controllers placement b (where p ∈ P and b ∈ B) are to be used, then
V(p ) ∩ V(b ) = ∅ and V(p, b ) := V(p ) ∪ V(b ) determines the set of all controller locations.

Node locations are subject to node-targeted attacks that cause both the switch and the controller (if any) in each
targeted location to fail. In the following, the set of considered attacks will be denoted by A and the attacks in this
set by a . Each attack a ∈ A is described by the set of locations V(a ) it affects (V(a ) ⊆ V). Hence, after attack a is
launched, all locations v in V(a ) and all links incident with them become unavailable. In effect, the surviving network
graph, denoted by G(a ) := (V\V(a ), E∩(V\V (a ) ) |2| ) , is themaximal subgraph of G induced by the set of surviving
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F IGURE 1 Graph of the cost266 network (left) and a 3-node primary controllers placement (right)

nodes V \ V(a ) . Note that after attack a , the set of surviving controllers is equal to V(p, b ) \ V (a ) , where p ∈ P
and b ∈ B are the assumed primary and backup controllers placements. Two examples of 6-node attacks are shown
in Figure 2.
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F IGURE 2 A 6-node attack and the resulting components: assuming only 3 primary controllers (left) and 3
primary and 1 backup controller (right)

As a consequence of a given attack a ∈ A, the surviving graph G(a ) is in general split into a set C(a ) of (disjoint)
connected components, where each component c ∈ C(a ) is composed of the set of nodes denoted by V(c ) (of size
V (c )). Thus, the impact of attack a on the network (with given primary and backup controllers placements p ∈ P and
b ∈ B) can be expressed by network availability measures M(a ) of the form:

M(a ) := ∑
c∈C(a ) f (c )Y (a, c ) . (1)

In this definition, Y (a, c ) is a binary indicator equal to 1 when a given component c ∈ C(a ) contains a controller
node (i.e., when V(c ) ∩ V(b, p ) , ∅), and to 0 otherwise (in the former case, the component is named a surviving
component). The quantity f (c ) , in turn, is a component metric defined for the components (in fact, for the subsets of
V). In the following we will consider two particular component metrics, both depending only on the sizeV (c ) of the
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M. Pióro et al. 9

component c:
f (c ) :=V (c ) f (c ) := (V (c)

2

)
, (2)

where (V (c)
2

) := 0 for V (c ) = 1. Using the left (linear) metric (L-metric in short), the quantity M(a ) measures the
overall number of nodes in the surviving components. When the right (quadratic) metric (Q-metric in short) is used,
M(a ) measures the total number of node-pairs in the surviving components.

The impact of a 6-node attack on node locations {1, 6, 12, 21, 22, 29} with the primary controllers placement
{8, 24, 27} when no backup controllers are provided is illustrated on the left side of Figure 2. The considered at-
tack splits the network into 4 components (three of them surviving). Note that the network availability measure for
the L-metric is equal to 23, and for the Q-metric to 195. As illustrated on the right side of Figure 2, when the same
primary controllers placement is enriched with one backup controller (placed at location 17), then for the same attack
all components are surviving and the two measures are increased to 28 and 220, respectively.

Finally, for a given set of attacks A, we define two network availability (NA) measures, namely the worst-case
network availability (WNA in short) measure

M(A) := mina∈A M(a ) (3)
and the average network availability (ANA) measure

M(A) := ∑
a∈A w (a )M(a ) . (4)

Note that in definition (4), the quantities w (a ), a ∈ A, are given attack weights, representing for example a given
probability distribution characterizing the relative frequency of the attacks under consideration.

It should be noted that for any topology of the network graph, the upper bounds (UB) of the values of measures
defined in this way, which can be achieved with any controllers placement, are equal to

WNA with the L-metric : UB=mina∈A (V −V (a ) ) (5a)
ANA with the L-metric : UB=∑a∈A w (a ) (V −V (a ) ) (5b)

WNA/Q with the Q-metric : UB=mina∈A ∑
c∈C(a )

(V (c)
2

) (5c)
ANA/Q with the Q-metric : UB=∑a∈A w (a ) ∑c∈C(a )

(V (c)
2

)
. (5d)

A sufficient condition tomeet all these boundswith primary controllers placement p and backup controllers placement
b is that for each attack at least one controller is placed in all components induced by this attack, i.e., when V(p, b ) ∩
V(c ) , ∅ for all ∈ A, c ∈ C(a ) . Note that this condition is also necessary in both cases of the ANA measure.

4 | COMBINED OPTIMIZATION OF PRIMARY AND BACKUP CONTROLLERS
PLACEMENT

In this section we introduce and discuss selected variants of the basic optimization problem considered in this paper,
i.e., the problem of combined primary and backup controllers placement problem (CPP). In short, CPP consists in finding
a placement of primary controllers and a placement of backup controllers that jointly maximize the assumed network

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


10 M. Pióro et al.

TABLE 2 List of CPP formulations
Æ1 finding joint primary and backup controllers placement maximizing the WNA measure (compact formulation) (6)
Æ2 finding joint primary and backup controllers placement maximizing the ANA measure (compact formulation) (7)
Æ3 finding joint primary and backup controllers placement maximizing the WNA measure (non-compact formulation) (8)
Æ4 finding joint primary and backup controllers placement maximizing the ANA measure (non-compact formulation) (9)
Æ5 finding allowable primary controllers placements under delay constraints (11)

TABLE 3 Notation used in CPP formulations
P ′, P ′′ minimum and maximum number of primary controllers
B ′,B ′′ minimum and maximum number of backup controllers
C maximum overall number of controllers (C ≥ P ′ + B ′)
yv binary variable equal to 1 if, and only if, node v contains a primary controller, y = (y1, y2, . . . , yV )

xv binary variable equal to 1 if, and only if, node v contains a backup controller, x = (x1, x2, . . . , xV )

Yv binary variable equal to 1 if node v contains a controller (primary or backup)
sac binary variable equal to 1 if, and only if, component c ∈ C(a ) contains a controller (primary or backup)
Z continuous variable expressing the objective function

Y (v , p ) binary coefficient equal to 1 if, and only if, node v belongs to placement p ∈ P

up binary variable equal to 1 if, and only if, placement p ∈ P is selected
P̂ list of all primary controllers placements feasible with respect to the assumed BCC and BSC bounds

P ′, P ′′ minimum and maximum, respectively, number of controllers in feasible primary controllers placements
zvw binary binary variable equal to 1 if, and only if, the controller serving switch v is placed at node w

Â, Ò, Ò+ sets of binary, real and non-negative real numbers
□ symbol indicating the end of formulation description

availability measureM(A) (see (3) and (4)) for a given set of attacks A. The formulations presented below are original
as the so posed problem has, to the best of our knowledge, not been dealt with in the literature so far (except for our
conference papers [13] and [17]).

Below we will distinguish between four kinds of optimal solutions of CPP. The term optimal solution will refer
to a joint primary and backup controllers placement that maximizes the assumed network availability (NA) measure
without imposing any limits on the number of primary and backup controllers. If such an optimal solution reaches the
upper bound UB of the assumed NA measure (see definitions (5) in Section 3), it will be called strongly optimal solution
for this measure. Finally, the (strongly) optimal solution that requires the smallest total number of controllers (primary
plus backup) will be referred to as the minimum (strongly) optimal solution.

The problem formulations under consideration are listed in Table 2 and the notation used in those formulations
is summarized in Table 3.
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M. Pióro et al. 11

4.1 | Compact formulations of CPP

The two formulations considered below are compact, which means that in both of them the number of variables and
constrains grows polynomially with the number of node locationsV . Note that in fact the number of attacks in A may
also increase exponentially withV and then our formulations would become non-compact. Yet, since in the following
we consider only sets of attacks of reasonable size, we do not address this issue and assume that the number of
attacks in A is polynomially bounded with respect toV .

The first formulation maximizes, for a given set of attacks A, the WNA measure (3) over a set of feasible con-
trollers placements, constrained by the lower (P ′,B ′) and upper (P ′′,B ′′) bounds on the number of primary and backup
controllers, respectively.
Formulation Æ1[P ′, P ′′,B ′,B ′′,C ,BSC ,BCC ,A]

max Z (6a)∑
v ∈V yv +∑

v ∈V xv ≤ C (6b)
P ′ ≤ ∑

v ∈V yv ≤ P ′′ (6c)
B ′ ≤ ∑

v ∈V xv ≤ B ′′ (6d)∑
w ∈W(v ) yw ≥ 1 v ∈ V (6e)

yv + yw ≤ 1 {v ,w } ∈ U (6f)
Yv = yv + xv v ∈ V (6g)
sac ≤ ∑

v ∈V(c) Yv a ∈ A, c ∈ C(a ) (6h)
Yv ≤ sac a ∈ A, c ∈ C(a ),v ∈ V(c ) (6i)
Z ≤ ∑

c∈C(a ) f (c )sac a ∈ A (6j)
yv , xv ,Yv ∈ Â v ∈ V (6k)
sac ∈ Â a ∈ A, c ∈ C(a ) (6l)
Z ∈ Ò. (6m)

In the formulation, the vectors of binary variables y := (y1, y2, . . . , yV ) and x := (x1, x2, . . . , xV ) determine the set of
locations of primary controllers {v ∈ V : yv = 1} and backup controllers {v ∈ V : xv = 1}, while constraints (6b)-(6g)
ensure feasibility of the primary/backup controllers placements pairs determined by (y , x ) . In particular, constraint
(6b) limits the total number of controllers to a given value C , while constraints (6c) and (6d) ensure that the numbers
of primary and backup controllers are within the assumed ranges, where P ′ + B ′ ≤ C .

The next two constraints relate to delays. The first of them, constraint (6e), ensures that for each location v ∈ V
there must be a primary controller placed close enough to it in terms of the SC delay (recall that W(v ) is the set of
locations w , including location v , with the SC delay between v and w not exceeding BSC ). Similarly, constraint (6f)
ensures that the CC delay requirements are met (recall that U is the set of all node-pairs whose distance, measured
as the transmission delay, exceeds the upper bound BCC ).

Then, constraint (6g) sets the value of binary variable Yv to 1 if, and only if, location v contains either a primary
or a backup controller. Note that binarity of Yv does not allow to place a primary controller and a backup controller
in the same location.

Next, constraints (6h) and (6i) set binary variable sac to 1 when component c induced by attack a contains a
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12 M. Pióro et al.

controller, and to 0, otherwise.
Finally, constraint (6j) together with objective (6a) ensure that the optimal value of Z is properly calculated. This is

because for any feasible pair (y , x ) , the maximum of Z (let us denote this maximum by Z (y , x )) is equal to M(A) =
mina∈A M(a ) where the values M(a ) are calculated for the primary and back controllers placement specified by
(y , x ) . Since formulation (6) maximizes Z (y , x ) over all feasible pairs (x , y ) , the value Z (y ∗, x ∗ ) for any optimal pair
(y ∗, x ∗ ) of (6) maximizes the availability measure (3) over all placements in the assumed set of placements represented
by constraints (6b)-(6e). □

It is worth noting that constraint (6i) is redundant since in the optimal solutions the values of sac allowed by (6h)
will be set to 1 when this is advantageous for maximizing the value of Z .

Note also that for parameters P ′ = B ′ = 0 and P ′′ = B ′′ = C , constraints (6c)-(6d) can be skipped — in this case no
separate bounds on the number of primary and backup controllers are imposed, only on their total number. Another
observation is that we can always assume P ′ ≥ 1 because in any feasible solution of Æ1 at least one yv will be equal
to 1 (this is forced by constraint (6e)) — this will enforce the formulation.

For the ANA measure (4), the formulation corresponding to (6) is as follows.

Formulation Æ2[P ′, P ′′,B ′,B ′′,C ,BSC ,BCC ,A]

max ∑
a∈A w (a ) ∑c∈C(a ) f (c )sac (7a)∑
v ∈V yv +∑

v ∈V xv ≤ C (7b)
P ′ ≤ ∑

v ∈V yv ≤ P ′′ (7c)
B ′ ≤ ∑

v ∈V xv ≤ B ′′ (7d)∑
w ∈W(v ) yw ≥ 1 v ∈ V (7e)

yv + yw ≤ 1 {v ,w } ∈ U (7f)
Yv = yv + xv v ∈ V (7g)
sac ≤ ∑

v ∈V(c) Yv a ∈ A, c ∈ C(a ) (7h)
yv , xv ,Yv ∈ Â v ∈ V (7i)
sac ∈ Â a ∈ A, c ∈ C(a ) . (7j)

Note that constraints (7b)-(7h) are identical to constraints (6b)-(6h) in Æ1, where the redundant constraint (6i) is skipped.
□

In formulations Æ1 and Æ2, allowable primary controllers placements (forming the set of allowable placements P)
are limited by their size and the upper bounds on the CC and SC delay. Yet, additional limitations can be considered.
For example, it might be natural to force locations from a given set to contain controllers, and another set of locations
not to contain controllers — this can be easily achieved by fixing appropriate variables yv to 1 or to 0, respectively.
Another possibility is to require that for each pair of locations from a given set of such pairs, either both locations
contain a controller or neither one does — this would be forced by additional equality constraints of the form yv = yw .

Note that other kinds of limitations on primary controllers p ∈ P can be thought of (see [16]), and also that
the considered limitations can be applied to backup controllers placements b ∈ B and to joint primary and backup
controllers placements (p, b ) . In fact, one such limitation is already imposed on (p, b ) in Æ1 (constraint (6g)) and Æ2

(constraint (7g)): locations cannot contain a primary and a backup controller simultaneously.
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M. Pióro et al. 13

4.2 | Non-compact formulations of CPP

The two formulations Æ3 and Æ4 of the combined optimization of primary and backup controllers placement optimiza-
tion problem (CPP) presented below are non-compact counterparts of the corresponding compact formulations Æ1 and
Æ2 discussed in the previous section. Now, the set of primary controllers placements considered in optimization is pre-
defined and given by means of an explicit list of allowable placements P. In the considered context, non-compactness
means that the size of list P could potentially be exponential with the number of locations V . (Note that we still
assume that the number of attacks in A is polynomially bounded by the number of node locationsV .)

The first non-compact formulation concerns maximization of theWNAmeasure (3), and the second maximization
of the ANAmeasure (4). As already mentioned, both cases assume an explicit (predefined) list P of primary controllers
placements, and (as before) a given list of attacks A.

The following formulation, where variables xv ,Yv , sac have the same meaning as in Æ1, maximizes the WNA mea-
sure (3).

Formulation Æ3[P,B ′,B ′′,C ,A]

max Z (8a)∑
p∈P up = 1 (8b)∑
p∈PV (p )up +∑

v ∈V xv ≤ C (8c)
B ′ ≤ ∑

v ∈V xv ≤ B ′′ (8d)
Yv = xv +∑

p∈PY (v , p )up v ∈ V (8e)
sac ≤ ∑

v ∈V(c) Yv a ∈ A, c ∈ C(a ) (8f)
Z ≤ ∑

c∈C(a ) f (c )sac a ∈ A (8g)
up ∈ Â p ∈ P (8h)
xv ,Yv ∈ Â v ∈ V (8i)
sac ∈ Â a ∈ A, c ∈ C(a ) (8j)
Z ∈ Ò. (8k)

In the formulation, binary variables up are used to select a primary placement p out of the set of placements P, and
constraint (8b) ensures that exactly one primary controllers placement (the placement p ∈ P for which up = 1) is
actually selected. Then, constraint (8c) ensures that the total number of controllers does no exceed the assumed
upper bound C (recall thatV (p ) denotes the number of controllers in placement p), while constraint (8d) ensures that
not less than B ′ and not more than B ′′ backup controllers are used.

Next, constraint (8e), where Y (v , p ) is a binary coefficient equal to 1 if, and only if, v ∈ V(p ) (i.e., location v is
used by placement p), sets the value of binary variable Yv to 1 if, and only if, location v contains a backup controller
or a primary controller from the selected placement p , i.e., the placement with up = 1 (and, additionally, ensures that
at most one controller is placed in v ).

Since the so defined variables Yv have the same meaning as their counterparts in Æ1, and constraints (8f)-(8g)
and objective (8a) are the same as constraints (6h)-(6h) (with constraint (6i) skipped) and objective (6a) in Æ1, optimal
solutions of Æ3 maximize the availability measure (3) over all placements (p, b ) where p ∈ P, and V(p ) ∩ V(b ) = ∅
and B ′ ≤ V (b ) ≤ min{B ′′,C −V (p ) }. □
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14 M. Pióro et al.

The second formulation, a modification of (8), maximizes the ANA measure (4):
Formulation Æ4[P,B ′,B ′′,C ,A]

max ∑
a∈A w (a ) ∑c∈C(a ) f (c )sac (9a)∑
p∈P up = 1 (9b)∑
p∈PV (p )up +∑

v ∈V xv ≤ C (9c)
B ′ ≤ ∑

v ∈V xv ≤ B ′′ (9d)
Yv = xv +∑

p∈PY (v , p )up v ∈ V (9e)
sac ≤ ∑

v ∈V(c) Yv a ∈ A, c ∈ C(a ) (9f)
up ∈ Â, p ∈ P (9g)
xv ,Yv ∈ Â v ∈ V (9h)
sac ∈ Â a ∈ A, c ∈ C(a ) . (9i)

We do not explain the above formulation because constraints (9b)-(9f) are identical to constraints (8b)-(8f) in Æ3. □

Finally, note that when the allowable set P contains just one element, p , say, then the problem reduces to finding
a placement of backup controllers maximally enhancing the resilience of this particular primary controllers placement
to attacks in A, and formulations Æ3 and Æ4 can be easily modified to their respective versions not involving variables
up . For example, for Æ4 such a modification is as follows.
Formulation Æ4′ [P = {p },B ′,B ′′,C ,A]

max ∑
a∈A w (a ) ∑c∈C(a ) f (c )sac (10a)

V (p ) +∑
v ∈V xv ≤ C (10b)

B ′ ≤ ∑
v ∈V xv ≤ B ′′ (10c)

Yv = xv +Y (v , p ) v ∈ V (10d)
sac ≤ ∑

v ∈V(c) Yv a ∈ A, c ∈ C(a ) (10e)
xv ,Yv ∈ Â v ∈ V (10f)
sac ∈ Â a ∈ A, c ∈ C(a ) . (10g)

Clearly, additional constraints (discusses at the end of Section 4.1) on the locations of backup controllers can be
added to the above formulations.

4.3 | Preparing lists of primary controllers placements

An important (and not obvious) question related to the non-compact formulations (8) and (9) discussed in the previous
section is how to prepare lists of allowable primary controllers placements. In general, to ensure optimal solutions of
CPP, the list under consideration must contain all primary controllers placements feasible with respect to the number
of controllers and maximum CC and SC delays. To obtain such a list (denoted by P̂) we can proceed as follows.

First, bymeans of formulations Æ7 and Æ7′ (see formulations (14) and (15) in SectionA.1), we calculate theminimum
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M. Pióro et al. 15

and maximum number of controllers (P ′ and P ′′, respectively) in the (feasible) placements composing list P̂. Having
done this, we execute the following procedure to generate list P̂.
Step 1. P̂ := ∅, P := P ′ − 1.
Step 2. P := P + 1, P := ∅; solve formulation Æ5[P ,BSC ,BCC , P] iteratively; P̂ := P̂ ∪ P.
Step 3. if P = P ′′ stop; otherwise go to Step 2.
Formulation Æ5 solved in Step 2 is used to generate all feasible primary controllers placements of a given size P and is
as follows.
Formulation Æ5[P ,BSC ,BCC , P]

min 1
V

∑
v ∈V

∑
w ∈W(v ) d (v ,w )zvw (11a)∑

v ∈V yv = P (11b)
yv + yw ≤ 1 {v ,w } ∈ U (11c)∑
w ∈W(v ) zvw = 1 v ∈ V (11d)

zvw ≤ yw v ∈ V, w ∈ W(v ) \ {v } (11e)
zvv = yv v ∈ V (11f)∑
v ∈V(p ) yv ≤ P − 1 p ∈ P (11g)

yv ∈ Â v ∈ V (11h)
zvw ∈ Â v ∈ V, w ∈ W(v ) . (11i)

As before, binary variables yv determine locations of primary controllers and constraint (11b) implies that exactly P

controllers are located. Then, constraint (11c) (where U is the set of all location pairs whose distance, measured as
the transmission delay, exceeds the upper bound BCC ) enforces compliance with the CC delay requirements, just like
constraint (6f) in formulation Æ1.

The next group of constraints, (11d)-(11f), determine, using binary variables zvw , the assignment of switches to
controllers. Assuming that zvw = 1 if, and only if, the switch in location v is assigned to the controller in location
w , constraint (11d) ensures that the switch in location v is assigned to exactly one of the controllers located in the
set W(v ) (i.e., in the set of locations to which the transmission delay from location v is not greater than BSC ), and
constraint (11e) implies that if zvw = 1 then location w must contain a controller. Constraint (11f), in turn, ensures
that the switch in a location containing a controller is assigned to that controller. In effect, objective function (11a) (to
be minimized) expresses the average SC delay for the assignment of switches to controllers defined by variables zvw .

Finally, constraint (11g) forces the placement of controllers (located in the set {v : yv = 1, v ∈ V}) to differ from
each placement in the current set P by at least one location.

Again, extra constraints on primary controllers locations described at the end of Section 4.1 could be added to
Æ5. □

Formulation Æ5 is solved iteratively, starting with empty list of placements P. After each iteration, a newly found
placement is added to list P and the so adjusted formulation is resolved. The iterations are stopped when the for-
mulation becomes infeasible, which means that all feasible placements have been found. Note that the placements
produced in the consecutive iterations are ordered according the non-decreasing value of the average SC delay, so
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16 M. Pióro et al.

the iterations can be stopped when this value becomes too large.
When the list P appearing in constraint (11g) is short the computation time needed to solve formulation Æ5 is

typically very short (less than one second for the cases considered in the numerical results). However, when the size
of that list becomes large, say 10 000, the computation time can increase to hours or even more due to the exces-
sive number of inequalities in constraint (11g) and their linear relaxation being pretty weak. Thus, to determine a
large number of best controller placements (which is actually not required in our numerical studies) solving problem
Æ5 iteratively, every time augmenting list P to account for the placements that have already been found, becomes
computationally inefficient. The computation time can be partly decreased by using formulation Æ5 with no objective
function to simply find a consecutive feasible placement outside the current list P:

Formulation Æ5′ [P ,BSC ,BCC , P]

∑
v ∈V yv = P (12a)

yv + yw ≤ 1 {v ,w } ∈ U (12b)∑
w ∈W(v ) yw ≥ 1 v ∈ V (12c)∑
v ∈V(p ) yv ≤ P − 1 p ∈ P (12d)

yv ∈ Â v ∈ V . (12e)
Clearly, in the iterative process using formulation Æ5′ the order of generated placements is not controlled.

In any case, in order to determine N best problem solutions when N is large, solving the problem N times with
additional constraints that exclude the solutions that have already been found is inefficient. A large number of prob-
lem instances have to be solved, gradually, the problem size increases considerably, and the linear relaxation of the
previous-solution-excluding constraints is very weak too. However, one may use the following, pretty general, ap-
proach. One can implement the IP model of the problem using callable libraries of the IP solver in order to gain access
to the callbacks of the branch-and-bound process. Then every time an incumbent solution is found and the respective
callback is invoked, one can retrieve the incumbent solution, store it in the list of best solutions and finally make the
branch-and-bound process reject the current solution and continue the search. Obviously, it is sufficient to keep only
the set of N best solutions in the list. And whenever this set is being updated with the current incumbent solution,
apart from rejecting the solution one should also add a user cut that sets an upper limit on the objective function value
equal to the cost of the current N -th best solution to bound the search process (the effectiveness of this approach
still needs to be tested).

However, in the general case, the use of more efficient approaches to the problem under consideration cannot
guarantee acceptable computation times due to the number of feasible controllers placements, i.e., | P̂ | , which can
grow exponentially with the number of nodes V . The extreme case is when the values of both BCC and BSC are
equal to or greater than the diameter of the graph (where link weights represent link delays). Then, P ′ = 1, P ′′ =V and
each nonempty subset of V would represent a feasible primary controllers placement; hence, | P̂ | would be equal to
2V − 1. Such an exponential growth would in general be observed even when the delay constraints (defined by BCC

and BCC ) and the placement size constraints (defined by P ′ and P ′′) eliminate a great deal of the subsets of V. This
issue will be illustrated in the numerical section.

Obviously, there are situations where constructing the list of allowable primary controllers placements is not a
big deal. For example, when the network operator decides to install several backup controllers to increase the net-
work resilience to attacks, the list of allowable placements P would be composed of just one placement p — the
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v1 v2 v3 v1 v2 v3

F IGURE 3 Two primary controllers placements and their resilience to a 1-node attack (linear metric)

placement actually deployed in the network. Another situation of this kind is when the set P contains the candidate
placements that are selected by the operator based on her/his experience and various practical constraints, as, for ex-
ample, preference of some locations. In fact, it is precisely these kinds of situations that may require non-compact CPP
formulations, since the conditions that characterize the placements under consideration may be difficult to express in
terms of linear constraints.

For a given value of BCC , an important list of allowable primary controllers placements is obtained by solving
formulation Æ5 for BSC = D ∗ and P = P ∗, where D ∗ is the minimum SC delay achievable for all switches, and P ∗ is
the minimum number of primary controllers required to assure BSC = D ∗. These two values can be computed by
formulations Æ6 and Æ7, respectively, specified in Section A.1 of Appendix A (formulations (13) and (14)). The sets of
placements P generated in this way will be used in the numerical study; as we will see there, the so obtained lists
are very short and can be quickly found in the above described way. (As a matter of fact, the value of D ∗ could be
increased slightly if doing so resulted in a noticeable reduction in the average SC delay minimized by (11a).)

Finally, note that the list of all feasible placements generated for a given value of BCC and the corresponding
values of P = P ∗,BSC = D ∗, might not guarantee optimal solutions in general. This is because the best (with respect
to providing resilience to attacks) placement composed of only P ∗ primary controllers may be less advantageous than
some placement composed of more primary controllers.

An example of such a case is shown in Figure 3 for a 3-node, 2-link network graph where we assume that the
delay of each link is equal to 1, BSC = 1, BCC = 2, P ′ = 1, P ′′ = 2,B ′ = 0,B ′′ = 1,C = 2, and we consider 1-node
attacks. The left placement consists of one primary controller (dark grey) placed at node v2 and one backup controller
(light gray) placed at node v1. The right placement consists of two primary controllers (dark grey) placed at nodes v1
and v3 (and does not contain a backup controller). Clearly, both placements are feasible with respect to the assumed
parameters and that the left placement contains the minimum number of primary controllers (P ∗ = 1). We note that
the worst attack for the left placement targets node v2 and results in only one surviving node v1, while for the right
placement all three 1-node attacks result in two surviving nodes. Hence, the primary controllers placement with P = 2

controllers leads to a higher resilience level in the case of the linear metric f (c ) =V (c ) (see (2)).
A similar example, this time related to the quadratic component metric f (c ) = (V (c)

2

) (see (2)), is shown in Figure 4.
Now, using only one primary controller (in v3) and one backup controller (in any of the remaining nodes, say in v4 — the
left placement) secures only one surviving node-pair (v4,v5 ) after attack on node v3. Using two primary controllers
(one on each side of node v3, say in nodes v1,v4 — the right placement) secures at least two surviving node-pairs.
More specifically, two node-pairs (v1,v2 ) and (v4,v5 ) survive when node v3 is attacked, and 6 node-pairs survive in
case any other node is attacked (this also shows that attacking a node with no controller can be advantageous).

Note that both examples can be easily modified (by increasing the number of nodes on either side of the central
node) to illustrate a substantially gain achievable when more than P ∗ primary controllers are used.

Therefore, to be generally sure that the non-compact formulation of CPP will find an optimal solution, all feasible
(with respect to BSC and BCC ) primary controllers placements with P = P ′, P ′ + 1, . . . , P ′′ (where P ′ = P ∗) should
be considered. Fortunately, situations where more than P ∗ of the primary controllers are needed to reach optimality
are not common. In particular, they were not encountered in the cases considered in the numerical study presented
in this work.
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v1
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v2

v3

v4

v5

F IGURE 4 Two primary controllers placements and their resilience to a 1-node attack (quadratic metric)

5 | NUMERICAL STUDY

The main goal of the numerical study is to illustrate the benefits of using backup controllers (in addition to primary
controllers) to improve network resilience. For this purpose, we present and discuss the numerical results obtained
using the optimization models described in this paper for two mesh network instances: cost266 (a pan-European
network) and coronet conus (a continental US network).

The first network (cost266), consisting ofV =37 node locations and E =57 links, is depicted in Figure 5 (and, for that
matter, also in Figures 1-2); it is described in SNDlib [14] at http://sndlib.zib.de. The second network (coronet conus),
composed ofV =75 node locations and E =99 links, is shown in Figure 6; it is described for example in [25], [23].
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F IGURE 5 Topology of the cost266 network

In this section, we will first describe the setup of the performed numerical experiments, the detailed description
and discussion of which for both the cost266 and coronet conus networks is presented in Appendix B. After that, we
present important observations and conclusions from the numerical study.
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F IGURE 6 Topology of the coronet conus network

5.1 | Setup of experiments

The numerical results of our study were obtained by means of CPP formulations Æ1− Æ4 (see Table 2). The parameters
used in the input data were prepared by means of formulation Æ5 (Table 2) and formulations Æ6 − Æ8 (see Table 11).

In the experiments, the transmission delay (SCD— switch-to-controller delay, and CCD— controller-to-controller
delay) between a given pair of nodes (expressed in kilometers) was calculated as the length of the shortest path
between their locations, where the lengths of the links were assumed to be equal to their geographical lengths (in
kilometers). The results consider all four cases of the network availability (NA) measures implied by definitions (1)-
(4). These are: the average NA (ANA) and the worst-case NA (WNA) measures, with either linear (L) or quadratic (Q)
metric, where the weights w (a ) used in the ANA measure are uniformly set to 1

|A| , a ∈ A.
The setup of the experiment performed for each of the two network instances is briefly as follows. We start

with preparing a set of lists of most dangerous K -node attacks for K = 4, 6, 8, 10. Typically, each such list contains
A = 12 attacks; additionally, for the coronet conus network, a long list of A = 100 most dangerous 6-node attacks was
included. Then we select two values for the CCD delay limit (strict and loose), and for each of them we determine the
minimum achievable value (denoted byD ∗) of the maximum SCD (taken over all switches) and theminimum number of
primary controllers (denoted by P ∗) with which D ∗ is achieved. Next, we generate the list of all placements composed
of P ∗ primary controllers (such placements are called minimum primary controllers placements) that meet the assumed
CCD constraint and the corresponding SCD constraint D ∗ (this list is used as input to the non-compact formulations).
Then, for the input parameters thus calculated, we solve all relevant instances of the combined primary and backup
controllers placement problem (CPP) using both compact formulation and non-compact formulations of CPP. The
considered instances cover the whole range of meaningful values of parameters P ′, P ′′,B ′,B ′′.

A list of abbreviations used in the tables showing the numerical results can be found in Table 4. Note that since
in this study we assume B ′ = 0 (no lower bound on the number of backup controllers) in all cases, the upper bound
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TABLE 4 Numerical results: list of abbreviations
P ′, P ′′ minimum and maximum number of primary controllers
B maximum number of backup controllers (minimum number is always equal to 0)
C maximum overall number of controllers (C ≥ P ′)
BSC ,BCC upper bound on the SC delay (SCD) and the CC delays (CCD), respectively
D ∗ the least feasible upper bound on SCD
P ∗ the smallest number of primary controllers needed to fulfil BSC = D ∗ for a given BCC

P∗ the set of all primary controllers placements with P ∗ controllers feasible for BSC = D ∗ and a given BCC

ASCD average SC delay (calculated)
A(K ,A) A-element list of K -node attacks
NA network availability
ANA/L average network availability (with L-metric)
ANA/Q average network availability (with Q-metric)
WNA/L worst-case network availability (with L-metric)
WNA/Q worst-case network availability (with Q-metric)

on the number of backup controllers is denoted by B instead of B ′′.

5.2 | Main findings

Below are the main observations and conclusions that can be drawn from the numerical results presented and dis-
cussed in Appendix B for cost266 (Section B.1) and coronet conus (Section B.2). As for both networks most of the
reported results concern the 12-attack lists of 6-node attacks (i.e., medium-size attacks) denoted by A(6, 12) and
described in Sections B.1.1 and B.2.1, we start our discussion with this case.

• In most cases (besides cost266 with the loose CCD limit), when backup controllers are not applied, the upper
bounds (UB) on resilience levels (given by formulas (5) in Section 3) cannot be reached for any of the considered
network availability (NA) measures (ANA/L, WNA/L, ANA/Q, WNA/Q), no matter how many primary controllers
are used. In other words, in those cases there are no strongly optimal solutions consisting only of primary con-
trollers (the concepts of optimality for the CPP solutions are introduced at the beginning of Section 4). Moreover,
the gaps between the maximum achievable values of the NA measures under consideration and their UBs can be
significant.
– When the strict CCD limit equal to 1500 km is assumed, then for both networks there are no strongly optimal

solutions consisting only of primary controllers for any of the considered NA measures. The gaps between
the maximum achievable values of the NA measures and their UBs are significant, between 10% and 20% for
cost266, and between 50% and 60% for coronet conus. The reason is that the strict CCD limit (which deter-
mines the diameter of the circle on the network map that all primary controllers must be in) does not allow to
efficiently spread the primary controllers in the network graph. This effect is more profound for coronet conus
because in this larger network of diameter around 6500 km it is harder to protect the components (of the sur-
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viving network graphs) close to the network borders by controllers concentrated in a circle of diameter 1500
km than in the cost266 network of diameter around 4000 km.

– For the loose CCD limit (equal to 2000 km for cost266 and to 2500 km for coronet conus), strongly optimal
placements composed of only primary controllers exist for all NA measures in the cost266 case, but none of
them exists in the coronet conus case. However, in the latter case, the considered gaps are approximately two
times smaller than for the strict CCD limit.

– In the case of cost266, minimum optimal placements of primary controllers contain, depending on the NA
measure, from 0 to 3 additional controllers so that the minimum optimal placements contain 3 to 6 primary
controllers in the strict CDD limit case, and from 5 to 8 in the in the loose CCD limit case. Recall that in
cost266 minimum primary controllers placements contain P ∗ = 3 (strict CCD limit) or P ∗ = 5 (loose CCD limit)
controllers to meet the delay constraints. For coronet conus, in minimum optimal solutions either no additional
controllers are needed (strict CDD limit) or at most 1 additional controller is needed (loose CCD limit). Hence,
the minimum optimal placements contain 2 controllers in the first case, and 3 or 4 controllers in the second
case. Recall that in coronet conus minimum primary controllers placement contain P ∗ = 2 (strict CCD limit) or
P ∗ = 3 (loose CCD limit) controllers.

– Thus, in the cases when the UBs are not reached (both networks with the strict CDD limit and coronet conus
with the loose CDD limit), the number of primary controllers in minimum optimal solutions is between 2 and
6. For cost266 and the loose CCD limit, the minimum optimal placements contain between 5 and 8 controllers,
but in this case the UBs are reached for all NA measures.

• In general, the use of backup controllers is highly beneficial for increasing network resilience to attacks as it al-
lows you to reach the upper bounds on the resilience levels with a reasonable number of backup controllers while
keeping the number of primary controllers at the lower limit P ∗. Clearly, with the use of backup controllers, mini-
mal strongly optimal solutions can always be found, for example by installing backup controllers all nodes that do
not contain a primary controller. So what really matters is to achieve minimum strongly optimal solutions with a
small total number of controllers, which, as discussed below, is the case. What is also important, in all cases mini-
mum strongly optimal solutions can be obtained by extending (by only a few backup controllers) an appropriately
selected minimum primary controllers placement, which is an additional benefit for the network operator due to
lower operational cost of backup controllers. Although, as discussed in Section 4.3 and illustrated in Figures 3 and
4, this property generally does not hold, it appears to hold for the mesh network topologies under consideration.
– In the case of cost266 and the strict CCD limit, no more than 4 backup controllers (plus P ∗ = 3 primary con-

trollers) are needed to reach the upper bounds for all NA measures. This means that in this case the network
can be maximally protected against the assumed 6-node attacks using at most 7 controllers in total. Moreover,
for all NA measures, adding just one backup controller to an appropriate minimum primary controller place-
ment (i.e., a placement of size P ∗) makes it possible to find a CPP solution with the NA measure value very
close (or even equal for WNA/Q) to its upper bound. This means that it suffices to use at most 4 controllers
in total to closely approach the UB. As mentioned above, when in cost266 the loose CCD limit is assumed,
exceptionally the UBs can be reached using only primary controllers. In this case, for all NA measures the total
number of controllers (equal to 8 in the worst case) in the minimum (strongly) optimal placements remains the
same when backup controllers are allowed.

– In the coronet conus network, the benefits form using backup controllers are even more spectacular. In the
case of the strict CCD limit, the UBs are reached with 3 backup controllers (i.e., with 5 controllers in total) for
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ANAL/L and WNA/L, and with 2 backup controllers (4 controllers in total) for ANA/Q and WNA/Q. For the
loose limit, the respective UBs are reached with 2 backup controllers (5 controllers in total) and with 1 backup
controller (4 controllers in total). Thus, coronet conus can bemaximally protected against the considered 6-node
attacks using no more than 5 controllers in total for both CCD limits.

TABLE 5 Minimum optimal solutions for primary controllers; C – placement size,V – value of M(A(6, 12))
cases cost266 coronet conus

CCD limit NA C V UB gap C V UB gap
strict ANA/L 6 25.7 31 17.1% 2 27 69 60.8%

WNA/L 6 25 31 19.4% 2 27 69 60.8%
ANA/Q 5 123.5 134.9 9.1% 2 351.0 752.7 53.4%
WNA/Q 3 109 124 12.1% 2 351 751 53.3%

loose ANA/L 8 31.0 31 0% 4 48.5 69 29.7%
WNA/L 8 31 31 0% 4 46 69 33.3%
ANA/Q 6 134.9 134.9 0% 3 551.8 752.7 26.7%
WNA/Q 5 124 124 0% 3 504 751 32.9%

TABLE 6 [tables 10, 25]
cases cost266 coronet conus

CCD limit NA C V UB gap C V UB gap
strict ANA/L 7 31 31 0% 5 69 69 0%

WNA/L 7 25 31 0% 5 69 69 0%
ANA/Q 6 134.9 134.9 0% 4 752.7 752.7 0%
WNA/Q 4 124 124 0% 4 751 751 0%

loose ANA/L 8 31 31 0% 5 69.0 69 0%
WNA/L 8 31 31 0% 5 69 69 0%
ANA/Q 6 134.9 134.9 0% 4 752.7 752.7 0%
WNA/Q 5 124 124 0% 4 751 751 0%

Now let us extend our discussion to the remaining attack lists A(K , 12), K = 4, 8, 10, each composed of 12 most
dangerous K -node topological attacks for K = 4, 8, 10, generated for both networks. The discussion is based on
the numerical results obtained for the measures with the quadratic component metric, i.e., to ANA/Q and WNA/Q.
Since for both networks and all parameter settings, the behavior of optimal solutions obtained for the node sizes not
previously considered, i.e., K = 4, 8, 10, is analogous to the behaviour of the optimal solutions for K = 6 discussed
above, below we concentrate on discussing the features of the optimal solutions that depend on the attack sizes.
• When the backup controllers are not allowed, strong optimal solutions do or do not exist in more or less the

same cases as for K = 6. The differences are observed for the case of K = 4 (weak attacks) where strong optimal
solutions exist for both consideredmeasures for coronet conuswith the strict CCD limit, and for the case of K = 10

(severe attacks) where strong optimal solutions do not exist for both measures in in cost266 with the loose CCD
limit (however, the gaps are very small, 1.3% for ANA/Q and 3% for WNA/Q). The dependence of the sizes of
optimal placements and of the gaps on K are as follows.
– In cost266, the behaviour of the size of minimum optimal placements and the resulting gaps for both NA mea-

sures and both CCD limits is regular.
For the strict CDD limit and ANA/Q the sizes in question for consecutive values of K are (3, 5, 6, 6) and the
corresponding gaps (3.4%, 9.1%, 8.5%, 32.0%) , and for WNA/Q (3, 3, 3, 6) and (6.4%, 12.1%, 60.0%, 57.6%) , re-
spectively.
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For the loose CCD limit and ANA/Q, the respective values are (5, 6, 9, 9) and (0%, 0%, 0%, 1.4%) , and for
WNA/Q (5, 5, 8, 9) and (0%, 0%, 0%, 3.0%) .

– For coronet conus the analogous values, not that regular, are as follows.
For the strict CCD limit: (4, 2, 4, 3) and (0%, 53.4%, 78.1%, 71.2%) for ANA/Q,
and (3, 2, 2, 3) and (0%, 53.3%, 85.1%, 97.1%) for WNA/Q.
For the loose CCD limit: (4, 3, 5, 5) and (13.8%, 53.4%, 78.1%, 71.2%) for ANA/Q,
and (3, 3, 4, 5) and (58.3%, 32.8%, 36.1%, 46.3$) for WNA/Q. Thus, although, the resilience against 4-node
attacks achievable with only primary controllers is, as expected, better (and sometimes much better: coro-
net conus, strict CCD limit, ANA/Q) than for attacks of larger sizes, it is not so in the 10-node attacks case,
where one would expect resilience in question to be the worst. The reason is that the upper bounds on the
NA measures for K = 10 are much smaller than for smaller K (for example in coronet conus the UB on ANA/Q
is equal to 1201.6 and 369.2 for K = 4 and K = 10, respectively.

• XXX

TABLE 7 [tables 11, 26]
cases cost266 coronet conus

CCD limit K C V UB gap C V UB gap
strict 4 3 231.2 239.3 3.4% 4 1201.6 1201.6 0%

6 5 123.5 134.9 9.1% 2 351.0 752.7 53.4%
8 6 44.5 66.3 8.5% 4 114.9 525.0 78.1%
10 6 24.0 35.3 32.0% 3 106.2 369.2 71.2%

loose 4 5 239.3 239.3 0% 4 1035.0 1201.6 13.8%
6 6 234.9 134.9 0% 3 551.8 752.7 26.7%
8 9 66.3 66.3 0% 5 371.7 525.0 50.1%
10 9 34.8 35.3 1.4% 5 280.2 369.2 24.0%

TABLE 8 [tables 12, 27]
cases cost266 coronet conus

CCD limit K C V UB gap C V UB gap
strict 4 4 239.3 239.3 0% 4 1201.6 1201.6 0%

6 6 134.9 134.9 0% 4 752.7 752.7 0%
8 9 66.3 66.3 0% 8 525.0 525.0 0%
10 10 35.3 35.3 0% 11 369.2 369.2 0%

loose 4 5 239.3 239.3 0% 5 1201.6 1201.6 0%
6 6 134.9 134.9 0% 4 752.7 752.7 0%
8 8 66.3 66.3 0% 8 525.0 525.0 0%
10 10 35.3 35.3 0% 10 369.2 369.2 0%

• The results for cost266 obtained with the strict CCD limit, and for coronet conus with both the strict and loose
CCD limits and for all attack sizes (K = 4, 6, 8, 10), reveal that the upper bounds (UB) on resilience levels (given by
formulas (5) in Section 3) cannot be reached (i.e., strongly optimal solutions do not exist) for any of the consid-
ered availability measures when only primary controllers are used in the controllers placements. This difference,
expressed as the gap between the maximum achievable value of the NA measure and its UB, is significant, of the
order 10 − 60 percent.
However, UBs are easily achievable for all NA measures (resulting in 0% gaps) when an appropriate minimum
primary controllers placements is augmented by several backup controllers (which are not required to adhere the
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TABLE 9 [tables 13, 28]
cases cost266 coronet conus

CCD limit K C V UB gap C V UB gap
strict 4 3 211 226 6.4% 3 1191 1191 0%

6 3 109 124 12.1% 2 351 751 53.3%
8 3 25 62 60.0% 2 78 524 85.1%
10 6 14 33 57.6% 3 10 354 97.1%

loose 4 5 226 226 0% 3 496 1191 58.3%
6 5 124 124 0% 3 504 751 32.8%
8 8 62 62 0% 4 335 524 36.1%
10 9 32 33 3.0% 5 190 354 46.3%

TABLE 10 [tables 14, 29]
cases cost266 coronet conus

CCD limit K C V UB gap C V UB gap
strict 4 4 226 226 0% 3 1191 1191 0%

6 4 124 124 0% 4 751 751 0%
8 8 62 62 0% 6 524 524 0%
10 9 33 33 0% 11 354 354 0%

loose 4 5 226 226 0% 4 1191 1191 0%
6 5 124 124 0% 4 751 751 0%
8 8 62 62 0% 6 524 524 0%
10 10 33 33 0% 10 354 354 0%

CCD limit). This means that the use of backup controllers is highly beneficial for increasing network resilience to
attacks.

• In the case of cost266with the loose CCD limit, the results show that, for the attacks of smaller size (parameter K ),
the UB limits are achieved when using only additional primary controllers. The reason for this is not because more
additional primary controllers can be added, but instead because the resilience levels provided by the minimum
number of primary controllers are already close to the UB limits. In this case, allowing the additional controllers to
be either primary or backup provides the same resilience level with the same total number of controllers. Never-
theless, the use of backup controllers allows for optimal solutions with a reduced number of primary controllers,
which is still beneficial for the operator due to the lower operational costs of the former.

• The size each attack (parameter K ) of the considered attack lists influences the achievable resilience level on
the different NA measures (we provide results for both networks considering K = 4, 6, 8, 10). The larger the size
is, the more additional controllers are required to achieve the UB limits (when allowing additional controllers
of the two types) and the higher the gap becomes between the maximum achievable resilience and the UB limit
(when allowing only primary controllers), making even more beneficial the use of backup controllers for increasing
network resilience to attacks.

• When allowing the additional controllers to be of both types, the total number of controllers needed to reach the
UB limits of network resilience are approximately equal to size K of the attacks and are slightly greater for the
average network availability (ANA) measures than for the worst-case network availability (WNA) measures.

• Overall, results for the two considered network instances are similar and suggest that despite the fact that coronet
conus is about twice as large as cost66 (in terms of node count and geographic coverage), both networks behave
similarly in terms of resilience to attacks.

• Compact formulations of the combined primary and backup controllers placement problem (CPP) are very pow-
erful optimization tools, capable of solving the CPP to optimality for realistic network sizes in a very short time
(see below).
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• When allowing the additional controllers to be of both types, wewere able to computeminimumoptimal solutions
and minimum strongly optimal solutions (when the solutions achieve the UB limits) for all cases, see definitions at
the beginning of Section 4. This shows that, although in general optimal resilience levels might require a number
of primary controllers higher than their minimum value, (see discussion in Section 4.3 and examples in Figures 3
and 4), this is very rare as in all reported results the maximum resilience is achieved with only additional backup
controllers on top of the required minimum number of primary controllers.

• As a consequence of the previous observation, the use of non-compact formulations was an alternative valid ap-
proach to compute the optimal solutions in the considered problem instances, where the list of primary placement
used as input to the formulations is composed by all placements with the minimum number of required primary
controllers. However, to guarantee that the obtained solutions are optimal in the general case, the full list of feasi-
ble primary placements must be considered which might grow exponentially with the problem size. Nevertheless,
non-compact formulations of CPP are always useful in cases where the list of primary controllers placements is
predefined by the operator to accommodate special controller location constraints and preferences.

• In all previous observations, the results were obtained with attack lists composed by 12 attacks. Section B.2.5 of
Appendix B extends the discussion to a much longer list consisting of A=100most dangerous 6-node attacks and
compares the optimization results obtained for this list with those obtained for the list of A = 12most dangerous
6-node attacks, applied to the coronet conus network. When allowing only additional primary controllers, the
results are similar between the two lists, i.e., the maximum resilience has a large gap with the UB limits and is
achieved with either the minimum number of primary controllers or this number plus one. On the other hand,
when allowing additional controllers of both types, there are cases where the UB limit is achieved with the same
number of controllers (in both lists) while in others an additional controller is required. Three properties are also
introduced that, together with the fact that the formulations with the longer list are solved in short computational
times (see below), allows the following conclusion: when aiming to compute strongly optimal placements, it is
sufficient to optimize controllers placement with the longest list as a strongly optimal solution for this list is also
strongly optimal for any of its sublists.

• In all previous observations, the results were obtained assuming that the primary controller placement obeys the
strict upper bound BSC on the SC delay implied by a given maximum CCD delay. Section B.2.6 of Appendix B
reports results where this bound is relaxed (5% and 10%) assuming that the operator may tolerate an increased
maximum SC delay, allowing for considering primary controllers placements that are potentially more resilient
to attacks. When allowing only additional primary controllers, the results show again that the UB limits are not
achieved but there are significant improvements in the gaps between the obtained resilience values and the UB
limits. On the other hand, when allowing both types of additional controllers, the tolerance of 10% allows the UB
limits to be achieved with one less additional controller.

Importantly, all considered optimization problems resolve very quickly for both networks. Using the commercial
AMPL/CPLEX 20.1 software package, running on a virtual machine with access to six logical processors (at Intel i7-
9850H CPU) and up to 16 GB of RAM, we were able to achieve all optimal solutions in less than a few seconds, and
in most cases in less that one second. Moreover, the computation times for coronet conus (including the case of the
100-element list of 6-node attacks considered in Section B.2.5) are only slightly longer than for cost266. For this reason
we do not show computation times in the tables.
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6 | FINAL REMARKS

In this paper, we presented an original comprehensive set of optimization models dealing with SDN controllers place-
ments that admit backup controllers in addition to primary controllers for achieving increased network resilience to
node-targeted attacks.

In our model, for a given controller-to-controller (CC) delay constraint, we first find a primary controllers place-
ment that minimizes the maximum switch-to-controller (SC) delay, and then find the minimum number of primary
controllers needed to achieve the previously obtained min-max SC bound delay. Next, we generate a list of most
dangerous topological node-targeted attacks, and find a primary and backup controllers placement that maximizes
network resilience (evaluated for four different variants of network availability measures) against the generated (and
thus predefined) attack list. This is done by solving a joint primary and backup controllers placement problem for
an assumed set of parameters including the optimized min-max SC bound for the assumed CC delay bound, and the
minimum and maximum number of primary/backup controllers.

The paper includes an extensive numerical study illustrating the proposed optimizationmethodology for twowell-
known network instances. The numerical results show how the allowed number of primary and backup controllers
influences the network resilience to attacks, and how the SC and CC delay constraints (imposed on the placements
of primary controllers) affect this resilience.

The presented optimizationmodel can be enrichedwith several important extensions. An example of such a (fairly
simple) extension is the imposition of upper limits on the computing power of the primary and backup controllers. This
processing powermay be expressed in terms of signaling traffic volume, i.e., the number of new routing events that the
controller can handle per time unit. Knowing about those volumes generated by individual switches, such an approach
would lead to a better distribution of the processing load between the controllers. Another (difficult) extension is
important when the list of potential attacks is large or even grows exponentially with the size of the network (for
example when all attacks on K nodes, where K is relative close toV /2, are considered). This would require tackling
the attack generation problem (embedded in an iterative procedure for controllers placement optimization) for finding
the worst attack for a given controllers placement. Such extensions constitute an interesting topic for further research.

References
[1] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, Security in software defined networks: A survey, IEEE Commun. Surveys

Tutorials 17 (2015), 2317–2346.
[2] R. Alvizu, G. Maier, N. Kukreja, A. Pattavina, R. Morro, A. Capello, and C. Cavazzoni, Comprehensive survey on T-SDN:

Software-defined networking for transport networks, IEEE Commun. Surveys Tutorials 19 (2017), 2232–2283.
[3] E. Calle, S.G. Cosgaya, D. Martínez, and M. Pióro, Solving the backup controller placement problem in SDN under simul-

taneous targeted attacks, 11th International Workshop on Resilient Networks Design and Modeling (RNDM), 2019, pp.
1–7.

[4] E. Calle, D. Martínez, M. Mycek, and M. Pióro, Resilient backup controller placement in distributed SDN under critical tar-
geted attacks, Int. J. Critical Infrastructure Protection 33 (2021), 100442.

[5] D. Camps-Mur, J. Gutierrez, E. Grass, A. Tzanakaki, P. Flegkas, K. Choumas, D. Giatsios, A.F. Beldachi, T. Diallo, J. Zou,
P. Legg, J. Bartelt, J.K. Chaudhary, A. Betzler, J.J. Aleixendri, R. Gonzalez, and D. Simeonidou, 5G-XHaul: A novel wireless-
optical sdn transport network to support joint 5G backhaul and fronthaul services, IEEE Commun. Magazine 57 (2019),
99–105.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


M. Pióro et al. 27

[6] S.G. Cosgaya, E. Calle, and J.L.Marzo, Resilient controller location under target attacks, 2018 20th International Conference
on Transparent Optical Networks (ICTON), 2018, pp. 1–5.

[7] B. Dai, G. Xu, B. Huang, P. Qin, and Y. Xu, Enabling network innovation in data center networks with software defined
networking: A survey, J. Network Comput. Appl. 94 (2017), 33–49.

[8] T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, and M. Conti, A survey on the security of stateful SDN data planes, IEEE
Commun. Surveys Tutorials 19 (2017), 1701–1725.

[9] B. Heller, R. Sherwood, and N. McKeown, The controller placement problem, 1st workshop on Hot Topics in Software
Defined Networks (HotSDN), 2012, pp. 7–12.

[10] M. Karakus and A. Durresi, Quality of service (QoS) in software defined networking (SDN): A survey, J. Network Comput.
Appl. 80 (2017), 200–218.

[11] M. Lalou, T. Mohammed Amin, and H. Kheddouci, The Critical Node Detection Problem in networks: A survey, Comput. Sci.
Review 28 (2018), 92–117.

[12] L. Li, N. Du, H. Liu, R. Zhang, and C. Yan, Towards robust controller placement in software-defined networks against links
failure, 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), 2019, pp. 216–223.

[13] M. Mycek, M. Pióro, A. Tomaszewski, and A. de Sousa, Optimizing primary and backup SDN controllers’ placement resilient
to node-targeted attacks, 17th International Conference on Network and Service Management (CNSM 2021), 2021, pp.
397–401.

[14] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, SNDlib 1.0 – Survivable network design library, Networks: An Int.
J. 55 (2010), 276–286.

[15] B. Pandya, S. Parmar, Z. Saquib, and A. Saxena, Framework for securing SDN southbound communication, 2017 Interna-
tional Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), 2017, pp. 1–5.

[16] M. Pióro, M. Mycek, and A. Tomaszewski, Network protection against node attacks based on probabilistic availability mea-
sures, IEEE Trans. Network Service Manage. 18 (2021), 2742–2763.

[17] M. Pióro, M. Mycek, A. Tomaszewski, and A. de Sousa, On joint primary and backup controllers placement optimization
against node-targeted attacks, 12th International Workshop on Resilient Networks Design and Modelling (RNDM 2022),
2022, pp. 1–7.

[18] M.H. Rehmani, A. Davy, B. Jennings, and C. Assi, Software defined networks-based smart grid communication: A compre-
hensive survey, IEEE Commun. Surveys Tutorials 21 (2019), 2637–2670.

[19] D.F. Rueda, E. Calle, and J.L. Marzo, Improving the robustness to targeted attacks in software defined networks (SDN), 13th
International Conference on Design of Reliable Communication Networks (DRCN 2017), 2017, pp. 1–8.

[20] D. Santos, A. de Sousa, and C.M. Machuca, Combined control and data plane robustness of SDN networks against malicious
node attacks, 2018 14th International Conference on Network and Service Management (CNSM), 2018, pp. 54–62.

[21] D. Santos, A. de Sousa, and C.M. Machuca, Robust SDN controller placement to malicious node attacks, 21st Conference
on Innovation in Clouds, Internet and Networks and Workshops (ICIN), 2018, pp. 1–8.

[22] D. Santos, A. de Sousa, and C.M.Machuca, The controller placement problem for robust SDNs against malicious node attacks
considering the control plane with and without split-brain, Ann. Telecommunications 74 (2019), 575–591.

[23] D. Santos, A. de Sousa, C. Mas-Machuca, and J. Rak, Assessment of connectivity-based resilience to attacks against multiple
nodes in SDNs, IEEE Access 9 (2021), 58266–58286.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


28 M. Pióro et al.

[24] D. Santos, A. de Sousa, and P.Monteiro, Compactmodels for critical node detection in telecommunication networks, Electron.
Notes Discr. Math. 64 (2018), 325–334.

[25] J. Simmons, Optical Network Design and Planning (2nd edition), Springer, Switzerland, 2014.
[26] N. Skorin-Kapov, M. Furdek, S. Zsigmond, and L. Wosinska, Physical-layer security in evolving optical networks, IEEE Com-

mun. Magazine 54 (2016), 110–117.
[27] A. Tomaszewski, M. Pióro, and M. Mycek, Max-min optimization of controller placements vs. min-max optimization opf

attacks on nodes in service networks, 10th International Network Optimization Conference (INOC 2022), 2022, pp. 69–
74.

[28] Y. Uematsu, S. Kamamura, H. Date, H. Yamamoto, A. Fukuda, R. Hayashi, and K. Koda, Future nationwide optical network
architecture for higher availability and operability using transport sdn technologies, IEICE Trans. Commun. E101.B (2018),
462–475.

[29] C. Urrea and D. Benítez, Software-defined networking solutions, architecture and controllers for the industrial internet of
things: A review, Sensors 21 (2021), 6585.

[30] S. Yang, L. Cui, Z. Chen, and W. Xiao, An efficient approach to robust SDN controller placement for security, IEEE Trans.
Network Service Manage. 17 (2020), 1669–1682.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


M. Pióro et al. 29

TABLE 11 Formulations’ description (continued)
Æ6 finding primary controllers placement minimizing the maximum SC delay under a given CC delay upper bound (13)
Æ7 finding primary controllers placement minimizing the number of controllers under given SC delay and CC delay upper

bounds (14) (and its maximization version Æ7′)
Æ8 finding the most dangerous topological attack (17)

A | FORMULATIONS OF AUXILIARY PROBLEMS

The three optimization problem formulations in this appendix are listed in Table 11.

A.1 | Optimization of Primary Controllers Placements

This section introduces two IP (integer programming) formulations that solve two aspects of the primary controllers
placement problem. The first of them (Æ6) minimizes the maximum SC delay (under the assumed CC delay upper bound
BCC ), while the second (Æ7) minimizes the number of primary controllers required to meet the assumed upper bounds
on the SC delays BSC and on the CC delays BCC .

A.1.1 | Minimizing the maximum SC delay

The following IP formulation deals with the problem of finding a primary controllers placement with the number of
controllers between P ′ and P ′′ that minimizes the maximum SC delay while keeping the CC delay below the assumed
upper bound BCC .

Formulation Æ6[P ′, P ′′,BSC ,BCC ]

min D (13a)
P ′ ≤ ∑

v ∈V yv ≤ P ′′ (13b)
yv + yw ≤ 1, {v ,w } ∈ U (13c)∑
w ∈W(v ) zvw = 1, v ∈ V (13d)

zvw ≤ yw , v ∈ V,w ∈ W(v ) \ {v } (13e)
zvv = yv , v ∈ V (13f)
D ≥ ∑

w ∈W(v ) d (v ,w )zvw , v ∈ V (13g)
yv ∈ Â, v ∈ V; zvw ∈ Â, v ∈ V,w ∈ W(v ) (13h)
D ∈ Ò. (13i)

Above, as in formulation Æ1 (and, for that matter, in Æ2), binary variables yv determine locations of primary controllers.
Thus, constraint (13b) assures that the number of located controllers is between the assumed values P ′ and P ′′. Then,
constraint (13c) (a counterpart of constraints (6f) and (7f)) keeps the CC delays under the upper bound BCC .

The next group of constraints determine, using binary variables zvw , the assignment of switches to controllers.
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Assuming that zvw = 1 if, and only if, the switch in location v is assigned to the controller in location w , constraint
(13d) assures that switch v is assigned to exactly one controller and this controller is located in the set W(v ) (the
latter assures that the SC delay of the considered switch does not exceed the assumed upper bound BSC ).

Next, constraint (13e) implies that if zvw = 1 then location w must contain a controller. Constraint (13f) in turn
ensures that the switch in the location containing a controller is assigned to that controller.

Finally, constraint (13g) ensures that the value of variableD is greater than or equal to the SC delay for all switches.
As this variable is minimized by objective (13a), its final valuewill minimize themaximumSC delay among the SC delays
calculated for all switches. As a result, the optimal value of the objective function is the lowest feasible value of the
upper bound BSC . □

In the above formulation, parameter BSC (the upper bound on the SC delay) is used merely to limit the cardinality
of the sets W(v ), v ∈ V , and thus to limit the number of variables zvw . Clearly, with no upper bound, i.e., with
BSC = d (G) , W(v ) would be equal to V for all node locations.

Finally, we note that the computation times required to solve Æ6 for both cost266 and coronet conus are very short,
equal to fractions of a second.

A.1.2 | Minimizing (maximizing) the number of primary controllers

The second formulation dealing with primary controllers finds a primary controllers placement with the minimum size
(but not less than P ≥ 0) required to fulfill the assumed upper bounds BSC and BCC .

Formulation Æ7[P ,BSC ,BCC ]

min ∑
v ∈V yv (14a)∑
v ∈V yv ≥ P (14b)

yv + yw ≤ 1 {v ,w } ∈ U (14c)∑
w ∈W(v ) yw ≥ 1 v ∈ V (14d)

yv ∈ Â v ∈ V . (14e)

Note that if BSC is equal to the value D ∗ minimized by means of formulation Æ6 (see (13a)), then Æ7[1,D ∗,BCC ]
finds a minimum (in terms of size) placement of primary controllers that meets the most stringent requirement for the
individual SC delays.

Finally, the following formulation finds a placement of primary controllers with the maximum size (but not greater
than P ≤ V ) that meets the requirements imposed by parameters BSC and BCC .
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Formulation Æ7′ [P ,BSC ,BCC ]

max ∑
v ∈V yv (15a)∑
v ∈V yv ≤ P (15b)

yv + yw ≤ 1 {v ,w } ∈ U (15c)∑
w ∈W(v ) yw ≥ 1 v ∈ V (15d)

yv ∈ Â v ∈ V . (15e)

As for Æ6, the computation times required to solve Æ7 and Æ7′ for both cost266 and coronet conus are very short,
equal to fractions of a second.

A.2 | Generating most dangerous topological attacks

Below we present an IP formulation Æ8 that finds a K -node topological attack a which minimizes the total number of
undirected node-pairs in the components induced by a , i.e.,

∑
c∈C(a )

(V (c)
2

)
, (16)

where (V (c)
2

) := 0 for V (c ) = 1. Such attacks are called topological because their construction does not use any
information about actual or potential controllers placements, only the information about the structure of the network.
Note that the considered optimization problem is one of the versions of so called critical node detection (CND) problem
considered in the graph theory [11] for undirected graphs G = (V, E) .

Attacksminimizing the above quantity turn out to be themost dangerous from the point of the resiliencemeasures
considered in this paper, surpassing the effectiveness of attacks constructed on the basis of other criteria independent
of the distribution of controllers, such as node degree. The intuitive reason is that the component families C(a )
minimizing (16) tend to have amaximum number of minimum size components, and therefore require more controllers
than others to achieve a given resilience level. (For a discussion of this issue the reader is referred to [4].)

Formulation Æ8 is a modified version of the formulation described in [24] (and called MILP1∗ there). For the
purpose of Æ8 we number the nodes from 1 to V (i.e., we assume that V = {1, 2, . . . ,V }) and consider the set of
directed node-pairs H = { (v ,w ) : v ,w ∈ V,v < w } that represents the set of all undirected node-pairs of graph G,
i.e., the set V |2| . We split this set into two subsets:

• H(E) = { (v ,w ) ∈ H : {v ,w } ∈ E}: the set of directed node-pairs representing the set E of (undirect) links of
graph G

• H′ (E) = { (v ,w ) ∈ H : {v ,w } < E}: the set complementary to H(E) representing those node-pairs that are
not connected by a link in E.

Next, let V(v ) be the set of nodes adjacent to node v in graph G (note that |V (v ) | is equal to the node degree).
For each node-pair (v ,w ) ∈ H′ (E) , the set V(v ,w ) is defined as V(v ) if |V (v ) | ≤ |V (w ) | , and as V(w ) if
|V (v ) | > |V (w ) |.

In the introduced formulation we will use the following two sets of variables:
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• binary variables av (v ∈ V), where av = 1 if, and only if, node v is selected to be attacked
• binary variables uvw ((v ,w ) ∈ H), where uvw = 1 if, and only if, nodes v and w belong to the same component

after attack a .

The formulation of the CND problem is as follows (for its detailed explanation the reader is referred to [24]):

Formulation Æ8[K ]

min ∑
(v ,w ) ∈H uvw (17a)∑
v ∈V av = K (17b)

uvw + av + aw ≥ 1 (v ,w ) ∈ H(E) (17c)
uvw ≥ u [v t ] + u [tw ] + at − 1 (v ,w ) ∈ H′ (E), t ∈ V(v ,w ) (17d)
av ∈ Â v ∈ V (17e)
uvw ∈ Â (v ,w ) ∈ H. (17f)

In constraint (17d), symbol u [v t ] denotes variable uv t if v < t , and utv if v > t ; the same convention concerns u [tw ] .
Note that although by definition variables uvw are binary, they could be declared as non-negative continuous

(uvw ∈ Ò+, (v ,w ) ∈ H) because in any optimal solution their values will be binary anyway. □

Let a (1) be an optimal attack obtained by means of the above formulation. If we call this attack the first most
dangerous attack, then the second most dangerous attack, a (2) , is computed by solving formulation Æ8[K ] with the
following additional constraint (which excludes a (1) from the set of feasible solutions):

∑
v ∈V(a (1) ) av ≤ K − 1. (18)

Having found a (2) , we add constraint
∑

v ∈V(a (2) ) av ≤ K − 1 (19)
to Æ8[K ]. In effect, we augment formulation (17) with constraints (18) and (19) and resolve it in order to find a (3) .
This process is continued (by adding consecutive constraints to Æ8[K ] and resolving the augmented formulation) until
the required set A = {a (1), a (2), . . . , a (A) } of A most dangerous (topological) attacks is obtained. Note that in this
set the attacks are ordered by non-decreasing values of the objective function (17a), i.e.,

∑
c∈C(a (1) )

(V (c)
2

)
≤ ∑

c∈C(a (2) )
(V (c)

2

)
≤ · · · ≤ ∑

c∈C(a (A) )
(V (c)

2

)
. (20)

Let us finally note that the above procedure is time efficient. For example, generating a 10-node attack for the
coronet conus network on our computational platform takes 2.16 seconds on the average when the list of 12 such
attacks is created, and 2.82 seconds for the corresponding list of 100 attacks.
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B | NUMERICAL RESULTS

B.1 | Results for the cost266 network

Below we present and discuss numerical results for cost266. The numbers assigned to node locations depicted in
Figure 5 are listed in Table 12; these numbers will be used to identify the node locations when presenting the results.
TABLE 12 cost266: node numbers

1 Berlin 9 Milan 17 Helsinki 25 Athens 33 Amsterdam
2 Palermo 10 Vienna 18 Copenhagen 26 Bordeaux 34 Dublin
3 Seville 11 Birmingham 19 Zurich 27 Barcelona 35 Brussels
4 Cracow 12 Budapest 20 Oslo 28 Lyon 36 Munich
5 Strasbourg 13 Prague 21 Marseille 29 London 37 Glasgow
6 Paris 14 Stockholm 22 Frankfurt 30 Dusseldorf
7 Warsaw 15 Lisbon 23 Rome 31 Zagreb
8 Belgrade 16 Madrid 24 Hamburg 32 Sofia

B.1.1 | Lists of attacks

For studying the cost266 resilience to attacks we used four lists of attacks generated by the iterative procedure de-
scribed in Section A.2 of Appendix A. Hence, each of them contains A = 12 most dangerous K -node topological
attacks for K = 4, 6, 8, 10. For each K , the so obtained list of attacks is denoted by A(K , 12) .

One of these lists, A(6, 12) = {a (1), a (2), . . . , a (12) }, is specified in Table 13. The sets of nodes directly affected
by the attacks (i.e., V(a (i ) )) are listed in the third column of the table, while for each attack a (i ) the overall number
of node-pairs in the components of family C(a (i ) ) , i.e., ∑c∈C(a (i ) )

(V (c)
2

) , is given in the appropriate row of column 2.
Note that the minimum of these numbers (124) is attained by a (1) , and their average (134.9) is given in the last row of
column 2. Since for each attack a (i ) in the considered list the number of attacked nodes (V (a (i ) )) is equal to 6 and,
by assumption, the weight (w (a (i ) )) is equal to 1

A = 1
12 , the values of the upper bounds (UB) on the NA measures

for A(6, 12) (calculated according to formulas (5) given in Section 3) are equal toV −6 = 31 for WNA/L and ANA/L,
and to 124 for WNA/Q and to 134.9 for ANA/Q. Clearly, all these bounds are valid for any primary/backup controllers
placement.

B.1.2 | Input parameters

Table 14 presents the basic parameters characterizing the primary controllers placements, which are the input for the
CPP formulations Æ1 − Æ4 used in the study. Two sets of parameters are considered, each calculated for one of the
two selected values of the CC delay upper bound (CCD), denoted by BCC and given in the first column of the table.
The first value, BCC = 1500, is a strict CCD bound, and the other, BCC = 2000, a loose one. Each set of parameters,
specified in the appropriate row, was calculated as follows:

Step 1. D ∗ (column 2): the min-max SCD calculated by formulation Æ6[1, P = V , d (G),BCC ] (see Section A.1.1)
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TABLE 13 cost266: list of topological attacks A(6, 12)

A(6, 12) ∑
c∈C(a )

(V (c)
2

)
V(a )

a (1) 124 1 6 12 21 22 29

a (2) 127 1 6 12 15 21 22

a (3) 130 1 6 12 21 22 33

a (4) 132 1 6 9 12 21 22

a (5) 132 1 4 6 21 22 29

a (6) 135 1 4 6 15 21 22

a (7) 136 1 4 6 9 21 22

a (8) 138 1 4 6 21 22 33

a (9) 138 1 6 12 19 21 22

a (10) 142 1 6 7 9 21 22

a (11) 142 1 6 7 21 22 29

a (12) 143 1 4 6 19 21 22

average 134.9

with no upper bound on the number of primary controllers (P ′ = 1, P ′′ =V , recall that there must be at least one
primary controller used) and no upper bound on SCD (BSC = d (G) , where d (G) := max{d (v ,w ) : v ,w ∈ V}
denotes the diameter of the network graph in terms of path delays).

Step 2. P ∗ (column 3): the minimum number of primary controllers needed to meet the upper bound BCC on the
CC delay and the upper bound BSC = D ∗ on the SC delay specified in columns 1-2. The value of P ∗ is calculated
by formulation Æ7[1,D ∗,BCC ] (see Section A.1.2).

Step 3. | P∗ | (column 4): the number of elements | P∗ | in the list P∗ of all primary controllers placements with the
minimum number of controllers P ∗ (specified in column 3) meeting the delay constraints BSC = D ∗ (specified
in column 2) and BCC (specified in column 1). This parameter and the entire list P∗ are calculated in the way
described in Section 4.3 by formulation Æ5[P ∗,D ∗,BCC , P]. The resulting two lists of primary controllers place-
ments P∗ are shown in Tables 21 and 23 in Section B.1.4.

Step 4. range of ASCD over P∗ (column 5): minimum and maximum average SD delays of the placements in lists P∗

calculated in Step 3.

In the following, a feasible primary controllers placement composed of P ∗ controllers, where P ∗ is the minimum
number of primary controllers needed to meet the minimum SCD upper bound BSC = D ∗ (D ∗ = 1529 or D ∗ = 1168,
depending on the assumed BCC ) will be called minimum primary controllers placement. Thus, the list P∗ contains all
minimum primary controllers placements (V (p ) = P ∗, p ∈ P∗). As shown in column 4, for BCC = 1500 there are
(only) 5 such (3-node) placements, while for BCC = 2000 there are 8 such (5-node) placements. Note that increasing
the upper bound on the CC delay (from 1500 to 2000) allows for a wider dispersion of the primary controllers, thus
reducing the SC delays, both in terms of their maximum (column 2) and average (column 5).
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TABLE 14 cost266: input parameters
1 2 3 4 5

BCC D ∗ (Æ6[1,V , d (G),BCC ]) P ∗ (Æ7[0,D ∗,BCC ]) | P∗ | (Æ5[P ∗,D ∗,BCC , P]) range of ASCD over P∗

1500 1529 3 5 656.4 – 727.5
2000 1168 5 8 517.9 – 559.9

B.1.3 | Results for CPP — compact formulations

We start by discussing CPP solutions obtained with the compact formulations, i.e., with Æ1 and Æ2, when only primary
controllers are used (B = 0) for the attacks in A(6, 12) described in Table 13. Such placements must obey the upper
bounds on the CC and SC delays (given in columns 1 and 2 of Table 14). In the computations we used formulations
Æ1 and Æ2 with the following parameters (implied by Table 14):

◦ BCC = 1500: P ′ = P ∗ = 3, P ′′ = 3, 4, 5, 6, C = P ′′, B = 0, BSC = D ∗ = 1529

◦ BCC = 2000: P ′ = P ∗ = 5, P ′′ = 5, 6, 7, 8, C = P ′′, B = 0, BSC = D ∗ = 1168.

Table 15 presents the optimal values of M(A(6, 12) ) for all NA measures considered and both values of BCC . For
each value of C (in this case, C represents the maximum number of primary controllers), the corresponding column
shows the maximized value of each NA measure (“value”) and the minimum number of controllers required to reach
this value (“[P ]”). Note that in each row, the last nonempty element shows the maximum value of the NA measure
considered in that row, which is the value reached by a minimum optimal solution of CPP, meaning that increasing C

will not improve the resilience level. (To make sure this is the case, we solved formulations Æ1 and Æ2 with no upper
limit on the number of controllers, i.e., for C = V .) Next, column “UB” shows the upper bound (calculated in Section
B.1.1) for the NA measure in question. Finally, column “gap” shows the gap (in percent) between the value of UB and
the value of the NA measure obtained with the optimal solution. Note that the when the number in column “value” is
bold, the corresponding CPP solution is minimum strongly optimal and therefore its gap is equal to 0. (The concepts
of optimal, strongly optimal, and minimum (strongly) optimal CPP solutions are defined at the beginning of Section 4.)
TABLE 15 cost266: primary controllers placements maximizing resilience to 12 most dangerous 6-node attacks
(compact formulations)

C = 3 C = 4 C = 5 C = 6 C = 7 C = 8

BCC BSC NA value [P ] value [P ] value [P ] value [P ] value [P ] value [P ] UB gap
1500 1529 ANA/L 24.3 [3] 25.2 [4] 25.6 [5] 25.7 [6] 31 17.1%
1500 1529 WNA/L 22 [3] 23 [4] 24 [5] 25 [6] 31 19.4%
1500 1529 ANA/Q 122.6 [3] 123.3 [4] 123.5 [5] 134.9 9.1%
1500 1529 WNA/Q 109 [3] 124 12.1%
2000 1168 ANA/L – – 29.7 [5] 30.7 [6] 30.8 [7] 31.0 [8] 31 0%
2000 1168 WNA/L – – 28 [5] 30 [6] 30 [6] 31 [8] 31 0%
2000 1168 ANA/Q – – 134.2 [5] 134.9 [6] 134.9 0%
2000 1168 WNA/Q – – 124 [5] 124 0%

Table 15 reveals that for BCC = 1500 the upper bounds on for the NAmeasures cannot be reached and the result-
ing gaps, ranging from 9.1% to 19.4% (see column “gap”), are non-negligible. The reason is that the strict CCD upper
bound does not allow to efficiently spread the primary controllers in the network graph (see the remark at the end of
Section 3). Another observation is that in all cases the number of primary controllers in minimum optimal solutions
is not too large compared to P ∗ = 3 (the number of additional primary controllers is 3, 3, 2 and 0 for ANA/L, WNA/L,
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ANA/Q and WNA/Q, respectively). Finally, the resilience levels provided by the best minimum primary controllers
placements (see column C = P ∗) are close (or even equal for WNA/Q) to the optimal ones.

Table 15, in turn, shows that for the less strict delay bound BCC = 2000minimum strongly optimal solutions exist
in all cases, when, respectively, 3, 3, 1 and 0 (i.e., almost the same numbers as for BCC = 1500) additional primary
controllers are added to a minimum primary controllers placement. Apparently, now the primary controllers can be
spreadmore efficiently, as can be seen by the small gaps between the best solutions achieved by theminimum primary
controllers placements and the corresponding UB values.
TABLE 16 cost266: primary and backup controllers placements maximizing resilience to 12 most dangerous
6-node attacks (compact formulations)

C = 3 C = 4 C = 5 C = 6 C = 7 C = 8

BCC NA value [P /B ] value [P /B ] value [P /B ] value [P /B ] value [P /B ] value [P /B ]

1500 ANA/L 24.3 [3/0] 29.6 [3/1] 30.5 [3/2] 30.8 [3/3] 31.0 [3/4]
1500 WNA/L 22 [3/0] 28 [3/1] 29 [3/2] 30 [3/3] 31 [3/4]
1500 ANA/Q 122.6 [3/0] 134.0 [3/1] 134.7 [3/2] 134.9 [3/3]
1500 WNA/Q 109 [3/0] 124 [3/1]

2000 ANA/L – – 29.7 [5/0] 30.7 [5/1] 30.8 [5/2] 31.0 [5/3]
2000 WNA/L – – 28 [5/0] 30 [5/1] 30 [5/1] 31 [5/3]
2000 ANA/Q – – 134.2 [5/0] 134.9 [5/1]
2000 WNA/Q – – 124 [5/0]

We now move on to discuss the CPP solutions obtained for the same list of attacks as before, but this time
considering the use of back up controllers on top of the primary ones. As wewill see, this ability makes a big difference
because while the CC and SC delay upper bounds (given in columns 1 and 2 of Table 14) must still be respected by
the primary controllers placements, they do not apply to the locations of backup controllers.

In the computations we used formulations Æ1 and Æ2 with the following parameters:
◦ BCC = 1500: P ′ = P ∗ = 3, P ′′ = 3, 4, . . . , 7, C = P ′′, B = C − P ′, BSC = D ∗ = 1529

◦ BCC = 2000: P ′ = P ∗ = 5, P ′′ = 5, 6, 7, 8, C = P ′′, B = C − P ′, BSC = D ∗ = 1168.
Note that since C is the upper bound on the total number of controllers and P ′ is the minimum number of primary
controllers, the number of backup controllers is between 0 and B = C −P ′.

The results are shown in Table 16, which illustrates to what extent network resilience is increased using backup
controllers. In the table, columns “BSC ”, “UB” (the same as in Table 15) and “gap” (all gaps are now equal to 0) are
skipped, and in columns “C ”, the description “value [P ]” is replaced by “value [P /B ]”, which refers to the maximized
NA measure (as before) and to the number of primary (P ) and backup (B ) controllers in the optimal solution.

Comparing the caseswith the same total number of controllersC in Tables 15 and 16, we see that forBCC = 1500,
the use of backup controllers leads to strongly optimal solutions, i.e., allows the upper bounds UB to be reached for
all resilience measures. The most spectacular case is WNA/Q, where adding just one backup controller on top of
three primary controllers improves the resilience level from 109 to 124, i.e., to the upper bound (cf. columns “C = 3”
in Table 15 and “C = 4” in Table 16). Note that adding one more primary controller (cf. columns “C = 3” and “C = 4”
in Table 15) does not improve WNA/Q, and this shows that the CC delay constraints can impose strong limitation on
the primary controllers placements, as far as the resilience to attacks is concerned.

In the case of BCC = 2000 for all NAmeasures and all C , the same values are obtained with C primary controllers
(Table 15) as with a combination of C primary and backup controllers (Table 16). For example, for WNA/L, eight
primary controllers (and no backup controllers) reach the resilience value of 31 (see column “C =8” in Table 15), while
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with backup controllers this value is reached using the smallest feasible number of primary controllers (P ∗ = 5) and
three backup controllers (see column “C =8” in Table 16). So, in this particular case backup controllers are not needed
to improve resilience.

In all cases included in Table 16, the use of backup controllers allows to obtain minimum strongly optimal CPP
solutions with the smallest feasible number of primary controllers, which can be beneficial for the operator due to
lower operational costs of backup controllers. It should noted here that there are also cases where such minimum
solutions with more than the minimum number of primary controllers exist. For example, for BCC = 1500 and C = 7

minimum strongly optimal placements (with the value of WNA/L equal to 31) exist for all combinations [P /B ] =

[3/4], [4/3], [5/2], [6, 1].
Recall that, in general, optimal resilience levels might require a number of primary controllers higher than their

minimum value P ∗, as discussed in Section 4.3 (see Figures 3 and 4). However, theminimum strongly optimal solutions
presented in Table 16 are in all cases composed of theminimum number of primary controllers (P ∗ = 3 for BCC = 1500

and P ∗ = 5 for BCC = 2000) with all additional controllers being of the backup type. This observation is valid in all
reported results for both cost266 and coronet conus, showing that the need for more primary controllers than the
minimum required ones to reach optimal resilience levels is very rare.

Finally, note that in both cases (using only primary controllers in Table 15 or using primary and backup controllers
in Table 16), minimum optimal solutions are achieved with less (sometimes the same) number of controllers for the
Q-metric than for the L-metric . Also this observation is valid in all reported results for both the cost266 and coronet
conus networks.

Let us now move on to compare the CPP solutions obtained for all four attack lists A(K , 12) , with K = 4, 6, 8, 10.
We will discuss here the results for the ANA/Q and WNA/Q measures only, taking advantage of the fact that the
results for ANA/L and WNA/L are of similar character. Of course, the results for K = 6 have already been shown in
the previous tables.

The results for the ANA/Q are shown in Table 17 (when only primary controllers are used) and Table 18 (when
primary and backup controllers are used). Table 17 shows that for the strict CCD constraint (BCC = 1500), the upper
bounds on the resilience level cannot be reached for any value of K , no matter how many primary controllers are
deployed, and the gap between the maximum achievable values of ANA/Q and its UB dramatically increases with
the increase of K (from 3.4% for K = 4 to 32.0% for K = 10, see column “gap”). When the CCD bound is less strict
(BCC = 2000), UBs are reached for K = 4, 6, 8 but not for K = 10. Not surprisingly, for both BCC cases, the number
of additional controllers required to achieve the minimum optimal solution increases with the increase of the number
of attacked nodes.

Table 18, in turn, shows that the use of backup controllers substantially increases the level of resilience in the case
of the strict CCD upper bound BCC = 1500, while this effect is negligible when this bound is loosen to BCC = 2000

(this effect is observed for all NA measures and K = 6 in Tables 15 and 16). As expected, in all cases when UB on
ANA/Q is not reached with primary controllers only, adding backup controllers will enable this. For BCC = 1500

and K = 8, a minimum strongly optimal solution is achieved with P ∗ = 3 primary and 6 backup controllers (C = 9

controllers in total), while for K = 10, a minimum strongly optimal solution is achieved with 3 primary and 7 backup
controllers (C = 10 controllers in total). For BCC = 2000 and K = 10, one more controller is required (5 primary and 5

backup controllers in total) to achieve the ANA/Q upper bound (35.3).
Now let us discuss the analogous results for WNA/Q, shown in Tables 19 and 20. Roughly speaking, the observa-

tions for ANA/Q are basically valid also for WNA/Q, and the main difference is that this time when UB for WNA/Q
is not reached, then the gap is larger than for ANA/Q.

In the case of the primary controllers placement (Table 19), for BCC = 1500 and K = 4, 6, 8, the maximum value
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TABLE 17 cost266: primary controllers placements maximizing ANA/Q for 12-attack lists for K = 4, 6, 8, 10

(compact formulations)
C = 3 C = 4 C = 5 C = 6 C = 7 C = 8 C = 9

BCC BSC K value [P ] value [P ] value [P ] value [P ] value [P ] value [P ] value [P ] UB gap
1500 1529 4 231.2 [3] 239.3 3.4%
1500 1529 6 122.6 [3] 123.3 [4] 123.5 [5] 134.9 9.1%
1500 1529 8 40.3 [3] 43.4 [4] 44.3 [5] 44.5 [6] 66.3 8.5%
1500 1529 10 18.6 [3] 21.6 [4] 23.1 [5] 24.0 [6] 35.3 32.0%
2000 1168 4 – – 239.3 [5] 239.3 0%
2000 1168 6 – – 134.2 [5] 134.9 [6] 134.9 0%
2000 1168 8 – – 60.7 [5] 63.8 [6] 65.2 [7] 66.1 [8] 66.3 [9] 66.3 0%
2000 1168 10 – – 23.1 [5] 27.3 [6] 30.3 [7] 33.3 [8] 34.8 [9] 35.3 1.4%

TABLE 18 cost266: primary and backup controllers placements maximizing ANA/Q for 12-attack lists for
K = 4, 6, 8, 10 (compact formulations)

C = 3 C = 4 C = 5 C = 6 C = 7 C = 8 C = 9 C = 10

BCC K value [P /B ] value [P /B ] value [P /B ] value [P /B ] value [P /B ] value [P /B ] value [P /B ] value [P /B ]

1500 4 231.2 [3/0] 239.2 [3/1]
1500 6 122.6 [3/0] 134.0 [3/1] 134.7 [3/2] 134.9 [3/3]
1500 8 40.3 [3/0] 55.3 [3/1] 60.4 [3/2] 63.5 [3/3] 65.2 [3/4] 66.1 [3/5] 66.3 [3/6]
1500 10 18.6 [3/0] 23.6 [3/1] 27.8 [3/2] 30.8 [3/3] 33.8 [3/4] 34.8 [3/5] 35.2 [3/6] 35.3 [3/7]

2000 4 – – 239.3 [5/0]
2000 6 – – 134.2 [5/0] 134.9 [5/1]
2000 8 – – 60.7 [5/0] 63.8 [5/1] 65.5 [5/2] 66.3 [5/3]
2000 10 – – 23.1 [5/0] 27.3 [5/1] 30.3 [5/2] 33.3 [5/3] 34.8 [5/4] 35.3 [5/5]

of WNA/Q (much lower than UB) is already reached for the minimum number of controllers (P ∗ = 3), and only for
K = 10 the number of controllers (P = 6) that provides the maximum achievable value of the WNA/Q measure (equal
to 14) is greater; however, this value is still much lower than UB (equal to 33). For BCC = 2000 it is possible to achieve
UB for K = 4, 6, 8with 5, 5, 8 primary controllers, respectively; for K = 10 the optimal solution achievable with primary
controllers (equal to 32, achieved with P = 9 controllers) is (slightly) less than UB. Note that for BCC = 2000 and
K = 4, 6, UB is achieved with the minimum number of controllers P ∗ = 5.

When backup controllers are allowed (Table 20), for K = 4, 6 and BCC = 1500 the UB limit is reached with just
one backup controller on top of P ∗ = 3 primary controllers, while for BCC = 2000 and K = 4, 6 it is achieved with the
minimum number (P ∗ = 5) of primary controllers (no backup controllers are required). For BCC = 1500 and attacks of
larger size, 5 backup controllers (on top of P ∗ = 3 primary controllers) are required for this purpose for K = 8, and 6

for K = 10. For BCC = 2000, the required number of backup controllers is equal to 3 (K = 8) and to 5 (K = 10).
TABLE 19 cost266: primary controllers placements maximizing WNA/Q for 12-attack lists for K = 4, 6, 8, 10

(compact formulations)
C = 3 C = 4 C = 5 C = 6 C = 7 C = 8 C = 9

BCC BSC K value [P ] value [P ] value [P ] value [P ] value [P ] value [P ] value [P ] UB gap
1500 1529 4 211 [3] 226 6.4%
1500 1529 6 109 [3] 124 12.1%
1500 1529 8 25 [3] 62 60.0%
1500 1529 10 7 [3] 10 [4] 13 [5] 14 [6] 33 57.6%
2000 1168 4 – – 226 [5] 226 0%
2000 1168 6 – – 124 [5] 124 0%
2000 1168 8 – – 56 [5] 59 [6] 61 [7] 62 [8] 62 0%
2000 1168 10 – – 13 [5] 23 [6] 26 [7] 29 [8] 32 [9] 33 3.0%
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TABLE 20 cost266: primary and backup controllers placements maximizing WNA/Q for 12-attack lists for
K = 4, 6, 8, 10 (compact formulations)

C = 3 C = 4 C = 5 C = 6 C = 7 C = 8 C = 9 C = 10

BCC K value [P /B ] value [P /B ] value [P /B ] value [P /B ] value [P /B ] value [P /B ] value [P /B ] value [P /B ]

1500 4 211 [3/0] 226 [3/1]
1500 6 109 [3/0] 124 [3/1]
1500 8 25 [3/0] 41 [3/1] 56 [3/2] 59 [3/3] 60 [3/4] 62 [3/5]
1500 10 7 [3/0] 19 [3/1] 25 [3/2] 28 [3/3] 31 [3/4] 32 [3/5] 33 [3/6]

2000 4 – – 226 [5/0]
2000 6 – – 124 [5/0]
2000 8 – – 56 [5/0] 59 [5/1] 61 [5/2] 62 [5/3]
2000 10 – – 13 [5/0] 23 [5/1] 26 [5/2] 29 [5/3] 32 [5/4] 33 [5/5]

B.1.4 | Results for CPP — non-compact formulations

Now we move on to the results obtained with the non-compact formulations Æ3 and Æ4 (see Section 4.2) of the com-
bined primary and backup controllers placement problem considered for the input parameters described in Table 14
and attack list A(6, 12) described in Table 13.

As stated in Table 14, the minimum number of primary controllers needed to fulfil the delay constraints BCC =

1500 and BSC =D ∗ =1529 is equal to P ∗ =3 (see column 3 in Table 14) and the set (list) P∗ of all feasible placements
containing P = 3 primary controllers has 5 elements (see column 4). This list is shown in Table 21 (where the values
of the average SCD for all 5 placements are listed in column “ASCD”) and illustrated in Figure 7.
TABLE 21 cost266: list of minimum primary controllers placements for BCC = 1500 and DSC = 1529 and their
NA measures for A(6, 12)

P∗ ASCD V(p ) ANA/L WNA/L ANA/Q WNA/Q
p (1) 656.4 8 21 24 20.9 14 113.1 78

p (2) 675.4 21 24 31 20.9 14 113.1 78

p (3) 684.3 10 21 24 20.9 14 113.1 78

p (4) 712.8 21 23 24 20.9 14 113.1 78

p (5) 727.5 23 24 26 24.3 22 122.6 109

It turns out that for BCC = 1500 and BSC = 1529 feasible placements exist for the size up to P = 13 — this was
checked by means of formulation Æ7′ (15) described in Section A.1.2. The sets of all feasible placements with a given
number of controllers placements P = 3, 4, . . . , 13 are denoted by P(P ) and their sizes are given in Table 22. Note
that in this table, P(3) denotes the list P∗ specified in Table 21, and the last column gives the total number of feasible
placements, i.e., ∑13

P=3 | P (P ) | = 4864. Recall that for each fixed placement’s size P , the corresponding list P(P ) was
generated by means of the procedure (based on formulation Æ5) described in Section 4.3.
TABLE 22 cost266: feasible primary controllers placements for BCC = 1500 and BSC = 1529

| P (3) | | P (4) | | P (5) | | P (6) | | P (7) | | P (8) | | P (9) | | P (10) | | P (11) | | P (12) | | P (13) | Σ | P (P ) |
5 49 217 572 994 1190 994 572 217 49 5 4864

Analogous results for BCC = 2000 and BSC = 1168 are as follows. The minimum and maximum number of
controllers in a feasible primary controllers placement is equal to P = P ∗ = 5 and P = 21, respectively. The list
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F IGURE 7 cost266: list of primary controllers placements P∗ for DCC = 1500 and DSC = 1529

P(5) = P∗ of all feasible placements with P = P ∗ = 5 controllers includes 8 elements and is shown in Table 23 and
illustrated in Figure 8.
TABLE 23 cost266: list of minimum primary controllers placements for BCC = 2000 and BSC = 1168 and their
NA measures for A(6, 12)

P∗ ASCD V(p ) ANA/L WNA/L ANA/Q WNA/Q
p (1) 517.9 8 18 21 26 35 29.7 28 134.2 124

p (2) 517.9 8 18 21 26 33 29.4 28 134.0 124

p (3) 523.3 6 8 18 21 26 26.3 23 124.1 99

p (4) 530.7 18 21 26 31 33 29.4 28 134.0 124

p (5) 535.3 6 18 21 26 31 26.3 23 124.1 99

p (6) 535.4 18 21 26 31 35 29.7 28 134.2 124

p (7) 541.4 18 21 26 29 31 27.7 24 128.8 103

p (8) 559.9 11 18 21 26 31 29.4 28 134.0 124

Table 24, a counterpart of Table 22, shows the sizes of the lists of feasible placements with a fixed number of
elements. Note that for P = 10, 11, . . . , 15, the actual number of placements is not shown because the upper bound
(10 000) on the number of generated placements assumed in the calculations was reached. In fact, in these cases the
computation times needed to reach the upper bound were excessive, of the order od tens of hours. This shows that
in the case when only primary controllers are installed, non-compact formulations may be ineffective if all feasible
primary controllers placements have to be considered to ensure optimal CPP solutions.

However, as we already know, the use of the full list of feasible controllers placements is in general not necessary
since it can be possible to achieve the exact optima of CPP (in terms of maximizing the resilience levels) using only the
list P∗ of (minimum) feasible primary controllers placements. Moreover, the overall number of controllers (C = P ∗ +B )
required to reach the optimal solutions can also be minimized in this way. This phenomenon, detected using compact
CPP formulations, is observed in all cases considered in Section B.1.3, and illustrated in Tables 15-20.
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F IGURE 8 cost266: list of primary controllers placements P∗ for DCC = 2000 and BSC = 1168

TABLE 24 cost266: feasible primary controllers placements for BCC = 2000 and BSC = 1168

| P (5) | | P (6) | | P (7) | | P (8) | P (9) | | P (10) | | P (11) | | P (12) | | P (13) |
8 112 734 2990 8477 > 10000 > 10000 > 10000 > 10000

| P (14) | | P (15) | | P (16) | | P (17) | | P (18) | | P (19) | | P (20) | | P (21) | Σ | P (P ) |
> 10000 > 10000 7994 2939 800 152 18 1 > 84225

Note that both lists P∗ are quite short: list P(3) in Table 22 consists of 5 placements, and list P(5) in Table 24
consists of 8 placements. Thanks to this, they can be generated in just a few seconds and then used for different values
of parametersC ,B ′,B ′′ in formulations Æ3 and Æ4. Moreover, the number of binary variables up , p ∈ P∗, becomes very
small and this leads to very short computation times of the resulting CPP instances. The results of CPP optimization
assuming the two lists under consideration are discussed below.

Table 25 shows the solutions of CPP for the maximum CC delay BCC = 1500 and the corresponding min-max SC
delay BSC = 1529, and the two settings indicated in column 1:
• “S” (single): list P contains only one element, namely the first placement in P(3) , i.e., placement p (1) in Table 21
• “F” (full): the full (5-element) list P(3) of allowable placements is assumed.
In Table 25, the columns starting with the third show the values of the NA measures optimized for increasing values
of B (recall that B is the maximum allowable number of backup controllers). Note that the results are presented up to
the value of B for which the upper bound on the value of the NAmeasure is achieved. (Recall that for ANA/L,WNA/L,
ANA/Q, and WNA/Q these bounds are equal to 31, 31, 134.9 and 124, respectively.)
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TABLE 25 cost266: primary and backup controllers placements optimization for BCC = 1500

parameters: B = 0, 1, . . . , 5, P = P(3),A = A(6, 12) (non-compact formulations)
B=0 B=1 B=2 B=3 B=4 B=5 UB

S ANA/L 20.9 26.2 29.6 30.5 30.8 31.0 31

S WNA/L 14 22 28 29 30 31 31

S ANA/Q 113.1 124.5 134.0 134.7 134.9 134.9

S WNA/Q 78 109 124 124

F ANA/L 24.3 29.6 30.5 30.8 31.0 31

F WNA/L 22 28 29 30 31 31

F ANA/Q 122.6 134.0 134.7 134.9 134.9

F WNA/Q 109 124 124

Looking at the third column (“B =0”) and the four rows marked with “S” in Table 25, we notice that the levels of
resilience to the attacks under consideration provided by the assumed primary controllers placement p (1) ∈ P∗ (3)
(recall that p (1) has the minimum average SC delay equal to 656.4 among the placement in P∗ (3) , see row p (1)
in Table 21) without backup controllers are substantially lower than the respective upper bounds 31, 31, 134.9, 124.
However, when the full list P(3) is considered, then the resilience levels are improved, as illustrated by the four rows
marked with “F”. It turns out that for all four NA measures the best result in terms of maximum resilience is attained
for the last placement on the list, i.e., for p (5) with V(p (5) ) = {23, 24, 26} and ASCD equal to 727.5. The gain in
resilience (as compared to the “S” results) can be significant, for example equal to 57.1% for WNA/L and 28.4% for
WNA/Q, but is achieved on the expense of the increase in ASCD by 10.8%.

However, as shown in the subsequent columns, adding backup controllers gradually improves the resilience levels
to finally reach the upper bounds on the NAmeasures. In the “S” case, the consecutive resilience bounds are achieved
when 5, 5, 4 and 2, respectively, backup controllers are added. In the “F” case, these bounds are achievedwith a smaller
number of backup controllers, 4, 4, 3 and 1, respectively.
TABLE 26 cost266: primary and backup controllers placements optimization for BCC = 2000

parameters: B = 0, 1, . . . , 5, P = P(5),A = A(6, 12) (non-compact formulations)
NA B=0 B=1 B=2 B=3 B=4 UB

S ANA/L 29.4 30.3 30.7 30.8 31.0 31

S WNA/L 28 28 30 30 31 31

S ANA/Q 134.0 134.7 134.9 134.9

S WNA/Q 124 124

F ANA/L 29.7 30.7 30.8 31.0 31

F WNA/L 28 30 30 31 31

F ANA/Q 134.2 134.9 134.9

F WNA/Q 124 124

The results for the second value of the maximum CC delay BCC = 2000 are shown in Table 26, which has the
same layout as the previous table. It turns out that for the case “B =0” and “F”, the first primary controllers placement
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(p (1)) in the assumed list P(5) (see Table 23) is optimal for WNA/L and WNA/Q, and the last placement p (8) is
optimal for ANA/L and ANA/Q (but with negligible improvement with respect to p (1)). An additional observation is
that forWNA/Q the upper bound on the level of resilience is achieved already with the primary controllers placement,
so no backup controllers are required.

Note also that now the number of backup controllers needed to reach the upper bounds on different NAmeasures
is smaller than in the case of BCC = 1500 considered in Table 25. These differences are due to the increased number
of primary controllers which is equal to 5 with respect to the previous case, which requires 3 primary controllers.

Let us finally note that the results presented in Tables 25 and 26 in the “F” case are the same as the correspond-
ing presented in Table 16. This was, of course, expected, since all primary controllers placements used in the optimal
solutions shown in Table 16 contain the minimum number of controllers P ∗, and all feasible primary controllers place-
ments composed of P ∗ controllers are included in the respective lists P∗ (3) and P∗ (5) . More specifically, the entries
in column “B = 0” and rows “F” of Table 25 are the same as the ones given in column “C = 3” for BCC = 1500 in
Table 16, and the numbers in column “B = 0” and rows “F” of Table 26 are the same as the ones given in column
“C =5” for BCC = 2000 in Table 16. Considering rows “F” for the cases with B > 0 it can be seen that the entries in
both Table 25 and Table 26 are the same as the corresponding entries in the columns C in Table 16, were C = 3 + B

for BCC = 1500 and C = 5 + B for BCC = 2000.
Since the above observation is also valid for other attack sizes (K = 4, 8, 10), we omit the presentation of the

results of non-compact formulations Æ3 and Æ4 for the cases considered in Tables 18 and 20.

B.2 | Results for the coronet conus network

Below we present and discuss numerical results for coronet conus, a network instance two times larger than cost266.
The numbers assigned to node locations depicted in Figure 6 are listed in Table 27. As before, these numbers will be
used to identify the node locations when presenting the results.
TABLE 27 coronet conus: node numbers

1 Abilene 16 Cincinnati 31 Long Island 46 Orlando 61 Santa Barbara
2 Albany 17 Cleveland 32 Los Angeles 47 Philadelphia 62 Scranton
3 Albuquerque 18 Columbus 33 Louisville 48 Phoenix 63 Seattle
4 Atlanta 19 Dallas 34 Memphis 49 Pittsburgh 64 Spokane
5 Austin 20 Denver 35 Miami 50 Portland 65 Springfield
6 Baltimore 21 Detroit 36 Milwaukee 51 Providence 66 St Louis
7 Baton Rouge 22 El Paso 37 Minneapolis 52 Raleigh 67 Syracuse
8 Billings 23 Fresno 38 Nashville 53 Richmond 68 Tallahassee
9 Birmingham 24 Greensboro 39 New Orleans 54 Rochester 69 Tampa

10 Bismarck 25 Hartford 40 New York 55 Sacramento 70 Toledo
11 Boston 26 Houston 41 Newark 56 Salt Lake City 71 Tucson
12 Buffalo 27 Jacksonville 42 Norfolk 57 San Antonio 72 Tulsa
13 Charleston 28 Kansas City 43 Oakland 58 San Diego 73 Washington DC
14 Charlotte 29 Las Vegas 44 Oklahoma City 59 San Francisco 74 West Palm Beach
15 Chicago 30 Little Rock 45 Omaha 60 San Jose 75 Wilmington
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B.2.1 | Lists of attacks

As in the case of cost266, to test the resilience of coronet conus to attacks we generated four lists of 12most dangerous
topological attacks A(6,K ) (K = 4, 6, 8, 10). One of them, A(6, 12) , is specified in Table 28 (which is analogous to
Table 13).
TABLE 28 coronet conus: 12 most dangerous 6-node topological attacks

A(6, 12) ∑
c∈C(a )

(V (c)
2

)
V(a )

a (1) 751 15 19 22 24 33 40
a (2) 751 15 19 22 24 33 75
a (3) 751 15 19 22 33 53 75
a (4) 751 15 19 22 33 42 53
a (5) 751 15 19 22 33 42 73
a (6) 751 15 19 22 33 52 73
a (7) 753 15 19 22 33 40 53
a (8) 753 15 19 22 33 52 53
a (9) 753 15 19 22 24 33 42
a (10) 753 15 19 22 33 73 75
a (11) 757 15 19 22 24 33 52
a (12) 757 15 19 22 33 40 73
average 752.7

Now, the average of the values in column 2, and hence the upper bound on the maximum value of the ANA/Q
measure, is equal to 752.7 (for any primary/backup controllers placement). Moreover, the upper bound on WNA/Q
imposed by attack a (1) (and, for that matter, attacks p (2), p (3), . . . , p (6)) is equal 751, and V − 6 = 69 is the upper
bound for both ANA/L and WNA/L.

B.2.2 | Input parameters

TABLE 29 coronet conus: input parameters
1 2 3 4 5

BCC D ∗ (Æ6[1,V , d (G),BCC ]) P ∗ (Æ7[0,D ∗,BCC ]) | P∗ | (Æ5[P ,BSC ,BCC , P]) range of ASCD over P∗

1500 3094 2 1 1833
2500 2174 3 2 1241-1272

Table 29 contains the results analogous to those shown in Table 14 for cost266. This time we consider the CCD
upper bounds (BCC ) equal to 1500 and 2500while the rest of the parameters used in formulation Æ6 remain the same.
Note that, relative to the corresponding values for cost266 shown in Table 14, the number of controllers required to
achieve the minimum of the maximum SCD (given in column 2) has decreased (see column 3) from P = 5 to P = 2

(BCC = 1500), and from P = 8 to P = 3 (BCC = 2500). Also, the lists of all feasible primary controllers placements
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composed of P ∗ controllers with the SCD delay not exceeding D ∗ are extremely short. As shown in column 4, there
is only one such placement for BCC = 1500, and two placements for BCC = 2500. Like in the cost266 case, with
the increased allowable CC delay (now equal to 2500), the primary controllers can be spread more efficiently and thus
reduce the SC delays, both in terms of D ∗ (column 2) and the average SCD (column 5).

B.2.3 | Results for CPP — compact formulations

Table 30 (analogous to Table 15 for cost266) shows the results of solving CPP for the case when backup controllers
are not used (B =0), so only primary controllers are deployed. The resulting primary controllers placements must obey
the upper bounds on the CC and SC delays (given in columns 1 and 2 of Table 29), and maximize the assumed NA
measure for the attacks in A(6, 12) (listed in Table 28). In the computations the following parameters (implied by
Table 29) were used in formulations Æ1 and Æ2:

◦ BCC = 1500: P ′ = P ∗ = 2, P ′′ = 2, C = P ′′, B = 0, BSC = D ∗ = 3094

◦ BCC = 2500: P ′ = P ∗ = 3, P ′′ = 3, 4, C = P ′′, B = 0, BSC = D ∗ = 2174.

As in the case of Table 15, in each row the last nonempty element shows the value of the NAmeasure achieved by the
minimum optimal solution. (As for cost266, to be sure about that we first solved Æ1 and Æ2with no upper bound on the
number of controllers.) The results shown in the table reveal that for BCC = 1500, the use of primary controllers only
results in poor, as compared to the upper bounds given in column “UB”, resilience levels. Moreover, the maximum
achievable resilience levels for all four measures (27 for ANA/L and WNA/L and 351 for ANA/Q and WNA/Q are
obtained already with the minimum number of controllers P = P ∗ = 2, which shows that the CC delay bound equal to
1500 is really strict and does not allow primary controllers to be properly spread for better resilience to the considered
attacks. (Recall that the same effect, but to a lesser extent, is observed for cost266 in Table 15.)

With the less strict CCD bound, i.e., BCC = 2500, the resilience levels are visibly increased for all measures, yet,
contrary to the cost266 case, they are still quite far from the upper bounds. Also now the maximum resilience levels
for ANA?Q and WNA/Q are achieved with the minimum feasible number of controllers P = P ∗ = 3, but for ANA/L
and WNA/L this requires P = 4 controllers (yet, the additional controller results in a marginal improvement). Note
that in the case of cost266, the increased BCC allows for reaching the upper bounds on resilience levels in all cases
(see Table 15).
TABLE 30 coronet conus: primary controllers placements maximizing resilience to 12 most dangerous 6-node
attacks (compact formulations)

C = 2 C = 3 C = 4

BCC BSC NA value [P ] value [P ] value [P ] UB gap
1500 3094 ANA/L 27.0 [2] 69 60.8%
1500 3094 WNA/L 27 [2] 69 60.8%
1500 3094 ANA/Q 351.0 [2] 752.7 53.4%
1500 3094 WNA/Q 351 [2] 751 53.3%
2500 2174 ANA/L – 47.5 [3] 48.5 [4] 69 29.7%
2500 2174 WNA/L – 45 [3] 46 [4] 69 33.3%
2500 2174 ANA/Q – 551.8 [3] 752.7 26.7%
2500 2174 WNA/Q – 504 [3] 751 32.9%

Next, let us consider Table 31, which (as its cost266 counterpart Table 16) illustrates the gain achieved from using
backup controllers for the considered list of twelve 6-node attacks. Now, the following parameters were used in
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TABLE 31 coronet conus: primary and backup controllers placements maximizing resilience to 12 most
dangerous 6-node attacks (compact formulations)

C = 2 C = 3 C = 4 C = 5

BCC NA value [P /B ] value [P /B ] value [P /B ] value [P /B ]

1500 ANA/L 27.0 [2/0] 47.5 [2/1] 68.0 [2/2] 69.0 [2/3]
1500 WNA/L 27 [2/0] 45 [2/1] 68 [2/2] 69 [2/3]
1500 ANA/Q 351.0 [2/0] 551.8 [2/1] 752.7 [2/2]
1500 WNA/Q 351 [2/0] 504 [2/1] 751 [2/2]

2500 ANA/L – 47.5 [3/0] 68.0 [3/1] 69.0 [3/2]
2500 WNA/L – 45 [3/0] 68 [3/1] 69 [3/2]
2500 ANA/Q – 551.8 [3/0] 752.7 [3/1]
2500 WNA/Q – 504 [3/0] 751 [3/1]

formulations Æ1 and Æ2:

◦ BCC = 1500: P ′ = P ∗ = 2, P ′′ = 2, 3, . . . , 6, 8, C = P ′′, B = C − P ′, BSC = D ∗ = 3094

◦ BCC = 2500: P ′ = P ∗ = 3, P ′′ = 3, 4, . . . , 6, 8, C = P ′′, B = C − P ′, BSC = D ∗ = 2174.

Comparing the cases with the same total number of controllers C in Tables 31 and 30, we notice that now the use
of backup controllers significantly improves the resilience levels not only for the strict CCD, as for cost266, but also
for the loose CCD. In fact, even with a relatively small number of backup controllers, the upper bounds on resilience
measures are achieved in all cases.
TABLE 32 coronet conus: primary controllers placements maximizing ANA/Q for 12-attack lists for K = 4, 6, 8, 10

(compact formulations)
C = 2 C = 3 C = 4 C = 5 C = 6 C = 8

BCC BSC K value [P ] value [P ] value [P ] value [P ] value [P ] value [P ] UB gap
1500 3094 4 465.0 [2] 1201.3 [3] 1201.6 [4] 1201.6 0%
1500 3094 6 351.0 [2] 752.7 53.4%
1500 3094 8 100.6 [2] 114.8 [3] 114.9 [4] 525.0 78.1%
1500 3094 10 105.3 [2] 106.2 [3] 369.2 71.2%
2500 2174 4 – 1034.8 [3] 1035.0 [4] 1201.6 13.8%
2500 2174 6 – 551.8 [3] 752.7 26.7%
2500 2174 8 – 259.9 [3] 358.9 [4] 371.7 [5] 525.0 50.1%
2500 2174 10 – 169.8 [3] 275.9 [4] 280.2 [5] 369.2 24.0%

TABLE 33 coronet conus: primary and backup controllers placements maximizing ANA/Q for 12-attack lists for
K = 4, 6, 8, 10 (compact formulations)

C = 2 C = 3 C = 4 C = 5 C = 6 C = 8 C = 9 C = 10 C = 11

BCC K value [P /B ] value [P /B ] value [P /B ] value [P /B ] value [P /B ] value [P /B ] value [P /B ] value [P /B ] value [P /B ]
1500 4 465.0 [2/0] 1201.3 [2/1] 1201.6 [2/2]
1500 6 351.0 [2/0] 551.8 [2/1] 752.7 [2/2]
1500 8 100.6 [2/0] 274.9 [2/1] 441.5 [2/2] 524.0 [2/3] 524.8 [2/4] 525.0 [2/6]
1500 10 105.3 [2/0] 212.1 [2/1] 284.4 [2/2] 347.4 [2/3] 354.1 [2/4] 363.6 [2/6] 367.8 [2/7] 368.7 [2/8] 369.2 [2/9]

2500 4 – 1034.8 [3/0] 1201.3 [3/1] 1201.6 [3/2]
2500 6 – 551.8 [3/0] 752.7 [3/1]
2500 8 – 259.9 [3/0] 426.5 [3/1] 512.1 [3/2] 524.8 [3/3] 525.0 [3/5]
2500 10 – 165.8 [3/0] 282.7 [3/1] 348.3 [3/2] 354.9 [3/3] 364.4 [3/5] 368.7 [3/6] 369.2 [3/7]

Tables 32 and 33 (analogous to Tables 17 and 18 for cost266) extend the results for the ANA/Q measure given
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TABLE 34 coronet conus: primary controllers placements maximizing WNA/Q for 12-attack lists for
K = 4, 6, 8, 10 (compact formulations)

C = 2 C = 3 C = 4 C = 5 C = 6 C = 8

BCC BSC K value [P ] value [P ] value [P ] value [P ] value [P ] value [P ] UB gap
1500 3094 4 351 [2] 1191 [3] 1191 0%
1500 3094 6 351 [2] 751 53.3%
1500 3094 8 78 [2] 524 85.1%
1500 3094 10 0 [2] 10 [3] 354 97.1%
2500 2174 4 – 496 [3] 1191 58.3%
2500 2174 6 – 504 [3] 751 32.8%
2500 2174 8 – 190 [3] 335 [4] 524 36.1%
2500 2174 10 – 93 [3] 184 [4] 190 [5] 354 46.3%

TABLE 35 coronet conus: primary and backup controllers placements maximizing WNA/Q for 12-attack lists for
K = 4, 6, 8, 10 (compact formulations)

C = 2 C = 3 C = 4 C = 5 C = 6 C = 8 C = 9 C = 10 C = 11

BCC K value [P /B ] value [P /B ] value [P /B ] value [P /B ] value [P /B ] value [P /B ] value [P /B ] value [P /B ] value [P /B ]

1500 4 351 [2/0] 1191 [2/1]
1500 6 351 [2/0] 504 [2/1] 751 [2/2]
1500 8 78 [2/0] 244 [2/1] 420 [2/2] 514 [2/3] 524 [2/4]
1500 10 0 [2/0] 169 [2/1] 218 [2/2] 316 [2/3] 326 [2/4] 343 [2/6] 348 [2/7] 353 [2/8] 354 [2/9]

2500 4 – 496 [3/0] 1191 [3/1]
2500 6 – 504 [3/0] 751 [3/1]
2500 8 – 190 [3/0] 361 [3/1] 420 [3/2] 524 [3/3]
2500 10 – 93 [3/0] 222 [3/1] 326 [3/2] 336 [3/3] 348 [3/5] 353 [3/6] 354 [3/7]

in Tables 30 and 31 to the lists of 12 attacks generated for K = 4, 8, 10.
Analyzing Table 32 we first of all notice that for the 4-node (i.e., the least severe) attacks, the upper bound on

ANA/Q is reached already with C =4 primary controllers for BCC = 1500, while for BCC = 2500 it cannot be reached
even with C = 8 primary controllers. This, somewhat untypical, behavior is caused by the SC delay upper bound,
which is apparently too strict. The network resilience to more severe attacks (K = 8, 10) achieved without backup
controllers behaves more or less as in the K = 6 case. The provided resilience levels are low, especially for K = 8, 10.
Note that for these attacks and BCC = 2500, increasing the number of primary controllers from 3 (the minimum) to 4

(and then to 5) substantially improves the resilience levels for ANA/Q and WNA/Q.
Table 33, in turn, shows that in all cases adding backup controllers makes it possible to find strongly optimal

solution, i.e, to reach the upper bounds on ANA/Q for all attack lists. (Actually, as mentioned above, for BCC = 1500

and K = 4 backup controllers are not necessary.)
Finally, Tables 34 and 35, analogous to Tables 19 and 20 for cost266, present the results for theWNA/Qmeasure.

The two main observations are: (i) admitting backup controllers significantly helps to achieve the upper bound on
the network resilience; (ii) for more severe attacks and BCC = 1500, the resilience levels achieved with only primary
controllers are very poor. For example, the value ofWNA/Q for K = 8 is equal to 78 (while its upper bound equals 524)
and for K = 10 it is equal to 10 (while its upper bound equals 354). Also for BCC = 2500 these values are substantially
smaller than in the ANA/Q case.

B.2.4 | Results for CPP — non-compact formulations

Below we briefly discuss the results related to application of non-compact formulations Æ3 and Æ4 of the combined
primary and backup controllers placement problem considered for the input parameters soecified in Table 29 and the
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attack list A(6, 12) described in Table 28.
As stated in Table 29, the minimum number of primary controllers needed to fulfil the delay constraints BCC =

1500 and BSC =D ∗=3094 is equal to P ∗=2 (see column 3 in Table 29) and the list P∗ of feasible placements containing
P = 2 primary controllers has just 1 element (see column 4 in Table 29). This (one-element) list is shown in Table 36
and illustrated in Figure 9.
TABLE 36 coronet conus: list of minimum primary controllers placements for BCC = 1500 and BSC = 3094 and
their NA measures for A(6, 12)

P(2) ASCD V(p ) ANA/L WNA/L ANA/Q WNA/Q
p (1) 1833 19 45 27 27 351.0 351
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F IGURE 9 coronet conus: the single primary controllers placement forming list P∗ for BCC = 1500 and
BSC = 3094

Note that this uniqueminimum placement withV(p ) = {19, 45} provides the same resilience level (equal to 27 for
the linear metric and to 351 for the quadratic metric) for all attacks in A(6, 12) . This is because the controller at node
19 is always attacked and for all attacks the controller at node 45 always belongs to a surviving 27-node component
with (27

2

)
= 351 node-pairs.

It turns out that for BCC =1500 and BSC =3094 feasible placements exist for the size of up to P = 6 controllers.
The lists of all feasible placements P(P ), P = 2, 3, . . . , 6, with a given number of controllers and their sizes are given
in Table 37. Note that in the table, P(2) denotes the list P∗ specified in Table 36, and the last column gives the total
number of feasible placements, i.e., ∑6

P=2 | P (P ) | = 24.
TABLE 37 coronet conus: feasible primary controllers placements for BCC = 1500 and BSC = 3094

| P (2) | | P (3) | | P (4) | | P (5) | | P (6) | Σ | P (P ) |
1 5 9 7 2 24

Analogous results for BCC = 2500 and BSC = 2174 are as follows. The minimum and maximum number of
controllers in a feasible primary controllers placement is equal to P = P ∗ = 3 and P = 15, respectively. The list
P(3) = P∗ of all feasible placements with P = 3 controllers includes only 2 elements and is shown in Table 23 and
illustrated in Figure 10. Note that both placements of the minimum size P = 3 provide the same values for all NA
measures under consideration.

The sizes of the lists of all feasible placements P(P ), P = 2, 3, . . . , 15, are given in Table 39. In the table, P(3)
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denotes the list P∗ specified in Table 36; as before, the last column gives the total number of feasible placements, i.e.,∑15
P=3 | P (P ) | = 7566.

TABLE 38 coronet conus: list of minimum primary controllers placements for BCC = 2500 and BSC = 2174 and
their NA measures for A(6, 12)

P(3) ASCD V(p ) ANA/L WNA/L ANA/Q WNA/Q
p (1) 1241 20 22 38 47.5 45 551.8 504

p (2) 1272 3 20 38 47.5 45 551.8 504
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F IGURE 10 coronet conus: the two primary controllers placements forming list P∗ for BCC = 2500 and
BSC = 2174

TABLE 39 coronet conus: feasible primary controllers placements for BCC = 2500 and BSC = 2174

| P (3) | | P (4) | | P (5) | | P (6) | | P (7) | | P (8) | | P (9) |
2 24 131 430 945 1464 1638

| P (10) | | P (11) | | P (12) | | P (13) | | P (14) | | P (15) | Σ | P (P ) |
1332 1178 320 87 14 1 7566

As in the case of cost266 discussed in Section B.1.4, also for coronet conus the use of the full lists of feasible
controllers placements is not necessary since the exact optima of CPP can be achieved using only the lists P∗ of
(minimum) feasible primary controllers placements. This is shown in Tables 30-35 presented in Section 4.1.

Finally, note that in order to solve CPP for the two lists of minimum primary controllers placements given in
Tables 36 and 38, we could use (as for cost266), non-compact CPP formulations Æ3 (8) and Æ4 (9). However, since
these two lists are extremely short, we might as well solve the simplified versions of Æ3 and Æ4 (described at the end
of Section 4.2, where such a simplified version of Æ4 is given in formulation (10)), separately for each of the primary
controllers placement under consideration, and, in the case of BCC = 2500, simply choose the better (out of two)
primary controllers placement in each of the examined cases of C .

We omit the presentation of the tables analogous to Tables 25 and 26 presented in Section B.1.4 for cost266.
Such tables (in the “F“ case) can be obtained from Table 31 in the same way as Tables 25 and 26 are obtained from
Table 16.
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B.2.5 | Additional results for a list of one hundred 6-node attacks

Until now, the network resilience assessment was based on attack lists consisting of A=12 most dangerous K -node
topological attacks for K = 4, 6, 8, 10. In this section, we will extend our discussion to a much longer list consisting
of A = 100 most dangerous 6-node topological attacks and compare the optimization results obtained for this list
with those obtained for the list of A = 12 most dangerous 6-node attacks described in Table 28. However, before
presenting the numerical results, let us formulate some general properties of attack lists related to CPP.

Consider an arbitrary attack list A and an attack a ∈ A, and define the quantities
S (a ) := ∑

c∈C(a ) V (c ) =V −V (a ) S2 (a ) := ∑
c∈C(a )

(V (c)
2

) (21a)
S (A) := mina∈A S (a ) S2 (A) := mina∈A S2 (a ) . (21b)

Using the above definitions, the upper bounds (UB) on the achievable network availability measures M(A) (see
formulas (5) in Section 3) can be expressed as follows:

WNA/L : UB=mina∈A S (a ) =V − maxa∈AV (a ) (22a)
ANA/L : UB= 1

A

∑
a∈A S (a ) = 1

A

∑
a∈A (V −V (a ) ) (22b)

WNA/Q : UB=mina∈A S2 (a ) (22c)
ANA/Q : UB= 1

A

∑
a∈A S2 (a ) . (22d)

Note that the assumed attack weights (w (a ) = 1
A , a ∈ A) do not affect the generality of our considerations.

The following properties apply to strongly optimal controllers placements (i.e., placements achieving the upper
bound of a given NA measure) and minimum strongly optimal placements (i.e., strongly optimal placements with the
minimum number of controllers).

Property 1 Any strongly optimal placement for an attack list A and a given NA measure (one of ANA/L, WNA/L, ANA/Q,
WNA/Q) is also strongly optimal for

• all sublists of A, if NA = ANA/L or NA=ANA/Q
• all those sublists of A that contain at least one attack a with S (a ) = S (A) , if NA=WNA/L
• all those sublists of A that contain at least one attack a with S2 (a ) = S2 (A) , if NA=WNA/Q.

Note that for all NA measures, the minimum strongly optimal placement for A is not necessarily the minimum strongly op-
timal placement for proper sublists of A.

Property 2 When all attacks in A are of the same size K , i.e., whenV (a ) = K , a ∈ A, then also in the case of NA=WAN/L
any strongly optimal placement for A is strongly optimal for all its sublists. This is implied by the second item in Property 1.

Property 3 Any strongly optimal placement for A and ANA/L is also strongly optimal for A and all its sublists for WNA/L;
the same holds for ANA/Q and WNA/Q. In both cases, the minimality of the placement for ANA does not necessarily imply
its minimality for WNA.
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Now consider the list a (1), a (2), . . . , a (100) of A = 100 most dangerous 6-node attacks generated using the attack
generation procedure described in Section A.2. This list will be denoted by A(6, 100) and called long list in the fol-
lowing. Note that the first twelve attacks in A(6, 100) , i.e., a (1), a (2), . . . , a (12) , form the list A(6, 12) described in
Table 28. In the following, this list will be called short list. By construction, the attacks in both lists are ordered by a
non-decreasing total number of node-pairs in component families induced by successive attacks.

Thus, by Property 1, for each of the consideredmeasures ANA/L,WNA/L, ANA/Q,WNA/Q, each strongly optimal
placement for A(6, 100) is strongly optimal also for A(6, 12) . The upper bounds on ANA/L, WNA/L, ANA/Q and
WNA/Q for A(6, 100) are equal to 69, 69, 774.9 and 751, respectively. Thus, for the long list A(6, 100) the upper
bounds for ANA/L, WNA/L and WNA/Q are the same as for A(6, 12) . However, in the case of ANA/Q, the upper
bound for A(6, 100) (equal to 774.9) is greater than the upper bound for A(6, 12) , which is 752.7 (see Table 28);
this difference is due to the increasing values of S (a (i ) ) in the considered lists of attacks: from S (a (1) ) = 751 to
S (a (12) ) = 757 in both lists, and further from S (a (13) ) = 758 to S (a (100) ) = 796 in the long list.

In Tables 40 and 41 we compare the achieved resilience levels for the two considered lists of 6-node attacks for
ANA/Q andWNA/Q, both values of BCC (1500 and 2500), and the corresponding values of BSC (3094 and 2174). The
results for the short list A(6, 12) are taken from the appropriate rows in Tables 30 and 31, while their equivalents
for the long list A(6, 100) were calculated (by means formulations Æ1 and Æ2) for the same range of the number of
controllers used in the placements. Tables 40 and 41 are constructed analogously to Tables 30 and 31, with one
additional column “A” whose elements identify the number of attacks in the list (A = 12 for A(6, 12) , and A = 100 for
A(6, 100)) considered in a given row.
TABLE 40 coronet conus: primary controllers placements maximizing resilience to A(6, 12) and A(6, 100)

C = 2 C = 3 C = 4

BCC BSC NA A value [P ] value [P ] value [P ] UB gap
1500 3094 ANA/Q 12 351.0 [2] 752.7 53.4%
1500 3094 ANA/Q 100 394.7 [2] 774.9 49.1%
1500 3094 WNA/Q 12 351 [2] 751 53.3%
1500 3094 WNA/Q 100 351 [2] 751 53.3%
2500 2174 ANA/Q 12 – 551.8 [3] 752.7 26.7%
2500 2174 ANA/Q 100 – 555.9 [3] 774.9 28.3%
2500 2174 WNA/Q 12 – 504 [3] 751 32.9%
2500 2174 WNA/Q 100 – 354 [3] 390 [4] 751 48.1%

Table 40 shows that in all cases except one, the maximum level of resilience achievable with only primary con-
trollers has already been reached with the minimum feasible number of controllers (P = 2 for BCC = 1500 and P = 3

for BCC = 2500). The only exception is the case considered in the last row, when one additional primary controller
is required to achieve the maximum of WNA/Q. The table reveals also that for ANA/Q the quality of the maximum
resilience levels (measured by the gap between the achieved value and its upper bound) are very close for both lists
(note that for ANA/Q themaxima for the long list are slightly larger than those for the short list because the respective
upper bounds, 774.9 and 752.7, are not equal). The same concerns the WNA/Q measure for BCC = 1500 (strict CCD
limit) for which the maximum (351) is the same for both lists. An exception here are the maxima of WNA/Q in the
BCC = 2500 case (loose CCD limit), where the maximum achievable for the long list (390) is noticeably smaller than
for the short list (504). Clearly, in all cases the (minimum) optimal solutions are not strongly optimal since it is not
possible to reach the NA upper bounds using placements with only primary controllers.
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Nevertheless, it can be said that the number of primary controllers needed to defend the network (against the
attacks) in the most effective way possible without the use of backup controllers is very small, and practically does
not increase with the length of the list of attacks.
TABLE 41 coronet conus: primary and backup controllers placements maximizing resilience to A(6, 12) and
A(6, 100)

C = 2 C = 3 C = 4 C = 5

BCC NA A value [P /B ] value [P /B ] value [P /B ] value [P /B ]

1500 ANA/Q 12 351.0 [2/0] 551.8 [2/1] 752.7 [2/2]
1500 ANA/Q 100 394.7 [2/0] 611.1 [2/1] 774.7 [2/2] 774.9 [2/3]
1500 WNA/Q 12 351 [2/0] 504 [2/1] 751 [2/2]
1500 WNA/Q 100 351 [2/0] 504 [2/1] 751 [2/2]

2500 ANA/Q 12 – 551.8 [3/0] 752.7 [3/1]
2500 ANA/Q 100 – 555.9 [3/0] 772.3 [3/1] 774.9 [3/2]
2500 WNA/Q 12 – 504 [3/0] 751 [3/1]
2500 WNA/Q 100 – 354 [3/0] 732 [3/1] 751 [3/2]

Table 41 shows the results for combined primary and backup controllers optimization, i.e., when backup con-
trollers are used to support primary controllers in increasing network resilience to attacks. As we already know from
Table 31, for the short list the upper bounds on the resilience levels are in all cases achieved when a minimum primary
controllers placement (with P = 2 for BCC = 1500 and P = 3 for BCC = 2500) is supported by B = 2 (BCC = 1500) or
B = 1 (BCC = 2500) backup controllers, so in total only 4 controllers are needed in both BCC cases. The same holds
for the long list of attacks, and only for WNA/Q and BCC = 2500 one extra backup controller is needed to obtain the
minimum strongly optimal placement for the long list. (To be precise, one more backup controller is needed also for
ANA/Q and both cases of BCC , but the gain from adding such an extra controller is negligible.) Note that introducing
backup controllers leads to strongly optimal controllers placements.

Taking into account the above observation, Properties 1-3, and the fact that in all cases included in Tables 40 and
41 computation times are not greater than 0.1 sec. (and are virtually the same for both attack lists), we can formulate
the following conclusion: It is sufficient to optimize controllers placement just once, only for the ANAmeasure (ANA/L
or ANA/Q, depending on the assumed component metric) using the long list of attacks. The so obtained minimum
strongly optimal placement for ANA will be strongly optimal for all sublists of the long attack list both ANA andWNA,
and almost (in terms of the number of controllers used) minimum strongly optimal in all cases. This conclusion is
further supported by the negligible difference in the computation time needed to generate the short and the long
attack lists (see the last paragraph in Section A.2).

It should be noted, however, that the above conclusion needs to be verified for other attack sizes, other sizes of
the attack lists and their sublists, and other mesh networks (including cost266).

B.2.6 | Impact of the relaxation of the SC delay bound

Let us now discuss another issue. So far, the placements of primary controllers have been optimized assuming that
the strict upper bound BSC on the SC delay implied by a given maximum CCD delay is obeyed. Yet, in practice, the
operator may tolerate an increased maximum SC delay, allowing for considering primary controllers placements that
are potentially more resilient to attacks. Tables 42 and 43 show the effect of loosening the SC delay constraint (i.e.,
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increasing the value of BSC ) on the maximized values of ANA/Q and WNA/Q for BCC = 1500. In the tables, the
increase (in percent) of BSC (recall that for BCC = 1500 the minimized value of BSC is equal to 3094) is indicated in
column “↗”, where three values, 0%, 5% and 10%, are considered.

The presented results reveal that when only primary controllers are used, increasing the value of BSC leads to
a noticeable improvement in the resilience levels both with the 5% and 10% increase, but again, using only primary
controllers, neither for ANA/Q nor WNA/Q the upper bounds in question can be reached. When backup controllers
are allowed, a 5% increase does not lead to any improvement, but a 10% increase allows to reach the upper bounds
on both ANA/Q and WNA/Q with one less backup controller.

It turns out that in the case of BCC = 2500, increasing the upper bound on SCD does not improve resilience
neither for ANA/Q nor for WNA/Q. (When both primary and backup controllers are used, this is because the upper
bounds on both ANA/Q and WNA/Q are practically achieved with a single backup controller.) In conclusion, in the
case under consideration, loosening the SC delay constraint is only worthwhile if the CC delay constraint is strict.
TABLE 42 coronet conus: primary controllers placements maximizing resilience to A(6, 100) for relaxed BSC

C = 2 C = 3 C = 4

BCC BSC ↗ NA value [P ] value [P ] value [P ] UB gap
1500 3094 0% ANA/Q 394.7 [2] 774.9 49.1%
1500 3249 5% ANA/Q 394.7 [2] 529.1 [3] 774.9 31.7%
1500 3403 10% ANA/Q 611.1 [2] 774.9 21.1%
1500 3094 0% WNA/Q 351 [2] 751 53.3%
1500 3249 5% WNA/Q 351 [2] 387 [3] 751 48.5%
1500 3403 10% WNA/Q 504 [2] 751 32.9%

TABLE 43 coronet conus: primary and backup controllers placements maximizing resilience to A(6, 100) for
relaxed BSC

C = 2 C = 3 C = 4 C = 5

BCC BSC ↗ NA value [P /B ] value [P /B ] value [P /B ] value [P /B ]

1500 3094 0% ANA/Q 394.7 [2/0] 611.1 [2/1] 774.7 [2/2] 774.9 [2/3]
1500 3249 5% ANA/Q 394.7 [2/0] 611.1 [2/1] 774.7 [2/2] 774.9 [2/3]
1500 3403 10% ANA/Q 611.1 [2/0] 774.7 [2/1] 774.9 [2/2]

1500 3094 0% WNA/Q 351 [2/0] 504 [2/1] 751 [2/2]
1500 3249 5% WNA/Q 351 [2/0] 504 [2/1] 751 [2/2]
1500 3403 10% WNA/Q 504 [2/0] 751 [2/1]
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