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Abstract 

Semantic-based segmentation (Semseg) methods play an essential part in medical imaging analysis to improve the 

diagnostic process. In Semseg technique, every pixel of an image is classified into an instance, where each class is 

corresponded by an instance. In particular, the semantic segmentation can be used by many medical experts in the 

domain of radiology, ophthalmologists, dermatologist, and image-guided radiotherapy. The authors present 

perspectives on the development of an architectural, and operational mechanism of each machine learning-based 

semantic segmentation approach with merits and demerits. In this regard, researchers have proposed different Semseg 

methods and examined their performance in a variety of applications such as medical image analysis (e.g., medical 

image classification and segmentation). A review of recent advances in Semseg techniques are presented in this paper 

by applying computational image processing and machine learning methods. This article is further presented a 

comprehensive investigation on how different architectures are helpful for medical image segmentation. Finally, 

advantages, open challenges, and possible future directions are elaborated in the discussion part, beneficial to the 

research community to understand the significance of the available medical imaging segmentation technology based 

on Semseg and thus deliver robust segmentation solutions. 

Keywords: Deep learning; medical imaging; optimization techniques; Transfer learning; semantic segmentation 

1. Introduction

Image segmentation is useful for medical imaging as it is crucial for analyzing and diagnosing a particular disease. 

The precise identification of region-of-interest (ROI) within the sample is a critical step to perform any feature 

segmentation. Semantic-based Image segmentation is a classification task at each pixel level as it allows us to detect 

biological structures and quantify the morphology. Further, it is useful because it will enable us to capture objects' 

shapes quantitatively and provide the means of doing high-resolution spatial statistics [1-3]. Most authors divide deep 

learning-based semantic segmentation into three different important categories: fully convolutional network (FCN), 

region-based, and weakly supervised segregation methods [5], as depicted in Figure 1. Region-based methods require 

domain experts to identify the region of interest (ROI) and precisely draw the boundaries for image segmentation 

tasks. The next step in these methods is correctly annotating every pixel according to the ground truth classes. So, 

these methods are time-consuming and tedious as they need domain experts and resources to select the region of 
interest (ROI). But one thing that shows the importance of these methods is that fully convolutional networks (FCN) 

based methods and weekly supervised methods use the knowledge generated by region-based methods. As region-

based approaches involve manual processes, these methods are feasible for small datasets. Secondly, if the images are 

very high resolution, it is difficult to correctly identify the boundary values through region-based approaches [6]. 

These methods are helpful for medical imaging because, for clinical image analysis, we need the help of domain 

experts like physicians to segment specific images for the prediction of some diseases. 

Weakly supervised segmentation, also known as semi-supervised segmentation methods, used automated 

algorithms for segmentation tasks with little interaction of the domain experts with the systems to accurately identify 

the results produced by these methods [7]. Domain experts may be required when selecting ROI, which will be 

generalized to the whole image using weakly supervised algorithms. Some examples of these methods are seeded 

region growing (SRG) algorithms that use the knowledge provided at the initial seed point and generalize it to a 

neighboring pixel to merge them and segment them accordingly [8]. Level set-based active contour models iteratively 

change the shape of the boundary by expanding or shrinking using automated algorithms. The advantage of using 
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these methods is that they do not need prior knowledge of ROI [9]. Another method is the localized region-based 

active contour technique in which information about foreground and background is collected using region parameters. 

The benefit of using a small, localized region is that it handles the heterogeneous texture accurately [10].   
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Fig 1: Classification of major semantic segmentation methods available for different kinds of medical image 

datasets. 

Fully convolutional networks (FCN) are fully automatic segmentation techniques because domain experts do 

not need to select ROI. But most of these methods involve supervised learning and require training data, e.g., deep 

neural networks, shape models, and random forests. However, if an unsupervised learning approach is used, we need 

some labeled images as validation and training data. Some challenges with FCN-based methods are the variation in 

image size, texture, shape, and ROI selection in low-resolution images [11]. Automatic segmentation methods usually 

contain fully convolutional models; since these are fully convolutional, we can change the input shape and the number 

of classes, which makes it efficient for semantic segmentation tasks [14, 15]. But sometimes, if we have noisy data 

for image analysis, image acquisition variation in different features can affect the output of automatic segmentation 

models. Methods like watershed algorithms, clustering techniques, and some Machine learning (ML) based models 

face global applicability challenges. More methods involving human features engineering with machine learning-

based support vector machine (SVM) and some other neural network (NN) is time-consuming, fails to process raw 

features, and cannot adapt to new features. Deep Learning (DL) based methods solve all these problems of other ML-

based arts. These methods can easily process raw data, generalize it on unseen datasets, and do not need domain 

experts for handcrafted features [12]. These approaches have shown effective results for semantic segmentation of 

natural scene images and biomedical imaging [13]. With upgraded CPUs and GPUs, training and test time are reduced; 

that is why deep learning methods are widely used in image segmentation, image classification, and other image 

analysis tasks. Multiclass segmentation using DL has many attractive qualities; first, it does not influence human 

factors and reduces segmentation time. In addition, it provides an opinion for spatial annotations to eliminate the 

manual efforts of experts for labeling samples and to perform semantic segmentation for various medical imaging 

modalities. 
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In this review article, we have reviewed available data sources and applications of semantic-based 

segmentation (Semseg) methods in the domain of medical imaging modalities. Figure 2 shows the organization of 

imaging modalities covered in this review paper about semantic-based segmentation. In the Semseg field, all papers 

are classified into subsections according to the applications concerning deep-learning (DL) algorithms and imaging 

modalities. In this article, we have explained the importance of image modalities in diagnosing human diseases using 

DL algorithms. To further highlight the research gap in this field, the new DL algorithms are also described that can 

be used in the future to diagnose image modalities. 

 

 

 

 

 

 

 

 

(a) 

 

(b) 

Fig 2: Organization of imaging modalities covered in this review paper about semantic-based segmentation 

of medical images, where figure (a) shows the selected research papers published for each modality, and figure (b) 

shows the number of samples used in each modality. 
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1.1. Paper Organization 

Section 1 introduces the problem and describes various segmentation methods used for different kinds of medical 

image datasets. These semantic segmentation methods for medical imaging can be categorized into three different 

classes, namely: (1) Region-Based Segmentation, (2) Fully Convolutional Neural Network (FCN), and (3) Weakly 
supervised segmentation. Section 2 describes the research protocol of our review paper. It also covers the research 

questions with the motivation to address them. A comparison of our paper to the existing published paper has been 

presented in this section 2. It also includes the research paper quality evaluation to define the protocols to select the 

best paper for our review. Finally, the detail about the database used to evaluate the performance of existing 

segmentation methods was demonstrated.  Section 3 illustrates the literature on developed segmentation methods. 

These include deep learning-based and multimodal-based segmentation schemes for biomedical image analysis 

problems. Section 4 presents a study about a deep learning model used for medical image segmentation, such as Model 

Compression Based, Attention Based, Encoder-Decoder Based, and Sequential Model-based Segmentation methods.  

Section 5 demonstrates the optimization functions for image segmentation which include: (1) Cross-Entropy, (2) 

Focal loss, (3) Dice loss. (4) Tversky loss, and (5) Exponential logarithmic loss. Section 6 discusses thorough literature 

on the semantic segmentation approaches used to diagnose various potential diseases. The current deep learning 
architecture, optimization function, and performance are discussed in section 7. This section also debated possible 

future research directions and presented future research prospects in medical image segmentation. Finally, our paper 

is concluded in section 8. 

1.2. Research Highlights 

The main contributions of this review article are as follows:  

• Semantic-based segmentation (Semseg) methods are presented in deep learning architecture.  

• A comparative study is presented for reviewed paper based on performance. 

• Existing challenges and problems in DL-based semantic segmentation approaches are discussed. 

• The challenges of Semseg applications are mentioned for other researchers.  

• Prospect for future work in this area for regular medical image segmentation.   

 

2. Research Protocol 

The research protocol described the complete layout of this review article, defining the methods used in this study. 

It also shows the state-of-the-art survey of recently conducted reviews about semantic segmentation methods for 

medical images. It will be helpful for beginners to learn about recent advancements in the semantic segregation of 

biomedical imaging. Accordingly, the evolution of semantic segmentation arts started from 2011 to 2022 for the 

medical imaging analysis is presented in Figure 3. This review describes s performance comparisons of different deep 

learning-based techniques and methods available for semantic segmentation tasks and explains the optimization 

functions used for semantic image segmentation to improve the performance measures. This review will also highlight 

the limitations of currently available methods with experiments and results comparisons.  

2.1.  Research Questions 

The research questions are the fundamental step of any study, either a literature survey or research project. 

This is the starting point of any kind of scientific research. Following are some important research questions 

highlighted in Table 1 that will be addressed in this review paper. 

 

2.3. Analysis of Articles 

The current trend of semantic-based segmentation (Semseg) methods for the diagnosis of different human 

diseases are described visually by Fig.3. This information is collected from different platforms such as PubMed and 

top journals from the years 2011 to 2022. In the year 2022, it is noticed that the latest trend is to use deep-learning 
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architectures in multimodal features are utilized by many researchers. To limit the scope of the review article, we have 

reviewed only Semseg methods used in the medical domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: An overview of the latest trend to show the methodological evolution in the development of semantic-based 

segmentation models for medical images 

 

2.2. Comparison with Existing Survey Articles 

We studied the literature of recently published review articles and avant-garde methods for semantic 

segregation of images pertaining to medical. We have shown an extensive comparison of our review article with some 

recently published review articles in well-reputed journals. Table 2 shows the difference between our review article 

and other available surveys and review papers. 
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Table 1: Summary of Research Questions and Motivations Involves in this Study. 

Table 2: Summary of existing survey papers on medical image segregation based on deep learning methods. 

S.No. Related Review Articles Reviewed up to Research Questions 

   RQ1 RQ2 RQ3 RQ4 RQ5 RQ6 RQ7 RQ8 RQ9 RQ10 

1 Işın, Ali et al.[5] 2016             

2 Anwar, Syed Muhammad, et al.[34] 2018              

3 Tongxue Zhou et al.[69] 2019                

4 Taghanaki, Saeid Asgari, et al.[2] 2020                   

5 Tajbakhsh, Nima, et al.[70] 2020                 

6 Wang, Risheng et.al.[156] 2022                  

7 Malhotra, Priyanka et.al.[157] 2022                

8 Our Review 2021,2022                     

 

S. No. Research Questions Motivations 

RQ1 What are the currently available semantic segmentation methods for biomedical images? To know more about recent studies on semantic segmentation methods for biomedical images. 

RQ2 What are the Deep Learning based improvements applied to medical image segmentation? To know about a recent famous research study about medical image segmentation. 

RQ3 What optimization functions used for semantic image segmentation to improve the performance measure? 
To know about semantic image segmentation approaches which used optimization functions to 

improve performance. 

RQ4 How are Encoder-Decoder Decoder-based methods helpful for medical image segmentation? To know the significant factor of Encoder-Decoder-based methods for the image. 

RQ5 What statistical measures can be used for performance evaluation of available methods? To understand the statistical measure used for performance evaluation. 

RQ6 
Why are weakly supervised or unsupervised methods frequently used in medical image segmentation 

compared to supervised or fully automatic semantic segmentation methods? 
To know about the methods of machine learning for image segregation pertaining to medical. 

RQ7 What are the current limitations and future guidance for semantic segmentation of medical images? To study and know about the limitations and future directions for semantic segmentation. 

RQ8 Which optimization technique performs well in segmentation tasks? To know and evaluate the performance of various optimization techniques. 

RQ9 Would the transfer learning technique improve the performance of segmentation tasks? To analyze the performance of several pre-trained models. 

RQ10 What kinds of datasets are used for medical image segmentation? 
To study and investigate various image benchmarks suitable for various medical image 

segmentation tasks. 
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2.4.  Papers Quality Evaluation 

This review study focuses solely on the previous research categories listed below: the paper written in 

English, which focuses on the medical image segmentation task. That work focuses on semantic segregation based on 

deep learning for medical image analysis. However, instance-based segmentation was disregarded from the 

exploration. The keywords "Semantic Segmentation and Deep Learning-based Semantic Segmentation" were searched 

for related papers. The four top digital databases were chosen to explore for a target research paper: (1) IEEE Xplore, 

(2) Science Direct, (3) ACM, and (4) Springer, as shown in Table 3. We also include others as a new column in the 

table below, which includes paper from other digital databases such as SPIE, MDPI, etc. These resources provide 

many research publications on semantic segmentation in medical image analysis. The research under consideration 

was published from 2015 through 2021. 

Table 3 

Number of Studies for Initial Search for Each Keyword for All Databases. 

Keyword Search Springer 
IEEE 

Xplore 

Science 

Wiley 
Science Direct Conferences Others 

Semantic 

Segmentation 
20 15 5 24 34 11 

Semantic 

Segmentation+ 

Deep learning 

28 18 10 77 30 18 

 

Three filtering iterations and screening methods were used to choose and search for a relevant research paper 

from these databases. The duplicate research paper was eliminated during the initial screening procedure. The second 

screening phase identifies and eliminates all irrelevant manuscripts by examining the title and abstract. All research 

papers that passed the second screening procedure were subjected to a full-text review in the third screening step. All 

iteration phases were subjected to the same eligibility criterion. The last group of research articles covers deep 

learning-based semantic segmentation and semantic segmentation. To consider the newly published work, the inquiry 

was undertaken in September 2021. Table 3 shows the total number of papers found in each database using the 

mentioned keywords for medical image segmentation. After applying the filtering and screening method, a total of 

167 papers were selected for this study.  

2.5. Segmentation Datasets for Performance Evaluation 

Collecting adequate data into the data set for any deep learning model segmentation is critical. The quality 

of the segmentation algorithm is determined by the high-quality image data provided by the experts and the associated 

label-standardized data set, which allows for fair comparison amongst systems. In this subsection, we have listed some 

of the datasets used in the recent existing literature. Table 4 demonstrates different datasets used for medical image 

segmentation. It shows the name of the dataset, modalities, total number of samples, and available URL of these 

datasets.  
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Table 4 

 Demonstrate the dataset used in Medical Image Segmentation. 

Dataset Name Modalities 
Total Number of 

Samples 
Available URL 

MSD MRI, CT 2633 http://medicaldecathlon.com/ 

BRATS MRI Not Reported https://www.med.upenn.edu/sbia/brats2018/data.html 

DDSM Mammography 5000 
http://www.eng.usf.edu/cvprg/Mammography/Databa

se.html 

ISLES MRI I66 http://www.isles-challenge.org/ 

LiTS CT 200 https://competitions.codalab.org/competitions/17094 

PROMISE12 MRI Not Reported https://promise12.grand-challenge.org/ 

LIDC-IDRI CT 1018 
https://wiki.cancerimagingarchive.net/display/Public/

LIDC-IDRI 

OASIS MRI, PET Not Reported https://www.oasis-brains.org/ 

DRIVE FUNDUSCOPY 40 https://drive.grand-challenge.org/ 

STARE FUNDUSCOPY 400 
http://homes.esat.kuleuven.be/~mblaschk/projects/reti

na/ 

CHASEDB1 FUNDUSCOPY 84 https://blogs.kingston.ac.uk/retinal/chasedb1/ 

MIAS X-Ray 322 
https://www.repository.cam.ac.uk/handle/1810/25039

4?show=full 

SCD MRI 45 http://www.cardiacatlas.org/studies/ 

SK110 MRI Not Reported http://www.ski10.org/ 

HVSMR2018 CMR Not Reported http://segchd.csail.mit.edu/ 

 

3. Overview of Semantic Segmentation (Semseg) Methods 

Semantic image segregation, categorized at the pixel level, is the process of grouping components of the image 

together that correspond to the object of the same class. Image segregation, like prediction at the pixel level, which 

categorizes every pixel. Convolutional neural networks have strong feature extraction capabilities; human image 

feature extraction or unnecessary image preprocessing are not required. As a result, CNN has recently been employed 

in medical image segregation.  Therefore, in this section, we focus on those methods which involve semantic 

segmentation for medical image segregation based on deep learning.  
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3.1. Deep learning-based segmentation 

The Convolutional Neural Networks (CNNs) is a primarily used algorithm in medical images and computer 

vision tasks. For instance, some studies shows the significance of deep learning CNN models such as Covid-19 

detection [153], Fetal ultrasound standard plane recognition [154], Biometric recognition system [158], pattern 

recognition system [159][160], brain function detection, and cardiovascular disease screening [152]. For example, A 

comprehensive review study [153] was proposed that focuses on the scope and contribution of AI to combat Covid-

19. Pu et al. [154] developed an automatic fetal ultrasound standard plane recognition model based on CNN and 

recurrent neural network (RNN) in the industrial internet of things (IIOT) environment. The proposed model learn 

spatial and temporal feature of the ultrasound video stream. The CNN component uses every video frame to identify 

the four potential fetal standard planes and other critical anatomical components of the fetus. To precisely localize and 

monitor fetal organs across frames, the RNN component collects the temporal information spanning adjacent frames. 

The proposed model is more accurate than the competing baselines. Chen et al. [152] proposed a configured DL 

framework, which comprises a library of DL model components and a library of MIA task elements to precisely 

describe different possible MIA activities for many diseases. The framework allows creation of a customized DL 

model by defining MIA tasks and setting DL model components in response to a specific MIA need for various 

diseases. 
Additionally, the structure of the DL model for each configuration can be further modified to enhance 

performance by comparison with the current machine learning (ML)/DL models. The key benefit of this approach is 

its ability to create flexible, individualized DL models and to continuously tweak the model structure to enhance model 

performance. But the generally Convolutional Neural Networks (CNNs) approaches apply to 2D images instead of 

3D images. In contrast, more medical data is available in 3D images. In [17], the authors proposed a fully 

Convolutional Neural Networks (CNNs) approach for 3D image segmentation based on volumetric. The author 

introduced the Dice overlap coefficient between the background and predicted segmentation as a novel objective 

function to optimize training data. Various acquisition procedures and various types of equipment are used to collect 

the medical dataset from different hospitals. The proposed method is evaluated in terms of two parameters such as the 

Hausdorff and Dice coefficient. The authors concluded that an improvement in experimental evaluation shows that 

the proposed method shows excellent performance on challenging datasets whereas utilized a bit more time than the 

previous method [17].  

The author in [16] highlights the central problem of segmentation in breast ultrasound images to diagnose 

breast cancer. This study overcame the problem of manual segmentation in breast ultrasound images by using the 

automated CNN classifier to segment the tissues separately. The convolutional neural networks (CNNs) classify breast 

ultrasound images into four functional tissues: mass, skin, fibro glandular, and fatty tissue. The proposed method is 

evaluated based on four quantities performance parameters: recall, Precision, F1measure, and accuracy. The author 

concluded that the value of all performance parameters reached over 80%, which shows that the proposed method 

could accurately segment the ultrasound images into functional tissues. The value of another evaluation metric, the 

Jaccard similarity index (JSI), also increases from 74.54% to 85.1% compared to existing studies. The author 

concluded that the proposed method could improve the other medical images and breast cancer clinical diagnosis. 

Similarly, some other authors have also proposed breast cancer segmentation methods using different image 

modalities, including Mammography, MRI, US, CT, and Optical imaging [80,81,82,83,84]. 

In [18], the author says that the real reason for benign situations of some skin cancers is the late diagnosis of 

cancer. The early detection of skin cancer, especially melanoma, is essential to prevent benign situations. It's a 

challenging process to detect the early skin cancer stages, even by specialists. The author addressed this problem by 

optimizing the Convolutional neural network (CNN) with a whale optimization algorithm. The whale optimization 

algorithm inspires the process of bubble-net hunting in humpback whales to trap the prey. For performance analysis, 

the proposed optimized Convolutional neural network (CNN) method was compared with existing ten methods, 

including Inception-v3, semi-supervised method, ResNet, Spot-mole tool, Ordinary CNN, AlexNet, and VGG-16, in 

terms of five performance parameters such as sensitivity specificity, NPV, PPV, and accuracy. The author concluded 

that the proposed method shows virtuous performance for diagnosing skin cancer [18]. Similarly, other authors have 
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also proposed skin cancer segmentation methods using different image modalities, including Surface Microscopy, US, 

MRI, and Confocal Microscopy [93,94,95,96,97]. 

The author in [161] proposed a new deep medical image segmentation framework named dual swin 

transformer U-Net (DS-TransUNet), to integrate the hierarchical swin transformer into both the encoder and the 

decoder of the conventional U-shaped architecture. Their model takes advantage of the self-attention computation in 

the swin transformer and the specially developed dual-scale encoding, which can accurately simulate the non-local 

relationships and multiscale contexts for improving the semantic segmentation quality of different medical images.  
They also proposed a well-designed transformer interactive fusion (TIF) module to combine multiscale data using the 

self-attention method successfully. To better investigate the long-range contextual information during the up-sampling 

process, we also incorporate the swin transformer block into the decoder. Extensive tests on four typical medical image 

segmentation tasks show that DS-TransUNet works well, and their method performs noticeably better than state-of-

the-art techniques. Recently, in another work, two deep learning networks, USegTransformer-P and 

USegTransformer-S were proposed for medical image segmentation tasks. The presented models combine 

transformer-based and convolution-based encoders to segment medical images with high precision while taking 

advantage of local and global features. Both proposed models show more promising results than the previous state-

of-the-art models in a variety of segmentation tasks, including segmentation of brain tumors, lung nodules, skin 

lesions, and nuclei. 

In a previous study [19], the author compares deep learning network capabilities with other classifiers such 

as SVM to evaluate computational efficiency and performance. The author considers two networks named the network 

in network (NIN) and LeNet to compare the performance and computational efficiency in the detection and 

classification problems. The experiments performed on the art images, burn wounds images, and facial databases show 

differences between deeply learned network architectures in terms of computational efficiency and performance. By 

comparing both deep learned networks, the author concluded that the architectures of NIN and LeNet are more 

efficient for low complex classification than more complex classification. The more input size may not assure better 

results. However, this problem can be limited by adding more layers to a network. 

The semantic segmentation of the medical images in the context of 3D multimodal is a challenging task 

compared to 2D single modal. In this study, the author focuses on the problem that segmentation of 3D multimodal 

medical images with semi-supervised learning is such a difficult task. To address this problem, the author proposed 

an exciting novel approach named Generative Adversarial Networks (GANs) to differentiate in segmentation networks 

that the output image either belongs to labeled or unlabeled images. The method supports unlabeled data to categorize 

between generated fake and true patches appropriately. The MRBrain-2013 and Iseg-2017 datasets of Brain MRI 

images are considered to evaluate the proposed method for the segmentation problem. The proposed segmentation 

method is compared with the state-of-the-art segmentation networks trained on fully supervised datasets. The results 

show a significant improvement in the proposed method's DCS and ASD parameters. It is concluded that the proposed 

method can reduce the burden of acquiring annotated medical images. 

In a previous study [21], the author proposed a method to overcome the accuracy problems in several segmentation 

results. The accuracy issues occur due to dependency on reliable appearance models and a better initial guess. An 

approach proposed based on distance regularized level set named fully automated non-rigid segmentation. The Deep 

Belief Networks (DBNs) were initially utilized for training the datasets based on the results extracted from the 

structure inference. The major problem of result accuracy was stunned by DBNs that formed reliable primary guess 

and appearance models. To check the accuracy of the proposed innovative method, the experiments are performed on 

the demanding MICCAI-2009 left ventricle (LV) segmentation datasets. The results conclude that the proposed 

method is modest compared to the existing methods in terms of accuracy results on the MR images in left ventricle 

segmentation. The proposed method might encompass the 3D geometric model for the segmentation process. 

 Diagnosing chest X-ray (CXR) digital images is a demanding problem due to the inconsistency shape of the 

lungs of individuals and the existence of robust edges on the clavicle and rib. The automated segmentation of lung 

approaches is applied to diagnose the chest X-ray (CXR) digital images. The author proposed an innovative hybrid 

method for lung segmentation to conquer the deficiency of the existing lung segmentation method. The new method 

is based on the fusion of distance regularized level set and deep structured inference. Deep learning produces intense 
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training with minor annotated datasets, down-segmentation, and structured inference. The advantages of the level set 

approach are the appearance prior, optimization techniques, and use of shape. The author evaluated the proposed 

method using the Japanese Society of Radiological Technology (JSRT) dataset, which is widely available. In this 

paper, the author concluded that the new lung segmentation method produces more accurate results than others based 

on the initial guess in DSC and ACD. The average accuracy of lung segmentation results significantly increases from 

94.8% to 98.5%. The quantitative results show that the initial guess used in the method proposed compared to other 

methods gives the best results. [22]. Similarly, other authors have also proposed segmentation methods to examine 

the chest and lungs using different image modalities, including X-ray, CT, and MRI [76,77,78,79]. Figure 4 helps the 

readers to swiftly learn the ratio of a diverse range of medical imaging modalities for segmentation.  

 

 
Fig 4: Distribution of Different image modalities used in cited papers. 

 
In the research article [23], the author proposed a new method based on the combination of the level set and 

deep learning designed for the automated segmentation of the heart's left ventricle from cardiac cine magnetic 

resonance (MR) data.  Combining deep learning and level set aims to defeat the segmentation problems as interesting 

objects visually appear in huge shapes and variations in appearance. The level set method uses a small, annotated 

training dataset, but there are still limitations of large shapes and variations in appearance. Deep learning arts can 

overcome the drawbacks of an interesting visual object's oversized shape and appearance variations. The deep learning 

method must utilize small, annotated training to report the variations and regularization to create an excellent 

overview. So, combining both methods gives precise segmentation results with small, annotated training datasets. The 

proposed method is tested on the challenge segmentation database as MICCAI 2009 left ventricle, which holds 15 

sequences for testing, 15 for training, and 15 for validation. The experiment determined more accurate results for fully 

automated segmentation comparatively semi-automated problems. 

Similarly, authors in [27] suggested a lung segregation method using deep learning U-Net architecture. Their 

approach eliminated unnecessary information from lung CT images and obtained excellent results. Segmenting lesions 

or organs from medical images has long been a problematic global problem because of the diversity of parameters 

such as size, shape, location, and severity. To address this issue, Liu et al. [151] propose a novel region-to-boundary 

deep learning model. To begin, they employ a U-shaped network with two branches behind the final layer, one of 

which generates the target probability map and the other the corresponding signed distance map. Second, using the 

signed distance map and the acquired multi-scale characteristics, they concentrate on the boundary of the target lesions 

or organs to be segmented. To obtain the results, they combine the region and border features. The study demonstrates 
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that the suggested model outperforms the comparable approaches for most evaluation criteria, particularly boundary 

tracking. 

Few studies have been found to segment the bacteria from microscopic images for anthrax disease detection. 

For instance, the study in [149] proposed a deep learning framework based on two networks, UNet and UNet++ to 

automatically segment and detect the anthracis bacteria in microscopic images. This method offers the same level of 

accuracy as the human diagnostic specialist, and in some cases, it outperforms. According to research, B. anthracis 

bacteria segmentation of microscopic pictures taken under various circumstances can be automated using these deep 

architectures, especially UNet++. This work achieved an accuracy of 97% on both patch and whole raw image 

datasets. However, in UNet architecture, skip connection plays a vital role in these segmentation tasks. Therefore, 

Hoorali et al. [150] proposed the improved version of UNet architecture for Bacillus anthracis bacteria and immune 

cell segmentation and detection using microscopic images. The proposed approach, known as IRUNet, integrates 

multi-scale characteristics and benefits from inception and residual blocks in skip connections to extract excellent 

segmentation features. This proposed study outperformed state-of-the-art techniques and produced better 

segmentation results, with a precision of 92.8%, recall of 93%, and dice score of 92.9%. Many authors applied 

semantic segmentation methods to brain images using different modalities, including MRI, CT, and PET [71-75]. 

Table 5 summarizes some state-of-the-art methods using deep learning techniques for biomedical image segmentation. 

Similarly, Table 6 shows the list of some state-of-the-art papers using segmentation methods for Organs and 

substructure segmentations with different image modalities. 

Table 5  

Cited papers using deep learning techniques for biomedical image segmentation. 

Cited 

Paper 
Modality Method Description 

Performance 

metrics & Results 

Badea et al. 

[19] 

Medical 

images 

CNN 

(LeNet and 

NiN) 

CNN-based models LeNet and Network 

in Network (NiN) are used to classify and 

detect skin, burn, light burn, and severe 

burn medical images. 

LeNet Accuracy 

75.91% and 50.01% 

NiN Accuracy 

55.7% 

Mondal et 

al.[20] 

Brain MRI 

dataset 
GAN 

Using generative adversarial learning, the 

authors used a few shot medical image 

segregation in 3D Multi-model. They 

used Brain MRI datasets for the 

segmentation task. 

DICE Score 0.75 

 

Milletari et 

al.[17] 

Prostate MRI 

images 
V-Net 

Proposed volumetric CNN for the 

segmentation of MRI prostate volumes by 

optimizing dice overlap coefficient 

between predicted segmentation and 

ground truth annotations. 

DICE Score 82.39 

Xu, Yuan, 

et al.[16] 
3D US CNN 

Proposed segmentation of breast 

Ultrasound (US) images into four tissues 

which include skin, mass, fibro epithelial 

tissues, and fatty tissues, by using CNN, 

which indicates a centered pixel in an 

image block 

Accuracy, 

Precision, recall, 

and F1 score all 

metrics are above 

80% 
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Zhang N, 

et al.[18] 

Dermquest 

and DermIS 

databases 

Whale 

optimization 

algorithm 

For the early detection of skin cancer, the 

authors used a whale optimization 

algorithm to optimize the CNN. They 

used half value precision function for 

validation of  optimized skin cancer 

system 

Specificity, 

Sensitivity, 

Accuracy, NPV, 

PPV 

All metrics are 

between 65% - 90% 

Q Abbas et 

al. [24] 

 

DIARETDB1, 

FAZ, 

MESSIDOR, 

Prv-DR 

Multilayer 

deep learning 

neural 

network 

(DLNN) 

An automatic recognition system for five 

severity levels of diabetic retinopathy is 

developed through deep visual features. 

Using a semi-supervised multilayer deep 

learning algorithm. 

 

AUC 0.924 

Sensitivity 92.18 

Kemnitz, 

Jana, et 

al.[25] 

Thigh MRI 

Images 
U-Net 

The authors applied a fully automated 

approach to segment muscles and adipose 

tissues in cross-sectional area compared 

with manual segmentation to understand 
musculoskeletal diseases. 

Dice Similarity 

(0.96 ± 0.01) 

Orlando, 

Nathan, et 

al. [26] 

3D TRUS 

prostate 

images 

U-Net 

They proposed a supervised deep learning 

method for prostate segmentation in 3D 

TRUS images from different facilities. 

This method is helpful for needle-based 

prostate cancer procedures. 

Absolute DSC, 

Recall, Precision, 

VPD, MSD, and 

HD 

Above 90% 

Ngo et al. 

[23] 
MRI RBMs 

A segmentation system was proposed to 

get borders of the left ventricle (LV). All 

slices of end-diastole (ED) and end-

systole (ES) are used in the segmentation 

process. The user manually selected the 

ED and ES volumes. 

DICE Score: 90% 

 

Skourt et 

al.[27] 

Lung CT 

images 
U-Net 

They suggested a lung segregation 

method using deep learning U-Net 

architecture. To erase unnecessary 

information from lung CT images, their 

approach achieves excellent results. 

DICE coefficient 

index: 0.9502 

     

 
 
Table 6   

List of some state-of-the-art papers using segmentation methods for organs and substructure segmentations with 

different image modalities.  

 
Organ Imaging Modalities Papers using Segmentation Methods 
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Brain MRI, CT, PET 

de Brebisson et al.[71], 

Chen, Hao, et al. [72], 

Roy, Abhijit Guha, et al. [73], 

Wang, Li, et al. [74], 

Devunooru, Sindhu, et al[75] 

Chest X-ray, CT, MRI 

Islam, Jyoti, et al.[76], 

Gordienko, Yu, et al.[77], 

Skourt, Brahim Ait et al.[27], 

Chen et al.[78], 

Mittal, Ajay.[79] 

Breast Mammography, MRI, US, CT, Optical imaging 

Kallenberg, Michiel, et al. [80], 

Almajalid, Rania, et al. [81], 

Caballo, Marco, et al. [82], 

Cheng, Jie-Zhi, et al. [83], 

Zeleznik, Roman, et al. [84] 

Prostate MRI, PET, US 

Cheng, Ruida, et al. [85], 

Guo, Yanrong, et al. [86], 

Anas, Emran, et al. [87], 

Tian, Zhiqiang, et al. [88] 

polyp Colonoscopy, CT, MRI 

Jha, Debesh, et al. [89], 

Brandao, Patrick, et al. [90], 

Fan, Deng-Ping, et al. [91], 

Guo, Yunbo, et al. [92] 

Skin 
Surface Microscopy, US, MRI, Confocal 

Microscopy 

Xu, Lang, et al.[93], 

Tang, Jinshan.[94], 

Oliveira, Roberta B., et al.[95], 

Jin, Qiangguo, et al. [96] 

Thomas, Simon M., et al.[97] 

 
4. Deep learning-based Architectures 

The authors have covered deep-learning architectures (DLAs) in this part, focusing on current machine learning 

methods. Several research studies indicate that DLAs-based algorithms achieved high accuracy in detecting retinal 

features to determine appropriateness for other authors. We discussed the principles, structures, and strategies typically 

used to detect lesions using visual cues in this part. DLAs are relatively new ways of performing imaging analysis in 

real-time situations. These DLA approaches were used primarily on images for pattern recognition and feature learning. 

DLAs have been employed in cutting-edge systems for the segmentation of lesions in a variety of different ways.  A 

comparison of DLA systems may be found in Table 5, which explains each and compares them. To assist potential 

readers, the authors have split DLAs into three main categories to perform medical image segmentation, i.e., Model 

compression, Attention, Encoder-Decoder-based, and sequenced based on their goal.  
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4.1. Model compression-based image segmentation 

For the segmentation of larger medical images like high-definition resolution and volumetric, 2 Dimensional 

images, e.g., CT, MRI, and ultrasound (US) images, several methods have been proposed to be compressed. The 

author in [28] applied a neural network-based search method for improved organ segmentation on MRI, CT, and US 

images by using reduced U-Net architecture. Authors in [29] redesigned U-Net architecture to make it memory 

efficient for 3D imaging segmentation by applying group normalization and leaky ReLU activation function. 

Similarly, authors in [30] proposed dilated CNN with fewer parameters than previous methods. Authors in [31][32] 

focused on the weight’s quantization of deep neural networks to compress segmentation models. 

4.2. Attention-based image segmentation 

 

Attention-based models were proposed for the segmentation of biomedical images in past years. Authors in 

[33] presented an optimized attention-based model for the segmentation of prostate from MRI pictures with a better 

score in accuracy as set parallel to some baseline’s methods, e.g., FCN [35] and V-Net [17]. Similarly, authors in [36] 

designed an attention-based method that is multi-level to segregate abdominal organs from MRI pictures. A dilated 

convolution base block for 3D medical image segmentation is used to preserve more dilated attention [37]. Similarly, 

some other papers have also used attention-based architecture for semantic segmentation of biomedical images 

[38][39][40]. 

 

4.3. Encoder-Decoder-based image segmentation  

In these methods, images are normalized using CNN-based preprocessing arts before going through image 

segmentation tasks. Encoder-decoder architectures in medical image segmentation have shown better MRI, electron 

microscopy segregation, CT, liver, and prostate segregation scores from MRI scans and CT, respectively [41]. Authors 

in [42] designed a convolution dilated block to preserve the contextual information for the segmentation of medical 

images. Authors in [43] have proposed a method to compare a tumor image with a healthy image, like the presence of 

a domain compared with the absence of a domain. In the next step, their proposed method learned to add removed 

tumors to healthy images. They transformed an image into an object of interest. Authors in [44] redesigned a method 

by skipping long connections in U-Net architecture. They performed nodule segmentation in CT scans of chest images, 

liver segregation from CT images of abdomen, polyp segmentation from colonoscopy images and videos, and nuclei 

segregation in microscopic images.  
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Fig 5: U-Net architecture proposed by Ronneberger et al. 2015. [45] 

 
4.4. Sequenced Models 

Recurrent Neural Networks (RNN) architecture was proposed in the past to handle the sequences. For example, 

the Long Short-Term Memory (LSTM) model based on RNN is used for self-loop to enable the gradient flow for more 

time [46]. RNN has been widely used in medical image analysis to shape the temporal dependency in image sequences. 

Authors in [47] proposed a method to combine the spatial and temporal information for the image segmentation task 

by using a fully convolutional network (FCN) combined with RNN. Similarly, for brain MRI, authors in [48] used 

LSTM with the combination of CNN to enhance the segmentation and temporal relationship in 4D volumes. For 

pancreas segmentation from CT images, authors in [49] used U-Net for initial segmentation probability and later 

improved them using LSTM. Some other authors have also applied RNN, LSTM for medical image segmentation 

tasks [50][51][52]. 

5. Optimization Functions used for image Segmentation 

 
5.1. Cross-Entropy 

Pixel-wise cross-entropy loss is commonly used for image segmentation. The benefit of using this loss 

function is that it focuses on each pixel individually. It compares the class prediction values with one-hot-encoder 

target vector or ground reality values. In the situation of binary segregation, if 𝑃 (𝑌 = 0 ) = 𝑝 and 𝑃 (𝑌 = 1 ) = 1 −

 𝑝. Logistic/Softmax function can be used for prediction and defined as: 

 𝑃(�̂� = 0) =
1

1+𝑒  − 𝑥  =  �̂� and 𝑃 ( �̂� =  1 )  =  1 −
1

1+𝑒  − 𝑥 
=  1 −  �̂�                                      (1) 

Where the output is x. Now cross-entropy is to be written as: 

Cross − Entropy( 𝑝 , 𝑝 ̂)  = − ( 𝑝 log  ( 𝑝 ̂) + ( 1 −  𝑝 ) log  ( 1 −  𝑝 ̂) )                                (2) 

For multiclass (multi-region) segmentation, this equation is to be defined as: 
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Cross Entropy = − ∑   classes 𝑝log   �̂�                                                                                          (3) 

5.2. Focal loss 

If the emphasis of the CNN is more on complex examples and to reduce the impact of easy examples, Author 

[53] added (1 − �̂�)𝛾 term to the cross-entropy loss function is: 

FL(𝑝, �̂�) = −(𝛼(1 − �̂�)𝛾𝑝log (�̂�) + (1 − 𝛼)�̂�𝛾(1 − 𝑝)log (1 − �̂�)) 

Yields the balanced cross-entropy (BCE) if we set 𝛾 = 0. 

5.3. Dice loss 

In image segmentation, Dice loss based on dice coefficient is commonly used. It measures the intersection 

between two different samples, and F1 score is equivalent to it, which is very commonly used in image classification 

and segmentation tasks. The range of dice coefficient is between 0 and 1, where Eq. 1 shows that samples overlap 

entirely. The Dice coefficient (DC) can be calculated as: 

DC =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
=

2|𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
 

Similarly, intersection over the union (IoU) known as Jaccard matric [4] can be calculated as: 

IoU =
𝑇𝑃

𝐹𝑁 +  𝑇𝑃 + 𝐹𝑁
=

|𝑋 ∩ 𝑌|

|𝑋 | + |𝑌 | − |𝑋 ∩  𝑌|
 

Where TP is the true positive, FN is the false negative, and FP is the false positive. 𝑋 𝑎𝑛𝑑 𝑌 are anticipated 

and ground reality segregation values, respectively. We can observe that  IoU ≤ DC. When we use DC as a loss 

function, this can be written as the Dice loss (DL) function [17]. 

DL( 𝑝, 𝑝 ̂) =
2⟨ 𝑝,  �̂�⟩

∥ 𝑝 ∥1 + ∥ 𝑝 ̂ ∥1

 

Where 𝑝 is the ground reality and �̂� is the forecasted segregation. And 𝑝 ∈  {0 ,1 }𝑛  and  0 ≤  𝑝 ̂ ≤  1, where ⟨⋅,⋅⟩ is 

the dot product between 𝑝, �̂�. 

5.4. Tversky loss 

It is a generalization of Dice loss (DL) to address the issue of data imbalance, FN and FP level to be controlled, 

Tversky loss (TL ) [55] weighs them as the equation given below: 

TL( 𝑝, 𝑝 ̂) =
⟨ 𝑝 , 𝑝 ̂⟩

⟨ 𝑝 ,  �̂� ⟩ + 𝛽( 1 − 𝑝 , 𝑝 ̂⟩ + ( 1 − 𝛽)( 𝑝 , 1 − 𝑝 ̂)
 

If 𝛽 = 0.5 untangle the equation to DL(𝑝, �̂�) as mentioned above. 

(4) 

(5) 

(6) 

(7) 

(8) 
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Fig 6: Representation of different deep-based semantic segmentation models described in this review paper. 

 

5.5. Exponential Logarithmic loss 

Authors [56] proposed exponential, logarithmic dice loss to improve the segmentation accuracy for the 

samples with a large variability in the sample size and small structures. They computed the weighted sum of 

exponential, logarithmic dice loss (ℒeld ) and weighted cross-entropy loss (ℒwece ).  
ℒ = 𝑤eld ℒeld + 𝑤wece ℒwece  

Where 

ℒ eld =  𝐄 [ ( −ln  ( 𝐷𝑖 ))
𝛾𝐷

 ],  and 

ℒwece = 𝐄 [ ( −ln ( 𝑝𝑙 ( 𝐱 )))
𝛾𝐶𝐸

]. 

x Indicates the pixel's position, 𝑖 is the projected label, and 𝑙 is the ground reality label. 𝐷𝑖 shows the flattened dice 

loss, 𝛾𝐶𝐸 and 𝛾𝐷used to control the nonlinear behavior of corresponding loss functions. 

In medical image segmentation, the issue of class imbalance has decreased the performance of image 

segmentation tasks. But measures as mentioned above of overlap methods (Dice loss, Tversky loss, and Exponential 

Logarithmic loss) have shown good performance to overcome class imbalance issues. 

 
 
 

6. Applications of Semantic-based Segmentation 

This section illustrates a comprehensive overview of the recently published semantic segmentation arts that 

use multimodal medical images to diagnose significant diseases, as shown in Fig. 6. The discussed literature will aid 

a rigorous value to open new research ways to improve researchers' interest in presenting highly efficient products for 

the severe diseases lays down in the medical image analysis domain. 

 

6.1. Semantic Application to Skin cancer 

Skin lesion segmentation considers a vital indicator for diagnosing skin cancer in dermoscopy samples. 

However, the variance in skin lesion shapes, color, texture, and the existence of poor contrast between regular features 

and lesions make crucial the process of skin lesion segmentation. In literature, the involvement of a deep learning 

technique called convolution neural network (CNN) has shown phenomenal performance for skin lesion segmentation. 

Hasan et al. [98] projected learned discriminated features on pixel-level using depth-wise separable convolution 

instead of standard convolution to segment skin lesions, as shown in Fig. 7. Their network outperformed U-Net and 

FCN8s having 3.6% and 6.8% mean intersection over union (mIOU) on the ISIC-2017 dataset of dermoscopic images.  

 

(9) 

(10) 

(11) 
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Fig 7: Skin lesion segmentation results by [98] where the left column represents the original samples and the right 

column show the segmented masks having Dice coefficient (top-left) and IoU (top-right).  

 

While in a previous study [99], a topology named fully convolution and dual path (FC-DPN) was 

implemented to perform skin lesion segmentation, as shown in Fig. 8. The authors fine-tuned FC-DPN by employing 

sub-DPN projection and sub-DPN processing blocks and captured the most representative and distinguishable features 

to achieve robust segmentation results. The experimental study incorporated two datasets named ISBI 2017 and PH2 

and obtained 88.13%, 80.02% of Dice coefficient and Jaccard index values on ISBI 2017 and 90.26%, 83.51% on 

PH2, respectively.  

 

Fig 8: Given are eight samples of skin lesion segmentation results on test images, where (a)–(d) are nonmelanoma 

lesions, and (e)–(h) are melanoma lesions. The red contour shows the segmentation result, and the blue depicts the 

ground truths [99]. 
Another alarming factor called hair existence in dermoscopy samples affects the diagnostic accuracy of skin 

lesions. Li et al. in [100] proposed a specialized deep learning framework to remove digital hair with high accuracy. 

They trained U-Net on the train set of the ISIC 2018 benchmark to achieve precise hair masks and then presented a 

novel free-form image inpainting network (Gated Convolution and SN-PatchGAN) for the inpainting of any hair gap 

as exhibited in Fig. 9. The hair gap inpainting task is evaluated using their proposed structured similarity (SSIM)-

based single-image digital hair removal art called Intra-SSIM and outperformed existing approaches. 
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Fig 9: A visual example to show the texture change inside the tumor region, where figure (a) shows the input 

dermoscopic image, (b) represents the image inpainting result for hairs removal after using (b) DullRazor [8], (c) 

Huang et al. method [9], and (d) their proposed system. The value of MSE [100] is also calculated. 

 

With the application of images of dermoscopic skin laceration, Jin et al. [101] presented a new idea of 

waterfall dissemination of knowledge in various sub-networks. When combined with cutting-edge skin laceration 

diagnosis and segregation algorithms, the proposed CKDNet architecture produced competitive results without any 

additional data. Compared to the ISIC 2017 and 2018 datasets, the provided model had a superior JA of 0.800 and 

ACC of 0.946, contrasting the techniques. Figure 10 represents the segmentation results. 
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Fig 10: An example of tumor segmentation results proposed by different loss functions and the CKDNet [101] method. 

Gu et al. [102] implemented a technique that combines an advanced network structure DE-Net with a unique 

loss function to look deeply into the skin laceration boundaries to obtain more refined segregation and to enhance 

further the skin laceration boundaries on necessary segmentation results as illustrated in figure 11, the novel entirety-

center-edge loss function is suggested. The EIGM, which includes all of these procedures, has a Dice score of 0.8662 

and a Jac of 0.7887, which is higher than the prior methods' statistics.  

 

Fig 11: Another visual example of segmentation results obtained by the DE-Net technique [102]. In this figure, the 

green contour is ground truth (GT), and the red contour is the segmentation results of the ISIC-2017 dataset. 

 

By applying FCNs, Kaymak et al. [103] suggested an extensive investigation for a skin laceration segregation 

application that will lead to melanoma identification, the fatal type of skin cancer. The application used the 

FCNAlexNet, FCN-8s, FCN-16s, and FCN-32s architectures, all well-known FCN architectures. The FCN-AlexNet, 

FCN8s, FCN-16, and FCN-32s models perform much better, with accuracy rates of 94.461 percent, 94.811 percent, 

94.5818 percent, and 94.5202 percent, respectively.  Figure 12 demonstrates the visual example of segmentation 

resultsthe .  
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Fig 12: A visual example of FCN network architecture [103] for dermoscopic lesion delineation contour. 

Sarker et al. [104] proposed SLSNet, a GAN-based model for skin laceration segregation that is effective and 

easy. A 1-D kernel factorized network, variable scale aggregation, channel attention, and position mechanisms are 

included in the proposed model. SLSNet summarises the findings and contributions on the ISBI 2017 test and ISIC 

2018 validation datasets. It provides precise segregation results with sensitivity, accuracy, specificity, Jaccard index, 

and Dice coefficient of 87.81 percent, 97.61 percent, 99.92 percent, 81.98 percent, and 90.63 percent. Moreover, the 

Jaccard index of 87.81 percent, 97.61 percent, 99.92 percent, 81.98 percent, and 90.63 On the ISIC 2018 validation 

dataset, the result shows a threshold JSC score of 78.4 percent was achieved. A visual representation of their lesion 

segmentation outputs is given in figure 13.  

 

Fig 13: An example of various loss functions when calculated on ISBI 2017 dataset for lesion segmentation by 

[104]. 

 

Lei et al. [105] presented an unconventional yet effective GAN model for skin laceration segregation using 

dermoscopy pictures. This model comprises two modules. The first bypass the connection, and the other uses the 

dense dilated convolution block in the UNetSCDC module to improve distinctive feature representations and save 

more detailed information on authentic segregation. The significant conclusions from the initial review are that the 

DAGAN model, with 0.935 accuracies, outperforms the existing UNet-SCDCcon and UNet-SCDCgen models, which 

have 0.900 and 0.889 accuracies. Figure 14 illustrates the proposed segmented method results.  
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Fig 14: Intermediate feature visualization of proposed DAGAN. The first and second images are the original input 

and ground truth, respectively. Two feature maps are randomly extracted from each layer. These feature maps illustrate 

that the network can extract adequate information from target regions [105]. 

Tang et al. in [106] demonstrated a unique DL-based model for skin laceration segmentation, as seen in figure 

15 on a dermoscopy picture collection. In this model, the AFLN is adjusted to increase variable scale feature learning 

capacity, while DGCL is employed to overcome the problem of overfitting. Additionally, the STBCRs address the 

issue of over-segregation. Compared to existing models, the combination of AFLN DGCL and AFLN DGCL 

framework produces a significantly higher accuracy score of 0.963 and 0.966, respectively. 

 

Fig 15: The segmentation results obtained by different segmentation models. The red boundary is obtained by ground 

truth, and the green boundary is obtained by each prediction [106]. 

Arora et al. [107] introduced an AG-based customized U-Net model for automated skin laceration 

segregation, as shown in figure 16. The Attention Gates (AG), which eventually adds Tversky Loss (TL) as the output 

loss function, pays close attention to the skip connection’s tiniest and most subtle elements. The GN efficiently extracts 

the feature maps, and the AGs are in charge of digging out high-dimensional information from low-dimensional data. 

Extensive testing on the ISIC 2018 dataset revealed that this strategy achieved superior accuracy and a Jaccard score 

of 0.95 and 0.83, outperforming cutting-edge segregation strategies. 
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Fig 16: An example of segmentation results on dermoscopic images by the proposed model [107] and compared with 

the conventional methods, where figure (a) input dermoscopy image, (b) Given ground truth image, (c) segmentation 

results of U-Net, (d) the segmentation results of SE block on basic U-Net, (e) results of BCDU network (with 1 dense 

unit), (f) results of U-Net (with all 64 filters) network and (g) results of the proposed Att_U-Net+GN+TL model. 

 

 

6.2. Semantic Application to Breast Cancer  

The most common type of cancer in women worldwide is breast cancer. It is also the leading cause of death. 

If identified early, it could save the patient's life. Breast ultrasound (BUS) has a poor detection rate and relies highly 

on the operator's abilities. Automated breast ultrasound (ABUS) has grown in popularity as a result of the potential 

limitations of ultrasound. Recent theoretical advances have been achieved in classifying lesions based on area and 

contour features. The SC-FCN-BLSTM network was presented by Pan et al. [108] for ABUS tumor segregation. The 

SC-attention module is customized to account for usable, finer-grained geographical information and semantic 

information. SCBLSTM module is available on top, which helps decrease false positives and improve segmentation 

efficiency. This method was notable since it outperformed most cutting-edge approaches for tumor segregation, with 

a DSC of 0.8178 and an accuracy rate of 0.8292. Figure 17 depicts the visual example of the original image and 

segmented result using the proposed method.  
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Fig 17: A visual example of wrong detection results, where figure (a) shows the original input image. (b) is the 

segmentation results using the SC-FCN-BLSTM method [108]. 

A framework for FGT and breast segmentation was designed by Huo et al. [109] on the principle of deep-

learning through nnU-Net. This model was used to measure the volume of breast gland tissue. The method provided 

high accuracy and segregation across various Mr imaging and breast categories. It did so without relying on additional 

pre and post-processing procedures. Conclusively, a model based on machine learning deduced significant outcomes 

for FGT and breast segregation. Figure 18 shows the segmentation results.  

 

Fig 18: Segmentation result produced in [109] by automatic segmentation technique compared with ground truth of 

MR scan from the three slices such as first, middle, and last slices. 

A digital mammogram is used to detect breast cancer and its segregation, as shown in figure 19. Modified 

Differential Evolution (MDE) is an upgraded form of the Slime Mold Algorithm proposed by Liu et al. [110] where 

MDE-based multilevel models produced unprecedented image segregation results. It was extensively validated on 

publicly available databases. In comparison to other imaging models, the advanced model produced notable outcomes 

for duct breast invasive ductal carcinoma image datasets.  
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Fig 19: The segmented results at threshold value 20 [110]. 

Pawar et al. [111] used this technique to analyze the pectoral muscle. The heuristic approach computed 

significant results of 86.16% in contrast to the non-heuristic approach with an 82.23% accuracy rate. This algorithm 

works with mammograms of various shapes, sizes, and textures and generates noteworthy outcomes. Figure 20 shows 

the different segmentation results.  
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Fig 20: Subjective and objective assessment of the proposed algorithm (a) Correct segmentation (b) Acceptable 

segmentation (c) Under segmentation (d) Over segmentation [111]. 

Another segregation model that can detect and reduce noise was presented by Zou et al. [112]. During model 

training, the network was monitored with the probability distribution of samples to differentiate noises. The model's 

noise index and output for the two parameters generate output like the previous version. The function of the technique 

is to get more feature information on segmentation. In contrast to models in a publicly available dataset BUSI, the 

method’s output presented in this paper is more robust and superior, with 87.2 % precision and 88.6 % recall, 

respectively. Figure 21 demonstrates the segmentation results.  
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Fig 21: The segmentation results were compared under four conditions on BUID [112]. 

Yan et al. [113] presented a two-stage model based on coarse-scale mass detection with a multi-stage 

detection strategy. It uses dense and nested skip connections to incorporate fine-scale mass segregation. The outputs 

on the INbreast dataset confirmed that the presented model surpasses other techniques in terms of robustness and 

generalizability. The model generated an outcome of 80.44% Dice, equal to avant-garde performance in mass 

segregation on the publicly available database. Figure 22 exhibits the segmentation results. 

 

Fig 22: Mass segmentation using two-stage method without (a) and with (b) multi-scale fusion (MSF). Yellow, red, 

and green stand for final detection, segmentation, and ground truth [113]. 

 

A model based on VEU-Net for semantic segregation is proposed by Ilesanmi et al. [114]. It works by using 

CLAHE to remove noise, followed by semantic segregation with the Ve block and convolution method to segregate 

tumor cells. Two datasets of authentic breast ultrasound images were used to measure HD, JM, and DM values. In 

comparison to state-of-art methods, this model resulted in highly significant results. The segmentation results of the 

proposed method are shown in figure 23.  
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Fig 23: Results of augmentation and ablation (LOGIQ E9 and LOGIQ E9 Agile): (A) Results of Criteria 1; (B) Results 

of Criteria 2; (C) Results of the proposed method [114]. 

Huang et al. [115] presented an advanced method with three types of features to extract the semantics of 

superpixels. It uses the BoW model to label the superpixels as tumors. The proposed model's efficacy outran existing 

models with a significant outcome of 90.20 %  and 89.53 F1-Score for Benign and Malignant tumor datasets, 

respectively. The segmentation outputs can be shown in figure 24.  

 

Fig 24: Suggested method being compared with MSGC and DRLSE methods. (a) Proposed method: ARE, F1 Score, 

TP and FP score is 13.53%, 92.26%, 90.17% and 5.29%, respectively. MSGC: ARE, F1 Score, TP and FP score is 

15.75%, 79.90%, 69.50% and 4.47%, respectively. The FP score of MSGC achieved better, but TP was worse, and 

(b) proposed method: ARE, F1 Score, TP, and FP score is 6.26%, 92.54%, 95.95%, and 11.41%. DRLSE: ARE, F1 

Score, TP and FP score is 12.06%, 83.75, 97% and 34.63%. The TP score of DRLSE achieved better, but FP was 

worse.[115]. 
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Rijthoven et al. in [116] presented HookNet, a model that measures high dimensional resolution tissue 

segregation. The framework was applied to two different publicly available datasets of high-resolution tissues. 

Contrary to single-resolution models, the suggested framework raises overall efficiency and can deal with high-

resolution and contextual information with narrow differences. The HookNet model outran other tools with a 0.91 F1-

Score overall. Figure 25 shows the segregation results using the HookNet model.  

 

Fig 25: Segregation results of GC, Tumor, TLS, and Other on lung tissue. HookNet results are shown for Lambda is 

set λ = 1.0 for HookNet giving results along with failure examples of HootNet in the last two rows [116]. 

 

Tong et al. [117] proposed a solution to improve brightness, contrast, and low-quality ultrasound images of 

breast tumor segregation. It involves replacing the convolution module in the left encoding path with the residual 

convolution module and extended residual convolution module. The features were extracted efficiently from 

ultrasounds of breast tumors. Four attention loss functions were integrated into the cross-entropy loss feature to attain 

more efficient network loss values and precisely locate tumor targets. The model performed its functions without 

increasing the overall cost. Three hundred sixteen images were tested to better evaluate the model's applicability. The 

segregation performance was significantly better and generated a 0.873 F1-Score and 0.959 accuracy value. Figure 

26 shows the segregation results of breast ultrasounds images.  
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Fig 26: Breast ultrasound picture segregation results. The Fig. (a1)–(e1) are the original ultrasound breast images and 

Fig. (a2)–(e2) are the corresponding ground reality annotation. The Fig. 5(a3)–(e3), (a4)–(e4), (a5)–(e5), (a6)–(e6), 

(a7)–(e7), (a8)–(e8), (a9)–(e9) are FCN16s, FCN8s, SegNet, U-net, Attention U-net, Attention U-net with mixed 

attention loss, Improved U-net MALF network segregation results, respectively [117]. 
The most significant field of mammography research is the early identification of breast cancer. Therefore, 

the study in [155] investigated the cutting-edge deep segmentation model for the detection of breast tumors. They 

evaluated several deep-based segmentation models, namely, Dilation 10, Deep lab v3, FCN, and U-Net on newly 

prepared datasets. The result shows that dilation 10 outperforms the other three segmentation models by obtaining 

pixel accuracy of 92.98% in the comparative test. 

 
6.3. Semantic Application to Retinograph Images 

In this portion, different retinal disorders such as glaucoma, diabetic retinopathy, and hypertensive 

retinopathy are demonstrated by employing semantic-based scientific algorithms. 

 

6.3.1. Semantic Application to Glaucoma 

Glaucoma is an eye disease and the second most common eye-related anomaly. It is also called optic 

neuropathy causes retinal ganglion cell apoptosis and damages the optic nerve. Loss of vision is one of the symptoms 

of glaucoma that can gradually lead to blindness. The chances of glaucoma can be reduced through treatment if the 

disease is diagnosed at an early stage. However, the pathological condition becomes irreversible in case of severe 

nerve damage. Symptoms of glaucoma only appear during the advanced stage of the disease. Hence, several 

researchers have made significant contributions using deep learning techniques to restrict the damage to the eyes in 

the initial stages. 
A deep learning-based algorithm to semantically segment OD and OC was presented by Imtiaz et al. [118]. 

The proposed model illustrated improved and significant outcomes on two public datasets: Drishti and Rim-one. VGG-

16 was used to classify three categories, i.e., OD, OC, and background. Next, feature vectors are applied to a softmax 

classifier that categorizes them on the base of pixels. The algorithm calculated comparable results on the Drishti 

dataset for segmented OD and OC. Figure 27 shows the segmented results of glaucoma features. 
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Fig 27: The segmented OD and OC results for Rim-one [118]. 

The NENet patch-based adversarial model was proposed by Pachade et al. [119] to study OD and OC 

segregation, as shown in figure 28. It was used to perform extensive experimentation on three datasets, i.e., REFUGE, 

Drishti, and RIM-ONE-r3. The algorithms showed significant findings related to OD and OC segregation. In contrast 

to NENet-seg, the newly designed model accurately determined OD and OC boundaries.  

 

Fig 28: Qualitative results on REFUGE dataset. First column: original fundus images; Second column: ground truth; 

Third column: results of NENet-seg framework; Forth column: results of NENet framework. The blue and green colors 

indicate the boundaries of OD and OC, respectively [119]. 
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An advanced model is suggested by Bian et al. [120]. It works by segmenting optic disc (OD) and optic cup 

(OC) without relying on post-processing or ROI spotting, as shown in figure 29. Segmentation is further improved 

using the cGAN structure, and the overfitting issue is mitigated to lower learning rates. Moreover, it is an advanced 

way to automate OC and OD segregation. The model outran existing tools with 0.8887 and 0.9367 accuracy rates and 

segregation values.  

 

Fig 29: Typical sample in REFUGE. The left image is the RGB retinal fundus image. The middle one is the partially 

enlarged drawing of the left image framed by a red square. The right one is the comparison between the reference 

mask and our result. The ground truth provides the red circle, and the green one is predicted by the proposed model 

[120]. 

Tulsani et al. [121] displayed a new segregation-based approach on the optic cups and optic disc to identify 

glaucoma. It is a custom model based on the UNET++ custom loss function and built to conduct segregation 

experiments. The model was extensively tested on open-source datasets such as RIM-ONE, DRIONS-DB, and 

ORIGA. It deduced comparatively significant results parallel to the avant-garde algorithms. Figure 30 shows the 

segmentation results.  

 

Fig 30: Displaying segmentation results, (a) Predicted binary mask and (b) Original binary mask [121]. 

Zhou et al. [122] proposed a model to improve the retinal vessel segregation capability, especially in low-

contrast background and laceration regions. It uses SEGAN and MSFRB to refine the process of extracting 

information. AM improves the overall performance by distributing more attention to the discriminative feature. 

Extensive studies with the model produced highly satisfactory outcomes. It surpassed the efficacy of existing methods 

with 0.9083 and 0.8211 accuracy rates on the CHASEDB1 and HRF datasets, respectively. Figure 31 shows the 

segmentation results.  
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Fig 31: Segmentation map and segregated vessel of only GAN loss (column 2 to 3) and GAN loss along with BCE 

(column 4 to 5) [122]. 
Yin et al. [123] tailored a level set loss to cater to the optic disc and cup segregation issue, as shown in figure 

32. Through CNN output as a level set, you can add smooth boundary and region consistency and other constraints 

for the segregation. The main advantage of this model is the ease of adding constraints. The level set loss also gives 

more supervision. The Dice Score on the DRISHTI-GS dataset gave comparable results to the other existing designs.  

 

Fig 32: The example results for the DRISHTI-GS dataset. The first row is for the OD segmentation, and the second 

row is for the OC segmentation [123]. 
Yuan et al. [124] proffered a deep learning   CNN structure on a multi-scale for segregating OC and OD 

collectively as a multi-label single-stage process visualized in figure 33. The given model with W-shaped CNN 

extracts more features, reduces the semantic distances between shallow and deep features, and uplifts the merging of 

features. After testing four publicly available datasets, the presented model gave sufficiently excellent, and comparable 

results. While during   OC segregation, this model has an upper edge over others.  
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Fig 33: Drishti-GS dataset, RIM-ONE r3 dataset, and their datasets are tested on Network segregation: (a) fundus 

pictures color, (b) Ground reality, (c) FCNs, (d) SegNet, (e) PSPNet, (f) DeepLab V3+, (g) U-Net, (h) M-Net and (i) 

the suggested method [124]. 
Morano et al. [125] published a modern approach for the simultaneous segregation and classification of the 

retinal arteries and veins (SSCAV) using FCNNs. This approach segregates arteries, veins, and the whole vascular 

tree separately as three different tasks. Extensive results have been compared with the state-of-the-art models by giving 

comparable figures in the segmentation process. The segmentation results as shown in figure 34. 

 

Fig 34: Examples of arteries, veins, and vessels probability maps (RGB compositions) generated by the models trained 

using the MS and the traditional approaches with preprocessed images [125]. 
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Zhang et al. [126] presented the TAU model to address domain adaptation issues in the OD   and   OC   

segregation tasks in figure 35. The proposed model was tested on DRISHTIGS, RIM-ONE v3, and REFUGE datasets 

to check its effectiveness. The experimental results show that TAU outperformed the existing methods in the 

segregation performance and CDR MAE.  

 

Fig 35: Top row: fundus pictures of the eye. Center row: ground-reality segregation results. Last row: visualized 

heatmaps [126]. 
Sun et al. [127] suggested a CIEU-Net for segregation of retinal vessels, being a deep-learning segmentation 

framework. It gained satisfactory results for retinal vessel segregation that illustrate the benefit of combining semantic 

segregation modules and basic medical image segregation methods. The model was tested on the CIEU-Net with BN 

and CHASE_DB1 Dataset. It attained the avant-garde performance in F1-score, Recall, MCC, and AUC. While on 

dataset named STARE, it gained the avant-garde performance in F1-score, Recall, MCC and AUC. The segmentation 

results are illustrated in figure 36. 

 

Fig 36: The illustrations of the improvements of different modules. From left to right: (1). Original image, (2). Label, 

(3). Result of U-net, (4). Result of Unet + CDM, (5). Result of Unet + CDM + Contextual module, (6). Result of 

CIEU-net. The result gets better in detail with the increase of modules [127]. 
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6.3.2. Semantic Application to Diabetic Retinopathy 

One of the most known forms of diabetic eye lesion is Diabetic retinopathy (DR). It can harm the patients 

and become extremely dangerous, leading to blindness if neglected. This can be cured only if diagnosed at an early 

stage. The automatic diagnosis systems aided with computers, could help in the early and fast diagnosis of its possible 

symptoms with a reasonable amount of expenditure and extended coverage. Researchers have given their time and 

focus on this disease to help diagnose DR patients at an early stage. 

Sambyal et al. [128] presented a modern and advanced UNet architecture that consists of a residual network 

and employs shuffling periodically with sub-pixel convolution. The presented framework has been trained and tested 

for microaneurysm and hard exudate segregation on IDRiD and e-ophtha. The given model achieves avant-garde 

results for retinal laceration segregation. The segmentation results are shown in figure 37.  

 

Fig 37: Results of microaneurysm detection on e-ophtha as training set and IDRiD as validation and test set: (a) 

Original image from the IDRID test set; (b) Microaneurysm label; (c) Segmented image; (d) Segmented image 

superimposed on the original image [128]. 

Saha et al. [129] published a method that solves lacerations' segregation issue. The severity level can also be 

found by segmented output, as shown in figure 38. This method solves six subtasks in a single solution. Whereas 

previous work in automatic detection of diabetic retinopathy deals with identifying the disease stage. After extensive 

preprocessing and several steps, it is achieved to reach the result finally. The evaluation of the localization of the optic 

disk for this proposed method gave substantial results compared to the results of the existing models.  D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

Fig 38: The first column shows the retina fundus images, the second the predicted segmented masks, and the third 

column shows the ground truth segmented masks. Green: Optic Disk, Red: Soft Exudates, Blue: Microaneurysms, 

Cyan: Hemorrhages, Yellow: Hard Exudates [129]. 

Saha et al. [130] presented a multi-adversary-based fully convolutional neural network for retinal anatomy 

and pathology segregation by taking support of weakly labelled fundus images. An FCN with skip connections passes 

the context information to higher resolution layers for more precise segregation. The model utilizes two discriminators. 

The first makes the result as realistic as possible, while the second discriminator enforces segregation of classes not 

annotated for a particular image. The proposed method surpassed the existing avant-garde techniques by SE, SP, ACC, 

and AUC scores with 0.7906, 0.9839, 0.9641, and 0.9812 values. The result of segmentation is demonstrated in figure 

39.  

 

Fig 39: Qualitative results: First column shows the retinal image, the second column shows the manual annotation 

used as ground truth, the third column shows the results obtained by the proposed method for the annotated classes in 

the original dataset, and the fourth column shows a prediction of class not annotated but present in the image [130]. 

A novel active deep learning strategy is utilized in [163] with a traditional CNN network, comprising only 7 

layers to accurately segment diabetic retinopathy lesions in colored retinal samples, as shown in figure 40. Their 

proposed art obtained promising results on 80 thousand images from various retinal benchmarks.  
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Fig 40: An example of DR lesions segmentation outputs. The ground truth annotated samples are on the left. Our 

ADL-CNN results are on the right. Light green marks represent EX’s, light blue marks denote HEM’s and purple 

marks represent MA’s [163] 

 Ayoub et al. [165] proposed a modified CNN U-Net network for identifying retinal hemorrhages in fundus 

images. The proposed UNet was trained using the GPU and the IDRiD dataset to segment and identify possible regions 

that might contain retinal hemorrhages. The proposed methodology's sensitivity, specificity, and accuracy were 

80.49%, 99.68%, and 98.68%, respectively. The experimental outputs also produced an IoU of 76.61% and a Dice 

value of 86.51%, demonstrating the effectiveness of the network's predictions and their potential to lessen 

ophthalmologists' workloads significantly. Figure 41 shows the segmentation result using the proposed method.  
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Fig 41: Results of hemorrhages segmentation: an original image, b hemorrhages label, and c segmented image [165] 

6.3.3. Semantic Application to Hypertensive Retinopathy 

Retinal damage is most caused by Hypertensive Retinopathy (HR). It is pertinent to know that the number of 

people projected by hypertension is 1.56 billion worldwide. Out of which, around 66% of them hail from impoverished 

countries, where there are no proper healthcare facilities to identify and tackle hypertension. Hypertension also causes 

headaches, and nosebleeds and may also cause vision loss. Moreover, if hypertension persists for a long time, it can 

damage the lungs, heart, kidneys, and eyes and even lead to cardiovascular pathologies resulting in death. The risk 

may be reduced if the HR could be identified and treated early. Only two HR stages can be recognized using a few 

systems developed using deep learning techniques. It is difficult to design a system that could identify the five stages 

of Hypertensive Retinopathy. In addition, researchers have used deep features in the past, but the accuracy score to 

classify is not as expected. 

Arsalan et al. [131] published a dual-residual-stream-based vessel segregation network (Vess-Net). The 

suggested model does semantic segregation to aid the diagnosis of hypertensive retinopathy using artificial 

intelligence. The suggested Vess-Net model has been extensively validated on publicly available datasets for vessel 

segregation. Pragmatic results illustrate that Vess-Net attained better results for all given datasets giving the most 

robust results. Figure 42 shows the vessel segmentation results.  
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Fig 42: Vessel segregation results on both (a) original picture and (b) anticipated mask by Vess-Net on sample images 

[131]. 

 

Abbas et al. [132] presented advanced hypertensive retinopathy (HYPER-RETINO) framework, which 

segments the HR based on five grades. The HYPER-RETINO system is implemented based on pre-trained HR-related 

lesions. Several steps are implemented to develop the framework: preprocessing, HR-related lacerations detection by 

instance-based and semantic segregation, and a DenseNet framework to identify the HR classes. The HR system 

obtained satisfactory results to segment HR based on five grades. Figure 43 gives the visual example of semantic and 

instance segmentation of HR lesions. 

 

Fig 43: A visual example of the proposed semantic and instance segmentation of HR lesions where there is (a) no sign 

of abnormality, (b) mild HR, (c) moderate HR, (d) severe HR, and (e) malignant HR [132]. 
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6.4. Semantic Application to Brain Tumor 

Gliomas are the most common malignant brain tumors originating from abnormal glial cell growth. Gliomas 

are responsible for 80% of malignant brain tumors with a high mortality rate. Many researchers have spent their day 

and night helping to develop a computer-aided brain tumor diagnosis system to improve the survival rate of glioma 

patients. Since gliomas can originate at various locations with various sizes, shapes, and intensity distribution, it is 

challenging to segment them efficiently and correctly. 

Huang et al. [133] published a computerized brain tumor segregation system that seeks help from the adaptive 

gamma correction neural network (GammaNet). It focuses on significant and malignant regions and recognizes 

intensity invariance. In addition, the feature maps are distributed into many proposed regions and emphasize the local 

image characteristics. Furthermore, combining pooling (DenseASPP) modules and AGC blocks reduce the 

information loss by enlarging the receptive field and improving the segmentation performance. The extensive 

experimental results conclude that the GammaNet can achieve avant-garde performance. Figure 44 shows the different 

model segmentation results.  

 

Fig 44: The prediction results of UNet, UNet++, RCAUNet, ARUNet, and GammaNet [133]. 

Ye et al. [134] presented a model for medical images which portrays high-level supervision into lower layers 

of neural networks and is a 3D Center-crop Dense. The two pathways are the attention pathway and the context 

pathway. The first one is of acceptable resolution focusing on detailed information of every voxel, while the context 

pathway works with a low-resolution focused on the extra surrounding details. Furthermore, the missing information 

is due to downsampling and dealt with by introducing cross-pathway connections from the attention pathway to the 

context pathway involving weights. The proposed model produces the segregation performance, which corroborates 

the avant-garde results.  
Zhou et al. [135] presented a model with a three-stage network. The first stage produces extra context 

constraints for every tumor region using a 3D U-Net segregation network. The attention mechanism is then used to 

fuse with the Multi-sequence MRI to achieve three independent tumor regions. A new loss function is involved per 

the location to make the segmentation issue more efficient. Finally, all three results are combined by another 3D U-

Net. The resulting outcome was promising and comparable by considering dice score, Hausdorff distance, and the 

amount of memory required for training could be visually represented in figure 45.  
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Fig 45: Qualitative experiment results between proposed method (8 initial filters) and Isensee et al. (2017) (16 initial 

filters) on several examples. We denote the Dice Score on each result. Net&Ncr is shown in red, edema in orange and 

enhancing tumor in white [135]. 
Zhou et al. [136] proposed an advanced model that integrates with the backbone and uses a 3D atrous-

convolution feature pyramid to learn the tumor's essential features and substructures. Using a 3D fully linked 

conditional random field, accurate predictions along borders are obtained by performing post-processing steps. The 

findings of the experimental study show that the proposed method achieved comparable results compared to cutting-

edge methodologies, notably in terms of tumor core and improving core segmentation. Figure 46 shows the visual 

segmentation results.  

 

Fig 46: Visual segmentation results using the trained models on the BRATS 2013 (first row), 2015 datasets (second 

row), and 2018 (third row). The color codes are as follows: edema(orange), necrosis(maroon), enhancing core(white), 

non-enhancing core(yellow) [136]. 
Ding et al. [137] suggested a new multi-path combined network with adaptive nature that uses ResNets "skip 

connection" to reserve and send additional low-level information accurately. A multi-path adaptive fusion dense block 

fuses low-level information with high-level semantic information. Compared to other current methodologies, the 
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extensive experimental data leads to the conclusion that the proposed framework provides avant-garde results. Brain 

tumor segmentation results can be seen in figure 47.  

 

Fig 47: Samples of Multimodal Brain Tumor Segmentation on BRATS 2015. From left to right are: (a) Input, (b) pre-

processed image, (c) ground truth, (d) Fcn16s, (e) Fcn8s, (f) U-Net, (g) Resnet, (h) Refinnet, (i) FC-Densenet, (j) 

proposed method [137]. 
U-Nets, which are multi-task driven, were presented by Zhang et al. [138]. To efficiently enhance difficulty-

classified pixels for training, BU-Net is employed to reduce noise disturbance, which is optimized using an S-CE loss. 

The edge branch mechanism is employed in glioma borders to increase edge information. When comparing 

experimental results with cutting-edge 2D approaches, the presented model produces a Dice score of 0.82 for entire 

tumor regions and 0.9950 for the BRTAS2015 and BrainWeb datasets, respectively. Figure 48 shows the visual 

comparison of brain tissue segmentation results. 
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Fig 48: The visual comparisons of different brain tissue segmentation results from the BrainWeb dataset [138]. 
Sun et al. [139] proposed a 3D contemporary convolutional network. Multi-pathway architecture is used to 

extract characteristics from MRI pictures successfully. A different receptive field of the feature can be extracted using 

a 3D model, as shown in figure 49. We found that our suggested and the one-pathway models produced equivalent 

findings after a thorough evaluation with a collection of publically available datasets.  

 

Fig 49: The result of the suggested framework is displayed in the first row. (a) Segregation results without using 

convolution being dilated. (b) Segregation result with convolution along with dilation and kernel size = 3. (c) 

Segregation result with convolution along with dilation = 4 and kernel size = 3. (d) Segregation result with convolution 

along with dilation = 2 and kernel size = 5. (e) Segregation results without pooling. (f) Segregation results in average 

pooling. (g) Segregation results with convolution along with kernel size = 5. (h) Segregation results with convolution 

along with kernel size = 7. (i) Segregation results with ReLU activation function. (j) Segregation result with Leaky 

ReLU. (k) Segregation results without pre-processing. (l) Segregation result in one pathway [139]. 

Zhou et al. [140] published an unorthodox brain tumor segregation network. The three sub-network model 

given here uses the existing modalities to create a 3D feature-refined picture that depicts the missing part. The 

published technique is thoroughly tested on the BraTS 2018 dataset, concluding that this model achieves significant 

results and outperforms all other methods. Figure 50 shows the segregation result of the proposed method.  
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Fig 50: Segregation results of proposed framework where the First row depicts the four MR modalities, FLAIR, T1c, 

T1, and T2. The segregation results of different models been shown in the bottom three rows. The last column displays 

the ground truth segregation, while the first four columns show a situation of different missing modality. Blue shows 

the Net&ncr, yellow depicts the edema, and red represents the enhancing tumor [140]. 
Zhou et al. [141] introduced (ERV-Net), which is a neural network and 3D in nature, that effectively segments 

brain tumors while consuming less GPU memory and requiring less computational complexity. In this model, 3D 

ShuffleNetV2 is first used as an efficient encoder. Then a decoder (Res-decoder) with residual blocks to abstain 

deterioration, followed by a loss function fusion consisting of Dice loss and Cross-entropy loss. Finally, post-

processing refines the ERV-Net segmentation result, as shown in figure 51. On (BRATS 2018), a multimodal brain 

lesion segregation dataset, the experimental results yielded the best results, with Dice of 81.8 percent, 91.21 percent, 

and 86.62 percent, respectively, and ERV-Net also produced comparatively substantial results compared to the avant-

garde methods.  

 

Fig 51: Flair’s original picture is shown in the first column. Segregation results on case Brats18_TCIA13_646_1 of 

the BRATS 2018 validation dataset with and then without post-processing are visualized in the first and third row, 

respectively. While the second row displays the magnified images of the details with and without post-processing. 

Different network frameworks and architecture and their segregation results are displayed from left to right. Different 
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color indicates different lesion, i.e., yellow, green, and red represent edema, enhancing tumor, edema, and necrotic 

and non-enhancing tumor core, respectively [141]. 

Shehab et al. [142] published a model that classifies brain tumors automatically. When compared to the DNN 

equivalent, ResNets performs better. ResNets has a shortcut skip connection that works in conjunction with the layers 

of convolutional neural networks. The findings show that the suggested model has superior accuracy in the complete, 

core, and enhancing regions, with 83 percent, 90 percent, and 85 percent, respectively. Furthermore, it is three times 

faster than the DNN model in computing. Yogananda et al. in [167] developed six disparity autoencoders to segment 

different types of brain tumors using MRI samples. The authors apply each pair of two DAE for segmenting whole-

tumor, tumor-core, and enhancing tumors with stable dice scores of 0.89, 0.82, and 0.81 for WT, TC, and ET on the 

validation dataset from the RSNA-ANSR-MICCAI benchmark. 

 

6.5. Semantic Application to Pulmonary Nodules 

Lung cancer is the most hazardous and common cancer-related fatality. Lung cancer has a five-year survival 

rate of 10 to 16 percent. The five-year survival rate rises to 70% when cancer is detected early. CT scans are now the 

most effective and sensitive screening method available. Computer-aided diagnosis (CAD) systems provide detailed 

laceration information to help radiologists discover and diagnose lacerations. Many researchers have made 

contributions to this field. 

Huang et al. [143] suggested a method for segmenting accurate lung nodule locations from raw CT scans that 

is both automatic and efficient. Detection of Nodule with quicker regional-CNN (R-CNN), lowering and merging 

falsely positive (FP) findings with Convolutional Neural Networks. Furthermore, segregation of nodule with 

improvised Fully CNN is the proposed model's four key sub-portions (FCN). Human intervention is not required in 

this model. The nodule detection gave the accuracy score of 91.4 percent and 94.6 percent, with 1 to 4 false positives 

per scan on average, which is an excellent result. The visual results of the proposed segmenting method are given in 

figure 52. 

 

Fig 52: Visualization results of proposed nodule segregation system gave results with several anatomical particulars. 

The first three columns show three isolated nodules, the following 3 columns marked in blue represents one juxta-

pleural (4th column) and remaining columns in blue denotes juxta-vascular (5th and 6th column) nodules, and the last 

two columns highlighted in the light purple show one subsolid nodule with center excavation and one ground glass 

opacity (GGO) nodule. Original nodule patches obtained after Faster R-CNN identification and reduction by FP are 

shown in the first row. While the annotations by the specialist doctors in radiology corresponding to the first row are 

shown in the second row. The manually segregated parts are emphasized by masking them in red. The last three rows 
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display the nodule segregation results by FCN2s, FCN4s, and FCN8s, respectively. The dice coefficients for each 

segregation parallel to ground reality markings are shown in white decimals [143]. 

 

Zhu et al. [144] proposed a completely automatic lung CT diagnosis method based on deep learning, divided 

into nodule identification and categorization. The proposed model uses two deep 3D convolutional networks, which 

run on a 3D dual-path framework. A 3D Faster R-CNN and a U-netlike encoder-decoder structure are used to detect 

nodules. To categorise nodules into malignant or benign, a deep 3D dual-path architecture is employed to extract 

classification features, and a gradient boosting machine is trained. Extensive results show that the model outperforms 

the DeepLung method, attaining 81.41 percent diagnosis accuracy and 99 percent average performance compared to 

four highly experienced radiologists. Figure 53 shows the detection results.  

 

Fig 53: Visualization of central slices for nodule ground truths and detection results. We randomly choose nodules 

(red circle boxes in the first row) from test fold 1. Detection results are shown in the blue circles of the second row. 

The center slice numbers are shown below the images. The last row shows detection probability. The DeepLung 

performs well for nodule detection [144]. 
Bana et al. [145] published a model split into two parts: segmentation and classification. The recently 

published DeepLab model was compared to this model for semantic segregation. The findings show that the accuracy 

of nodule identification outperforms the primitive U-Net model and its most recent variations. Figure 54 presents a 

visual example of the segmentation results of the proposed model.  
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Fig 54: Examples of the inference produced by the Faster-RCNN Inception-V2. The first column shows TP detection 

as a nodule with IOU = 99%. The second column shows TP detection as a nodule with IOU = 99% and an FP with 

IOU = 99%. Finally, the third column shows an FN where the model failed to detect the nodule lesion [145] 
Wu et al. [146] introduced a CNN that functions as a multi-task learning system for detecting maliciousness 

and pulmonary tumor segregation attributes (PN-SAMP), as shown in figure 55. It can accurately diagnose the 

malignancy of a lung tumor. Furthermore, the combination of tumor segregation, characteristics, and maliciousness 

identification aids in improving task proficiency. The published model was tested extensively using the publicly 

available dataset, one of the largest for malignancy, named LIDCIDRI. Compared to cutting-edge approaches, the 

results accurately interpret that the proposed model achieved considerable improvements in lung tumor categorization 

and spectacular lung tumor segregation performance and learning of attributes.  

 

Fig 55: Pictures on the right show segregation results with malignancy rating identification, attributes shown by 

qualitative results. The top part depicts the malignant, while the bottom part in the figure shows the benign nodules. 

Identification of the suggested framework is denoted by A, and the ground reality is denoted by B. The in-range 

prediction of ground truth in range 1 is shown in blue color integer and red shows out of range prediction [146]. 
Meraj et al. [147] proposed a system for predicting lung cancer and distinguishing between benign and 

malignant tumors. After pre-processing to eliminate noise, the proposed model was extensively tested on a publicly 

available dataset. In addition to the procedure, four key characteristics are chosen based on the classification. 

According to a comprehensive investigation, the provided method surpassed other methods with an accuracy score of 

99.23% using the logit boost classifier, as represented in table 7.  
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Table 7.  Summary of developed deep semantic method [147]. 

  

Work Classifier Accuracy Sensitivity Specificity 

Akram- 2015 SVM 96.6 96.7 96.3 

El-Regaily-2017 
Simple rule-based 

classifier 
70.5 77.7 69.5 

Hancock-2017 Nonlinear 88.0 84.6 NA 

Jaffar-2018 Random Forest 98.9 98.4 98.7 

Tran GS-2019 LdcNet-FL 97.2 96.0 97.3 

Shaukat-2019 RGBPCANet 93.25 93.12 91.37 

Framework-

2019[147] 
Logi boost 99.23 96.88 100 

 

 

 

 

 

 

Qin et al. [148] published a model mostly made up of two sections. The first phase balances the dataset by 

increasing the variety of samples, while the conditional generative adversarial network (cGAN) is used to create 

synthetic CT images. To refine synthesized samples, reconstruction error loss is added to cGAN. The tumor 

segregation network is trained on the dataset in the second half. Finally, a three-dimensional (3D) CNN model is 

created to inform the model about tumor texture patterns and border features, assisting in high-level feature learning 

for segregation. The outcomes of this model have been empirically validated, yielding results comparable to existing 

methodologies. Table 7 illustrates a summary of the developed deep semantic-based arts to detect diseases. Figure 56 

shows the qualitative segmented results using the validation samples.  
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Fig 56: Qualitative segmentation results of validation samples. (a) Groundtruth labels are green; (b) predicted nodules 

are red. The score beneath each pair is the Dice coefficient of the result. The central slice of each volume of the interest 

cube is displayed for simplicity [148]. 
 The automatic segmentation of brain tumors greatly aids accurate diagnosis and treatment planning in 

magnetic resonance imaging (MRI). Therefore, the study in [162] presented the Attention Res-UNet with Guided 

Decoder (ARU-GD) as a new deep learning generator architecture for segmenting brain tumors. The architecture 

incorporates attention gating and a novel guided decoder. These modifications to the Res-UNet base network enhanced 

learning by producing superior feature maps at the decoder and allowing only activations from relevant regions at the 

encoder side. Together, these factors increased segmentation performance. On unseen test data, the proposed ARU-

GD successfully achieved Dice Scores of 0.911, 0.876, and 0.801 and mean IoU of 0.838, 0.781, and 0.668 on the 

entire tumor, tumor core, and enhancing tumor segmentations, respectively. Fig 57 represents the segmentation results.  
The current investigation has demonstrated that their model performs better than its baseline and existing models. 

However, the presented model's training is computationally intensive. 
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Figure 57 Predictions of the proposed model and the baseline models on randomly chosen eight unseen images from 

the test set; (row-wise) 1: flair images, 2: U-Net, 3: Res-UNet, 4: Res-UNet with AG, 5:Attention Res-UNet with 

Guided Decoder, 6: ground truth. White color in the segmented image corresponds to enhancing tumor, dark grey 

corresponds to necrosis, and light grey corresponds to edema. 

7. Discussion 

This section discusses current architectures' strengths, limitations, and future directions for medical image-based 

semantic segmentation (Semseg), datasets, and optimization functions. Different deep-based semantic segmentation 

arts have been investigated and discussed to diagnose various potential diseases. After careful analysis, this survey 

has a unique contribution to the biomedical imaging segmentation domain because no such study can cover the broader 

sense of semantic-based segmentation models developed for the accurate detection of medical ailments. Figure 59 

presents a visual example of the actual distribution of deep semantic segmentation models utilized for detecting and 

diagnosing different ophthalmic diseases. According to some state-of-the-art methods, Encoder-decoder architecture 

is a promising method for semantic segmentation of medical images as it contains long and short skip connections. 

These deep neural networks with skip connections have comprehensively enhanced the performance for categorization 

and segmentation tasks because they reduce the training time and mitigate the risk of vanishing the gradient. Despite 

performing better, there are still issues like computation cost, higher memory usage cost, and transferring non-

discriminative feature maps for better feature representation.  

Due to the increase in medical image modalities and datasets for segmentation tasks, it is a demanding and 

tiresome task to summarize the result of all medical image segregation methods. But in this review article, we have 

tried to summarize the necessary imaging modalities used in cited papers, as shown in Figure 4. We have also 

summarized some state-of-the-art methods used for medical image segmentation, as shown in Table 5. In Figure 58, 

we have shown the number of images available in each dataset for a specific image modality. MRI, CT, and electron 
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microscopy (EM) are difficult to label and exist in less amount in their benchmarks than the frequently available image 

modalities like ultrasound (US) and X-ray images, which are available in a large number of samples in their datasets.  

 

Fig 58: Average Number of Samples for different image modalities 

 

 

 
 

Fig 59: Conveyance of different deep-based semantic segmentation arts for detecting various diseases. 
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Sequenced models can segment 3D medical image datasets such as videos and volumetric data. Volumetric 

data are processed more efficiently using 3D convolutions than by processing the volume using 2D models at each 

level. In addition, sequence models capture an object's 3D volume geometrical information easily compared to slice-

by-slice 2D sequenced models where some information may not be adequately captured. There could be a future 

direction in which comparisons and analyses of volumetric convolutional methods with the sequenced model can be 

made.  

Every method for semantic segregation is limited based on deep learning in medical image processing. As 

region-based segmentation performs better in the region growing-based techniques and performs better in the noisy 

image and is easy to compute, there are still some issues like seed points must be specified, costly, and the image may 

be under-segmented or over-segmented. Similarly, in region merging and splitting methods, the image can be split 

according to the demanded resolution, but it may produce blocky segments. Due to the scarcity of annotated medical-

related datasets of images, the use of supervised learning methods in medical-related segmentation of images is 

limited. That is why weakly supervised, or unsupervised methods have been applied to semantic segmentation tasks. 

As authors in [58] proposed a sickly supervised method that decreases the cost of computation for training and 

achieved similar results to fully supervised segmentation of cardiac images. Similarly, many other authors used weakly 

supervised approaches for different image modalities [59][60][61]. These methods used automated algorithms for 

segmentation tasks with a little interaction of the domain experts with the systems to accurately identify the results 

produced by these methods [7]. Domain experts may be required when selecting ROI, which will be generalized to 

the whole image using weakly supervised algorithms. 

Fully convolutional networks (FCN) are fully automatic segmentation techniques because they do not need 

domain experts to select ROI. But most of these methods involve supervised learning and require training data, e.g., 

deep neural networks, shape models, and random forests. These methods are applied to various problems in medical 

image semantic segmentation. But there are some issues with these methods in their use as a lack of profound 

theoretical basis for ANNs, problems in choosing the best architecture, and these are black-box problems. 

In medical image segmentation, many researchers used cross entropy as a loss function. And then applied 

some distance or overlap function suitable for medical image segmentation, because the purpose of using overlap 

function is to separate specific regions (such as polyp, tumor, and cancer) as a part of the semantic segmentation 

process. Authors in [62] claimed that if we use only an overlap or distance function in a deep neural network with a 

sigmoid function used in the final layer then the chances of the gradient vanishing problem may increase. As discussed 

in the optimization functions section, overlap loss functions are helpful in case of imbalanced data but with small 

foreground medical image segmentation. In the future, a function can be designed with a single loss that computes the 

distance based on cross entropy and overlaps simultaneously. This can be possible by reviewing the previously 

functional overlap-based and distance functions. Table 8 presents a brief overview of the literature on deep semantic-

based arts for multiple medical imaging problems.  

Table 8   

A comprehensive summary of deep-based semantic segmentation approaches for diagnosis of different diseases.   

Cited 

Paper 
Modality Description Database 

Performance 

metrics & Results 

Hasan et al. 

[98] 

Dermoscopic 

Images 

Projected learned discriminated 

features on pixel-level using depth-

wise separable convolution instead 

of standard convolution to segment 

skin lesions. 

ISIC 2-17 

Dice Score 0.927 

and IoU Score 

0.865 

Shan et 

al.[99] 

Dermoscopic 

Images 

A topology named fully convolution 

and dual path (FC-DPN) was 

implemented to perform skin lesion 

segmentation. 

ISBI 2017 and 

PH2 

DICE Score and 

Jaccard Index of 

88.13% and 

90.26% on ISBI 

2017 and 80.02% 
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and 83.51%, 

respectively 

 

Li et al. 

[100] 

Dermoscopic 

Images 

Proposed a specialized deep learning 

framework to remove digital hair 

with high accuracy. 

ISIC 2018  

Accuracy 92.59% 

and Dice Score 

86.51% 

Jin et al. 

[101] 

Dermoscopic 

Images 

The author proposed a CKDNet 

architecture combining cutting-edge 

skin laceration diagnosis and 

segregation. 

ISIC 2017 and 

2018 

Accuracy 94.6% 

and JA Score 

80.0% 

Gu et al. 

[102] 

Dermoscopic 

Images 

The author implemented a technique 

that combines an advanced network 

structure DE-Net with a unique loss 

function to look deeply into the skin 

laceration boundaries called EIGM. 

ISIC 2017 

Dice Score 0.8662 

and Jaccard 

Coefficient 0.7887 

Kaymak et 

al. [103] 
Dermoscopic 

Images 

The researcher suggested an 

extensive investigation for skin 

laceration segregation using all well-

known FCN architectures. The FCN-

AlexNet performed best. 

ISIC 2017 Accuracy 94.811% 

Sarker et 

al. [104] 

Dermoscopic 

Images 

The author proposed SLSNet, a 

GAN-based model for skin 

laceration segregation that is 

effective and easy. 

ISBI 2017 and 

ISIC 2018 

Sensitivity, 

Accuracy, 

Specificity, Jaccard 

index, and Dice 

coefficient of 

87.81%, 97.61%, 

99.92%, 81.98%, 

and 90.63% on 
ISIB 2017 and 

87.81%, 97.61%, 

99.92%, 81.98%, 

and 90.63% on the 

ISIC 2018 

Lei et al. 

[105] 

Dermoscopic 

Images 

The author proposed an 

unconventional GAN model for skin 

laceration segregation made up of 

two modules called the DAGAN 

model. 

ISIC 2017 Accuracy 93.5% 

Tang et al. 

[106] 

Dermoscopic 

Images 

Demonstrated a unique DL-based 

model for skin laceration 

segmentation which is a combination 

of AFLN DGCL and AFLN DGCL 

framework. 

ISIC 2017 and 

ISIC 2018 

Accuracy Score 

0.963 and 0.966 
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Arora et al. 

[107] 

Dermoscopic 

Images 

Introduced an AG-based customized 

U-Net model for automated skin 

laceration segregation supported by 

Tversky Loss (TL) as the output loss 

function. 

ISIC 2018 

Accuracy and 

Jaccard Score of 

0.95 and 0.83 

Pan et al. 

[108] 

Ultrasound 

Images 

The author proposed a customized 

SC-attention module to get finer-

grained geographical information 

along with the SCBLSTM module 

on top. 

ABUS image 

dataset was 

acquired from 

Peking 

University 

People’s 

Hospital 

DSC 0.8178 and 

Accuracy 0.8292 

Huo et al. 

[109] 

Ultrasound 

Images 

The author proposed a framework 

for FGT and breast segmentation on 

the principle of deep-learning 

through nnU-Net. 

Own dataset 
DSC 0.734 and 

0.823 

Liu et al. 

[110] 

Ultrasound 

Images 

The author introduced a Modified 

Differential Evolution (MDE), 

which is an upgraded form of the 

Slime Mold. 

Own dataset  

Pawar et al. 

[111] 

Ultrasound 

Images 

The researcher proposed the 

technique using heuristic and non-

heuristic approaches for the analysis 

of pectoral muscle. 

DDSM 

Accuracy of 

86.16% for 

heuristic and 

82.23% for non-

heuristic approach 

Zou et al. 

[112] 

Ultrasound 

Images 

The author proposed a segregation 

model that can detect and reduce 

noise. The network is monitored 

with the probability distribution of 

samples to differentiate noises. 

BUSI 
Precision 87.25 and 

Recall 88.6% 

Yan et al. 

[113] 

Ultrasound 

Images 

The researcher presented a two-stage 

model that is based on coarse-scale 

mass detection with a multi-stage 

detection strategy. 

DDSM-CBIS Dice Score 80.44% 

Ilesanmi et 

al. [114] 

Ultrasound 

Images 

The author proposed a model using 

CLAHE to remove noise, followed 

by semantic segregation with the Ve 

block and convolution method to 

segregate tumor cells. 

Dataset was 

obtained from 

the Thammasat 

University 

Hospital and 

Baheya Hospital 

for Early 

Detection & 

Treatment of 

HD,JM and DM of 

8.40 ,78.87 and 

89.73 ,respectively 
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Women’s 

Cancer, Cairo, 

Egypt 

Huang et 

al. [115] 

Ultrasound 

Images 

The author presented an advanced 

method with three types of features 

to extract the semantics of 

superpixels, which uses the BoW 

model to label the superpixels as 

tumors. 

Own dataset 

F1-Score 90.20% 

on Benign and 

89.53% on 

Malignant tumor 

dataset 

Rijthoven 

et al. [116] 

Ultrasound 

Images 

The author presented HookNet, a 

model that measures high-

dimensional resolution tissue 

segregation. 

Own dataset F1-Score 0.91 

Tong et al. 

[117] 

Ultrasound 

Images 

The author proposed a solution to 

improve brightness, contrast, and 

low-quality in ultrasound images of 

breast tumor segregation by 

integrating four attention loss 

functions into the cross-entropy loss 

feature. 

data from 

Jiangsu 

Traditional 

Chinese 

Medicine 

Hospital 

F1-Score and 

Accuracy of 0.873 

and 0.959 

Imtiaz et 

al. [118] 

Fundus 

Images 

A deep learning-based algorithm to 

semantically segment OD and OC. 

Next, feature vectors are applied to a 

softmax classifier that categorizes 

based on pixels. 

Drishti and Rim-

one 

Accuracy and Dice 

Score of 99.03% 

and 85.94% 

Pachade et 

al. [119] 

Fundus 

Images 

The NENet patch-based adversarial 

model was proposed to study OD and 

OC segregation. 

REFUGE, 

Drishti and Rim-

One-r3 

 

Bian et al. 

[120] 

Fundus 

Images 

The author proposed a model which 

segments optic disc (OD) and optic 

cup (OC) using the cGAN structure, 

and the overfitting issue is mitigated 

to lower learning rates. 

REFUGE 

Accuracy and 

Segregation values 

0.8887 and 0.9367 

Tulsani et 

al. [121] 

Fundus 

Images 

The author proposed a custom model 

based on the UNET++ custom loss 

function and built to conduct 

segregation experiments. 

RIM-ONE, 

DRIONS-DB, 

and ORIGA 

IOU of OD and OC 

0.9477 and 0.9321 

and DC of OD and 

OC 0.97 and 0.95, 

respectively 

Zhou et al. 

[122] 

Fundus 

Images 
The author proposed a model which 

uses SEGAN and MSFRB to refine 

CHASEDB1 

and HRF 

Accuracy rates 

0.9083 and 0.8211 
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the process of extracting 

information. 

Yin et al. 

[123] 

Fundus 

Images 

Author tailored a level set loss 

through CNN output as a level set, 

and you can add smooth boundary 

and region consistency and other 

constraints for the segregation. 

DRISHTI-GS 

dataset 
Dice Score 96.23 

Yuan et al. 

[124] 

Fundus 

Images 

The author proffered deep learning 

with a W-shaped CNN structure on a 

multi-scale for segregating OC and 

OD collectively as a multi-label 

single-stage process. 

DRISHTI-GS 

and RIM-ONE 

r3 

F1 Score of OD and 

OC is 0.9644 and 

0.9003 

Morano et 

al. [125] 

Fundus 

Images 

The author published a modern 

approach for the simultaneous 

segregation and classification of the 

retinal arteries and veins (SSCAV) 

using FCNNs. 

RITE dataset 

Accuracy and 

Specificity of 

Artery and Vein 

detection is 

89.24%,90.89% 

and 

96.16%,98.65% 

respectively 

Zhang et 

al. [126] 

Fundus 

Images 

The researcher presented the TAU 

model to address domain adaptation 

issues in OD   and   OC   segregation 

tasks. 

REFUGE, 

Drishti and Rim-

One-r3 

Dice Score and 

IOU on OD and OC 

segmentation are 

0.87,0.78 and 

0.63,0.48, 

respectively 

Sun et al. 

[127] 

Fundus 

Images 

The author suggested a CIEU-Net 

for segregation of retinal vessels, 

which combines semantic 

segregation modules and basic 

medical image segregation methods. 

Drive, 

CHASE_DB1 

and STARE 

Dataset 

F1-score of 0.8227 , 

0.8037 and 0.8230 

respectively 

Sambyal et 

al. [128] 

Fundus 

Images 

The author presented a modern and 

advanced UNet architecture that 

consists of a residual network and 

employs shuffling periodically with 

sub-pixel convolution. 

IDRiD 

Accuracy and Dice 

Score of 99.98% 

and 0.9998 

Saha et al. 

[129] 

Fundus 

Images 

The researcher published a method 

that finds the severity level by using 

segmented output. It solves six 

subtasks in a single solution. 

Drishti-GS 
Jaccard Index 

0.8572 
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Saha et al. 

[130] 

Fundus 

Images 

The author proposed a multi-

adversary-based fully convolutional 

neural network utilizing two 

discriminators for retinal anatomy 

and pathology segregation. 

DRIVE and 

IDRiD dataset 

Accuracy of 0.9641 

on the Drishti-GS 

dataset 

Arsalan et 

al. [131] 

Fundus 

Images 

Author published a dual-residual-

stream-based vessel segregation 

network (Vess-Net) which uses 

artificial intelligence to aid the 

diagnosis of retinopathy. 

DRIVE, STARE 

and 

CHASE_DB1 

dataset 

sensitivity (Se), 

specificity (Sp), 

area under the 

curve (AUC), and 

accuracy (Acc) of 

80.22%, 98.1%, 

98.2%, and 96.55% 

for DRVIE; 

82.06%, 98.41%, 

98.0%, and 97.26% 

for CHASE-DB1; 

and 85.26%, 

97.91%, 98.83%, 

and 96.97% for 

STARE dataset 

Abbas et 

al. [132] 

Fundus 

Images 

The researcher presented advanced 

hypertensive retinopathy (HYPER-

RETINO) framework divided into 

several steps, segments the HR based 

on five grades. 

STARE dataset 

F1-Score and 

Accuracy of 92.0% 

and 92.6%, 

respectively 

Huang et 

al. [133] 

MRI, CT, 

PET 

The author published a computerized 

brain tumor segregation system 

using (GammaNet) and combining 

pooling (DenseASPP) modules and 

AGC blocks. 

TCGA-LGG 

DSC and 

Sensitivity of 

85.8% and 87.8% 

Ye et al. 

[134] 

MRI, CT, 

PET 

The author presented a model for 

medical images which portrays high-

level supervision into lower layers of 

neural networks and is a 3D Center-

crop Dense. 

BraTS 2017 

DSC and 

Sensitivity of the 

whole are 88.7% 

and 84.3% 

Zhou et al. 

[135] 

MRI, CT, 

PET 

The researcher presented a model 

with a three-stage network combined 

by 3D U-Net, producing extra 

context, fusing with the Multi-

sequence MRI, and making the 

segmentation issue more efficient. 

BraTS 2017 

Dice Score of 

WT,TC and ET are 

89.4%, 81.6% and 

73.0% ,respectively 

Zhou et al. 

[136] 

MRI, CT, 

PET 

The author proposed an advanced 

model that integrates with the 

backbone and uses a 3D atrous-

BraTS 2013, 

2015 and 2018 

Validated on BraTS 

2018 with Dice 

score of 0.8658, 
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convolution feature pyramid and 

utilizing a 3D fully linked 

conditional random field, followed 

by post-processing steps. 

0.7688, and 

0.74434 against 

WT, TC, and ET, 

respectively 

Ding et al. 

[137] 

MRI, CT, 

PET 

The author suggested a new multi-

path combined network with 

adaptive nature that uses ResNets 

"skip connection." 

BraTS 2015 

Dice Score for the 

whole tumor with 

10 Epoch is 0.827 

Zhang et 

al. [138] 

MRI, CT, 

PET 

The researcher proposed a multi-task 

driven U-Nets, BU-Net is also 

employed to reduce noise 

disturbance, followed by an S-CE 

loss. 

BraTS 2015 and 

BrainWeb 

Dice Score of 0.82 

and 0.9950, 

respectively 

Sun et al. 

[139] 

MRI, CT, 

PET 

The author proposed a 3D 

contemporary convolutional 

network using multi-pathway 

architecture is used to extract 

characteristics from MRI pictures 

successfully. 

BraTS 2019 

Dice Score for 

WT,TC and ET is 

0.89, 0.78 and 0.76, 

respectively 

Zhou et al. 

[140] 

MRI, CT, 

PET 

The author presented a three sub-

network model making use of the 

existing modalities to create a 3D 

feature-refined picture that depicts 

the missing part. 

BraTS 2018 
Avg Dice Score of 

72.3 

Zhou et al. 

[141] 

MRI, CT, 

PET 

The researcher proposed a model 

which encodes using a 3D 

ShuffleNetV2 and then a decoder, 

followed by a loss function fusion 

and refined by post-processing. 

BraTS 2018 

Dice Score of 

ET,WT and TC is 

81.81%, 91.21% 

and 86.62%, 

respectively 

Shehab et 

al. [142] 

MRI, CT, 

PET 

The author presented a ResNets 

model that has a shortcut skip 

connection that works in conjunction 

with the layers of convolutional 

neural networks. 

BraTS 2015 

Accuracy of 

complete, core, and 

enhancing regions 

is 83%, 90%, and 

85%, respectively  

Huang et 

al. [143] 
CT 

The researcher presented a model 

which detects Nodule with quicker 

regional-CNN (R-NN) with 

improvised Fully CNN. 

LIDC dataset IOU score 70.24% 

Zhu et al. 

[144] 
CT 

The author proposed a completely 

automatic lung CT diagnosis method 

using two deep 3D convolutional 

LIDC-IDRI 

Diagnosis accuracy 

of 81.41% and avg 

accuracy of 99% 
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networks. A 3D Faster R-CNN and a 

U-netlike encoder-decoder structure. 

Bana et al. 

[145] 
CT 

The author published a model split 

into two parts: segmentation and 

classification. 

LUNA16 

IOU with TP and 

FP detection are 

99% and 99%, 

respectively 

Wu et al. 

[146] 
CT 

The researcher introduced a CNN 

that functions as a multi-task 

learning system to diagnose the 

malignancy of a lung tumor 

accurately. 

LIDCIDRI 

Accuracy and Dice 

score of 97.58% 

and 73.89%, 

respectively 

Meraj et al. 

[147] 
CT 

The author proposed a system for 

predicting lung cancer and 

distinguishing between benign and 

malignant tumors. 

LIDC 
Accuracy of 

99.23% 

Qin et al. 

[148] 
CT 

Researcher published a model with 

two phases. The first phase increases 

the variety of samples, while the 

other creates synthetic CT images to 

make a three-dimensional (3D) CNN 

model. 

LIDC-IDRI 

Accuracy and DSC 

score of 0.9904 and 

0.8483 

 

 

7.1. Current Limitations and Computational Challenges 

 
In this part of the paper, the current limitations and challenges faced during the training and application of 

deep learning techniques and models are thoroughly discussed and used to detect various ailments (as stated in outlined 

Section 6). 

Researchers have applied different techniques in diagnosing skin lesion cancer, facing different sorts of 

limitations in their models and frameworks. An apparent limitation of the FCN is that it is heavier compared to others 

because of more parameters which lead to more time being taken for inference and training of networks. Another 

limitation SLSNet faced was the inaccuracy of lesion boundary segmentation because of the improper boundary 

between lacerated and normal skin. A Few limitations in applying the GAN model were low and poor contrast, 

inappropriate boundaries, and unwanted artificial noise, which makes it even more challenging to differentiate 

between the lacerated region and the normal portion. The poor and low contrast also affected the segmentation 

performance of the AFLN-DGCL-FUSION model, ultimately resulting in compromised accuracy scores. The SC-

FCN-BLSTM approach utilized in research suffers from the limitation of GPU memory, for which images had to be 

cropped to compensate for the GPU memory issue. One limitation of the DFS model was the high time complexity in 

its computation due to the involvement of different models for its segmentation. Whereas the poor quality of training 

data has been a significant reason to restrain the performance of other models. An apparent setback in the semantic 

classification for breast tumor segmentation was the lack of automation because the images must be cropped, which 

restrains the model from fully automatic working. One concern while using the U-Net MALF model was fuzzy tumor 

boundaries which led to the cause of poor detection and segmentation of tumors. The drawback of semantic pixel-

based segmentation naturally includes the problem of OD and OC being distinguished because each pixel is labeled 

separately and independently based on its category; all the pixels are labeled independently based on the category of 
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that pixel. As in previous models, poor quality and contrast of fundus images had also been the point of concern in the 

W-shaped backbone network to give an effective and accurate location of the OD center. Regarding the setbacks in 

the TAU model, it could be argued that the imbalance markers of small objects put the model performance in a 

significant challenge. Secondly, it is unable to adapt to third-party datasets.  

The deep learning-based segmentation model is widely accepted, but it suffers from the limitation of being 

computationally heavy, which leads to the fact that it takes more time in parallel to the U-Net baseline framework, 

and it also has the setback of not being robust in terms of unhealthy images in the dataset. The modified UNet approach 

utilized in the diabetic retinopathy segmentation suffers from an apparent drawback: it is only validated and tested on 

publicly available datasets, which limits the performance of the model as rigorous as it should be extended to the 

clinically acquired database. Not much research is being done in this domain, but the HYPER-RETINO system has 

an apparent limitation the difficulty in extracting relevant HR-related lacerated features from the retinography dataset. 

Secondly, the lack of availability of labeled datasets by clinical experts to train and test the model is the central point 

of concern which could be one of the main reasons this domain has not been under the focus of many researchers. The 

multi-encoder-based U-Net model limitations are apparent in many ways, and the main setback is that it only validates 

multi-MR modalities, along with the room for improvement still needed in the correlation constraint block. Another 

limitation is that the model has only been evaluated on a publicly available brain tumor dataset. The ERV-Net 

framework presents some limitations of being computationally complex and the number of parameters, which could 

be improved further to improve the performance results. 3D R-CNN utilized suffers from the same limitation as 

previously discussed: the GPU memory constraint, which limits the researcher to split the CT image into small patches 

to recover the resource and time limitation for training, also leading to the use of 5-fold validation. CNN-based 

network, although widely accepted, it suffers from some limitations, including the inability of the model to consider 

other structures such as bronchi and bones. Another drawback of this model is the uneven distribution of the training 

dataset, and lastly, the apparent setback of the method is to find out the optimal form of introducing random noises 

into cGAN. 

 

7.2. Future Directions 

This subsection presents a detailed view, highlighting the future perspectives and suggestions to further 

improve the scientific deep learning-based arts for various medical diseases. 

7.2.1. Future Suggestions to Optimize Skin Cancer Arts 

One significant future research suggested in [98] should consider the potential effect of ROIs to extract 

valuable features for different types of laceration classification coupled with the DSNet and loss function to verify the 

versatility and generality of medical contexts. It will be essential to investigate to improve the ability to extract 

significant features in the segmentation model to make better use of medical images [99]. The assumption of 

diagnosing skin cancer using the proposed framework [100] may be addressed in the future as it precisely removes 

specific objects, e.g., watermarks and images. Future studies could fruitfully explore the time complexity issue by 

reducing it with an end-to-end platform for clinical research. The CKDNet cascade knowledge diffusion framework 

could be generalized to be implemented on image segmentation and classification datasets [101]. Future research 

could be completed on enhancing the effectiveness of the proffered framework [102] by refining the optimization of 

laceration boundary details and the generalizability of different networks on dermoscopic image datasets. What is 

desirable for the future is to increase the number of lesion images which may help in data augmentation techniques to 

increase efficiency. At the same time, the computation time for the training of data can also be curtailed by increasing 

the GPU memory.  

Lastly, the inference performance can also be improved by increasing the epoch numbers for the training 

phase [103]. Future research will be essential to include the SLSNet model implementation in the form of a mobile 

application to segment and classify skin lacerations in images captured by handheld phone cameras with low 

resolution. Contrary to that, parameters like efficiency, performance, deployment, and upgradeability may be assessed 

using different embedded systems like FPGAs, NVIDIA Jetson GPUs, and Mobile SoCs [104]. In the future, working 

on blurred boundaries and low contrast images using transfer learning to make skin laceration recognition efficient 
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and make it more sensitive to the dataset of blurred boundaries and low contrast images [105]. Future studies could 

fruitfully explore the issue of low contrast and blurred images by working on the GAN strategy and qualification tests 

to improve the framework’s robustness [106]. Future research is needed to delimitate the use of supervised learning 

and unsupervised models for skin laceration segmentation to efficiently increase the dice coefficient and accuracy 

score [107]. 

 

7.2.2. Future Suggestions to Optimize Breast Cancer Arts 

In the future, investigating and working on an orthogonality view to locate the nipple region automatically 

could be of great use to increase efficiency. As in the proposed model [108], the nipple region cannot be differentiated 

from the tumor. Future research on applying the presented framework to multivendor and multicenter datasets could 

make the proposed framework more robust. Secondly, working on a three-class one-stage nnU-Net for FGT and breast 

segmentation could get us desired improved results. Thirdly, rigorous work can be done to reduce the inference time 

by focusing on model compression [109]. It will be important that future work should improve cancer detection in a 

more targeted manner. In addition, the MDE technique is proposed in this paper as a complex framework that could 

be applied using high-performance computing and distributed computing in particular segmentation processes. 

Moreover, this model is a high performer and can also be applied in other domains, such as engineering 

optimization, feature recognition, and medical diagnostics [110]. The future result could examine the simplicity of the 

proposed algorithm and improve the segmentation process concerning the failed cases. And be tested and validated 

on different publicly available and clinical datasets to make its results more generalized [111].  

Desirable future work can be the automation of the annotation of ultrasonic segmentation data [112]. 

Moreover, more novel and advanced models could be investigated to improve the segmentation. Future research could 

fruitfully explore feature information's multi-dimensionality to increase breast laceration identification's robustness. 

Secondly, because of its generic framework, many other medical imaging modalities could be tested and trained on 

the presented model [113]. Future research should apply advanced deep learning algorithms to segregate breast 

ultrasound images correctly. However, it could be greatly used in clinical medicine [114]. Future research should 

certainly further improve tumor supervised learning on the classification and reclassification of superpixels. Further 

research might help make a closed loop to provide the CAD output as input to the segmentation and the result as input 

to CAD for tumor classification [115]. The proposed approach limits the performance evaluation of different tissue 

types. Further extending the scope for the assessment to the set of densely annotated data could be the interest of future 

research along with the generation of such manual annotation [116]. Further research is needed to study custom loss 

function being incorporated with a deep learning model for encoding prior results and contributing with medical peers 

to get annotated images with breast tissue layer and integrate it into a single segmentation model [117]. 

 

7.2.3. Future Suggestions to Optimize Retinopathy Diagnosis Arts 

Future research may further be needed to investigate the performance of an algorithm on a diverse dataset. 

Furthermore, this model can also be applied to other retinal diseases, which could be a good addition to the research 

domain [118]. The authors in [119] recommended that future research be devoted to detecting other diseases related 

to optic discs, such as disc anomalies, tilted optic disc, and anterior ischemic optic disc neuropathy. Additionally, the 

proposed framework could be extended to other biomedical image analysis problems. It will be important that future 

research investigates to find the perfect balance between efficiency and accuracy of the presented framework, ensuring 

the effective segmentation of optic cup and optic disc. Moreover, future studies could also focus on automatic 

glaucoma diagnosis [120]. 

Future work should examine restraining the FP pixels production supported by using prior knowledge of 

vessel structure and extracted information from fundus images. Exploration of further constraints may constitute the 

objective of future studies, such as convexity. Furthermore, the distances between two level sets can be considered in 

the future, such as the manifold distance [121]. Future research should fully utilize the proposed framework to grasp 

the information of its semantics of fundus pictures and combine the segmentation framework with the localization of 

the OD center. Secondly, the transfer learning method can bring a lot of improvement to overcome domain transfer. 

An approach driven by data for constructing a fundus picture database and a process driven by the model could be 

incorporated with proficient data to conquer the transfer of domain [122]. Looking forward, future research could 

bring further proficiency and a better approach by using pretrained networks or deep supervision to improve the 

backpropagation of gradients. The proposed model provides a good starting point for generalizing the framework with 
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the available third-party dataset. This framework could also lead to automatic glaucoma detection by using an 

additional classifier [123]. Future attempts could be made to explore a more efficient and lighter version of the 

proposed framework to be easily embedded on commercial medical devices. Future work should investigate the 

proposed model's extension to detect other retinal abnormalities like soft exudates and haemorrhages on clinically 

arranged and other fundus image datasets [124]. Future research should further develop a similar framework to be 

applied to different mapping options, which could obtain good segmentation results with lesser trainable parameters 

performance. In addition, this framework can also be utilized for semantic segmentation in other domains [125]. A 

recommended future research is to develop a framework that could differentiate between the two, hypertensive 

retinopathy (HR) and diabetic retinopathy (DR) [131]. 

 

7.2.4. Future Suggestions to Optimize Brain Tumor Arts 

Future work is undoubtedly required to collect the images and make a new dataset to curtail the limitation of 

segmenting gliomas and evaluate the performance [133]. As the proposed model only validates the brain tumor 

segmentation dataset; this model can be tested on various other types of modalities in the future. Secondly, the training 

stages could be integrated and merged into one, rather than two, in the proposed model [134]. Future research could 

be carried out on identifying the small and tiny segments of a tumor by taking several potential directions for tackling 

this challenge [135]. An interesting future topic can be segmentation based on multi-modality MR images 

simultaneously and fusion on the pillars of the deep neural network [136].  

Further research should dig into different functions’ performance which is normalized, for example, the batch 

normalizing with different sized of batch, instance normalization, normalization of groups, local response 

normalization, and normalization of layer [137]. Future work is certainly required to expand the proposed model on 

other multi-modal segregation issues, for example, MRI and CT, and compare it with other existing models to improve 

the performance. In addition, the model could also be validated on different publicly or privately available datasets to 

make a robust framework [138]. Future research might apply lightweight processes in the decoder to decrease the 

network parameters. Contemporary to that, ERV-Net layers could be increased to get a larger receptive field, which 

could ultimately improve the performance of ERV-Net. This model could also be replicated on an open-source deep 

learning platform [139]. Future research should focus on the modification and up gradations in the model in terms of 

performance for feature extraction of LGG brain tumors. With this, we can improve the robustness, validity, and 

accuracy of MRI-based brain lesion segregation [140]. 

 

7.2.5. Future Suggestions to Optimize Pulmonary Nodules Arts 

Future research might evaluate the proposed model on independent training and testing datasets to perform 

a comprehensive and detailed comparison. The model performance could also be assessed by applying it to the entire 

volume as it is a critical concern in terms of performance [143]. Future research should strategically examine the 

combination of speed and effectiveness and then further be applied across different imaging modalities and 

commercial medical applications [144]. In the future, nodule malignancy identification of lungs with unlabelled data 

obtained from pathology needs to be focused upon. Moreover, neural networks can further increase the model 

interpretability [145]. Future work might be undertaken to investigate the application of the proposed model in many 

other applications related to medical images for segregation problems, such as MRI for the detection of brain lesions 

[146]. Future research should certainly include designing new ideas and techniques to solve the issue of an imbalanced 

dataset. The datasets are obtained from different radiologists, with the subjective judgment of each doctor leading to 

additional analyses and conclusions. Hence, affects the performance of the model drastically [147]. 

7.2.6. Future directions for improving deep learning arts  

1. Create deeper DL architecture by stacking the smaller kernels to each layer which reduces higher memory usage 

cost and improve the computation cost for semantic segmentation of medical images. 

2. A comprehensive comparison and analysis of volumetric convolutional methods with sequenced models are 

possible future directions. 
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3. In region-based approaches, how to avoid blocky segments when using region merging and splitting methods? 

4. For supervised learning of medical images what could be the possible image annotation methods to improve the 

semantic segmentation of medical images? 

5. What could be the possible measures in choosing ANN architectures for semantic segmentation of medical images 

as these are kind of black box problems? 

6. Designing a function with a single loss that computes distance function based on cross entropy and overlap 

simultaneously. This can be possible by reviewing the previously available overlap-based and distance functions. 

7. How can multimodal features be helpful for semantic segmentation of medical images? 

 
8. Conclusion  

 
Semantic segmentation (Semseg) can be used by many medical experts in the domain of radiology, ophthalmologists, 

dermatologist, and image-guided radiotherapy. In this review article, we have presented perspectives on the 

development of an architectural and operational mechanism for each machine learning-based semantic segmentation 

approach with merits and demerits. Moreover, many authors have developed several Semseg methods and examined 

their performance in a variety of applications, especially in medical image analysis (e.g., medical image classification 

and segmentation). This article is further presented a comprehensive investigation of how different architectures are 

helpful for medical image segmentation. We discussed three major categories, which include fully convolutional 

network (FCN), region-based and sickly supervised segregation frameworks, and the optimization functions used for 

semantic segmentation to improve the performance measures. According to some state-of-the-art methods, the 

Encoder-decoder framework is among the most promising method for semantic segmentation of medical images as it 

contains long and short skip connections. We observed that due to the scarcity of annotated medical image datasets 

the use of supervised learning techniques in medical image segmentation is limited. That is why weakly supervised or 

unsupervised methods have been applied to semantic segmentation tasks. We also discussed the advantages of deep 

learning techniques and their limitations for segregation related to biomedical pictures and further discussed some 

possible future research directions. Finally, advantages, open challenges, and possible future directions are elaborated 

in the discussion part, beneficial to the research community to understand the significance of the available medical 

imaging segmentation technology based on Semseg and thus deliver robust segmentation solutions. 
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