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a b s t r a c t 

In this paper we present a new environment called MERPSYS that allows simulation of parallel application execution time on cluster-based systems. 
The environment offers a
modeling application using the Java language extended with methods representing mes- sage passing type communication routines. It also offers a 
graphical interface for building
a system model that incorporates various hardware components such as CPUs, GPUs, inter- connects and easily allows various formulas to model 
execution and communication times
of particular blocks of code. A simulator engine within the MERPSYS environment simu- lates execution of the application that consists of processes 
with various codes, to which
distinct labels are assigned. The simulator runs one Java thread per label and scales com- putations and communication times adequately. This 
approach allows fast coarse-grained
simulation of large applications on large-scale systems. We have performed tests and veri- fication of results from the simulator for three real parallel 
applications implemented with C/MPI and run on real HPC clusters: a master-slave code computing similarity measures of points in a 
multidimensional space, a geometric single program multiple data parallel application with heat distribution and a divide-and-conquer application 
performing merge sort. In all cases the simulator gave results very similar to the real ones on configurations tested up to 10 0 0 processes. Furthermore, 
it allowed us to make predictions of execution times on configurations beyond the hardware resources available to us.
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1. Introduction

Nowadays parallel systems have grown in size and complexity considerably. Parallel computing can be exploited within a

single node using multicore CPUs, accelerators such as GPUs or coprocessors of a Intel Xeon Phi type. The number of cores

and performance of such compute devices have been growing recently with several tens of cores in latest Intel ® Xeon 

® 

CPUs [1],  a few thousand of CUDA cores in latest NVIDIA GPUs [2].  Computer nodes that include such compute devices ca

then be interconnected with each other to form clusters. Such clusters usually incorporate communication interconnects

such as Infiniband or Gbit Ethernet. The number of cores within a cluster today has exceeded 10 million in the case of
http://dx.doi.org/10.1016/j.simpat.2017.05.009
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Sunway TaihuLight - Sunway MPP [3,4] . Additionally, volunteer computing has become a viable method for solving some

large scale problems [5] . Furthermore, another level of parallelism involves coupling clusters or volunteer-based systems

using wide area networks for grid type computing [6–8] . These architectures result in systems of an even larger scale. 

For such systems, issues related to performance, reliability and power consumption arise. Specifically, speed-ups of a

single application on large systems will be limited by dependencies within an algorithm, communication costs but also fail-

ures of computing devices. Additionally, power consumption is becoming one of the key concerns next to the computational

power. Optimal utilization of such large-scale systems, especially in the face of rising heterogeneity of the hardware and

applications, requires new versatile software frameworks which allow tuning, executing and monitoring of hybrid parallel

programs. Our efforts in this area resulted in the KernelHive system [9] that allows to plug in scheduling and autotuning

optimizers, focusing on particular goals, such as execution time and power consumption. Finding optimal values of applica-

tion parameters and job assignments often requires low-cost estimation of the objective functions and thus, accurate models

and simulations of real application executions. 

In order to investigate these issues, we contribute by proposing a new environment called MERPSYS, available on-

line [10] that allows modeling large scale cluster, volunteer and mixed systems, definition of parallel applications abstracting

from well established APIs for parallel programming and simulation of execution of applications on such systems. The sim-

ulator returns execution time, on which we focus on in this paper, reliability of execution and power consumption, all using

concrete parameters of compute devices and interconnects from a database. The environment allows us to conduct simula-

tions of large scale systems that may be unavailable to the end-user at the given moment. Also, simulation of application

execution is generally much faster than execution of a real-word application in the given environment. In this paper we

focus on simulation of execution times of parallel applications within MERPSYS and its validation. It should be noted that

the simulation of energy consumption using MERPSYS has been presented and validated in [11] . 

The outline of the paper is as follows. Section 2 discusses existing work related to systems and simulators for large scale

computing systems and simulation of applications running on such systems. Section 3 includes description of the MERP-

SYS platform for simulation of parallel applications on large-scale clusters. Furthermore, Section 4 contains results of the

experiments including description of parallel computing clusters as well as testbed applications such as computing simi-

larity measures of points in a multidimensional space (master-slave paradigm), distribution of heat (single program mul-

tiple data/geometric parallelism), parallel sorting (divide and conquer). Within experiments we compared execution times

of models of these applications in the MERPSYS environment against results obtained from real applications run in a real

parallel large-scale environment. We validated correctness of the simulation environment. Section 5 contains discussion of

the obtained results and based on it shapes future work. 

2. Related work 

This section contains descriptions of the most important simulation packages, toolkits and systems similar to the pro-

posed MERPSYS. For the reader’s convenience we present a synthetic summary in Table 1 . It contains a comparison in terms

of target simulated system types, means for system/resource modeling, APIs, assumptions for application modeling, sim-

ulation use cases and simulation goals. This summary, along with further discussion, highlights differences between the

systems in terms of target simulation types and modeling in MERPSYS environment. Specifically, MERPSYS as the only plat-

form supports all: performance, energy consumption and reliability metrics for simulated applications and environments. It

also provides an API for automated runs of simulations with various configurations [12] . 

A discrete event Java-based simulation package SimJava, in which several layers are distinguished, is presented in [13] .

Within the latter components are distinguished which can be used to create components in a higher layer. Several layers are

described including Java, instrumentation, monitor, sampling, synchronization and scenario. The solution provides a flexible

event-queuing system and allows to build other solutions based on it. In this respect, in contrast to SimJava, MERPSYS

should be viewed as a simulator environment dedicated to cluster and volunteer environments with consideration of specific

compute devices (CPUs, GPUs) and interconnects (network, PCI etc.) available in the provided database of components which

allows to build and simulate nodes and clusters built out of those and obtain performance metrics. 

OMNeT++, presented by Varga [14] , is a C++ based discrete-event framework. It is mainly targeted at modeling net-

works including wireless and wired networks, protocols etc. A set of libraries includes many popular network protocols,

but the programming model is suitable for other implementations (e.g. specific for HPC) as well. OMNeT++ is meant mainly

for building network simulators, and as such in comparison to MERPSYS, does not allow for direct HPC simulation with

consideration of various compute devices such as CPUs, GPUs, single and double precision performances, nor simulations

considering power consumption of processors. 

Paper [15] describes GridSim – a toolkit based on the SimJava library for modeling and simulation of various components

and elements of grid systems including users, applications, resources, schedulers and brokers. GridSim was released under

GPL license. In particular, in the system it is possible to analyze various types of resources with consideration of hetero-

geneity, static and dynamic scheduling, many jobs running in the environment, network speeds, advance reservation. Also,

it can be used for optimization of the cost and time that can take into account possibility of failure. Compared to GridSim,

MERPSYS considers also power consumption of particular compute devices and allows definition of models and simulation

at a lower level of abstraction i.e. with consideration of compute devices within a node such as CPUs and GPUs, with single,



Table 1 

Comparison of the simulators: summary. 

Target system System/resource modeling Application modeling, API Simulations targeted at 

SimJava Computer architectures and 

parallel software systems, 

applicable to any network of 

communicating objects 

Extending classes in Java, Entity’s behavior coded in Java Execution time 

OMNeT + + Computer networks and other 

distributed systems, mainly 

for building network 

simulators 

Components (modules) 

exchanging messages, 

structure of the model 

expressed in the NED 

language 

Simple modules developed in 

C + +, simulation programs 

and kernel in C++ 

Network, performance 

CloudSim Cloud systems Through components such as 

host (CPU, memory, storage 

parameters), VMs, allocation 

policy, cloud market, 

network topology in BRITE 

format 

Tasks modeled through 

Cloudlets, dynamic 

workloads can be modeled 

through UtilizationModel 

Resource provisioning, 

performance, cost, power 

consumption 

GridSim Cluster, grid, P2P Modeling Processing Elements 

(with speeds) that form 

machines which form grid 

resources such as CPUs or 

clusters 

Independent tasks modeled 

through Gridlet objects 

(computations, I/O, file sizes) 

Performance, cost 

MARS HPC Network (topology) model, 

pluggable models for 

network adapters and 

computing nodes 

MPI applications – traces Prediction of performance and 

application tuning, different 

network topologies, flexible 

routing schemes, arbitrary 

application task placement 

GSSIM grid, cloud XML- based format 

descriptions: queues, 

resources, resource 

parameters 

Standard Workload Format 

(SWF), Grid Workload 

Format (GWF) 

Network modeling, execution 

time and power usage, 

modeling of network failures 

and security issues 

SST/ macro Large-scale parallel computer 

systems 

Node, network etc. models 

specified in text files 

Native C/C ++ / Fortran and MPI Performance oriented 

SimGrid Grid, cloud, HPC, P2P XML C, C ++ , Java, MPI Performance, energy 

MERPSYS (Collection of) cluster and 

volunteer based systems 

Graphical, built from 

components with WWW 

interface 

Java extended with MPI-like 

API modeling 

communication 

Performance, energy 

consumption, reliability 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

double precision performances (rather than MIPS ratings of machines in GridSim) connected with PCI Express, consideration

of power consumption of a node based on the number of running threads [16] etc. 

The MARS framework (MPI Application Replay network Simulator), described in [17] , was created by IBM Research Lab-

oratory. It allows to simulate high performance computing systems that include hundreds of thousands processors. The

tool can be used for design of systems, prediction of performance and applications tuning. The environment, based on the

OMNeT++ framework, offers various network topologies. It contains a model of a network and modules modeling partic-

ular components such as network and computing components. The simulator relies on replaying MPI [18] logs from real

applications. MARS allows to model allocation of tasks to different nodes of a simulated system and collect statistics for

visualization of simulation results. Simulation is based on replaying traces that contain MPI calls. Paper [17] claims to have

simulated up to 65,536 nodes on an 32-way SMP cluster. Compared to this solution, MERPSYS uses Java extended with MPI

like calls representing communication and, as such, allows to model an application at various levels of abstraction. Also,

it allows to obtain simulated estimates of energy consumption [11] and probability of successful application execution in

large-scale systems. To limit the size of the paper we skip detailed description of these functions of MERPSYS, focusing here

on execution time simulations. 

MERPSYS is focused on simulation of cluster-based systems and at this time it does not include features specific to cloud

environments, that is provided by a toolkit such as CloudSim presented by Calheiros et al. [19] . The latter was designed

to allow modeling and simulation of cloud systems and application provisioning environments. It provides modeling of

virtual machines as well as consideration of provisioning methods. Furthermore, inter-connected clouds are supported for

simulation. The environment allows space-shared and time-shared allocation of processing cores to virtualized services. 

Network is simulated using BRITE (Boston University Representative Internet Topology Generator) [20] that considers nodes

that can correspond to data centers, brokers and hosts. It allows to simulate the network with latencies between nodes.

The main feature of CloudSim is focus on virtualization technology in data centers. The simulator is able to consider many

virtual machines, which may share same resources. It allows to link services with the cost per unit of memory, cost per unit

of used bandwidth, cost per unit of storage, cost of ordered memory, cost of storage and transferred data. The simulator

supports measurement of the cloud power consumption depending on system utilization. 

Grid Scheduling simulator (GSSIM) [21] is an advanced tool that allows distributed computing simulations, and is pri-

marily focused on scheduling. It was created in Pozna ́n Supercomputing and Networking Center in Poland. GSSIM provides



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

means to simulate many components of a grid system including network and compute nodes. The authors claim, that GSSIM

may be used for detecting bottlenecks in the network and perform energy aware simulations. It allows to assess power

consumption depending on different workload types and scheduling policies. In GSSIM applications are described using

Standard Workload Format (SWF) or Grid Workload Format (GWF) [22] files with extended metadata in the XML format.

Applications can be described with consideration of execution time as well as time slots for execution important from the

point of view of advanced reservations. Resource requirements may include the number of CPUs or memory that are neces-

sary to complete the current task. The simulator provides a very extensive flow model of network with support for different

network topologies. The network simulation utilizes a network path reservation and Dijkstra’s algorithm to find the shortest

route between the nodes and calculate the maximum flow between sites. GSSIM is available as a web application including

an editor, experiment execution and experiment repository. It also provides a tool to analyze the results of a simulation. In

contrast to GSSIM, MERPSYS is focused on cluster based systems and HPC applications modeled in the form of an abstracted

parallel application in Java with MPI like extensions representing communication. MERPSYS also supports simulation of par-

allel application run reliability apart from performance and energy consumption simulation. 

SST/macro, described by Adalsteinsson et al. [23] , allows to model a parallel application execution using lightweight

threads considering network interconnections. Specifically, threads create kernels that model computations or specific MPI

communication routines. SST/macro was implemented in C++. Approaches of MERPSYS and SST to simulations are similar

in the sense of focus on simulation of running a parallel application or several parallel applications on a system that is

composed of certain computational (CPU, GPU, Xeon Phi) and network components. MERPSYS is more coarse-grained as it

allows generalization of certain process or thread codes that in a real application can be executed by a large number of real

processes or threads. Just a few process/thread codes are distinguished, each of which is marked with a label and a digit

denoting the number of real processes/threads simulated. The MERPSYS approach is focused on a higher level of processing

abstraction with emphasis on optimization of finding application configurations that give the best trade-off in terms of exe-

cution time, energy consumption and reliability when run on a large scale system. One of differences is that SST/macro uses

an application model based on MPI, while MERPSYS employs a meta-language which is Java extended with methods rep-

resenting computational blocks or communication (point-to-point or collective). MERPSYS allows to map many applications

onto a complex system composed of multiple clusters with finding best sets of configurations for the applications. Simula-

tions are intentionally coarse grained in order to be able to achieve results by running many simulations in reasonable time.

The latter can be launched in parallel in a cluster. 

SimGrid [24] is a framework that allows studying the operation of large-scale distributed computing systems. It supports

grid, cloud, HPC or P2P systems. The software is free (GPL license) and can be downloaded from [25] . It is available for

Linux, Windows, Mac OS X. SimGrid uses analytical models of a network with fast simulations and a reasonable accuracy

level. SimGrid offers great performance and scalability. Authors claim that they were able to simulate with up to 2 million

processors on a machine with 16 GB RAM. Times of simulation of the master-slave application for 10 0 0 and 10 0,0 0 0 slave

tasks are 0.7 s and 96 s respectively. The simulation was executed on a 2 GHz laptop with only 1GB of memory. Compared to

SimGrid, in MERPSYS we also focus on simulations on cluster and volunteer computing paradigm such as presented in [26] ,

also in terms of execution time, energy consumption – analyzed in [11] . MERPSYS allows to model systems at various levels

i.e. connected systems, systems can be modeled as collections of machines connected with a given type of network and

furthermore machine inside architectures can be modeled down to components such as CPUs and GPUs, PCI bus etc. In

SimGrid, device parameters such as performance and power consumption are included in XML descriptions of hosts. In

MERPSYS, we provide an extendable database of components such as concrete models of CPUs, GPUs, network interconnects

that can be easily plugged into the model of the system and easily changed. 

To support studies of scheduling strategies in Grid environments, a GangSim simulator has been developed as described

by Dumitrescu and Foster [27] . The simulator allows to explore what site usage policies are appropriate in a grid environ-

ment, and how these policies impact achieved site and Virtual Organization performance. 

The CloudReports, as described by Sa et al. [28] , provides an open source simulation tool for energy-aware cloud com-

puting environments. The detailed review of eleven simulation tools for cloud computing was presented by Pranggono et al.

[29] . MERPSYS also offer analysis of energy consumption but it is dedicated to cluster, volunteer and mixed environments.

A critical evaluation of the state-of-the-art modeling and simulation frameworks applicable to cloud computing systems

has been presented by Bashar [30] . Another review focused on evaluation of performance and security issues was prepared

by Malhotra and Jain [31] . Commonly used simulation tools for cloud computing security research were described in [32] . A

review of major cloud simulators that analyze issues related to load balancing, power constraints, program offloading, cost

modeling and security issues was presented by Ahmed and Sabyasachi [33] . 

3. Proposed solution – MERPSYS platform 

In view of the aforementioned existing solutions and desired use cases presented in Section 1 , the contribution of this

paper is a new MERPSYS environment that allows fast simulation of parallel applications runs, in particular master-slave,

geometric parallel and divide-and-conquer paradigms, on large-scale systems having thousands of processes or threads and

assessment of execution time, reliability and power consumption of the particular run. Such a simulation is performed

taking into account specific parameters of hardware computational components such as CPUs, GPUs (single, double precision

floating point performance, power consumption, reliability) as well as network interconnections (startup time, bandwidth).



Fig. 1. MERPSYS system model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MERPSYS includes an extendable database of real hardware components with these metrics. Components in the system

model can be easily exchanged for others in order to obtain instant results for different hardware configurations. What

is important the system allows us to identify dependencies of the execution time on the number of processes as well as

various application parameters, which are demonstrated for real-life applications. 

Some aspects of the MERPSYS environment have been already studied in their respective contexts. Specifically: 

• In paper [34] we described validation of the presented environment simulating an application for parallel computation

of similarities among large vectors on a collection of workstations connected with Gbit Ethernet. In this paper we use

an improved version of this application run on a modern cluster for various numbers of slave processes. 

• In paper [16] we presented models for particular computational and communication blocks benchmarked on selected

clusters, including execution times, power consumption and functions describing reliability these were further introduced 

into the MERPSYS database. 

• In work [11] we presented details of modeling energy consumption of SPMD and divide-and-conquer applications in

MERPSYS. In contrast, in this paper we focus more on experiments with execution times. 

• In paper [35] we introduced modeling of volunteer computing that further allows us to incorporate a component repre-

senting a group of volunteers (with a function describing its execution time based on a probabilistic model) into MERP-

SYS. 

In view of these papers that described particular elements of the whole approach, this work contributes by presenting

MERPSYS as a whole simulation platform and contains the following: 

1. The architecture of the whole platform including components and their interactions. 

2. Methodology including screenshots of the modeling tool. 

3. Modeling, benchmarking, simulation in MERPSYS and demonstration of matching benchmarking and simulation results 

with low error for applications falling into three various parallel programming paradigms i.e. master-slave, Single Pro-

gram Multiple Data and divide-and-conquer. 

4. Validation of simulated results (execution times) against real results for up to over 10 0 0 processes. 

5. Comparison of the MERPSYS solution to solutions such as SimJava, OMNeT++, CloudSim, GridSim, MARS, GSSIM,

SST/macro and SimGrid. 

From a user’s point of view the MERPSYS environment provides panels for definition of the following: 

1. Hardware components – such as CPUs, GPUs, accelerators and network interconnects along with their parameters. It can

be defined via a Web page on the MERPSYS server [10] . 

2. Computational model – formulas that define execution times considering hardware parameters, the number of instruc- 

tions of a given type, the number of threads for computational components such as CPUs or GPUs as well as communi-

cation times for point-to-point and collective operations. Such models may be different for various clusters using various

interconnects. A computational model can be defined via a Web page on the MERPSYS server. We defined specific for-

mulas for three clusters located at Gdansk University of Technology and described these in paper [16] . 

3. System model – the structure of a system is defined by dragging computational components and connecting them using

communication components on a canvas as shown in Fig. 1 . The system model can be hierarchical and include multiple

levels: WAN, LAN, cluster and computer (CPUs, GPUs, accelerators, PCI etc.). 



Fig. 2. MERPSYS application editor. 

Fig. 3. MERPSYS simulation panel. 

 

 

 

 

 

 

 

 

4. Application model – presents code of an application which could be launched in a real-life environment. As shown in

Fig. 2 , the application is coded using a meta language which is Java extension with a library of functions represent-

ing computational blocks and a variety of communication functions: point-to-point and collective ones. The application

consists of codes for one or more processes or threads each of which is marked with a distinct label. 

5. Experiments – a panel allows to define an experiment using the previously created models. Experiments use a specific

configuration including the number of processes or threads with particular labels as well as input parameters. At launch-

ing an simulation it is necessary to specify how many processes or threads of each label are to be run. This starts a

multithreaded simulator that launches one thread for each label with proper scaling of data sizes, computational and

communication times. The MERPSYS simulation panel is shown in Fig. 3 . 

The system model, application model and experiments are defined and managed within a client-side Java application that

connects to a MERPSYS server. 



Fig. 4. System model entities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. Use cases for the MERPSYS platform 

Consequently, the system allows a variety of practical use cases such as: 

1. Simulation of running a given application on a system with various numbers of compute devices for assessment of

the best configuration taking into account execution time (including probability of failure) and power consumption

e.g. performance/power consumption . This may help to assess best hardware configurations that need to be purchased.

2. Simulation of speed-ups for various input data sizes. 

3. Identification of bottlenecks in code through testing of existing (parts of) parallel codes on large scale systems. The

process of developing a MERPSYS application model can help to analyze and understand the application better. For ex-

ample, while identifying and tuning the communication and computation blocks for the model in [36] , we noticed a

bottleneck due to imbalanced data. Then, simulations in MERPSYS allowed us to assess the application execution time

after elimination of this bottleneck. This case shows the simulator is useful for real-life problems and helps to decide if

it is worth to spend time on certain code improvement. 

4. Testing various hardware components in a system model : testing performance and power consumption on a system

model with a certain structure but various hardware components. The system allows easy substitution of e.g. computa-

tional components such as CPUs for assessment of performance and power consumption. 

5. Assessment of reliability of computations and execution times taking into account failures in a large scale system.

This allows assessment of the shortest execution times considering failures and need for rerunning the application in

case of failure. 

6. Scheduling of several applications on a large-scale system that is composed of cluster and volunteer components for

global optimization of performance, reliability and power consumption. Specifically, in MERPSYS several independent 

parallel applications can be modeled, where processes of each application never communicate with processes of other

application. Processing resources are shared at the simulator level taking into account multiple processes assigned to a

compute device along with its capabilities including the number of cores. Network resource sharing can be included in

the model by the user, as shown for the master-slave application in Section 4.2.1 . Consequently, we can model such a

set of applications as a single parallel application in MERPSYS. 

7. Teaching parallel programming and performance evaluation . 

What is important is that the simulation runs in a considerably shorter execution time than a real code. Obviously, this

depends on how detailed the model of an application is. If large computational parts of the code can be expressed by com-

putational blocks then execution times can be very short. Furthermore, the system allows to make simulations on various

hardware configurations that may be unavailable to the user in reality at the given moment but e.g. may be considered for

purchase. 

3.2. System model 

Fig. 4 presents the system model class inheritance diagram. The Component class is a base for all the entities and the

Connectable class is a base for all the entities which can be connected to some type of a connection medium (e.g. network,



Fig. 5. Selected CPU parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

system bus, etc.). It provides information concerning name, used computational model and specified hardware. A particular

system can be defined with the following entities: 

• Network — represents connections between components within one aggregator, it can be WAN/LAN network connection

between machines or bus connection between computational components; 

• Aggregator — a logical group of a selected components connected using the same connection type: 

– Group — machines inside one local network, e.g. a computational cluster, 

– Machine — a workstation or a server; 

• Computational — components capable of performing computations: 

– CPU, GPU — different processing units, 

– Volunteer — a volunteer system (set of volunteers); 

• Storage — various type of storage like RAM memory, HDD/SSD drives or a cluster disc array. 

This hierarchical structure allows us to define various systems. Those can be very top generalized systems made out of

a number of clusters and volunteer systems connected by WAN as well as a very detailed lower level system with specified

RAM, CPU/GPU and HDD/SSDs. This structure does not give any details about the hardware, only the basic types. Detailed

information is stored within Hardware s which can be defined independently of the system model. An example with selected

CPU parameters is shown in Fig. 5 , along with the number of cores, single, double precision floating point performance,

power consumption under stress, another being power consumption when idle. 

As it can be seen, all the components can be assigned to the Model instance independently. Usually there is only a need

for assignment of a model to the root component and the rest of child components will use the same one. In more complex

systems which are built with different clusters and volunteer systems at the same time, usage of different computational

models is essential. 

The simulation process requires a system, which minimally consists of one aggregator with at least one component, a

network and a simulated application code. As a result of the simulation process a tuple containing execution time, consumed

energy and fault probability is returned. In order to perform a simulation, a specific computational model is required ( Model

entity). Those can be defined globally in a form of functions and assigned to the system root component. Functions in a

computational model can make use of hardware dependent attributes stored in a Hardware entity. Moreover, some models

can be tuned for particular hardwares ( HardwareModel entity). Tuning allows changing model functions to be more accurate

for a particular hardware instance. 

In the computational model, functions that define execution time of a block use the number of threads, number of op-

erations and hardware parameters of a compute device including performance. The aforementioned function can account

for slowing down through cache use by multiple threads or e.g. incorporation of a stochastic model can be implemented

using probability values modeling e.g. duration of a computational block, if needed. This is possible through incorporation

of certain coefficients measured experimentally by the user for the given code. A similar approach can be used for modeling

contention employing proper coefficients and functions in the computational model reflecting increased average communi-

cation times due to contention for various operations such as point-to-point, scatter and gather [16] . While this requires user

involvement in additional measurements, it provides a flexible and accurate method to reflect the given case using MERPSYS.

Actually, in the tests in this paper we adopted this very approach when using a different function for modeling communi-

cation times with contention through decreased bandwidth per communication for the master-slave application presented

in Section 4.2.1 . Additionally, computing power consumption within a node based on the number of active threads is done

this way, using the function presented in [16] . 

3.3. Parallel paradigms available in the platform 

The MERPSYS platform supports programming any type of a parallel message passing application. The application model

uses a meta language that is an extension of Java with several additional functions modeling computations and communi-

cation through: 

computational blocks : void computation(double dataSize, ComputationType type, SoftwareStack stack, int num-

berOfThreads/Processes, String complexityFunction, OperationType operationType, OptimizationType optimizationType) –



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

models a computational block that performs the number of operations returned by complexityFunction using data

size parameter with optional specification of target computational devices, software stack, operation types and op-

timizations. Computations are to be performed on a given number of processes or threads. For instance, when a

sorting computational block is used within a more complex algorithm, the complexity of the former would be e.g.

O ( d · log ( d )) where d is the number of elements to be sorted. Function computation(...) allows to incorporate such

complexity but also additional coefficients to represent the actual number of operations. 

communication functions – most commonly used functions include: 

• void p2pCommunicationSend(double dataSize, String receiverTag) – used for modeling a peer to peer communication 

send, pairwise communication between all pairs of processes with a given tag of the sender and the receiver tag

is considered, 

• Message p2pCommunicationReceive (String senderTag) – a matching receive to void p2pCommunicationSend(double 

dataSize, String receiverTag) , 

• void one2oneCommunicationSend(double dataSize, String receiverTag, int nCommunications) – used for modeling 

nCommunications number of one to one communications, 

• Message one2oneCommunicationReceive (String senderTag) – a matching receive to void 

one2oneCommunicationSend(double dataSize, String receiverTag, int nCommunications) , 

• void scatterSend(double dataSize, List < String > receiverTags) – used for modeling a scatter operation to processes

with the specified tags, 

• Message scatterReceive(String senderTag) – a matching receive to void scatterSend(double dataSize, List < String > re-

ceiverTags) . 

Any legal Java constructs are allowed in MERPSYS including data types, sequences, loops or conditional instructions. It should

be noted that the aforementioned functions allow specification of additional labels that specify languages being modeled

(e.g. C, C++, etc.), communication APIs (e.g. MPI, Hadoop etc.). This allows consideration of coefficients describing overheads

of particular software stacks and is also related to calibration described next. Consequently, this solution is as general as the

modern Java language and allows consideration of specifics of particular APIs if provided. 

In practice, developing the process implementations requires knowledge about the computation and communication parts

which the application consists of, as well as dependencies between them. Such knowledge can be developed from scratch,

derived from the code of an existing application or logs from previous executions. Granularity of the implementation de-

pends on the decision of the modeling researcher, facing a trade-off between accuracy and execution time of the model.

For example, in [36] we modeled a parallel deep neural network training application, consisting of two processes: master

and slave . The chosen granularity level assumed two communication blocks for each process and one computation block for

the slaves . The meta-language code accounted only for the high-level parallelization aspects and did not concern the com-

putation internals. This allowed fast evaluation of the execution time and power consumption of the application. Namely,

simulating a set of computations with various parameter configurations, which in a real system would last over 335 h, while

using MERPSYS took over 2 h on an Intel Core i7-4712HQ CPU. These encompassed 16 simulations, with a total of 50,928

calls to either computational or communication blocks. The accuracy of such a coarse-grained model was high enough to

provide valuable insights and help optimize the application. 

In particular, the following typical parallel programming paradigms are offered within the platform through ready-to-use

templates that can be extended: 

1. master-slave in which a master distributes data chunks among available slaves (can be combined into a hierarchical

pattern), 

2. geometric parallelism (SPMD) suitable for simulations of a variety of phenomena such as in medicine – [37] , electromag-

netics – [38] , weather prediction – [39] etc., 

3. divide-and-conquer in which a problem is recursively divided into subproblems until a certain size is reached for which

a direct solution is applied [40] . 

These patterns are representative of a variety of practical applications. Examples of these are demonstrated in practical

scenarios as shown in Section 4 . 

3.4. Usage methodology for the MERPSYS system 

In MERPSYS the methodology shown in Fig. 6 should be applied step by step: 

1. System modeling. 

2. Application modeling. 

3. Model calibration against selected known execution times in a (small scale) system. 

4. Performing simulations for possibly large sizes of input data, number of processes or threads and the number of
nodes/cores including previously untested configurations. 



Fig. 6. Methodology for the MERPSYS platform. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It should be noted that the system model uses various coefficients related to concrete hardware devices i.e. performance

in GFlop/s, power consumption etc. The system model contains functions for modeling execution time of computational

blocks defined in the application model. While preparing these functions, one can take into account various parameters

connected with the computing device characteristics and computational block parameters. Possible computing device char-

acteristics depend on the hardware model defined in the MERPSYS database. The computational block parameters are de-

fined in the application model and passed through the computational block API. 

Apart from these parameters, these functions can use certain coefficients that should be calibrated based on knowledge

about former application executions. Calibration of the model means setting such coefficients so that simulated execution

times do correspond to real execution times measured in a possibly small scale system. Once such coefficients have been

found, the user can launch a variety of simulations even for system sizes not available at the moment. 

For example, for a neural network training application in [36] , the used computing device characteristic was the number

of floating point operations per second and the used computational block parameter was data size, i.e. size in bytes of an

archive with training examples. The function for execution time was a linear function of data size divided by the device

performance. Two coefficients of this linear function were calibrated based on real results from training execution on one

GPU, using the ordinary least squares method. The model calibrated in such way appeared to achieve mean percentage error

between 1.5% and 2.7% for different configurations utilizing up to 8 GPUs. 

3.5. Architecture, design and implementation issues of the proposed platform 

Fig. 7 presents all components of the MERPSYS platform, their placement and connections between them. The platform

was built with following modules: 

• Application — an Enterprise application, 

• Web — a web module, 

• Engine — an EJB business module, 

• Editor — a desktop application allowing for application modeling, 

• Simulator — a multi-threaded application performing simulations of parallel applications, 

• HTML Pages — dynamic HTML pages served to a web client, 

• Database — a platform database. 

The Application module is a central element of the whole platform. It is an Enterprise type application developed using the

Java EE 1.7 technology [41] . This module requires an execution environment, which can be any Java EE Full Profile [42] cer-

tified application server. Currently GlassFish Open Source Edition 4.0 [43] is used. 

A persistent container utilizes the PostgreSQL Server [44] . There we store information about platform users, hardware

details, distributed system models and simulations with their results. 

Machines on which the application and the database servers run are connected to the same local Ethernet network and

follow database connectivity patterns outlined in [45] . 

The Web module, similarly to the EJB module is a part of the Application module. The Web module does not implement

any business methods but provides only user interface and acts as a proxy to the EJB module. 



Fig. 7. Infrastructure of the MERPSYS platform. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dynamic HTML pages run inside a user’s web browser launched on the user’s machine. Because communication between

the user’s machine and the platform server is done through the Internet, both machines do not need to be connected to the

same local network. The whole interaction between the user and the Web module is done using the HTTPS protocol. The

user can view simulation results and create/edit/delete mathematical models and hardwares. Moreover, a system administra-

tor can manage platform users. The system and application editor was prepared in a form of the Java SE desktop application.

In order to enable starting the Editor shown in Figs. 1–3 from a WWW page, the Java Web Start technology [46] was used. 

A coarse-grained simulation process is performed by a Simulator application prepared using the Java SE technology. The

simulator itself is a parallel, multithreaded Java application. For each distinct label in an application model, a separate thread

is launched – irrespective of the number of processes with a given label in an application model. The simulator scales com-

putations properly, taking into account label multiplicities. It uses a discrete event-based model for simulation progression.

For communication components, a queue is used that allows to insert sent messages and fetch received messages. Con-

tention can be dealt with using proper communication cost functions where necessary. 

For the sake of parallelization of simulations (of the same or different distributed systems), many instances of the Simu-

lator can be started. The simulation process requires database access so as in the Editor application the EJB remote interfaces

are used. A process of commissioning simulations is implemented as a queuing system. Simulation tasks are sent from the

EJB module to one central queue realized in the JMS (Java Message Service) technology [47] . All Simulator instances are

connected to this queue in order to receive simulation tasks. The JMS server provides that a particular message will be

consumed by only one Simulator instance. This allows introducing load balancing between the Simulator instances based

on the fact that a particular Simulator will check for the simulation tasks only if it is not overloaded. As a JMS server, the

GlassFish application server was used with its internal Open MQ [48] JMS server instance. 

4. Experiments and results 

For the three applications chosen as representative in terms of parallel processing paradigms – master-slave, geometric

parallelism and divide-and-conquer, we performed the following steps within experiments: 

1. Implementation of a real parallel application for each of the chosen paradigms – details are provided in Section 4.2 . 

2. Running application performance tests on a real cluster – details of testbed systems are provided in Section 4.1 . 

3. Coarse-grained modeling of the application and system in MERPSYS. 

4. Simulations and calibration of cost functions based on selected results from real runs. 

5. Simulation for other configurations (input data size, the number of processes etc.) 
6. Comparison of results. 
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In order to validate quality of simulations in MERPSYS, for the following tests we calculated a maximum (dmax) and

average (davg) errors between simulated (s) and real (r) measurement values, defined as: 

d i = 

| r i − s i | 
r i 

· 100% 

dmax = max i { d i } 
da v g = 

∑ n 
i =1 d i 
n 

4.1. Testbed environment(s) 

estbed 1 (for the master-slave application) The physical environment for testing the master-slave application consisted of

a cluster (located at Gdansk University of Technology, Poland) with 104 identical nodes, each with two Intel(R)

Xeon(R) CPU E5345 2.33 GHz processors with 4 physical processing cores, 8 MB cache running Linux kernel

version 2.6.32. Each node had 16GB of RAM. All nodes were interconnected with a Gbit Ethernet, as well as an

Infiniband switches. 

estbed 2 (for geometric SPMD and divide-and-conquer applications) The real environment where experiments with a

geometric and divide-and-conquer applications were performed was cluster Galera+ (located at Academic Com-

puter Centre, Gdansk, Poland) [49] consisting of 192 nodes, each controlled by an autonomous operating system

(Science Linux) and interconnected by fast Infiniband network (QDR: 40 Gbps) used for processing synchroniza-

tion and data delivery as well as by Gbit Ethernet used for management purposes. 

Each cluster node contains two Intel Xeon 2.27 GHz multicore processor units, with 6 physical and 12 logical

(HyperThreading) computation cores, 16GB RAM memory and proper network interface cards. Finally the whole

cluster features a 500TB disk array exposed to the nodes using Glustre remote file system, which can be used for

data storage and exchange. 

For data population, exchange and synchronization of the applications deployed on the cluster can use a number

of MPI implementations including MVAPICH and OpenMPI. The experiments were performed using the former

implementation and for their execution a set of nodes (up to 32) was exclusively used i.e. up to 384 physical

cores and up to 768 including HT. A model of this testbed in the MERPSYS environment is shown in Fig. 1 . 

4.2. Testbed applications and results 

In order to verify the concept for real applications, we have developed three applications representative in terms of

parallel programming paradigms, ran the applications on large modern HPC platforms and verified simulated execution

times for various sets of parameters obtained in MERPSYS against real values. In terms of computations to communication

ratios, exemplary values include 1.74 for 8 processes for the master-slave application for testbed environment 1 and 4.22 for

32 processes for the divide-and-conquer application for testbed environment 2. 

4.2.1. Master-slave 

We developed a parallel master-slave application (240 lines of code) that computes similarity of points in a multidimen-

sional space in parallel. An input to the application is a set of N-dimensional points � p i . The parallel application, developed

with C and MPI, partitions input data into batches which are distributed by a master process among a group of slave pro-

cesses. Upon sending back results a slave is sent another batch for processing. Assuming that the number of batches is

considerably larger than the number of nodes in a cluster, the scheme can balance load even if processors have various

speeds. In this particular case, a batch consists of two groups of points such that each point from the first group is com-

pared to each point from the second group. Parameters of the application input include: PC – the number of points, DS – the

number of dimensions. An additional parameter K defines the size of the batch i.e. the number of points in a data packet.

This code is also representative in terms of potential applications. Computing similarity is a basic operation in a wide range

of data mining tasks as described by Witten and Frank [50] . Thus we find it a very representative task and a good example

to evaluate our system for. Data mining methods based on distances usually require to compute a proximity matrix that for

large datasets may be computationally expensive, typically it is O ( PC 2 ). A good example for practical usage of similarities

computations for machine learning is a K-NN classifier as described by Cover and Hart [51] or Du and Chen [52] for text

categorization, or unsupervised learning approach based on K-means as discussed in [53] . 

We have performed several tests that extend previous results. In paper [34] we performed tests on a collection of work-

stations in a LAN, for various parameters such as the number of points, the dimension size and the number of points in a

data packet. In this paper we present results for an improved version of code compared to [34] which sends two groups of

points to a slave such that each point from the first group is compared to each point from the second group. This code was

run on a cluster described in Section 4.1 – testbed 1. Furthermore, in this paper we present execution times ( Fig. 8 ) and

speed-up ( Fig. 9 ) for a selected case of 50 0 0 points, 10 0 0 dimension size and 100 points in a point group. 

We have performed very detailed profiling of selected real executions that revealed both processing and communication

times as well as network contention. We discovered that while using Ethernet, contention started to become visible for 8+



Fig. 8. Master-slave application – Execution time [s] vs. number of processes. 

Fig. 9. Master-slave application – Speed-up vs. number of processes. 

 

 

 

 

 

 

 

 

 

 

slaves when run on distinct nodes. Consequently, in MERPSYS we exploited its feature to model point-to-point communica-

tion as functions. Specifically, for up to 4 processes we used a linear function that considers startup time, message data size

and bandwidth, independently from other communications. Starting with 8 processes though, we used a polynomial func-

tion of the second degree with proper coefficients that matched real runs for 8, 16, 32 and 64 processes with a low degree

of error, as can be seen from the charts. The 8 process scenario is a borderline case in which neither linear nor polynomial

estimate is optimal which results in the largest error for this number of slaves. Simulation of a run with 64 slaves modeled

as codes with individual labels took 8 s on an Intel i5-7200U CPU 2.50 GHz. Within the simulation there were either 40 or

42 communication calls and either 20 or 21 computation calls per slave. 

4.2.2. Geometric SPMD 

We implemented a parallel geometric Single Program Multiple Data application (260 lines of code). From the point of

view of application structure, dependencies and communication, this code represents solving a variety of physical phe-

nomena in applications e.g.: weather prediction – [39] , heat distribution, simulations in medicine such as phenomena in



Fig. 10. Geometric SPMD application – Execution time [s] vs. number of processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

myocardium – [37] , electromagnetics – [38] etc. Problems in these domains are often modeled as (sets of) differential equa-

tions which are then transformed and solved in successive, discrete time steps. In every time step, a domain represented by

a grid of cells needs to be updated. Specifically, values associated with each cell need to be updated typically using values

from the previous time step associated with this very cell and its neighbors in the grid. In a parallel implementation, this

requires partitioning of the domain into disjoint subdomains each of which is processed by a distinct process or thread. The

aforementioned dependencies in update equations require communication between domains before computations proceed

to the next time step. 

For the tests we have implemented a parallel application, programmed in C with MPI, that simulates heat distribution

across space. The application can work in 2D or 3D domains. The domain can be partitioned into rectangles or cuboids

respectively. In the code communication is performed using MPI_Send/ MPI_Recv in right/left directions in all dimensions. In

terms of processing and computation/communication ratio this application can be thought as a template that is applicable

to any of the aforementioned examples of SPMD applications. What they differ in is the data associated with cells and

update equations. Results for the testbed application for a 3D domain of size 20 0 0 × 20 0 0 × 20 0 0 cells were obtained in a

cluster described in Section 4.1 – testbed 2. Fig. 10 presents execution times of the real runs and execution times obtained

in the MERPSYS simulation environment. Fig. 11 presents speed-ups resulting from the real runs and those stemming from

simulation results. Speed-up values were directly derived from execution times presented in Fig. 10 , therefore no additional

error values were calculated for this metric. Simulations in the MERPSYS environment on a mobile quad core i7 CPU took

less than 0.35 s each. For these particular simulations it was enough to simulate 1 iteration with communication calls in 3

dimensions (12 calls) and 1 call to a computational function. It can be seen that execution times and speed-ups measured

from the simulator are very close to those measured in the real system. What is more, it is true for 1–343 processes each

running on a separate physical core, 512 and 729 processes running on physical and HyperThreading cores as well as on

10 0 0 processes that needed to time share available cores. 

4.2.3. Divide-and-conquer 

We also implemented a parallel divide-and-conquer application, programmed with C and MPI (200 lines of code). A part

of the code for the application in the MERPSYS environment is shown in Fig. 2 . The input data is partitioned into at least

two data packets. Then, the same procedure is applied on these data packets in parallel. Partitioning is repeated until a

minimum data size is reached. Then a data packet is processed using a specified algorithm. This scheme results in a divide-

and-conquer tree which can have significant depths, potentially various node degrees and computation/communication ratio.

Branches of the tree are assigned to various MPI processes as long as these are available since we used the number of

processes equal to the number of processing cores in a cluster. We used the merge sort algorithm but the code can be used

as a template applicable to any other divide-and-conquer algorithm by exchanging partitioning/processing/merging parts of

code e.g.: discrete Fourier transform, multiplication of complex numbers etc. Results for the testbed application for a vector

size of 536870912 elements were obtained in a cluster described in Section 4.1 – testbed 2. Fig. 12 presents execution times

of real runs vs. execution times obtained in the MERPSYS simulation environment. Fig. 13 presents speed-ups resulting from

the real runs and those stemming from simulation results. Simulations in the MERPSYS environment on a mobile quad core



Fig. 11. Geometric SPMD application – Speed-up vs. number of processes. 

Fig. 12. Divide-and-conquer application – Execution time [s] vs. number of processes. 

 

 

 

 

 

 

 

 

i7 CPU lasted below 1.2 s each. For these particular simulations, for 1024 processes, there were 10 communication calls and

11 calls to computational functions. It can be seen that execution times and speed-ups measured from the simulator are

very close to those measured in the real system. What is more, it is true for 1–256 processes each running on a separate

physical core, 512 processes running on physical and HyperThreading cores as well as on 1024 processes that needed to time

share available cores. In Figs. 11 and 13 a transition from overpessimistic to overoptimistic estimates can be observed. Our

working hypothesis assumes that specific bindings of processes to cores might play a role and influence real execution time,

especially taking communication between processes into account. Even though the differences are small, we are planning to

explore this in our future research. 

5. Conclusions and future work 

In this paper we proposed a new MERPSYS environment that supports modeling and fast application execution simulation

for various parallel programming paradigms (including master-slave, geometric parallel and divide-and-conquer) through the 



Fig. 13. Divide-and-conquer application – Speed-up vs. number of processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

well known Java language with extensions in the form of MPI like routines. Execution times predicted by MERPSYS simu-

lations are very close to measured execution times of real applications (see individual experiment error values). We were

very satisfied to observe average errors between 1.4 and 7.8% for all conducted simulations. Not only do simulation results

match real values but also demonstrate local minimas for application execution time versus the number of processes. What

is also important is that such matching was obtained for applications representative of three distinct parallel processing

paradigms: master-slave, geometric single program multiple data and divide-and-conquer applications that differ in compu-

tation/communication ratio, communication and synchronization methods. 

Consequently, the models could also be used for finding expected execution times for other configurations, either appli-

cation or system. In particular, specific components in the system model such as CPU, GPU or network switch models can

be instantly replaced with others from the MERPSYS database in order to obtain corresponding results and e.g. find upgrade

paths for hardware. 

In the future, we plan to extend evaluation of MERPSYS with NAS Parallel Benchmarks (NPB) [54] . Furthermore, other

goals related to MERPSYS include building an automatic calibration tool that, based on results from selected real runs and

regression analysis, would match coefficients corresponding to hardware components such as those not yet in the database.

Additionally, we are working on an automated tool embedded in MERPSYS that would suggest best architectures and com-

ponents for any given code including execution time and power consumption. 
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