
Minimal surfaces and conservation
laws for bidimensional structures

Victor A Eremeyev
Department of Civil and Environmental Engineering and Architecture (DICAAR), University of

Cagliari, Cagliari, Italy; WIŁ iŚ, Gdańsk University of Technology, Gdańsk, Poland

Abstract
We discuss conservation laws for thin structures which could be modeled as a material minimal surface, i.e., a surface
with zero mean curvatures. The models of an elastic membrane and micropolar (six-parameter) shell undergoing finite
deformations are considered. We show that for a minimal surface, it is possible to formulate a conservation law similar
to three-dimensional non-linear elasticity. It brings us a path-independent J-integral which could be used in mechanics of
fracture. So, the class of minimal surfaces extends significantly a possible geometry of two-dimensional structures which
possess conservation laws.
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1. Introduction

The conservation laws play a central role in continuum physics. Indeed, it is worth to mention conserva-
tion laws of mass, energy, momentum, and moment of momentum [1,2]. In addition to these classic con-
servation laws, it is possible to establish other, trivial or non-trivial, conservation laws [2–5]. Let us
briefly recall the definition of a conservation law. Let a problem under consideration be described
through a set of functions of many variables ui = ui(xj), i = 1, . . .  , m, j = 1, . . .  , n, which satisfy a system
of partial differential equations (PDEs):

lp xj, ui,
∂ui

∂xj

, . . .

� �
= 0, p = 1, . . . , k: ð1Þ

Let ~P = (P1, . . . ,Pn) 2 R
n be a vector-valued function with components:

Pq = Pq xj, ui,
∂ui

∂xj

� �
, q = 1, :::, n:
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Then, if the following equation:

div~P [
Xn

i = 1

∂Pi

∂xi

= 0, ð2Þ

holds true for any solution of equation (1), it is called a conservation law.
For derivation of conservation laws in the three-dimensional (3D) elasticity, one can apply various

techniques including Noether’s theorem and its extensions such as the Bessel–Hagen and the neutral
action methods (see the previous works [5–9]). After Noether, it is known that conservation laws are
closely related to invariance properties of a total energy functional that called also variational symme-
tries. For example, a homogeneity, i.e., local invariance with respect to infinitesimal translations, results
in conservation law for the Eshelby tensor [2,4,5], which brings us well-known path-independent J-inte-
gral and some other invariant integrals. Conservation laws are widely used in mechanics of fracture,
theory of stress-induced phase transitions, and for description of other inhomogeneity in solids [2,3,5].

Instead, in the case of two-dimensional (2D) structures such as shells, one faces a problem of homoge-
neity as a shell is an inhomogeneous 2D medium, since its geometry is point-dependent, in general. The
3D conservation laws could be transformed for plane geometry, i.e., for plates (see results for first-order
shear-deformable linear plates [10,11], linear second-order plate theory [12], and von Kármán plates [13]).
As a result, unlike to plate theory conservation laws for shells were established for particular geometries,
such as spherical, cylindrical, or shells of revolution (see the previous works [5,14,15]). Path-independent
integrals were introduced for cylindrical shells and shells of revolution within the Sanders–Koiter variant
of linear shell theory and non-linear membrane theory in Lo [16]. Conservation laws are also known for
linear shallow shell model with applications to cracked cylindrical shell [17], and non-linear shallow shell
models [18] including the Marguerre–von Kármán theory [19]. In fact, the concept of shallow shell inher-
its plane geometry from plates.

The aim of this paper is to discuss new conservation laws for 2D structures which could be modeled
using a minimal surface as a base surface carrying physical properties of the structure. The principal
property of a minimal surface is zero mean curvature (see the previous works [20–22]) for basic proper-
ties of the minimal surfaces. Recently, some structures based on minimal surface geometry were pro-
posed for advanced composites (see, e.g., the previous works [23–26]). Let us note that one can easily
meet minimal surfaces in natures, e.g., as seashells [27,28].

The paper is organized as follows. First, in section 2, we briefly recall necessary information from dif-
ferential geometry including the surface divergence theorems. In section 3, we discuss the kinematics of
a material surface considering membrane theory [29] and enriched (Cosserat-like) surfaces. The latter
model has straightforward relation to micropolar shells [30,31] called also six-parameter shell model
[32]. It could be treated as 2D Cosserat continuum, i.e., a 2D medium with translational and rotational
degrees of freedom, and with surface stresses and surface couple stresses. In sections 4 and 5, we intro-
duced the Eshelby tensors for these models and present the corresponding conservation laws and invar-
iant integrals. Modeling stress-induced phase transformations in micropolar shells, the 2D Eshelby
tensor was introduced in Eremeyev and Pietraszkiewicz [33], whereas its relation to the 3D counterpart
was discussed in Eremeyev and Konopińska-Zmys1owska [34]. Recently, the 2D Eshelby tensor was also
used for modeling of adhesion of thin structures [35]. In section 6, we briefly discuss 3D-to-2D reduc-
tion as an alternative way of derivation of 2D conservation laws.

In what follows, we almost always use the direct (index-free) tensor calculus as in the previous works
[36,37].

2. Preliminaries

First, let us briefly introduce some formulae of differential geometry. Let S 2 R
3 be a smooth enough

surface with a boundary G = ∂S. S could be parameterized with a position vector given as a function of
two surface coordinates s1 and s2:

X=X(s1, s2) = X1(s1, s2)i1 + X2(s1, s2)i2 + X3(s1, s2)i3, ð3Þ
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where Xj and ij are the Cartesian coordinates and corresponding unit base vectors, respectively (see
Figure 1). We introduce the surface nabla-operator r and the natural and reciprocal base vectors as
follows:

r=Ea ∂

∂sa
, Ea � Eb = da

b, Ea �N= 0, Eb =
∂X

∂sb
, a,b = 1, 2,

where da
b is the Kronecker symbol, N= E1 ×E2

jE1 ×E2j is the unit normal to S, and ‘‘�’’ and ‘‘× ’’ denote the dot

and cross products, respectively. Hereinafter, Greek indices take values 1 and 2, whereas Latin indices
will take values 1, 2, and 3, and Einstein’s summation rule is used.

For any differentiable surface field T, we introduce the surface divergence theorem (the Gauss–
Ostrogradsky theorem) [29,37]: ðð

S

r � T+ H N � Tð ÞdS =

þ
G

n � Tds: ð4Þ

where H [� 1
2
r �N is the mean curvature of S, n is the external unit normal to G = ∂S such that

n �N= 0. Let us note that T could be a vector-valued or tensor-valued surface field of any order. There
are other forms of the surface divergence theorem:ðð

S

rT+ H N� Tð ÞdS =

þ
G

n� Tds, ð5Þ

ðð
S

r×T+ H N×Tð ÞdS =

þ
G

n×Tds, ð6Þ

ðð
S

r× (N� T)dS =

þ
G

t � Tds: ð7Þ

In equations (5) and (7), ‘‘� ’’ is the dyadic product, t denotes the unit vector tangent to G, t × n =N
(see Figure 1).

Obviously, the form of surface divergence theorems (4)–(6) differs from its 3D counterparts due to
presence of terms related to the mean curvature. If the mean curvature of S vanishes, that is if:

H = 0, ð8Þ

Figure 1. Surface with parametrization.
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then there is no such difference. A surface whose mean curvature is zero at any point is called a minimal
surface. Basic properties of the minimal surfaces can be found in the previous works [20–22].

3. Kinematics of a material surface

In what follows, we utilize the concept of a material surface [29]. In the theory of plates and shells, it is
also called the direct approach [38]. We introduce a deformation of a material surface S as a differenti-
able mapping from a reference placement k into a current placement x. Let S and s be surfaces describ-
ing S in k and x, respectively. Within the Lagrangian description, we introduce a displacement vector u
of a point z 2 S with coordinates s1 and s2 defined on S as follows:

u= u(s1, s2) = x� X, ð9Þ

where x= x(s1, s2) and X=X(s1, s2) are the position vectors of z in k and x, respectively (see Figure 2).
In order to describe deformations of kinematically enriched (Cosserat-like) material surfaces, in addi-

tion to position vector of z 2 S, we consider two triples of unit orthogonal vectors called directors. So,
we have two triples fDkg and fdkg, k = 1, 2, 3, defined in reference and current placements, respectively.
Using these triples, we introduce an orthogonal tensor:

Q=Q(s1, s2) =Dk � dk, ð10Þ

as a complementary kinematical descriptor (see the previous works [30,37] for more details). As a result,
for enriched material surface, we have two kinematical descriptors u (or x) andQ which could be treated
as translational and rotational degrees of freedom used in the theory of shells [30–32].

4. Eshelby tensor and conservation laws: elastic membrane

In order to discuss a derivation of conservation laws for thin structures modeled using the minimal sur-
face property, first let us study a simple case, that is an elastic membrane.

4.1. Finite deformations

For a hyperelastic membrane, there exists a surface strain energy W . In what follows, we restrict our-
selves to homogeneous membranes, so W does not depend on X 2 S. So, it is a function of the surface
deformation gradient F=rx:

W = W (F): ð11Þ

Figure 2. Deformation of a material surface S.
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Applying to equation (11), the material frame-indifference principle [39], we came to the dependence:

W = W (C), ð12Þ

where C=F � FT is the surface Cauchy–Green strain measure [29]. Note that for simplicity, we keep in
equation (12) the same notation for the energy function.

Neglecting surface forces, we have the following Lagrangian equilibrium equation:

r � P= 0, ð13Þ

where P is the surface first Piola–Kirchhoff stress tensor. It is given by the formulae:

P=
∂W

∂F
=S � F, S= 2

∂W

∂C
:

where S is the surface second Piola–Kirchhoff stress tensor. Note that N � P= 0. Equations (11)–(13)
constitute a 2D counterpart of governing equations of the 3D non-linear elasticity. So, an elastic mem-
brane model could be treated as a 2D Cauchy continuum, or as a 2D simple medium in sense of Noll
and his colleagues [39,40].

For an elastic membrane, the Eshelby tensor is defined as follows:

Bm = WA� P � FT = WA� S � C, ð14Þ

where A= I�N�N and I is the 3D unit tensor. So, by definition, N � Bm = 0. Bm has also the following
property:

r � Bm = 2HWN: ð15Þ

Indeed, using the identities:

r � A=r � (I�N�N) =� (r �N)N= 2HN, ð16Þ

rW =Eb ∂W

∂sb
=rF : P, ð17Þ

we have that:

r � Bm =r � (WA� P � FT )

= (rW ) � A+ Wr � A� (r � P) � FT � Ea � P � ∂F
T

∂sa

=rF : P+ 2HWN� P : rFT = 2HWN:

where ‘‘ : ’’ stands for the double dot product. For dyads and triads of vectors, it could be defined as
follows:

(a� b) : (c� d) = (a � c)(b � d),

(a� b) : (c� d� e) = (a � c)(b � d)e,

(a� b� c) : (d� e) = (b � d)(c � e)a,

and by linearity could be extended for tensors of any order.
Using the surface divergence theorem (4) for Bm, we get the identity:ðð

SY

2H W NdS =

þ
Y

n � Bm ds, ð18Þ
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for any part SY � S with the boundary Y. Equation (18) shows that the right side of equation (18) does
not constitute a path-independent integral, in general.

Instead, for a minimal surface H = 0 and we get the conservation law:

r � Bm = 0, ð19Þ

and with equation (4), we came to the path-independent J-integral:

Jm [

þ
Y

n � Bm ds = 0: ð20Þ

Using equations (13) and (19), we can derive another useful integral identity. First, we have two
relations:

r � (Bm � X) = trBm, trBm = 2W � P : F: ð21Þ

Then, we can see that:þ
Y

n � Bm � Xds =

ðð
SY

r � (Bm � X)dS = 2

ðð
SY

W dS�
ðð
SY

P : FdS: ð22Þ

where SY � S is an area bounded by Y. The last integral in equation (22) could be transformed as
follows: ðð

SY

P : FdS =�
ðð
SY

r � (P � x)dS +

þ
Y

n � P � x ds =

þ
Y

n � P � x ds: ð23Þ

As a result, equation (22) takes the form:þ
Y

n � Bm � X ds = 2

ðð
SY

W dS�
þ
Y

n � P � x ds: ð24Þ

So, we came to: þ
Y

n � Bm � X+P � x½ �ds = 2

ðð
SY

W dS: ð25Þ

4.2. Infinitesimal deformations

Surface integral in equation (25) could be transformed into a contour one only for very particular cases
such as small deformations. Let us consider it in more detail. For infinitesimal deformations, W takes
the form:

W = W (e), e =
1

2
ru � A+A � (ru)T
� �

, ð26Þ

where e is a linear surface strain tensor. Equations of equilibrium transform into:

r � s = 0, s =
∂W

∂e
, ð27Þ

where s is the symmetric surface stress tensor. The Eshelby tensor is modified as follows:

Bsm = WA� s � (ru)T : ð28Þ
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Repeating derivations (21)–(24), we came to the identity:þ
Y

n � Bsm � X+ s � u½ �ds = 2

ðð
SY

W dS: ð29Þ

For a linear membrane W = 1
2

s : e and
ÐÐ
SY

W dS could be represented as a contour integral. Indeed,
we have: ðð

SY

W dS=
1

2

ðð
SY

s : e dS =
1

2

ðð
S Y

s : ru dS,

=� 1

2

ðð
SY

(r � s) � u dS +
1

2

þ
Y

n � s � ds,

=
1

2

þ
Y

n � s � ds:

ð30Þ

So, instead of equation (29), we get the formula:þ
Y

n � Bsm � X ds = 0: ð31Þ

As in the case of plane stress state [5], in the theory of linear membranes, path-independent integral
(31) could be called M-integral.

An M-integral-type identity could be also derived for a power-law constitutive relation, that is for W
given by:

W =
1

2m
e : C : eð Þm, ð32Þ

where C and m are the material parameters, and a fourth-order tensor C has the same symmetry proper-
ties as in the case of linear plane stress elasticity. So, we have that:

s = e : C : eð Þm�1
C : e, W =

1

2m
s : e,

and instead of equation (31), we came to another M-integral:þ
Y

n � Bsm � X+
m� 1

m
s � u

� �
ds = 0: ð33Þ

Constitutive equation (32) could be useful for modeling of some hardening phenomena in inelastic mate-
rials. In fact, in plasticity, they used power law-type constitutive equations like s = Ken, where K is a
strength coefficient and n is an exponent (see, e.g., Besseling and Giessen [41, p. 94]). Power-law constitu-
tive relations such as Norton’s law are also widely used the theory of plasticity and creep (see the previous
works [42,43], and the references therein). For example, J- and M-integrals for power-law materials were
used in the previous works [44–46], in order to estimate a stress concentration in vicinity of crack tips.

5. Eshelby tensor and conservation laws: micropolar (six-parameter) shell

As an example of more complex 2D model, we consider micropolar or six-parameter shells [30–32].
Within the model, we have an extended kinematics which includes two kinematically independent fields
of translations and rotations.
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5.1. Finite deformations

For a hyperelastic micropolar (six-parameter) shell, a surface strain energy density U depends on two
surface strain measures E and K [30,37]:

U = U(E,K), ð34Þ

where

E=F �QT � A, K=
1

2
Ea � ∂Q

∂sa
�QT

� �
×
, ð35Þ

where T× is the vectorial invariant of a second-order tensor T (see, e.g., Eremeyev et al. [37]). For a dyad
of two vectors a and b, we have (a� b) = a× b. In what follows, we consider only homogeneous shells
that is shells whose strain energy density depends only on the strain measures E and K.

Without surface forces and couples, the Lagrangian equations of statics take the form:

r � T= 0, r �M+ FT � T
� 	

× = 0, ð36Þ

where

T=
∂U

∂F
=S1 �Q, M=S2 �Q, S1 =

∂U

∂E
, S2 =

∂U

∂K
, ð37Þ

where T and Mß are the surface stress and couple stress tensors of the first Piola–Kirchhoff type,
whereas the stress measures S1 and S2 are the referential stress and couple stress tensors similar to the
respective second Piola–Kirchhoff stress tensors of 3D non-linear elasticity.

Within the six-parameter shell model, the Eshelby tensor B was introduced in Eremeyev and
Pietraszkiewicz [33] for description of stress-induced phase transitions. More precisely, using B, the ther-
modynamic compatibility condition along a phase interface was formulated. B is defined as follows:

B= UA� T � FT �M �QT � KT , ð38Þ

or as:

B= UA� S1 � ET � S2 � KT , ð39Þ

In Eremeyev and Konopińska-Zmys1owska [34], it was shown that under some conditions, B could
be obtained from its 3D counterpart using the through-the-thickness integration similar to derivation of
stress resultants [32].

For B, we have the identity:

r � B= 2HUN, ð40Þ

which could be proven similar to equation (15). For brevity, we omit awkward calculations here.
As a result, we came to the integral identity:ðð

SY

2HUNdS =

þ
Y

n � Bds, ð41Þ

Again, for a minimal surface, we get the conservation law and J-integral:

r � B= 0, J [

þ
Y

n � B ds = 0: ð42Þ

This conservation law is the 2D counterpart of the 3D one derived for non-linear micropolar continua
in the previous works [47,48] with the use of Noether’s theorem.
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5.2. Small deformations

In the case of small deformations, we can provide a similar study of conservation laws. For small rota-
tions instead of the microrotation tensor Q, one can use the infinitesimal vector f since Q can be
approximated as follows [30,49]:

Q’I+ f× I:

As a result, E and K could be replaced by the linear strain measures e and k:

e=ru� I×f, k=rf:

Equilibrium equations take the form:

r � T= 0, r �M+T× = 0, ð43Þ

with surface stress T and couple stress M tensors. The latter relate to a surface strain energy density
through the formulae:

T=
∂U

∂e
, M=

∂U

∂k
, U = U(e, k): ð44Þ

The Eshelby tensor Bs has the form:

Bs = UA� T � (ru)T �M � (rf)T : ð45Þ

Let us note that equation (45) is symmetrized with respect to translations and rotations. Indeed, here
we face a full symmetry under replacements:

u! f, T! M:

We can again prove the identity:

r � Bs = 2HUN: ð46Þ

Unlike the case of finite deformations, here the calculations are more simple. Indeed, similar to equa-
tion (17), we have:

rU =re : T+rk : M=rru : T+rrf : M�r(I×f) : T,

and we came to a series of identities:

r � Bs =rU + 2HUN� (r � T) � (ru)T � (r �M) � (rf)T

� T : r(ru)T �M : r(rf)T

=rru : T� T : r(ru)T +rrf : M�M : r(rf)T

�r(I×f) : T� T× � (rf)T + 2HUN= 2HUN,

that results in equation (46). Thus, for a minimal surface, we get the conservation law and corresponding
J-integral for small deformations:

r � Bs = 0, J [

þ
Y

n � Bs ds = 0: ð47Þ

This conservation law is similar to 3D analogous in linear micropolar elasticity (see, e.g., Lubarda
and Markenscoff [50]). Unlike the case of elastic membrane, as for micropolar 3D solids [50], M-inte-
gral for micropolar shell cannot be derived, in general. It could be possible for a particular class of
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constitutive equations with symmetric stress resultant tensor, T× = 0, or for decoupled relations with
an energy in the form U = U(e, k), see Neff [51] for a discussion on this class of 3D constitutive
relations.

6. On 3D-to-2D reduction of conservation laws

We have discussed the so-called direct approach to bidimensional structures. Within the approach, the
basic governing equations, i.e., equations of equilibrium and constitutive equations, are formulated as
for a 2D continuum. As a result, additional non-trivial conservation laws could be derived using these
2D governing equations as was demonstrated above. In other words, derived 2D conservation laws are
exact consequence of 2D equilibrium and constitutive equations.

An alternative way could be a 3D-to-2D reduction also applied to 3D conservation laws. Any 3D-to-
2D reduction results in 2D equations, so one could also apply it to 3D conservation laws. Let us note
that any reduction procedure results in an approximate representation of a 3D state through its 2D coun-
terpart. Using such an approach, one should be aware of the following:

Obtained conservation law could be reduction-dependent, i.e., could depend on the chosen reduction
procedure. Indeed, in the literature, there are known various shell models which have different conser-
vative laws, in general.
Reduction of a conservation law could result in an identity which is not a 2D conservation law
according to definitions (1) and (2).

Let us discuss this matter in more detail using the through-the-thickness procedure. This 3D-to-2D
reduction leads to the non-linear resultants six-parameter shell theory [32]. For finite deformations of a
non-linear elastic solid, we have the Lagrangian equitation of equilibrium and the conservation law for
the Eshelby tensor b in the form [2]:

Div S = 0, ð48Þ

Div b= 0, b= V I� S �GT , ð49Þ

where S is the first Piola–Kirchhoff stress tensor, G=Grad r is the deformation gradient, V is a strain
energy function, r is a 3D position vector in a current placement, and Div and Grad are the Lagrangian
divergence and gradient operators, respectively.

Following [32,37], we consider deformations of a shell-like body B as a differentiable invertible map-
ping from a reference placement into a current one. Let V = f(s1, s2, z) : (s1, s2) 2 S, z 2 ½�h�, h+�g be a
volume of B in the reference placement, where S is a referential base surface, and h = h�+ h+ is the shell
total thickness (see Figure 3). So, the position vector of a given point z of B in the reference placement is
given by:

R=X(s1, s2) + zN:

In a current placement, z could be represented through its position vector:

r= x(s1, s2) + z(s1, s2, z),

where z= r� x is called the base reference deviation vector [32].
Integrating equation (48) through the thickness, we came to equation (43)1 with T defined as

follows [37]:

T=

ðh+

�h�

(A� zH)�1 � Smdz, ð50Þ

where H=�rN is the curvature tensor of S, and m is the scale factor defined by the formulae:
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dV = mdzdS, m [ det (A� zH) = 1� 2Hz + Kz2,

K [ detH is the Gaussian curvature of S. Note that here we have used the assumption:

N � SjS6 = 0, ð51Þ

i.e., we assumed that faces S
�
and S

+
are free.

To derive equation (43)2, we cross-multiply equation (48) by z from the left and integrate the result
through the thickness. We get equation (43)2 with M defined as:

M=

ðh+

�h�

(A� zH)�1 � S× zmdz: ð52Þ

So, equation (43) is the exact consequence of the 3D equilibrium equations.
Similarly, the 2D strain energy density U could be introduced as follows:

U =

ðh+

�h�

V mdz: ð53Þ

Obviously, within this 3D-to-2D reduction, some part of an energy stored in B could be lost (see Libai
and Simmonds [32], for more details).

Let us now repeat the same integration technique to equation (49). Similarly, we came to:

r � bB + m+V+N+ + m�V�N�= 0, ð54Þ

Figure 3. Deformation of a shell-like body B.
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bB =

ðh+

�h�

(A� zH)�1 � bmdz, ð55Þ

where we have used equation (51), m6 and V 6 are the values of m and V taken on S
6
, respectively, i.e.,

at z = 6h6, and N� and N+ are the unit outward normals to S
6
(see Figure 3). Obviously, bB does not

coincide nor with Bs neither with B. Moreover, equation (54) does not constitute a conservation law, in
general. So, one has to apply additional assumptions of kinematical and/or smallness type to get a con-
servation law.

As an example, let us transform equations (54) and (55) to the case of an elastic non-linear membrane.
First, we restrict ourselves to a symmetric case h+ = h�= h=2. In addition, we assume that G does not
depend on z or that such dependence is negligible. So, for G, we use an approximation G=F+N� n,
where n is a normal to s. As a result, V does not depend on z. For a thin enough structure, we also
assume that N6 = 6N. As a result, we get the formulae:

m6 = 17Hh +
1

4
Kh2, m+V+N+ + m�V�N�= 2HhVN:

With these assumptions, bB transforms into:

bB = hVA�
ðh=2

�h=2

A � Sdz � FT : ð56Þ

Thus, introducing W and P as follows:

W = hV , P=

ðh=2

�h=2

A � Sdz,

we came to equation (15) with Bm = bB: For derivation of 2D equations of elastic membranes, we also
refer to the previous works [32,52].

Transformation of equations (54) and (55) to the case of six-parameter (micropolar) shells can be pro-
vided similarly. It requires additional and more complex kinematical assumptions (see equation (28)) in
Eremeyev and Konopińska-Zmys1owska [34] for normal components of b and B.

7. Conclusion

We have discussed a few conservation laws for thin-walled structures, i.e., elastic membranes and six-
parameter shells, modeled using material minimal surface. Let us underline that minimal surfaces signifi-
cantly extended a class of geometry of shells and membranes for which it is possible to introduce such
conservation laws. Using the property of a minimal surface (8), we have demonstrated that conservation
laws for 2D systems are similar to the case of 3D non-linear elasticity. With conservation laws, one can
derive invariant (path-independent) integrals such as J-integrals. The latter could be useful in mechanics
of fracture, e.g., for estimation of stress concentration in the vicinity of geometrical singularities such as
holes, crack tips, notches, and rigid inclusions. Moreover, they could be related to the energy release rate
for quasistatically propagating defects in thin structures.
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