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Let f be a smooth self-map of a closed manifold of dimension m � 3, r be a fixed natural
number. In this paper we introduce the topological invariant NJDm

r [ f ], which is equal to
the minimal number of r-periodic points in the smooth homotopy class of f .
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1. Introduction

The classical problem in fixed point theory is to find the minimal number of fixed points in the homotopy class
of the given continuous map. If f : M → M is a map of a compact m-manifold, where m � 3, then it is known that
min{#Fix(g): g ∼ f } is equal to N( f ), the Nielsen number of f . Moreover the map realizing the least number of fixed
points may be chosen smooth [12] (we call f smooth provided it is C1). However, such equivalence between continuous
and smooth category does not exist if we look for the minimal number of periodic points of the given period.

In 1983 B.J. Jiang introduced in [10] the classical invariant NFr( f ), which gives a lower bound for the number of r-
periodic points in the homotopy class of f . Later, in [7], it was proved that in fact NFr( f ) is the best such lower bound,
i.e.

NFr( f ) = min
{

#Fix
(

gr): g ∼ f
}
. (1.1)

The natural question is whether there exists a counterpart of such invariant in the smooth category, i.e. what is the mini-
mum in the formula (1.1) for smooth f and g in its smooth homotopy class. In fact, we may consider a bit more general
approach. Instead of taking a smooth f and smooth homotopies, we may consider continuous f and search for the mini-
mum over smooth g in the continuous homotopy class. As every smooth homotopy may be approximated by a continuous
one, both approaches in the common domain lead to the same result.

In this paper we introduce an invariant NJDr[ f ], the Nielsen–Jiang–Dold number, which is the lower bound for the
number of r-periodic points in the smooth non-simply connected case. We show (Theorem 4.4) that this invariant is optimal
in the following sense:
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(1) NJDr[ f ] is less than or equal to the number of fixed points of gr for any map g smoothly homotopic to the given f ,
(2) there exists a map g smoothly homotopic to f with

#Fix
(

gr) = NJDr[ f ].
Obviously NJDr[ f ] � NFr( f ) and this inequality is usually sharp. The invariants are quite different and the differences in

their construction may shed more light on the role of differentiability hypothesis in periodic point theory. It turns out that
there are two fundamental obstacles to minimize the number of periodic points. The first one depends on the fundamental
group of the manifold (more precisely it is described in the language of Nielsen theory by Reidemeister relations). The
second one may be expressed in terms of local fixed point indices of iterations {ind( f n, x0)}∞n=1, where x0 is a periodic
point.

If M is simply connected then the Nielsen theory is trivial. On the other hand, the restrictions for indices of iterations
of a continuous maps (Dold relations [2]) also turns out to be not an essential obstacle to minimize the number of periodic
points. As a result NFr( f ) � 1, i.e. f is always homotopic to a continuous map with no more than one r-periodic point
being a fixed point. The situation changes completely if we take a smooth f and consider its smooth homotopy class. Then,
we have to take into account strong restrictions for indices of iterations of smooth maps found by Chow, Mallet-Paret and
Yorke [1]. Thus, even for a simply connected manifold, the invariant NJDr[ f ] is usually much greater than 1 (for the details
we refer the reader to [4]).

For the smooth non-simply connected case both types of obstacles must be taken into consideration. In the geometric
interpretation of NJDr[ f ] the Reidemeister relations are represented by a directed graph and the structure of indices is
coded by an associating with each vertex some integer. The minimization under different sets of admissible integers in the
vertices gives the value of NJDr[ f ].

As, up to now, we know only the description of indices of iterations for smooth maps in R3 [6], exact calculations are
possible for 3-dimensional manifolds and in general they seem to be complicated. However, the invariant is computable
for maps with simple Reidemeister relations. In this paper we determine NJD3

r [ f ] for self-maps of RP 3 and odd r (which
reduces in fact to simply connected case) and for r = 6. The last case we use as an illustrative example of the differences
between continuous and smooth category.

The paper is organized as follows. After preliminaries, in the second section we prove the congruences (known as Dold
relations) for Reidemeister orbits, which gives us the convenient way to write down the sequence of Lefschetz numbers and
enables us to define NJDm

r [ f ] in combinatorial terms. The definition of NJDm
r [ f ] and main theorem are given in Section 4.

Section 5 is devoted to a geometric interpretation of the invariant in terms of the so-called Reidemeister graph. In the final
section we calculate NJDm

r [ f ] for 3-dimensional real projective space.

2. Preliminaries

In this section we give some definitions and statements which will be used throughout the rest of the paper.

2.1. Dold relations

The sequence of indices of iterations must satisfy some congruences, which were found in 1983 by Dold [2]. Let
f : U → X , where U ⊂ X is an open subset of an ENR. We define inductively U0 = U , Un+1 = f −1(Un) i.e. Un = {x ∈ U :
x, f (x), . . . , f n(x) ∈ U }. Assume that the fixed point set Fix( f n) = {x ∈ Un: f n(x) = x} is compact for each n ∈ N. In such a
situation the fixed point index ind( f n) = ind( f n, Un) is well defined. Dold proved that the sequence of fixed point indices
{ind( f n)}∞n=1 for each n ∈ N must satisfy the following congruences (called Dold relations):∑

k|n
μ(n/k) ind

(
f k) ≡ 0 (mod n), (2.1)

where μ denotes the classical Möbius function, i.e. μ : N → Z is defined by the following three properties: μ(1) = 1,
μ(k) = (−1)r if k is a product of r different primes, μ(k) = 0 otherwise.

2.2. Periodic expansion

Due to the Dold relations we may decompose every sequence of indices of iterations into a sum of some specific ele-
mentary sequences. This decomposition will be called a periodic expansion.

Definition 2.1. For a given k we define the basic sequence:

regk(n) =
{

k if k|n,

0 if k �n.

Notice that each basic sequence regk is a periodic sequence of the form: (0, . . . ,0,k,0, . . . ,0,k, . . . , . . .), where the non-
zero entries appear only for indices of the sequence which are multiples of k.
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Theorem 2.2. (Cf. [9].) Any sequence ψ : N → C can be written uniquely in the following form of a periodic expansion:

ψ(n) =
∑
k|n

ak regk(n),

where an = 1
n

∑
k|n μ(k)ψ(n/k).

Moreover, ψ takes integer values and satisfies Dold relations iff an ∈ Z for every n ∈ N.

Definition 2.3. Assume that a periodic expansion for a sequence {ψ(n)}∞n=1 is given. Let �(ψ) = {n ∈ N: an 	= 0}. The set
�(ψ) will be called the basic set for a periodic expansion of ψ . We will also consider the basic set up to the level r for ψ

defined as �r(ψ) = {n|r ∈ N: an 	= 0}.

2.3. DDm(p|r) sequences

In the problem of minimizing the number of periodic points in a smooth homotopy class the important role play so-
called DDm(p|r) sequences.

Definition 2.4. A sequence of integers {cn}∞n=1 is called DDm(p) sequence if there are: a C1 map φ : U → Rm , where U ⊂ Rm

is open; and P , an isolated p-orbit of φ, such that cn = ind(φn, P ) (notice that cn = 0 if n is not a multiple of p). The finite
sequence {cn}n|r will be called DDm(p|r) sequence if this equality holds for n|r, where r is fixed. In other words, a DDm(p)

sequence is a sequence that can be realized as a sequence of indices of iterations on an isolated p-orbit for some smooth
map φ.

The following lemma from [4] shows how to obtain the forms of DDm(p) sequences if we know the forms of DDm(1)

sequences.

Lemma 2.5. A sequence {cn}∞n=1 is a DDm(1) sequence if and only if

c̃n =
{

0 for p �n,

pcn/p for p|n
is a DDm(p) sequence. We will say that a DDm(p) sequence {c̃n}∞n=1 comes from a DDm(1) sequence {cn}∞n=1 .

In [6] (cf. Theorem 2.6 below) there is the full description of all possible forms all DD3(1) sequences and thus, by
Lemma 2.5 also DD3(p) sequences for any given p.

Theorem 2.6. There are seven kinds of DD3(1) sequences:

(A) c A(n) = a1 reg1(n) + a2 reg2(n),
(B) cB(n) = reg1(n) + ad regd(n),
(C ) cC (n) = − reg1(n) + ad regd(n),
(D) cD(n) = ad regd(n),
(E) cE(n) = reg1(n) − reg2(n) + ad regd(n),
(F ) cF (n) = reg1(n) + ad regd(n) + a2d reg2d(n), where d is odd,
(G) cG(n) = reg1(n) − reg2(n) + ad regd(n) + a2d reg2d(n), where d is odd.

In all cases d � 3 and ai ∈ Z.

Remark 2.7. Lemma 2.5 gives an easy procedure which enables one to obtain all forms of DDm(p) sequences once we know
the forms of DDm(1) sequences. In order to get any DDm(p) sequence it is enough to replace all basic sequences ak regk
by ak regpk in the periodic expansion of some DDm(1) sequence. For example all DD3(p) sequences which come from the
DD3(1) of the type (A) have the form

c A(n) = a1 regp(n) + a2 reg2p(n),

where a1, a2 are arbitrary integers.

3. Dold relations for orbits of Reidemeister classes

Let f : M → M be a continuous self-map of a compact manifold. For each natural number k ∈ N we define the set of
orbits of Reidemeister classes O R( f k) and for each pair of numbers l|k we denote by ik,l : O R( f l) → O R( f k) the natural
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boosting map. This may be regarded as a functor from the category (N, |) to the set category. If Nl ⊂ Fix( f l), Nk ⊂ Fix( f k)

are Nielsen classes representing Reidemeister classes Al ⊂ O R( f l) and Ak ⊂ O R( f k) respectively, then Nl ⊂ Nk implies
ik,l(Al) = Ak (cf. [9]).

By O Rn( f ) and O R∞( f ) we will denote the following disjoint sums:

O Rn( f ) =
⋃
k|n

O R
(

f k),
O R∞( f ) =

⋃
k∈N

O R
(

f k).
Remark 3.1. We consider O R( f k) and O R( f l), for k 	= l, as disjoint sets. However, we will often identify a Reidemeister
class A ∈ O R( f k) with the Nielsen class which corresponds to A. In particular we interpret in this way the fixed point
index ind( f k; A).

For an orbit of Reidemeister classes B ∈ O Rn( f ) we will denote by l(B) the unique natural number for which B ∈
O R( f l(B)).

We say that for two orbits of Reidemeister classes A ∈ O R( f k) and B ∈ O R( f l), B is preceding A if l|k and ik,l(B) = A.
We write then B � A. We use also the notation B ≺ A, where B ≺ A if B � A but A 	= B .

Since each orbit A ∈ O R( f k) is an open and closed subset in Fix( f k), the fixed point index ind( f k; A) is defined.

Lemma 3.2. Let f : X → X be a self-map of a compact polyhedron (or ENR) and let S be a closed–open invariant subset of Fix( f r),
where r is a given fixed natural number. Then the sequence ind( f n; S), for each n|r, satisfies Dold relations i.e.∑

k|n
μ(n/k) · ind

(
f k; S

) ≡ 0 (mod n).

Proof. Since S is a closed–open subset of Fix( f r), there is an open subset U ′ ⊂ X satisfying Fix( f r) ∩ U ′ = S . Since S
is invariant, there is a neighborhood U ⊃ S such that

⋃r
i=0 f i(U ) ⊂ U ′ . Then the formula (2.1) is valid for the restriction

fU : U → X , since Fix(( f r)U ) = S is compact. Now the sequence {ind(( fU )k)}, where k|n, satisfies the Dold congruences (2.1).
It remains to notice that

ind
(
( fU )k) = ind

(
f k; S

)
for all k|r. �
Lemma 3.3. For each orbit A ∈ O R( f n)∑

B�A

μ
(
n/l(B)

) · ind
(

f l(B); B
) ≡ 0 (mod n).

Proof. We notice that each orbit of Reidemeister classes A ∈ O R( f n) may be regarded as the closed–open subset of Fix( f r).
By Lemma 3.2 the sequence {ind( f k; A)}k|n satisfies Dold congruences. On the other hand, the following equalities hold

ind
(

f k; A
) = ind

(
f k; A ∩ Fix

(
f k)) = ind

(
f k;

⋃
B�A, l(B)=k

B

)

=
∑

B�A, l(B)=k

ind
(

f k; B
)
.

The last equality holds, since the Nielsen classes in Fix( f k) are mutually disjoint.
Finally, by the above equality,

∑
B�A

μ
(
n/l(B)

) · ind
(

f l(B); B
) =

∑
k|n

μ(n/k)

( ∑
B�A, l(B)=k

ind
(

f k; B
))

=
∑
k|n

μ(n/k) ind
(

f k; A
) ≡ 0 (mod n),

where the last congruence follows from Lemma 3.2. �
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Definition 3.4. Let μ∗ be the Möbius function on the partially ordered set (O R∞( f ),�), i.e. μ∗ : Int(O R∞( f )) → Z, where
Int(O R∞( f )) denotes the set of all intervals in O R∞( f ), and μ∗ is defined by two properties:

• μ∗(B, B) = 1,
• μ∗(B, A) = −∑

{C : B�C≺A} μ∗(B, C).

Remark 3.5. Let A ∈ O R( f a), B ∈ O R( f b). Then

Int(B, A) =
{ {id,b(B): b|d|a} for B � A,

∅ otherwise.

Lemma 3.6. Let A ∈ O R( f a) and B ∈ O R( f b). If B � A, then μ∗(B, A) = μ(a/b).

Proof. We fix B and apply induction by A = ia,b(B). For A = B we have that μ∗(A, A) = μ(a/a) = 1. Assume that the
equality holds for orbits C ∈ O R( f c) which satisfy B � C ≺ A. We will show that then the equality holds also for A. There
is

μ∗(B, A) = −
∑

B�C≺A

μ∗(B, C) = −
∑

b|c|a; c 	=a

μ(c/b)

= −
∑

d| a
b ;d 	= a

b

μ(d) = μ(a/b) −
∑
d| a

b

μ(d) = μ(a/b),

where the third equality was obtained by substituting d = c
b and the last equality follows from the fact that

∑
d|k μ(d) = 0

for k > 1. �
Now we are ready to formulate and prove Dold relations for orbits of Reidemeister classes. Let us mention that there are

similar congruences for Reidemeister numbers in [3].

Theorem 3.7. For a fixed A ∈ O R( f n) we have∑
B�A

μ∗(B, A) · ind
(

f l(B); B
) ≡ 0 (mod n). (3.1)

Proof. By Lemma 3.6 μ∗(B, A) = μ∗(n/l(B)) and the theorem follows from Lemma 3.3. �
Definition 3.8. For B ∈ O R( f k) we define the function RegB : O R∞( f ) → Z putting

RegB(A) =
{

k for B � A,

0 otherwise.

Remark 3.9. Let us notice that for the orbits A ∈ O R( f a), B ∈ O R( f b) satisfying B � A

RegB(A) = regb(a).

Let us consider a little more general situation. Let I : O R∞( f ) → Z be a function satisfying for each given A ∈ O R( f n)∑
B�A

μ∗(B, A) · I(B) ≡ 0 (mod n).

We will say then that I satisfies the Dold congruences.

Theorem 3.10. Let I satisfy the Dold congruences. Then for each B ∈ O R∞( f ) a unique integer number aB is defined, such for any
given A ∈ O R∞( f ) the following equality holds:

I(A) =
∑

{B: B�A}
aB RegB(A). (3.2)

We will call such representation of I generalized periodic expansion.

Proof. We may rewrite the formula (3.2) as I(A) = ∑
{B: B�A} aBl(B). Then, by the Möbius inversion formula for partially

ordered sets (cf. for example [13]), we obtain that it is equivalent, for B � A, to

aAl(A) =
∑

μ∗(B, A)I(B). (3.3)

B�A
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As a consequence, for each A the unique aA is defined. Moreover, A ∈ O R( f n), so l(A) = n. Then by the assumption that I
satisfies Dold relations we get that aA is integer. �
Corollary 3.11. Let f : M → M be a self-map of a compact manifold. Since by Theorem 3.7 I(A) = ind( f n; A), where A ∈ O R( f n),
satisfies the Dold congruences, there exist unique numbers aB ∈ Z such that

ind
(

f n; A
) =

∑
B

aB · RegB(A) (3.4)

for all A ∈ O R( f n).

4. Lower bound for the number of points in Fix( f r) for smooth f

In this section we introduce the invariant NJDm
r [ f ], the lower bound for the number of r-periodic points of a map

smoothly homotopic to the given smooth self-map f : M → M of a smooth closed connected and possibly non-simply
connected manifold.

We assume that the considered manifold M is closed, however all results remain true if M has a nonempty boundary
but f has no periodic points on the boundary.

First we will analyze the impact of a single isolated orbit. This will motivate the definition of the invariant. Then we
prove that this invariant is optimal. In the last subsection we will give an upper bound for the number NJDm

r [ f ].
We fix a number r ∈ N. We will assume that Fix( f r) is finite, otherwise we may by Kupka–Smale Theorem (cf. [14])

approximate f by a smooth map which has a finite number of r-periodic points (for the given r).

4.1. An isolated orbit

This subsection gives a motivation for the construction of the invariant NJDm
r [ f ].

First of all let us analyze the impact of an orbit of periodic points a = {x1, . . . , xla } ⊂ Fix( f r), la|r. The orbit a determines:

(1) an orbit of Reidemeister classes A ∈ O R( f la ) i.e. the orbit of Nielsen classes containing the points of a,
(2) a DDm(la|r) sequence ca given by

ca(n) = ind
(

f n;a
)

where la|n|r.

Let us notice that then for each orbit A ∈ O R( f n) with n|r:

(1′) #Fix
(

f r; A
) =

∑
a

la,

(2′) ind
(

f n; A
) =

∑
a

ca(n),

where in both cases the summation runs over the set of orbits of points contained in A.

Now we are going to reverse the above approach. Namely, we represent ind( f n; A) as the sum of the type (2′), which
allows us to obtain the least sum

∑
a la .

4.2. Invariant NJDm
r [ f ]

Each orbit of Reidemeister classes A ∈ O R( f k) has its own fixed point index ind( f k; A) and the sum of the indices
gives L( f k). On the other hand, we can extend, in a natural way, the definition of DDm(p) sequences from the set of natural
numbers onto the set O R∞( f ) – we say that each such sequence is attached at some orbit (see Definition 4.1 below).
Finally, we decompose the function{

L
(

f n)}
n|r =

{∑
A

ind
(

f n; A
)}

n|r
into the minimal sum of DDm(p) sequences attached at some orbits and obtain NJDm

r [ f ].

Definition 4.1. For a fixed DDm(h) sequence c and an orbit H ∈ O R( f h) we define the function C H : O R∞( f ) → Z by

C H (A) =
{

c(n) for H � A; A ∈ O R( f n),

0 otherwise.
(4.1)

We say then that the DDm(h) sequence c is attached at the orbit H ∈ O R( f h).
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For example RegH : O R∞( f ) → Z may be regarded as the basic sequence regh attached at the orbit H ∈ O R( f h).

Remark 4.2. C H may be written in the form of generalized periodic expansion. What is more, this expansion is strictly
related to the periodic expansion of the sequence {c(n)}n in the formula (4.1). Namely, if

c(n) =
∑

d∈�(c)

ad regd(n), (4.2)

then

C H (A) =
∑

ad RegB(A), (4.3)

where the sum is extended over the set {B ∈ O R( f d): d ∈ �(c) and H � B}.

By Corollary 3.11 ind( f n; A) = ∑
B aB RegB(A) for every orbit of Reidemeister classes A ∈ O R( f n), where n|r.

Now we consider a splitting of ind( f n; A) (we omit below the variable A):∑
B

aB RegB = C H1 + · · · + C Hs , (4.4)

where C Hi denotes a DDm(hi) sequence ci attached at the class Hi ∈ O R( f hi ).
Notice that by (4.3) both sides of the equality (4.4) are combinations of some RegB .

Definition 4.3. We define NJDm
r [ f ], the Nielsen–Jiang–Dold number, by

NJDm
r [ f ] = minimal sum h1 + · · · + hs,

such that the equality (4.4) holds.

If m, the dimension of the manifold is known from the context, we will write just NJDr[ f ].
Let us remark that both sides of the equality (4.4) have the form of generalized periodic expansion. Thus the problem of

finding NJDr[ f ] has a combinatorial nature, once we know the form of generalized periodic expansion of Lefschetz numbers
(i.e. left-hand side of (4.4)) and the forms of DDm(hi) sequences (i.e. right-hand side of (4.4)).

Now we come to the main result of the paper, which states that NJDr[ f ] is the minimum of the number of r-periodic
points for all smooth maps in the homotopy class of f .

Theorem 4.4 (Main Theorem). The number NJDr[ f ] satisfies:

(1) NJDr[ f ] is the homotopy invariant,
(2) #Fix( f r) � NJDr[ f ],
(3) if m � 3 then f is homotopic to a smooth map g realizing the number NJDr[ f ] i.e. #Fix(gr) = NJDr[ f ].

Proof. (1) In the definition of NJDr[ f ] we use only fixed point index and Reidemeister classes and these are homotopy
invariants.

(2) By item (2′) of Section 4.1, assuming f is smooth, we get that ind( f n; A) is the sum of DDm(la|r) sequences, realized
by the orbits a of f . As a consequence by the equality #Fix( f r) = ∑

A∈O R( f r)

∑
a⊂A la , we get that

#Fix
(

f r) =
∑

a

la � NJDr[ f ].

(3) In this part of the proof we will make use of two procedures: Smooth Creating Procedure and Canceling Lemma,
which for the sake of clarity are listed separately in Section 4.3.

Let us suppose that the splitting of ind( f n; A):∑
B

aB RegB = C H1 + · · · + C Hs (4.5)

is the minimal one i.e. h1 + · · · + hs = NJDr[ f ].
Recall that the function C Hi is obtained by attaching a sequence ci at the orbit Hi ∈ O R( f hi ). First we assume that:

(∗) for each C Hi , we may find in the orbit Hi ∈ O R( f hi ) an orbit of points ai = {a1
i , . . . ,ahi

i } such that f is smooth near
each ai and

ind
(

f n;ai
) = ci(n).
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We notice that then for any A ∈ O R( f n) and i = 1, . . . , s

C Hi (A) = ind
(

f n; A ∩ ai
)

for n|r.
We will show that S = a1 ∪ · · · ∪ as satisfies the assumptions of Canceling Lemma 4.6. As (1) and (2) of Lemma 4.6 are

obvious, we verify the assumption (3) in the form given by (4.6).

ind
(

f n; A ∩ S
) = ind

(
f n; A ∩ (a1 ∪ · · · ∪ as)

)
= ind

(
f n; A ∩ a1

) + · · · + ind
(

f n; A ∩ as
) = C H1(A) + · · · + C Hs (A)

=
∑

B

aB RegB(A) = ind
(

f n; A
)
.

Now Canceling Lemma 4.6 gives a homotopy from f to a map f1 with Fix( f r
1) = S . Notice that f1 is smooth in some

neighborhood W of the orbits a1, . . . ,as and f r
1 has no fixed points outside W . Thus, if f1 is not smooth as the global

map, we approximate it by a smooth map g constantly equal to f1 on W without adding any new r-periodic points in the
compact set M \ W . Hence f is homotopic to smooth g and

#Fix
(

gr) = #S = #{a1 ∪ · · · ∪ as} = h1 + · · · + hs = NJDr[ f ].
To end the proof it is enough to notice that we may provide the condition (∗). Indeed, by Smooth Creating Procedure

(Theorem 4.5), we may find a homotopy from f to a map f ′ such that for any i, in the orbit H ′
i ∈ O R( f ′hi ) corresponding

to Hi ∈ O R( f hi ) = O R( f ′hi ), there is an isolated orbit of points ai = {a1
i , . . . ,ahi

i } (items (1)–(4) and (6)). What is more, by
item (5), f ′ is smooth near the orbit and ind( f ′n;ai) = ci(n). As a result, (∗) is satisfied for f ′ and we may apply the above
to deform f ′ to a map g with #Fix(gr) = NJDr[ f ′] = NJDr[ f ]. �
4.3. Procedures

Now we will present two results which were used in the proof of our main Theorem 4.4: Smooth Creating Procedure
and Canceling Lemma [7].

Due to Smooth Creating Procedure we may create an orbit in the homotopy class of f , by a use of homotopy ft which
is constant is the small neighborhood of periodic points of f (up to the given period r) and such that f r

1 is smooth near
the created orbit and may be given there by an arbitrarily prescribed formula.

Theorem 4.5 (Smooth Creating Procedure). Given numbers p, r ∈ N, p|r and a map f : M → M, where dim M � 3, such that Fix( f r)

is finite and a point x0 /∈ Fix( f r). Then there is a homotopy { ft}0�t�1 satisfying:

(1) f0 = f .
(2) { ft} is constant in a neighborhood of Fix( f r).
(3) f p

1 (x0) = x0 and f i
1(x0) 	= x0 for i = 1, . . . , p − 1.

(4) The orbit O = {x0, f1(x0), . . . , f p−1
1 (x0)} is isolated in Fix( f r

1).
(5) f1 realizes given DDm(p|r) sequence {c̃n}n|r on O, i.e. f1 is smooth in a neighborhood of O and c̃n = ind( f n

1 ; O) for n|r.
(6) The orbit O may represent an arbitrarily prescribed orbit in O R( f p

1 ).

The items (1)–(4) are the part of Theorem 3.3 in [7] (called Creating Procedure). The statement of the item (5) is the same
as Proposition 3.6 in [4]. Finally, the item (6) follows from the item (5) of Theorem 3.2 in [7] (called Addition Procedure).

The following lemma enables one to remove subsets of periodic points which have indices of iterations equal to zero.

Lemma 4.6 (Canceling Lemma). ([7, Lemma 5.4]) Let f be a continuous self-map of M. Suppose that S ⊂ Fix( f r) satisfies:

(1) S is finite and f -invariant i.e. f (S) = S.
(2) Fix( f r) \ S is compact.
(3) ind( f n; A \ S) = 0 for any n|r and any orbit of Reidemeister classes A ⊂ O R( f n).

Then there is a homotopy ft , starting from f0 = f , constant near S and such that Fix( f r
1) = S.

Remark 4.7. Let us notice that the assumption (3) of Lemma 4.6 is equivalent to the following condition: for any n|r and
any orbit of Reidemeister classes A ⊂ O R( f n), we have

ind
(

f n; A ∩ S
) = ind

(
f n; A

)
. (4.6)
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4.4. An estimation of NJDm
r [ f ]

Definition 4.8. We define d(A), the depth of the class A ∈ O R( f n), as the least k|n with A ∈ im in,k .

Definition 4.9. An orbit A ∈ O R( f n) is called irreducible if d(A) = n, i.e. if it is not preceded by an orbit of a smaller depth.
For a given r, we will denote the set of irreducible orbits as I O Rr( f ).

Theorem 4.10. Let f : M → M be a self-map of a closed manifold of dimension � 3, let r ∈ N be a fixed number. Then f is homotopic
to a smooth map g satisfying

#Fix
(

gr) �
∑

B

d(B), (4.7)

where the summation runs over the set of all orbits of Reidemeister classes B satisfying: l(B) divides r and aB 	= 0 in the formula (3.4).

Proof. Let ind( f n; A) = ∑
B aB RegB(A), where aB 	= 0. Let us notice that each DD3(p) sequence is also DDm(p) sequence for

m � 3, thus in dimensions greater that 3 we may use the sequences described in Theorem 2.6 for estimating NJDr[ f ]. For a
class B ∈ O R( f k) we fix B ′ ∈ O R( f d(B)), B ′ � B . Then aB RegB can be regarded as the attachment of the sequence aB regk
of the type (D) or (A) at the class B ′ . We can do this independently for each B . The obtained set of attachments gives us
in Definition 4.3 the sum

∑
B l(B ′) = ∑

B d(B), which means that NJDr[ f ] �
∑

B d(B). �
5. Reidemeister graph

In this short section we present a natural geometric interpretation of NJDr[ f ], which makes the calculations more con-
venient and helps to imagine the obtained data.

5.1. Construction of Reidemeister graph

First of all let us notice that the set O R∞( f ) = ⋃
k∈N

O R( f k) (disjoint sum) is a partially ordered set by the rela-
tion “�”. The set determines a directed graph in which vertices are orbits of Reidemeister classes and a (unique) directed
edge from B to A corresponds to the relation B ≺ A. If we associate with each vertex A ∈ O R( f k) the number aA from
the generalized periodic expansion then we get, what we will call, graph of orbits of Reidemeister classes (briefly Reidemeister
graph) G O R( f ).

For a fixed integer r we denote by G O R( f ; r) the full subgraph whose vertices are elements of O R( f k) for k|r. Let us
remark that G O R( f ; r) carries all data needed to determine NJDr[ f ].

Remark 5.1. Assume that G O R( f ; r) has some connected components G1, . . . , G v . By Definition 4.3 to get NJDr[ f ] we have
to split the sum

∑
aB RegB into the sum of functions Chi with the minimal value of h1 + · · · + hs . As

∑
B aB RegB(A) =∑

1�i�v

∑
B∈Gi

aB RegB(A), it is evident that we may find minimal splitting hi1 + · · · + hisi
for each Gi separately and then

add the obtained sums:
∑

i hi1 + · · · + hisi
.

5.2. Continuous category versus smooth category

If f is a continuous map, then the minimal number of points in Fix(gr) for all g homotopic to f is equal to NFr( f ) – the
invariant introduced by Jiang in [10]. Below we explain the differences between NFr( f ) and NJDr[ f ] in terms of Reidemeister
graph. First, we remind the reader the definition of NFr( f ). We call a subset S ⊂ O Rn( f ) Preceding System if each essential
orbit in O Rn( f ) is preceded by an orbit in S . S is called Minimal Preceding System (MPS) if the sum of the depth of elements
in S ∑

H∈S

d(H)

is minimal. The number NFr( f ) is defined as the above least sum i.e. the sum of depth of orbits in an MPS. Of course,
always NJDr[ f ] � NFr( f ).

Now, notice that for calculating NFr( f ) we do not care about the values of indices at vertices of the graph, the only
information we need is whether the indices are non-zero (the class is essential) or not. Calculating NJDr[ f ] we have to
realize also indices in each vertex B , which are expressed by the coefficients aB at RegB .

If, during the calculation of NJDr[ f ], we attach in each H ∈ O R( f l) of a given MPS some DDm(l|r) sequence, that may
be not enough, because some coefficients aB at RegB may be not realized. As a consequence, usually NJDr[ f ] > NFr( f ) and
the equality holds only in very special situations.
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5.3. NJDr[ f ] for simply connected manifolds

The invariant Dm
r [ f ], which was defined in [4], is equal to the least number of points in Fix(gr) for all smooth self-

maps g of a simply connected manifold, homotopic to f . If our manifold M is simply connected, then there is the equality
Dm

r [ f ] = NJDm
r [ f ] and in such a case all Reidemeister orbits consist of one element. Then G O R( f ; r) is a connected graph,

in which the relation “�” is isomorphic to “|”. As a consequence we get, by Remark 3.9 for fixed B ∈ O R( f k) and every
A ∈ O R( f n), that RegB(A) = regk(n).

6. The least number of points in Fix( f r) for a smooth self-map of RRRP 3

We start with recalling some basic information about real projective spaces RPm for m � 3, m odd. We may define
RPm as the quotient space of Sm by the antipodal action of Z2. Thus we get the universal covering p : Sm → RPm and
the fundamental group π1RPm = Z2. Since m is odd, a twist of Sm gives an isotopy from idSm to −idSm which induces a
cyclic isotopy of RPm based at idRPm . This proves that RPm is a Jiang space and all, i.e. both, Nielsen classes of the given
self-map f of RPm have equal indices (cf. [10]).

Since RPm is oriented, for m odd, the degree d = deg( f ) of a map f : RPm → RPm is defined. Then for the Lef-
schetz number L( f ) we have the equality: L( f ) = 1 − d. Moreover if d is odd then the homotopy group homomorphism
f# :π1RPm → π1RPm is the isomorphism, hence R( f n) = Z2 for all n ∈ N (R( f n) denotes the set of Reidemeister classes
of f n). On the other hand, when d is even then f# is the zero map and R( f n) = {∗}, a set which consist of one point [8].

6.1. d is even

Let d be an even number. Then R( f n) = {∗} for all n, hence the Reidemeister graph looks in the same way as in the
simply connected case. Moreover, we notice that if g : Sm → Sm is a map also of degree d, then L( f n) = L(gn) = 1−dn hence
the Reidemeister graphs of the two maps are isomorphic, and thus NJDm

r [ f ] = Dm
r [g]. On the other hand, in dimension 3

the complete description of D3
r [g] for self-maps of S3 is given in [5]. As a consequence, we have the explicit formulae for

NJD3
r [ f ] for even d (Theorems 4.2 and 4.6 in [5]).

6.2. d is odd

The case of odd d is much more complicated. The map f : RP 3 → RP 3 of odd degree d is homotopic to a map induced
by an odd degree self-map of Sm , also of degree d and the induced homomorphism f# :π1RPm → π1RPm is the identity
on Z2. This implies that the Reidemeister action is trivial:

α ∗ β = α + β − f#α = α + β − α = β,

hence R( f n) = Z2, for each n. For the same reason each orbit of Reidemeister classes consists of a single element and thus
O R( f n) = Z2.

Now we consider the map ik,l : O R( f l) → O R( f k). The above remarks and the formula

ik,l[α] = [
α + f l

#α + f 2l
# α + · · · + f k−l

# α
] = [α + · · · + α] = [k/l · α]

imply

ik,l =
{

idZ2 for k/l odd,

0 for k/l even.
(6.1)

Let us denote O R( f l) = {l′, l′′}, O R( f k) = {k′,k′′}, where l′ and k′ correspond to neutral element in Z2. Then:

ik,l
(
l′
) = k′, (6.2)

ik,l
(
l′′

) =
{

k′′ if k
l is odd,

k′ if k
l is even.

(6.3)

Now we will give an upper bound for the number NJDr[ f ] for a map f : RP 3 → RP 3 of odd degree d. This will be the
sum in the right-hand side of (4.7) of Theorem 4.10 where the summation is extended onto all orbits of Reidemeister classes
(including those with aB = 0).

We will represent the given number r ∈ N as r = 2e(r) · rodd, where rodd is an odd integer. Let ζ(n) denote the number of
all divisors of the natural number n.

Theorem 6.1. The map f : RP 3 → RP 3 , of odd degree d, is homotopic to a smooth map g such that Fix(gr) � ζ(r) + (2e(r)+1 −
1)ζ(rodd).
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Fig. 1.

Proof. It is enough to show that the number ζ(r)+ (2e(r)+1 − 1) · ζ(rodd) is not less than the sum
∑

B d(B) in Theorem 4.10,
where the summation runs over the set of all orbits of Reidemeister classes B satisfying: l(B) divides r.

As we know by the above considerations O R( f k) = Z2 = {k′,k′′}, furthermore k′ = ik,1(1′) by (6.2). Thus d(k′) = 1 and
by (6.3) d(k′′) = 2e(k) .

We get∑
A

dA =
∑
k|r

(
d
(
k′) + d

(
k′′)) =

∑
k|r

(
1 + 2e(k)

) = ζ(r) +
∑
k|r

2e(k)

= ζ(r) +
e(r)∑
v=0

( ∑
p|rodd

2v
)

= ζ(r) + ζ(rodd) ·
( e(r)∑

v=0

2v

)

= ζ(r) + ζ(rodd) · (2e(r)+1 − 1
)
. � (6.4)

Remark 6.2. The estimation from Theorem 6.1 may be improved. Let us consider r = 2s , O R( f 2s
) = {(2s)′, (2s)′′}, s =

0,1, . . . , e(r). Attaching in the orbits 1′′,2′′,4′′, . . . , (2e(r)−1)′′ sequences of the type (A) we may realize also aB RegB for
B ∈ {2′,4′, . . . , (2e(r))′}. As a consequence, the orbits {2′,4′, . . . , (2e(r))′} may be removed from the sum

∑
k|r(d(k′) + d(k′′))

in (6.4). Since the depth of each of these orbits equals 1, we get

NJDr[ f ] � ζ(r) + (
2e(r)+1 − 1

) · ζ(rodd) − e(r). (6.5)

Now we give the precise value of NJDr[ f ] for some special values of r (d is still odd).

6.2.1. r = 2s

We will use the following convention drawing Reidemeister graphs: if A ≺ B ≺ C then we omit the edge from A to C ,
understanding that there is the connection between these two vertices through B .

In this case ik,l = 0, hence the Reidemeister graph is given in Fig. 1.
Remark 6.2 gives

NJDr[ f ] � ζ(r) + (
2e(r)+1 − 1

)
ζ(rodd) − e(r)

= (s + 1) + (
2s+1 − 1

) − s = 2s+1 = 2r. (6.6)

On the other hand, by [8] NF2s ( f ) = 2s+1 = 2r. Now (6.6) and the inequality NFr( f ) � NJDr[ f ] imply NFr( f ) = NJDr[ f ] = 2r.
By the above calculations we see that in this case the least number of periodic points (in the continuous homotopy class)
may be realized by a smooth map, which is rather an exceptional situation.

6.2.2. r = 6
Now we illustrate the theory on some particular example. We take f , a self-map of RP 3 of odd degree, we fix r = 6 and

we calculate both NF6( f ) and NJD6[ f ]. In each case we show in details the method of computation, which will reveal the
differences between the continuous and smooth cases.

Theorem 6.3. Let f : RP 3 → RP 3 be a map of odd degree d. Then:

in the continuous case

NF6( f ) =
{

0 for d = 1,

2 for d = −1,

4 otherwise,

in the smooth case

NJD6[ f ] =

⎧⎪⎨
⎪⎩

0 for d = 1,

2 for d = −1,

7 for d = 3,

8 otherwise.
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Fig. 2.

Proof. First of all we draw the graph G O R( f ;6), see Fig. 2. We remind the reader that k′ , k′′ denote the orbits of Reide-
meister classes in O R( f k).

First we will consider the continuous case.

• Let d = +1. Then L( f k) = 0 for all k ∈ N, hence all Nielsen classes are inessential and NFk( f ) = 0 for all k ∈ N.
• Let d = −1. Then L( f k) = 1 − (−1)k , hence L( f k) = 2 for k odd and L( f k) = 0 for k even. In particular for k|6 we

have essential classes only for k = 1,3. Then the set O R( f ) = {1′,1′′} is the (unique) MPS which implies NF6( f ) =
#O R( f ) = 2.

• Let d 	= ±1. Then all involved Nielsen classes are essential. It follows from the graph that the (unique) MPS is {1′,1′′,2′′},
hence NF6( f ) = 1 + 1 + 2 = 4.

Now we pass to the smooth case. By Corollary 3.11 we may represent ind( f k; A) in the form of generalized periodic
expansion. Because for a given k there are only two orbits, A ∈ {k′,k′′}, it has the form:

ind
(

f k;k∗) =
∑

l∗
al∗ Regl∗

(
k∗), (6.7)

where k∗ ∈ {k′,k′′}, l∗ ∈ {l′, l′′}.
Our aim is to find the decomposition of

∑
l∗ al∗ Regl∗ (k

∗) into the minimal (in the sense of Definition 4.3) sum of func-
tions C Hi defined in (4.1). Let us remind that each C Hi is a DD3(hi |r) sequence attached at Hi . We have quite a lot of
information about the form of C Hi in our case. As the dimension of the manifold is equal to 3 here, we may use the
description of DD3(1) sequences given in Theorem 2.6. There are seven types of such sequences (A)–(G).

By Remark 2.7 any DD3(p) sequence may be obtained from (A)–(G) by replacing all ak regk by ak regpk , so there
are also seven types of DD3(p) sequences. We will say that the given DD3(p) sequence is of the type (X), where
X ∈ {A, B, C, D, E, F , G}, if it comes from DD3(1) sequence of the type (X).

Thus each C Hi may be written as C X
i∗ , a DD3(i|r) sequence c X of the type (X) attached at the class i∗ .

• Let d = 1. Then, as we have seen, all the classes are inessential, hence NJD6[ f ] = 0.
• Let d = −1. Then, as above, the only essential classes are {1′,3′,1′′,3′′}. Moreover L( f 3) = L( f ) = 2, hence, each of

these four classes has index +1. We notice that

ind
(

f k,k∗) = Reg1′
(
k∗) + Reg1′′

(
k∗) − Reg2′

(
k∗).

We may realize it by C A
1′ = Reg1′ −Reg2′ and C A

1′′ = Reg1′′ , two sequences of the type (A) attached at 1′ and 1′′ respec-
tively.
This implies that NJD6[ f ] = 2.

• Let d = 3. We get

ind
(

f k;k∗) =
− Reg1′

(
k∗) − Reg1′′

(
k∗) − Reg2′

(
k∗) − 4 Reg3′

(
k∗) − 4 Reg3′′

(
k∗) − 56 Reg6′

(
k∗)

− 2 Reg2′′
(
k∗) − 60 Reg6′′

(
k∗), (6.8)

where in the second row of (6.8) there is a decomposition of the big component and in the third, the small one.
We will show that the contribution of the big component to NJD6[ f ] is equal to 3 and the small one is equal to 4, thus
by Remark 5.1 NJD6[ f ] = 3 + 4 = 7.

The big component

−Reg1′
(
k∗) − Reg1′′

(
k∗) − Reg2′

(
k∗) − 4 Reg3′

(
k∗)

− 4 Reg3′′
(
k∗) − 56 Reg6′

(
k∗), (6.9)
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may be rewritten in the form:

Reg1′ −4 Reg3′ −56 Reg6′

− 2 Reg1′ −Reg2′

− Reg1′′ −4 Reg3′′ .

As a result, we may realize generalized periodic expansion of (6.9) in the form

C F
1′

(
k∗) + C A

1′
(
k∗) + C C

1′′
(
k∗),

i.e. as the sum of three DD3(1|r) sequences of the type (F ), (A), (C) respectively, attached at 1′ or 1′′ . Namely:

cF = reg1 −4 reg3 −56 reg6, attached at 1′ ,
c A = −2 reg1 − reg2, attached at 1′ ,
cC = − reg1 −4 reg3, attached at 1′′ . Finally, the contribution of the big component to NJD6[ f ] is equal to 1 + 1 + 1 = 3
because the smaller decomposition is impossible (we must use at least two DD3(1|6) sequences to realize indices at 1′
and 1′′ but it is immediate that two such sequences are not enough).

Now let us consider the impact on NJD6[ f ] which comes from the small component. Since there are only two orbits
(vertices) in the small component, two DD3(2|6) sequences, of the type (A) and (D), attached at 2′′ will do, so NJD6[ f ] �
2 + 2 = 4. On the other hand, suppose that one such DD3(2|6) sequence attached at 2′′ realizes both coefficients in the
periodic expansion of the small component. Since ind( f 2;2′′) = 1−33

2 = −4, a1 = −2 and thus this sequence must be of the
type (A):

c A = a1 reg2 +a2 reg4,

hence it will not realize a6′′ = 60 	= 0.
Finally, the small component gives the contribution equal to 4, and thus NJD6[ f ] = 3 + 4 = 7.
Now we consider the remaining cases of large d i.e.

• d /∈ {−1,+1,3}.

First of all we notice that the contribution of the smaller component is 4 (we use the same arguments as above).
Now we show that the contribution of the large component is at least 4. Notice that:

a1′ = a1′′ = 1 − d

2
/∈ {0,−1,+1},

a3′ = a3′′ = 1/2

(
1 − d3 − (1 − d)

3

)
= d3 − d

6
	= 0.

Thus, we must use at least one DD3(1|6) sequence of the type (A) attached at 1′ to realize index at 1′ , but this is not
enough to realize index at 3′ (as a3′ 	= 0), so we need one more sequence attached at 1′ to do so. For the same reason we
have to use at least two sequences to realize indices at 1′′ and 3′′ .

On the other hand, we see that four sequences will do. In fact,

a1′ Reg1′ +a1′′ Reg1′′ +a2′ Reg2′ +a3′ Reg3′ +a3′′ Reg3′′ +a6′ Reg6′ =
Reg1′ +a3′ Reg3′ +a6′ Reg6′ (= C F

1′)

+ a3′′ Reg3′′ (= C D
1′′)

+ (a1′ − 1)Reg1′ +a2′ Reg2′ (= C A
1′)

+ a1′′ Reg1′′ (= C A
1′′),

which gives the contribution 1 + 1 + 1 + 1 = 4. As a result, taking into account both components NJD6[ f ] = 4 + 4 = 8. �
6.2.3. d is odd, r is odd

If r is odd then all ik,l are isomorphisms and the Reidemeister graph splits into two connected components. An example,
G O R( f ;15), is given in Fig. 3.

Let us represent the graph of orbits of Reidemeister classes G O R( f , r) = C ′ ∪ C ′′ as the union of connected components.
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Fig. 3.

The formula (6.7) takes the following forms

ind
(

f k;k′) =
∑
l′|k

al′ regl′
(
k′), (6.10)

ind
(

f k;k′′) =
∑
l′′|k

al′′ regl′′
(
k′′). (6.11)

The coefficients al′ , al′′ are equal and non-zero (for all k|r).
In fact, since RP 3 is a Jiang space, ind( f l; l′) = ind( f l; l′′) implies al′ = al′′ . On the other hand, L( f k) = 1 − dk = L( f̃ k),

where f̃ : S3 → S3 denotes a map of degree d. Now by Theorem 1.2 in [11] all coefficients in the expansion

L
(

f̃ k) =
∑
l|k

al regl(k)

are non-zero, hence al′ = al′′ = al/2 are also non-zero.
As a result, we may apply the simply connected methods applicable to S3 to calculate minimal decompositions for (6.10)

and (6.11). Using Definition 2.3 we define the set G = �r({L( f̃ n)}n) \ {1,2,4} = �r({L( f n)}n) \ {1,2,4}.
By Theorem 4.10 in [4] we get

NJDr[ f̃ ] =
{

#G if |L( f̃ )| � #G,

#G + 1 otherwise.

Thus, the same result holds for each component C ′ and C ′′ each of which gives the same contribution to NJDr[ f ]. We
obtain

NJDr[ f ] =
{

2#G if |L( f )| � 2#G,

2(#G + 1) otherwise.

Now taking into account that for S3 and odd r there is #G = ζ(r) − 1 (cf. [5]), we get

NJDr[ f ] =
{

2ζ(r) − 2 if − 2ζ(r) + 3 � d � 2ζ(r) − 1,

2ζ(r) otherwise.
(6.12)
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Nonlinear Analysis in Toruń 2002) in which he sketched the program of joining the classical homotopic Nielsen methods
with the examination of indices of iterations. We would like to express our thanks to him for the encouragement and
inspiration.

References

[1] S.N. Chow, J. Mallet-Paret, J.A. Yorke, A periodic orbit index which is a bifurcation invariant, in: Geometric Dynamics, Rio de Janeiro, 1981, in: Lecture
Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 109–131.

[2] A. Dold, Fixed point indices of iterated maps, Invent. Math. 74 (1983) 419–435.
[3] A. Fel’shtyn, E. Troitsky, Twisted Burnside–Frobenius theory for discrete groups, J. Reine Angew. Math. 613 (2007) 193–210.
[4] G. Graff, J. Jezierski, Minimal number of periodic points for C1 self-maps of compact simply connected manifolds, Forum Math. 21 (3) (2009) 491–509.
[5] G. Graff, J. Jezierski, Minimal number of periodic points for self-maps of S3, Fund. Math. 204 (2) (2009) 127–144.
[6] G. Graff, P. Nowak-Przygodzki, Fixed point indices of iterations of C1 maps in R

3, Discrete Contin. Dyn. Syst. 16 (4) (2006) 843–856.
[7] J. Jezierski, Wecken’s theorem for periodic points in dimension at least 3, Topology Appl. 153 (11) (2006) 1825–1837.
[8] J. Jezierski, Homotopy periodic sets of selfmaps of real projective spaces, Bol. Soc. Mat. Mexicana (3) 11 (2) (2005) 294–302.

http://mostwiedzy.pl


290 G. Graff, J. Jezierski / Topology and its Applications 158 (2011) 276–290

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

[9] J. Jezierski, W. Marzantowicz, Homotopy Methods in Topological Fixed and Periodic Points Theory, Topol. Fixed Point Theory Appl., vol. 3, Springer,
Dordrecht, 2005.

[10] B.J. Jiang, Lectures on the Nielsen Fixed Point Theory, Contemp. Math., vol. 14, Amer. Math. Soc., Providence, 1983.
[11] J. Llibre, J. Paranõs, J.A. Rodriguez, Periods for transversal maps on compact manifolds with a given homology, Houston J. Math. 24 (3) (1998) 397–407.
[12] B.J. Jiang, Fixed point classes from a differential viewpoint, in: Lecture Notes in Math., vol. 886, Springer, 1981, pp. 163–170.
[13] J. Kung, Möbius inversion, in: M. Hazewinkel (Ed.), Encyclopaedia of Mathematics, Springer, 2001, http://eom.springer.de/M/m130180.htm.
[14] C. Robinson, Dynamical Systems. Stability, Symbolic Dynamics, and Chaos, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1999.

http://eom.springer.de/M/m130180.htm
http://mostwiedzy.pl

	Minimizing the number of periodic points for smooth maps.  Non-simply connected case
	Introduction
	Preliminaries
	Dold relations
	Periodic expansion
	DDm(p|r) sequences

	Dold relations for orbits of Reidemeister classes
	Lower bound for the number of points in Fix(fr) for smooth f
	An isolated orbit
	Invariant NJDmr[f]
	Procedures
	An estimation of NJDrm[f]

	Reidemeister graph
	Construction of Reidemeister graph
	Continuous category versus smooth category
	NJDr[f] for simply connected manifolds

	The least number of points in Fix(fr) for a smooth self-map of RP3
	d is even
	d is odd
	r=2s
	r=6
	d is odd, r is odd


	Acknowledgement
	References


