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Abstract
Constant, real-time temperature monitoring of the supercapacitors for efficient energy usage is
in high demand and seems to be crucial for further development of those elements. A fiber-optic
sensor can be an effective optoelectronic device dedicated for in-situ temperature monitoring of
supercapacitors. In this work, the application of the fiber-optic microstrucutre with thin zinc
oxide (ZnO) coating fabricated in the atomic layer deposition process applied as a temperature
sensor is reported. Such a structure was integrated with supercapacitors and used for the
temperature measurements. Described sensors are built with the utility of the standard optical
telecommunication fibers. The inner temperature of the supercapacitor was investigated in the
range extending from 30 ◦C to 90 ◦C with a resolution equal to 5 ◦C. The sensitivity of
temperature measurement is about 109.6 nW ◦C−1. The fitting of the sensor was achieved with
a correlation coefficient R2 = 0.97.
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1. Introduction

Supercapacitors are designed as devices able to store substan-
tially more amounts of energy than electrolytic capacitors [1].
Their many advantages, including high-power density, cyclic
stability and durability, make supercapacitors highly sought-
after storage devices, whether for standalone or hybrid applic-
ations [2, 3].

Increasing demand for portable energy sources, supercapa-
citors are gaining more and more interest. Therefore, the pos-
sibilities of advancements of this technology are constantly
investigated and new solutions are developed [4–7]. Learn-
ing about the inner workings of every device leads to gain-
ing understanding of the processes occurring inside the device,
which in turn allows to enhance their performance.

Real-time monitoring of the supercapacitor’s internal tem-
perature ensures efficient operation of the device. Temperat-
ure exceeding beyond the expected range is a good indicator
of a faulty device. Whereas some changes can be undone,
most are irreversible and contribute to the degradation of the
device. Exceeding a limit beyond operating temperature can
cause destabilization of electrolyte, which leads to further
damage of supercapacitors. The electrolyte is a crucial com-
ponent of any electrochemical electric cells, including super-
capacitors [8–10]. Their purpose is to transfer charge between
electrodes during electrochemical processes [11]. Paramet-
ers of the supercapacitors, such as power density, longevity,
charging-discharging rates are largely dependent on their state,
balance and conformity [12]. Overheating can cause the emer-
gence of chemical reactions between the electrolyte and the
electrodes, and chemical decompositionwhich in turn impedes
its performance, e.g. accelerate its aging, slow down charging
cycles and speed up discharging cycles, distortion or even a
rupture of the device [13–15]. On the other hand, extreme low-
temperature performance is also damaging the device—it can
cause increased charge transfer resistance or deteriorate elec-
trodes and their contact with electrolyte [16, 17].

Many factors can influence temperature distribution within
the device, including elements of which supercapacitors are
composed (electrode materials [18–21], charge storage mech-
anism [22, 23], electrolyte) as well as its intended application
or mode of operation [2, 24]. However, in-situ monitoring of
the device can often provide a better comprehension of the
conditions occurring inside.

The distribution of the temperature in the pouch cells is
widely studied to estimate the best construction of the device
and to improve its efficiency. Starting with modeling and cre-
ating new algorithms as it is presented by Zhang et al in [25]
or by Wu et al in [26]. The pouch cells are then investigated in
experimental settings, using whether contactless methods like
infrared thermography [27, 28] or more direct methods such
as measurements by thermocouples [29, 30] and interferomet-
ric sensors [31, 32]. However, none of the presented solutions
provides additional information about the correct operation of
the sensor at all times. To investigate the changes occurring in
the supercapacitors, a fiber-optic sensors functionalized with
a ZnO coating, similar to those presented in [33, 34], can be
utilized.

In this paper, an in-situ measurement of the temperat-
ure of the supercapacitor is presented. To accomplish it, a
microsphere-based fiber-optic sensor with a 200 nm ZnO
atomic layer deposition (ALD) coating was embedded in the
device. With the use of the presented sensor, it is possible to
simultaneously monitor the internal temperature of the super-
capacitor and the integrity of the sensor head structure in real-
time, therefore avoiding uncertainties resulting from faulty
sensors. The research presented in this paper is an incre-
mental advancement of a similar type of sensor. The applica-
tion presented herein is unique due to the use of fiber optics for
precise temperature measurement of supercapacitors, which is
important because other methods cause variations in the elec-
tromagnetic field and disrupt the operation of the supercapa-
citors. In presented research ZnO coating is used as a sens-
ing medium itself. And what we used is the dependence of
the optical parameters on temperature. Furthermore, we use
unusual for ALD technique thickness, which is very thick—
200 nm. Previously, dependence of the changing of the refract-
ive index on the intensity of the reflected signal was meas-
ured using similar technique [35, 36]. Furthermore, a valida-
tion of the microsphere-based temperature sensor is presented
in [37].

2. Materials and methods

The microsphere-based fiber-optic sensor with a 200 nm ZnO
ALD coating was embedded inside the supercapacitor, in a
manner to prevent disruption of its operation. The superca-
pacitors utilized in this research, their construction and para-
meters are described elsewhere [38]. The sensor was placed
between the electrode and the foil forming the cover of the
device. The location of the sensor inside the supercapacitor
is presented in the schematic of the device’s cross-section
(figure 1).

The microsphere structure of the sensor was made at the tip
of a standard telecommunication optical fiber (SMF-28, Thor-
labs Inc., Newton, NJ, USA), using a fusion splicer (FSU975,
Ericsson, Sweden). The obtained microsphere of the diameter
of 245 µm was formed during the three-step pull process.
The image of the microstructure, obtained under a microscope
(CX31, Olympus, Japan) is presented in figure 2.

The sensor was used to observe changes in an optical spec-
trum while increasing the temperature of the device, and sub-
sequent temperature growth of the electrolyte of which the
investigated supercapacitors are composed. The device was
tested in the temperature range of 30 ◦C–90 ◦C because of
the aqueous properties of the used electrolyte (1 M K2SO4).
While increasing the temperature, the electrolyte can change
its properties, e.g. refractive index. More thorough research
regarding refractive index sensing is presented in [35, 36].

The supercapacitors were investigated using an interfer-
ometric setup consisting of a broad band light source with
a central wavelength of 1310 ± 10 nm (SLD-1310-18-W,
FiberLabs Inc., Fujimi) which generates an optical signal. The
experimental setup used for measurements of the supercapa-
citor’s inner temperature is presented in figure 3.
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Figure 1. Placement of the microsphere-based fiber-optic sensor
embedded in the supercapacitor in schematic cross-section where:
1—covers, 2—electrodes, 3—separator, 4—microsphere-based
fiber-optic sensor.

Figure 2. A microscope image of the microstructure used for
supercapacitor in situ temperature measurement.

Figure 3. Measurement setup where: 1—broadband light source,
2—optical spectrum analyzer, 3—optical coupler, 4—hot plate,
5—investigated supercapacitor, 6—thermal camera.

The signal is propagated through the optical coupler
(G657A, CELLCO, Kobylanka, Poland) to the microsphere-
based fiber-optic sensor where the phenomenon of interfer-
ence is incited. The signal is reflected off the two boundar-
ies from which the sensor is built. Firstly, a part of the signal
reflects on the boundary between the inner sphere, made of the
core of the fiber, and the outer sphere, made of the cladding of
the fiber, while the rest is transmitted through and reaches the
boundary between the outer sphere and the measured medium,

Figure 4. Operation principle of the in-situ fiber-optic sensor
temperature monitoring.

on which it is also reflected. The two waves superpose, result-
ing in an interference effect. The placement of the sensor in the
supercapacitor as well as its operation principle is presented
in figure 4. When the temperature changes the optical para-
meters of the ZnO cladding such as refractive index change
what influences the reflection coefficient of the second bound-
ary and influences the phase differences between interfering
beams.

The obtained signal is gathered by the optical spectrum ana-
lyzer (OSA, Ando AQ6319, Yokohama, Japan). The data is
then processed. The response time of the sensor is dependent
on multiple factors, e.g. the type of utilized detector. The util-
ized OSA allows to read the data every 3 s. Preliminary meas-
urements to determine the proper operation of the sensor and
the results are presented in [37].

Throughout the measurements, the temperature of investig-
ated supercapacitors was also verified by a thermal camera (i7,
FLIR, Wilsonville, OR, USA) to ensure uniform distribution
of the temperature. Images obtained from this test are presen-
ted in figure 5.

The emissivity of the thermal camera was set to E = 0.6
during themeasurements due to the fact that the supercapacitor
has been enclosed in a triplex foil which reflectance value was
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Figure 5. Images of the supercapacitor with the in-situ fiber-optic
temperature sensor obtained by a thermal camera for the lowest (a)
30 ◦C and highest (b) 89.8 ◦C value of investigated temperature
range.

taken into consideration during themeasurements. The camera
was set to measure the highest temperature inside the selected
area and it is determined by themarker. Obtainedmeasurement
is presented in the top left corner of each image.

3. Results and discussion

This section discusses the data acquired during measurements
performed in the experimental setup. All measurements were
performed at least 5 min after stabilization of the temperature,
which was controlled by observation through a thermal cam-
era, while the supercapacitor’s state of charge was at about
80%. Figure 6 shows the changes in the spectrum while the
temperature was growing in the set range.

As can be observed, the intensity of the reflected signal
is increasing with the rise of temperature while the envelope
retains similar. Moreover, the interference signal ensures that
the sensor is not damaged. To maintain the clarity of the graph,
only selected spectra were plotted. The dependence of the peak
intensity of the reflected signal on the temperature is presented
in figure 7.

Peak intensity increases according to the second-order
polynomial fit. By including polynomial regression in figure 7,
a match between obtained data and theoretical fitting can be
estimated. R2 coefficient, which equals 0.97, exhibits a close

Figure 6. Changes in the intensity of the reflected signal with rising
temperature.

Figure 7. Reflected signal peak intensity dependence in the
changing temperature.

fit of both plots. Based on the obtained data, the sensitivity of
the sensor was calculated to be 109.6 nW ◦C−1. Even though
the sensitivity in the temperature range of 30 ◦C–65 ◦C is vis-
ibly lower (57 nW ◦C−1), this behavior is repeatable through-
out multiple measurement series, therefore it serves during the
monitoring of the internal temperature as a sensing mechan-
ism. Having reference spectral characteristics of the healthy
device, any deviation from the known will be noticeable indic-
ating either warning or critical state.

Performed investigation shows that by embedding a
microsphere-based fiber-optic sensor, the internal temperat-
ure of supercapacitors can be monitored. The obtained inter-
ferometric signal remains present, therefore indicating proper
operation of the device. Upon the sensor sustaining the dam-
age, the interference within the signal ceases. Furthermore,
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based on polynomial regression, the behavior of the charac-
teristics can be estimated. Substantial deviation of the charac-
teristic from the reference indicates that the investigated super-
capacitor became defective. The information allows taking the
steps to preserve the device.

4. Conclusions

In this paper, the application of the microsphere-based fiber-
optic sensor for in-situ monitoring of the temperature of the
supercapacitor was examined. Because of a growing need for
more efficient energy, it is necessary to thoroughly explore
the processes occurring in the devices. The knowledge allows
to optimize, find new solutions and improve current techno-
logy. The presented sensor was embedded inside the superca-
pacitor with aqueous electrolyte. During the operation of the
device, we were able to investigate the in-situ temperature of
the supercapacitor in a range of 30 ◦C–90 ◦C, with a resolution
of 5 ◦C, by observing changing optical spectrum. The intensity
of the reflected signal increased, with the rise of the temperat-
ure and the presence of the interference indicated the integrity
of the sensor, which in turn allowed to ensure the accuracy of
the measurements. Based on the obtained data, the sensitivity
of the sensor was calculated and it equals 109.6 nW ◦C−1 for
the measured range. Thermal imaging was also performed to
verify the accuracy of the measured temperature. The presen-
ted approach of internal temperature monitoring is ready to be
used for application in the supercapacitors. Unlike other meth-
ods, it allows to constantly control the validity of performed
measurements which is especially important in the devices and
conditions where the inspection of the system operation and its
components may not be feasible or easily reachable.

Author contributions

Conceptualization, P L and M S; methodology, P L and M
S; validation, P L and M S; formal analysis, P L and M S;
investigation, P L and M S; resources, M B; data curation, P
L; writing—original draft preparation, P L; writing—review
and editing, M S and M B; visualization, P L; supervision, M
S; project administration, M S; funding acquisition, M S. All
authors have read and agreed to the published version of the
manuscript.

Funding

Financial support of these studies from Gdańsk University
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