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Abstract
In this work, we investigate an ion-atom model describing the time-dependent evo-
lution of electron density during the collision. For a S3+ − H system, numerical
simulations are based on classical trajectory calculations, and the electron density
behaviour is described with the time-dependent Schrödinger equation. We apply the
finite difference method to obtain quantitative insights into the charge transfer dy-
namics, providing detailed information about the spatial and temporal evolution of
the collision process. The results are given for representative examples of the colli-
sion, from eV to keV range of energies, in head-on collision as well as for different
values of impact parameter. A validity and precision of the proposed model and
interpretation of the particle collision in terms of eigenstates are also discussed.

KEYWORDS
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1. Introduction

From a molecular point of view, during the study of ion-atom collision reactions, the
electrons can be shared by both the target and projectile, forming a quasi-molecule
(AB)q+ by which the evolution of the collision system in a molecular framework may
be represented. In the standard approach, the Born-Oppenheimer approximation is
used to solve the Schrödinger equation, which allows that the nuclei are fixed with
respect to the motion of the electrons. The solution of the Schrödinger equation, tak-
ing account of the separation of the nuclear and electronic motions, leads to a set of
coupled equations for the determination of the nuclear functions, from the knowledge
of the electronic functions. The eigenfunctions of the ground and several first excited
states of the collision system calculated within the Hartree-Fock method, are used
as the system of orthogonal basis electronic functions. The electronic basis functions
under consideration parametrically depend on the distance R between the particles
forming the system which varies in time t during the collision, therefore, the functions
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depend on time as well. The time-dependence of basis functions is usually not taken
into account. Based on the non-stationary Schrödinger equation, one derives the dif-
ferential equations in time for a series of coefficients. When these differential equations
are solved, an approximate description of the dynamics of the system is achieved. The
comparison between calculated results with the experimental data shows that such an
approach adequately describes the particle collision. Nevertheless, it is not explicitly
possible to control the accuracy of the obtained approximate solution with mathemat-
ical means. In ion-atom collisions, both, the electronic structure of the target and the
behaviour of the projectile ion play a significant role. From a theoretical point of view,
the description of the charge transfer (CT) in collisions between accelerated heavy
ions and neutral atoms has been widely investigated in the literature [1], [2], [3]. The
importance of this process is evident in different fields of science such as chemistry,
material science, astrophysics, laser research, biophysics, and others [4], [5], [6], [7],
[8], [9], [10].

In the keV energy range, a commonly used approach is the resolution of the sta-
tionary close-coupling equations ([11] and references therein, [12]). However, in the
low-energy range of a few eV, the number of theoretical studies dealing with atomic or
ionic collisions is quite limited due to the need of a specific treatment of the collision
dynamics with regard to the energy range. In practice, the quantum chemical calcu-
lations of the transfer of an electron between two particles (atoms, ions, molecules,
etc.) requires: i) the correct description of the electronic structure of the collisional
partners and, ii) the employment of an appropriate method that is able to account
for the dynamics of the collision. In particular, when the energy of the incident par-
ticles is in the range of a few eV, an exact quantum-mechanical description of the
dynamics of both the electrons and the nuclei is required [11], [13], [14], [15]. Such
a description can be, in principle, obtained by following the wave function by means
of the time-dependent Schrödinger equation (TDSE). It is known that the main in-
terest of the wave packet method over the time-independent close-coupling approach
appears clearly in polyatomic systems, since there exists the possibility of develop-
ing a fully quantum mechanical treatment for some degrees of freedom while others
behave classically. It has been known that the use of classical or semiclassical approx-
imations can provide, to a certain extent, reasonable descriptions of the dynamics of
nuclei in a polyatomic system. This is the basis of the so-called quasiclassical trajec-
tory (QCT) approach also known as the adiabatic molecular-dynamics (AMD) method
[16]. The semiclassical coupled wave-packet approach that treats electronic and vibra-
tional (whether bound or dissociative) motions quantally and the remaining motions
classically is also one of the most developed theories, applied in example in the inves-
tigation of the dynamics of fragmentation of Na+2 dimer ions with the keV He atom
[17]. However, this method is computationally quite demanding, especially in the low
collision energy range.

The efficiency and numerical stability of time-dependent wave packet methods ap-
plied on ion-atom collisions has been discussed widely in many exemplary publications
such as: [18], [19], [20], [21]. Therefore, also the development of time-dependent theories
was implemented using a small (but from a computational point of view attractive)
model of S3+ and H collision. This simple case served as an illustration of the nuclear
and electron motions over time. In particular, the quantum wave packet calculations
have been carried out in one (1D) and two (2D) dimensions [22], [23] for the kinetic
energies of the projectile between 1-10 eV. The evolution of the wave packet in the
femtosecond (1 fs=10−15 s) time scale as well as—for the first time—the CT reaction
via time-dependent electronic density ϱ(r, t) has been presented. The evolution of the
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global electronic density in the three-dimensional (3D) grid for all the states taking
part in the S3++H process was visualized by the snapshots of the simulation movie
[23]. Additionally, an angular distribution of the scattered wave packet and the final
probability of electron exchange vs. initial kinetic energy of the projectile have also
been calculated.

On the other hand, a theoretical framework that combines elements of both clas-
sical and quantum mechanics to describe the behavior of a system can be also used.
Application of such a mixed, quantum-classical approach is particularly useful when
dealing with complex systems, where a fully quantum mechanical treatment may be
computationally expensive or impractical [24]. Such a hybrid description involves em-
ploying quantum mechanics to model the initial and final states of electrons, while
employing classical mechanics to track the intermediate stages of their trajectories
during the collision. Particularly, more recently developed mixed quantum/classical
theory of inelastic scattering (MQCT) approach became very efficient [25], [26], [27] in
which quantum state-to-state transitions between the internal states of the molecule
are described using a TDSE, while the scattering of collision partners is described
classically using mean-field trajectories. Initiated by the work of [28] and fully quantal
treatment of radiative charge transfer for diatomics, i.e. by Stancil et al.[29], [30] and
more recently developed by the group of Babikov et al. [27], [31] this method become
an interesting solution for studying energy transfer during collision for a broad range
of collision energies.

In this work, the collision system is represented by the ion-atom interaction of
S3+ + H. Electron configuration of positively charged ion S3+ depends on its specific
charge state and it involves the removal of electrons from the valence shells of a
neutral sulfur atom. The hydrogen atom H(1s) has one electron in the neutral state.
By examining the electronic structure of the interacting particles, we gain insight into
the distribution of electrons before and after the collision, laying the foundation for
understanding the transfer dynamics. The present study is also based on the mean-
field Ehrenfest method (see [32], [33]), which is equivalent to the Ehrenfest approach,
where the average of potential over the electronic wavefunction is used to propagate
the equations of motion for the nuclei. In this case, the average is computed over the
quantum wave function defined on a grid, rather than over a set of eigenstates.

Here, to solve the TDSE the finite-difference method (FDM) is applied. FDM pro-
vides numerical solutions to the differential equations governing the collision dynamics
and is computationally efficient [34], [35]. In order to investigate the collision process
and, in particular, the electron density transfer during a collision, we based on the nu-
merical scenario proposed by [36]. To check the validity and efficiency of the method,
we performed the calculations for different values of the collision energy, such as E = 13
eV, E = 325 eV as well as E = 5 keV in the head-on collision of the interaction. The
impact parameter approximation which plays an important role in the investigation
of the collision products has been also utilized. Indeed, the collision between S3+ and
hydrogen (H) with a specified impact parameter involves studying the interaction be-
tween the particles as they approach each other with a certain relative velocity and
miss each other by a specified distance. Therefore, several impact parameters between
b ∈ [0, 5] a.u. have been tested in the model numerical simulations. They reveal scatter-
ing patterns of electron density transfer, exhibiting regions of high probability density
as electrons travel across from the ion to the atom. Indeed, the interplay between re-
pulsive and attractive forces during the collision significantly influences the outcome,
dictating whether electron density is captured or repelled. Moreover, based on the
collision energy for the system of S3+ −H, an analysis of the results was carried out
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in terms of eigenstates to asses whether the collision will lead to the transfer of an
electron from hydrogen to the sulfur ion (the transfer is highly probable) or whether
the electron will remain in the vicinity of hydrogen.

2. Particle system Hamiltonian. Mixed, quantum-classical description of
dynamics

In our treatment, a H atom is interpreted as a proton and an electron interacting with
it, and with the sulfur ion of +3e which are interacting in agreement with Coulomb’s
law. In the performed simulations, the valence electrons of the S ion are not taken into
account separately and the pseudopotentials are not applied to describe the electric
field of the S3+. A S3+ model may seem overly simplified, but the performed simula-
tions show that in the slow, eV collision energy range, the ions do not approach each
other, which is why the potential of the ion at such distances follows the shape of the
Coulomb one. Below, important model details are presented.

The Hamiltonian of the system we are considering, consisting of one electron and
two ions, has the form:

Ĥ = ĤE + ĤI (1)

where

ĤE =

(
− ℏ2

2me
∆

)
−
∑
J

ZJe
2∣∣∣−→r −
−→
RJ

∣∣∣ =

(
− ℏ2

2me
∆ + U

)
(2)

ĤI =
∑
J

p2J
2mJ

+
Z1 Z2 e

2∣∣∣−→R 2 −
−→
R 1

∣∣∣ (3)

In expression (1),
∑

J is a sum of two nuclei; ZJ is the charge of the nucleus with

number J , expressed in charges |e| of an electron;
−→
RJ is a position of the nucleus J ;

−→r is a radius-vector for the electron; and pJ and mJ are the momentum and mass
of the nucleus with number J , respectively. The evolution of the particle system is
described as follows. We assume that the motion of ions can be described by the
classical mechanics equations (since the values of the ion masses are relatively large),
and the ion energies are not small enough that quantum effects noticeably affect the
ions’ movement:

dR⃗J

dt = ∂Hclassic

∂p⃗J

dp⃗J

dt = −∂Hclassic

∂R⃗J

, (4)

Hclassic =
p2e

2me
+ Uclassic +

∑
J

p2J
2mJ

+
Z1 Z2 e

2∣∣∣−→R 2 −
−→
R 1

∣∣∣ (5)

where
−→
RJ is the position, and −→p j is the momentum of the ion with the number J .

In formula (4), the potential Uclassic of the interaction of the ions with an electron
is described as the quantum mechanical average: Uclassic = ⟨Ψ | UΨ⟩, where Ψ is
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an electron wave function defined below. The motion of electron is described by the
quantum mechanics equation given by

iℏ
∂Ψ

∂t
=

(
− ℏ2

2me
∆ + U

)
Ψ, (6)

where Ψ is an electron wave function, and U is the potential created by the proton
and sulfur ion S3+. The system of classical equations (4) can be reduced to Newton’s
equations of motion for ions:

m1
dv⃗1

dt = F⃗12+ < F⃗1e >

m2
dv⃗2

dt = F⃗21+ < F⃗2e >
, (7)

where F⃗12 = Z1 Z2 e
2 R⃗1−R⃗2

4ϵ0|R⃗2−R⃗1|3
, F⃗21 = Z1 Z2 e

2 R⃗2−R⃗1

4ϵ0|R⃗2−R⃗1|3
are the Coulombic forces of

an interaction of ions with each other, and

< F⃗1e >= Z1 e2

4ϵ0
< Ψ| R⃗1−r⃗

|R⃗1−r⃗|3
Ψ > ,

< F⃗2e >= Z2 e2

4ϵ0
< Ψ| R⃗2−r⃗

|R⃗2−r⃗|3
Ψ >

(8)

are the Coulombic forces of ion interactions with the electron cloud.

3. Fastest descent method for solving the stationary Schrödinger equation

In order to interpret the change of the electronic wave function with time in terms of
eigenstates, it is required to know the eigenfunctions. Let us consider the stationary
Schrödinger equation:

ĤΦ = EΦ, (9)

where Φ = Φ (−→r ). The standard way to solve the stationary Schrödinger equation (9)
is that its resolution can be found as a series over a complete set of known analytic
functions Φ(−→r ) =

∑∞
k=1Ckϕk(−→r ). These series are substituted in (9), then the equa-

tion (9) is reduced to a matrix form, and in consequence, the process of solving the
Schrödinger equation is reduced to the problem of diagonalising the matrix operator,
for which many quantum chemistry programs have already been written.

However, in our work, we solve the equation (6) by the FDMs suggested recently
in [36], which may be more convenient for the solution of the considered collisional
problem. Thus, we propose a simple and very effective numerical procedure that, when
using FDMs, has certain advantages over the standard methods of solving equation
(14). The potentials are calculated on the fly and do not have to be precalculated as
it is in the case of using ab initio methods.

To explain this approach more easily, we use a geometric interpretation of the equa-
tion (9). Let us consider the function Φ (−→r ) as a vector of infinite-dimensional Hilbert

space. Obviously, the ĤΦ (−→r ) function is also a vector of the infinite-dimensional

Hilbert space. If Φ (−→r ) is a solution to equation (9), then ĤΦ (−→r ) is proportional to
Φ (−→r ) with the coefficient E. In geometric terms, we can interpret this as parallelism

of the vectors Φ (−→r ) and ĤΦ (−→r ) in the infinite-dimensional Hilbert space.
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Now, we consider some arbitrary vector Φ (−→r ) of the infinite-dimensional Hilbert

space, which does not overall satisfy (9) and is not its solution. We calculate ĤΦ (−→r ).
The vector Φ (−→r ) of the infinite-dimensional Hilbert space can be represented as a
sum Φ (−→r ) = Φ∥ (−→r ) + Φ⊥ (−→r ), where the vector Φ∥ (−→r ) is parallel to the vector

ĤΦ (−→r ), (that is, Φ∥ (−→r ) is proportional to ĤΦ (−→r )) while Φ⊥ (−→r ) is an orthogonal

complement to Φ∥ (−→r ) up to Φ (−→r ). Clearly, Φ∥ (−→r ) =

〈
ĤΦ(−→r )

∥ĤΦ(−→r )∥ | Φ (−→r )

〉
ĤΦ(−→r )

∥ĤΦ(−→r )∥ .

With the help of subsequent transformations of the Φ (−→r ) function, one can obtain a
function that will satisfy (9). Defining s as a parameter, let us consider the parametric
transformation:

Φ (−→r , s + △s) = Φ (−→r , s) − α (s)

 Φ (−→r , s) +

−

〈
ĤΦ (−→r , s)∥∥∥ĤΦ (−→r , s)

∥∥∥ | Φ (−→r , s)

〉
ĤΦ (−→r , s)∥∥∥ĤΦ (−→r , s)

∥∥∥
△s, (10)

where α (s) > 0, and △s is assumed to be sufficiently small. The essence of transfor-
mation (10) is that component Φ⊥ (−→r , s) is reduced in such a way that step by step we
get closer to the solution to equation (9). Passing to the limit △s → 0, we can write
transformation (10) in the form of a differential equation which solution approaches a
solution to equation (9) with the increase of parameter s:

∂Φ (−→r , s)
∂s

=
α (s)∥∥∥ĤΦ (−→r , s)

∥∥∥2
(〈

ĤΦ (−→r , s) | Φ (−→r , s)
〉
×

ĤΦ (−→r , s)
)
− α (s) Φ (−→r , s) . (11)

To simplify equation (11), we use the fact that ĤΦ (−→r , s) ≈ E(s)Φ (−→r , s), where

E(s) =
〈
ĤΦ (−→r , s) | Φ (−→r , s)

〉
. We also take into account that the discrete spectrum

state energies are negative, thus we can conveniently take α (s) = −E(s) > 0. Then
equation (11) can be expressed in a particularly simple form [36]:

∂Φ (−→r , s)
∂s

= −
(
ĤΦ (−→r , s) − E (s) Φ (−→r , s)

)
, (12)

E(s) =
〈
ĤΦ (−→r , s) | Φ (−→r , s)

〉
. (13)

The ground stationary state of the Schrödinger equation can be calculated through
the limit Φ0 (−→r ) = lims→∞ Φ (−→r , s) of the solution to equation (12), and, accordingly,
the ground state energy is calculated through the E0 = lims→∞E (s) limit.

To calculate the excited states, one must supplement equation (12) (with the re-
quirement of orthogonality) of the newly computed states to those already computed.
The easiest way to perform such an implementation is to modify equation (12) in the
following way: if all states up to the (j − 1) state have already been calculated, the
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next state can be found through the limit when s → ∞ of a solution the equation,

∂Φj (−→r , s)
ds

= −
(
ĤΦj (−→r , s) − Ej (s) Φj (−→r , s)

)
+

+

j−1∑
i=0

λji(s) Φi (−→r ) , (14)

Ej(s) =
〈
ĤΦj (−→r , s) | Φj (−→r , s)

〉
, (15)

λji(s) =
〈

Φi (−→r ) | ĤΦj(
−→r , s)

〉
. (16)

It is worth bearing in mind that equations (12) and (14), with some fine distinctions,
can be classified into the category of equations for expressing heat conduction. For this
type of equation, very fast finite-difference techniques have already been developed, so
they can be used effectively in numerical codes. Therefore, equations (12) and (14) can
be written in a very convenient and simple form to calculate the ground and excited
states of the system. The details of the mathematical development of the methods are
described below.

The virtue of equations (12) and (14) for calculating the ground and the excited
states consists in the universality and simplicity of the approach (the calculations can
be performed equally for almost any potential) and in the fast calculation algorithm.
However, the disadvantage of the approach is that when calculating the eigenfunctions
as a series over some full set of functions and reducing the problem to the matrix one,
it is possible to improve accuracy through a very successful choice of basis functions,
while with the finite difference approach, the accuracy can be increased only through
a fine grid. However, achieving acceptable accuracy with equations (12) and (14) is
relatively simple, and the method is very versatile.

Both equations (12) and (14) can also be derived directly from the variational
principle. For this purpose, using the Lagrange method, we compose a functional:

Π =
∑
Ω

Φklm

[(
− ℏ2

2me
∆klm + Uklm

)
Φklm

]
a3 +

−µ

(∑
Ω

Φ2
klma3 − 1

)
, (17)

which is a finite-difference approximation of the functional
〈

Φ | ĤΦ
〉
−µ (⟨Φ | Φ⟩ − 1)

to be minimized. Here, µ is a Lagrange multiplier and ∆klm is a finite-difference
approximation of operator ∆. The fastest descent equations ∂

∂sΦklma3 = − ∂Π
∂Φklm

lead to a difference analogue of equation (12). The Lagrange multiplier µ is de-
termined from the condition ∂

∂s

∑
Ω Φ2

klma3 = −
∑

Φklm
∂Π

∂Φklm
= 0, which leads to

µ =
∑

Ω Φklm

[(
− ℏ2

2me
∆klm + Uklm

)
Φklm

]
a3, which is a discrete approximation of

the energy E. The difference analog of equation (14) is derived similarly, with the ad-
ditional condition of orthogonality of the excited states to each other. Since equations
(12) and (14) can be obtained from the FDM, we can call them ”the fastest descent
equations”.
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4. Computational method

The system of equations (6) and (7), which describes the dynamics of the consid-
ered system of three particles, is solved numerically by using FDM. In the context
of ion-atom collisions, it provides a computational approach to simulate the complex
dynamics of charge transfer between the colliding species. It allows us to model these
interactions by discretizing the spatial and temporal dimensions, breaking down the
system into a grid, and calculating the changes in charge distribution over time t. The
region of interest, where the collision occurs, is discretized into a grid. Each grid point
represents a specific spatial location. Therefore, in the three-dimensional space, we in-
troduce the grid Ω = {(xk, yl, zm)}, where xk+1 = xk +a; yl+1 = yl+a; zm+1 = zm+a;
k, l,m = 0, 1, 2, · · · , N and where a is a grid step. Next, we approximate equation (6)
with a system of differential equations

iℏ
∂Ψklm

∂t
=

(
− ℏ2

2me
∆klm + Uklm

)
Ψklm, (18)

where Ψklm(t) = Ψ(xk,yl, zm, t),

Uklm =

∫
ωklm

U(x′, y′, x′) dx′dy′dz′∫
ωklm

dx′dy′dz′
, (19)

and

△klmΨklm =
Ψk+1,lm − 2Ψklm + Ψk−1,lm

a2
+

Ψk,l+1,m − 2Ψklm + Ψk,l−1,m

a2
+

Ψkl,m+1 − 2Ψklm + Ψkl,m−1

a2
. (20)

In (19), ωklm is a cube with the edge a: ωklm = {(x, y, z) : xk − a
2 < x < xk + a

2 , yl−
a
2 < y < yl + a

2 , zm − a
2 < z < zm + a

2}. Thus, in (19), we have regularised potential
U . Regularising potential U in the numerical calculations is necessary since the given
potential U has singularities at the points of the position of the ions, and, therefore, an
integral of this potential U over a domain does not exist in the usual sense. However,
this integral exists as an improper integral, in the so-called the Lyapunov sense [37]
[38], and can be calculated by potential regularization. Next, we supply equations
(18) with natural boundary conditions ⌊Ψklm⌋∂Ω = 0, where ∂Ω is the boundary of
domain Ω. Moreover, the system of ordinary differential equations (18) and (7) is self-
consistently solved by the well-known second-order Runge–Kutta method, and the
solution describes the process of particles colliding.

The numerical scheme we use conserves the norm. The global error of the method
is proportional to O(τ2 + a2). The condition for the time step τ and space step a,
τ ≪ me

ℏ a2, ensures the stability of the solution of the Schrodinger equation. The
numerical parameters employed in the simulations are collected in Table 1.
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Table 1. Numerical parameters used in the calculations.

Variable Value Description
Nx 100 Number of grid points OX direction
Ny 100 Number of grid points OY direction
Nz 100 Number of grid points OZ direction
a 0.25 a.u. Spacing step
b [0, 7.5] a.u. Range of impact parameters
τ 10−4 fs Time increment of the propagation

5. Collisional dynamics

5.1. Initial condition.

The initial conditions are given by the masses mJ , positions
−→
RJ and initial ve-

locities −→v J of hydrogen H+ and sulfur S3+ ions. In the article, the position and
velocity components of the hydrogen are indicated with the index H (−→r H , −→v H),
while the position and velocity components of the sulfur ion as (−→r S , −→v S). We
consider the following initial conditions −→r H = (rHx, rHy, rHz) = (−7.5, 0, bz) a.u.,
−→v H = (vHx, vHy, vHz) = (vx, 0, 0) m/s, −→r S = (rSx, rSy, rSz) = (2.5, 0, 0) a.u.,
−→v S = (vSx, vSy, vSz) = (0, 0, 0) m/s. In the following, the results for different values of
bz and vx will be analyzed. The calculations were carried out with a difference grid step
a and equal to 1/4 of the bohr radius, and with a time step τ = 0.05 · me

ℏ ·a2 ∼ 10−19s.
Time step τ is determined from considerations of stability and convergence of the
numerical method. Below, head-on ion-atom collision and an influence of impact pa-
rameter will be discussed.

5.2. Head-on ion-atom collision

This is a type of collision between an ion and an atom where the interaction occurs

primarily in the central region of the collision, meaning that the impact parameter
−→
b

is close to zero. The impact parameter
−→
b is the perpendicular distance between the

initial positions of the center of mass of the ion and the target atom at the moment
when they are infinitely separated. Initially, both S3+(3s23p) and H(1s) have their own
sets of eigenstates, corresponding to their individual electron configurations and energy
levels. The initial condition Ψklm(t = 0) is set using a well-known analytical solution
for the ground state of the H (1s) atom. The conditions −→r H(t = 0), −→r S(t = 0),
−→v H(t = 0), and −→v S(t = 0) for ions are set in such a way that the particles collide
after given time. In order to present the different spatial behaviour of the interaction
in the head-on collision, we specified several situations. The initial distance between
the ions is chosen for R = 10 a.u. for all the considered cases.

Firstly, we investigated the situation where the initial velocity v at which the H
approaches the S3+ is vH = 50 000 m/s, which corresponds to a kinetic energy of
about E = 13 eV. The results of the numerical simulation of the evolution of the
electron cloud in the system for selected times t are presented as snapshots in Fig.1.
The electron density motion should be observed by following the individual rows in the
figure. At the beginning, the electron cloud is located near the H ion. As S3+ and H
approach each other during the collision, the landscape of interaction changes, and the
probability of finding a common electron cloud increases. When the ions are located
at a distance of approximately R = 5 a.u. a part of the electron cloud moves to the
vicinity of the S3+. Within the increase of the evolution time, the interaction between
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the electrons of the system leads to the formation of a combined electron cloud, and
the electron states become entangled. The smallest distance at which ions approach is
Rmin = 2.5 a.u. (the collision occurs at a time of around t = 9 fs). In the final stage
of the process, which takes place within several fs, the hydrogen ion and the electron
move away from the sulfur ion. As a result, the electron returns to the ground state
of the H(1s) atom. That is, the ground state of the H(1s) is restored. Actually, we
only note that the ions in the collision process do not approach very closely due to the
manifestation of the Coulomb law and the repulsion of ions when they approach.
The head-on collision was investigated also for the higher velocity of the vH =250 000

Figure 1. Evolution of the electron cloud |Ψ| during the head-on collision for E = 13 eV and given times

(starting from top left in the first row): t = 0 fs, t = 4 fs, t = 6 fs, t = 8 fs, t = 12 fs and t = 14 fs. The scale

of the axes in the graphics is given in a.u.

m/s, corresponding to E = 325 eV. At this energy scale, various processes can occur
in ion-atom collision. Moreover, at 325 eV, the collision energy may be sufficient to
ionize the hydrogen atom as well as lead to the removal of one or more electrons. It
can result in the creation of positively charged H+ and free electrons, each carrying
energy proportional to the collision energy. The chosen snapshots of the simulation
are given in Fig.2.

Indeed, following the process of the evolution of electron cloud as the distance
between the ions decreases, an interesting pattern can be observed. The electron cloud
of hydrogen ion moves towards S3+ and, eventually, in a sufficient distance R and time
t, creates the joint electron cloud. The closest distance Rmin between the particles is
estimated for 0.3 a.u. and reached at time t = 2 fs. The electron cloud is spread in the
region of interaction showing that the collision energy can also be transferred to the
electrons of H, causing them to move to higher energy states (ionization). It can be
also noticed that after the collision within just a few femtoseconds, part of electron
cloud remains at S2+ ion.
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Figure 2. Evolution of the electron cloud |Ψ| during the head-on collision for E = 325 eV and given times

(starting from top left in the first row): t = 0 fs, t = 1 fs, t = 1.7 fs, t = 2 fs, t = 2.5 fs, t = 2.9 fs, t = 3.2 fs,
t = 3.5 fs and t = 4 fs. The scale of the axes in the graphics is given in a.u.
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Figure 3. Evolution of the electron cloud |Ψ| during the head-on collision for E = 5 keV and given times
(starting from top left in the first row): t = 0 fs, t = 3 · 10−1 fs, t = 3.8 · 10−1 fs, t = 4.3 · 10−1 fs, t = 4.8 · 10−1

fs, t = 5.8 · 10−1 fs, t = 6.8 · 10−1 fs, t = 7.3 · 10−1 fs, t = 8.8 · 10−1 fs. The scale of the axes in the graphics is

given in a.u.
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Additionally, the trajectory of the high-energy ion was characterized by increased
velocity and penetration depth into the atomic structure. At keVs, the possibility of
multiple scattering events increases. Indeed, the increased velocity up to vH = 1 · 106

m/s results in the situation, that the hydrogen ion possesses a significantly higher
kinetic energy (corresponding to the value of E = 5 keV) and causes more pronounced
charge transfer, ionization, and excitation processes. This can lead to more complex
angular distributions, especially at larger scattering angles. The ion’s electron cloud
trajectory can result in a more penetrative and dynamic interaction as can be observed
in the snapshots of Fig.3 with the evolution of the electron density. Indeed, the process
takes place at a very short time scale (much below 1 fs). The scattering pattern exhibits
a relatively rich distribution of electron cloud which is strongly influenced by the
Coulombic interaction between the charged particles at keV energy range. At the final
stage of the simulation we can observe a substantial part of the electron cloud remains
on sulfur ion. The detailed inspection of the results indicates that, as expected, we can
observe a transfer of electron leading to the S2+ − H+ configuration of the system.
Moreover, in such a situation, the electrons may be promoted to higher energy levels,
resulting in the release of photons.

5.3. Influence of impact parameter

In ion-atom collisions, the impact parameter is a key parameter that describes the spa-
tial orientation and distance between the ion and the target atom as they approach
each other. The impact parameter plays a crucial role in determining the outcome of
the collision, influencing the trajectory and the probability of various collision pro-
cesses. In order to determine the effect of the change of the impact parameter for
different ranges of collision energy (from eV to keV) we investigated several possi-
bilities. Firstly, a situation of the collision for the E = 13 eV and b = 2.5 a.u. was
consequently analyzed. Based on the results of the calculations, a schematic illustra-
tion of the collision for the considered situation is presented in Fig.4. It shows the
evolution of the motion of H+ over time.

Analysing the details of the collision process in Fig.5, it can be seen that the electron
cloud behavior on the hydrogen ion changes compared to the head-on collision. At the
beginning, electron cloud of H is moving along OX axis. When ions are approaching
each other, both parts of the electron cloud start to interact and the potential energy
landscape between the ion and the atom evolves. Indeed, the electrostatic interaction
dominates at short distances, influencing the scattering patterns and outcomes. The
electron cloud interacts with the sulfur ion and its surroundings during the collision
(the probability of finding an electron cloud near the sulfur ion is non-zero), but after
the collision the electron cloud moves away from the sulfur ion together with the
hydrogen ion. The closest distance between ions is evaluated for Rmin = 3 a.u. and
collision takes place for a time around t = 10 fs. In order to evaluate the nature of
the interaction, the scattering angle θ was calculated, which is estimated for θ = 1.0
radian for this case. The dependence of impact parameters between b ∈ [0, 7.5] a.u.
on the values of Rmin and θ angles for a collision energy of E = 13 eV obtained from
performed calculations is given in the Table 2. As expected, with an increase of values
of impact parameters we can observe a decrease in the scattering angles θ as presented
in Fig.6.

Effect of the impact parameter was also investigated for a higher range of energy,
such as E = 325 eV. The illustration of the evolution of electron cloud for b = 2.5
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Figure 4. Illustration showing the trajectory of a H ion during the collision with a S3+ ion for impact

parameter b = 2.5 a.u. and collision energy of E = 13 eV. tcol is the time at which the ions are the closest

(where −→r H(0) means the initial position of the H ion, and −→r H(tcol) and
−→r S(tcol) - the positions of both ions,

respectively at Rmin -the minimum distance between them). Using these relationships, the scattering angle θ

was determined.

Table 2. Dependence of the minimum distance between ions (Rmin) and scattering angle (θ) on impact
parameters for collision energy 13eV.

b [a.u.] 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.5
Rmin [a.u.] 2.6 2.6 2.7 2.8 3.0 3.3 3.5 3.8 4.2 5.0 6.0 7.5
θ [radians] 3.1 2.7 2.2 1.7 1.3 1.0 0.7 0.5 0.3 0.0 0.0 0.0

a.u. is displayed in Fig.7. Indeed, as it was in the case of the head-on collision, the
electron cloud of hydrogen ion with the increase of the distance R shows less abundant
scattering pattern. Since no internal energy changes within the simulation time, the
transition probability increases as energy is raised. The interaction between particles
takes place at t = 2 fs and the closest distance is Rmin = 2.5 a.u. After the colli-
sion, part of the electron cloud remains on sulfur, however with much less probability.
Moreover, by sequential increasing the impact parameter up to b = 5 a.u., the electron
cloud experiences even less interaction, leading to almost entirely elastic scattering.
Moreover, the potential energy landscape between the ion and the atom evolves dy-
namically, with the electrostatic interaction dominating at short distances.
On the other hand, at higher (keV range) energies, the impact parameter continues

to play a crucial role and influences the probability of various scattering events. At
E = 5 keV charge transfer processes become increasingly significant, and ionization is
likely to occur more frequently. Electrons may be transferred between the ion and the
atom, and the ionization of inner-shell electrons becomes more pronounced. Therefore,
at keVs, the collision dynamics are more complex, and multiple interactions can occur.
By following the results of performed calculations for the different impact parameters
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Figure 5. Evolution of the electron cloud |Ψ| during the collision with impact parameter b = 2.5 a.u. for
energy E = 13 eV and given times (starting from top left in the first row): t = 0 fs, t = 5 fs, t = 7.5 fs, t = 10

fs, t = 11.5 fs and t = 14 fs. The scale of the axes in the graphics is given in a.u.

1 2 3 4 5 6 7
b@a.u.D0.0

0.5
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Figure 6. Dependence of scattering angle (in radians) on impact parameter.
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Figure 7. Evolution of the electron cloud |Ψ| during the collision with impact parameter b = 2.5 a.u. for

energy E = 325 eV and given times (starting from top left in the first row): t = 0 fs, t = 1 fs, t = 1.9 fs, t = 2.2
fs, t = 2.5 fs, t = 2.9 fs, t = 3.2 fs and t = 3.5 fs. The scale of the axes in the graphics is given in a.u.
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of b ∈ [0, 5] a.u. we can observe that the choice of the impact parameter was large
enough so that the amount of the electron cloud on the exit of the interaction no
longer changes. Indeed, the transition probability increases with the energy since the
interaction region is completely covered. This is consistent with the fact that, for the
given energy value of E = 5 keV a common process is elastic scattering, where the
kinetic energy of the scattered particles remains unchanged. As a result, we observed
the angular distribution in the forward direction, which is typically observed for elastic
scattering.

In summary, by applying our model of the collision for different examples we show,
that specific outcomes of the collisions depend not only on the energy range of the
collision but also on the impact parameter. The impact parameter influences the scat-
tering angle θ and determines the collision processes that may occur. Inelastic scatter-
ing affects the probability of the various inelastic processes and in the case of elastic
scattering, where there is no change in internal states, influences the deflection angle
of the ion. On the other hand, the likelihood of capture processes depends strongly on
the impact parameter as well.

6. Interpretation of particle collisions in terms of eigenstates depending
on the distance between ions.

For the S3+ −H+− electron system, where the sulfur ion is located at a distance of
R = 10 a.u. from the hydrogen ion, the first five energy states of the electron are
represented by the states 1s, 2s, 2px, 2py, 2pz for the sulfur ion, respectively, while the
sixth energy state of the electron corresponds to the ground state of H(1s) atom. The
first energy state corresponds to the state with the lowest energy, and the subsequent
states correspond to those with higher energies. The form of the first six eigenstates of
the electron, for the position of the ions consistent with the initial condition (−→r H =
(−7.5, 0, 0) a.u., −→r S = (2.5, 0, 0) a.u.) obtained based on the equations from the section
3, is presented in Fig. 8. When the distance between ions changes, these states change.
The following section will consider the possibility of decomposing the solution of the
time-dependent Schrödinger equation, representing the head-on collision of sulfur and
hydrogen ions with an energy of E = 13 eV, into the first six energy states. Later in the
section, general conclusions for other values of collision energies E will be provided.

6.1. Analysis of the model

Knowing the stationary states of the quantum system, depending on the distance R
between the ions, we may understand the behaviour of the electron cloud during the
collision process in terms of eigenstates. At the initial time instant, the electron cloud
was concentrated around a hydrogen ion. It is illustrated in Fig.1 where at the initial
time instant, the electron was in the 6th state of the hydrogen-sulfur system. It also
means that the electron initially has fairly significant energy, corresponding to the
electron energy in the hydrogen atom.

Let us calculate the expansion coefficients αn(t) = ⟨Φn(R⃗(t)),Ψ(r⃗, t)⟩ of the dy-
namic wave function Ψ(r⃗, t) in terms of the calculated calculated for the first six

energy states Φn(R⃗(t)) depending on the distance R(t) between the ions. Then we
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Figure 8. The absolute value of the Φn corresponding to the first six electron energy states, which are
solutions of the stationary Schrodinger equation with the potential coming from the system S3+ −H+ and ion

positions −→r H = (−7.5, 0, 0) a.u., −→r S = (2.5, 0, 0) a.u. obtained on the y = 0 a.u. (energy levels E corresponding

to energy states are equal [−134.4,−35.7,−33.8,−33.8,−33.8,−21.8] eV). The scale of the axes in the graphics
is given in a.u.
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calculate the number

S(t) =

6∑
n=1

|αn(t)|2, (21)

which is an analog of the number Π characterising the completeness of a set of basis
functions and is introduced in Parseval’s theorem. For simplicity, we name Π the Par-
seval’s number [39]. As one knows, for the system of basis functions to be complete, the
relation Π = 1 is necessary. Calculations have shown that in our case, 0.99 ≤ S(t) < 1.
That is, always, at any time instant, S(t) ≈1. Therefore, the six calculated eigenfunc-
tions to a very good approximation are always sufficient to interpret the behaviour
of the wave function Ψ(r⃗, t) during the collision in terms of the calculated eigenstates

Φn(R⃗(t)). The results for changes in the modulus of the expansion coefficients (|αn(t)|)
of the first six energy states in time, obtained for head-on collision of ions with an
energy of E = 13 eV are presented in Fig.9.

Figure 9. Time dependence of the absolute value of the αn corresponding to the first six electron energy
states.
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The first five coefficients αn(t) satisfy |αn(t)| < 6 · 10−2 for all t. Therefore, the

first five calculated energy states Φn(R⃗(t)) of the S3+ − H+ system are practically
uninvolved in the collision process. This is one of the very important arguments for
the idea that the sulfur ion potential can be approximately considered as a Coulomb
one, and this question will be analysed in more detail below. Of course, it might
not be superfluous to take into account the deviation of the potential of the S3+ ion
from the Coulomb one. However, using a pseudopotential for the S3+ ion may not
give a significant refinement. The hydrogen ion approaches the sulfur ion, polarising
the valence electron shell. Therefore, the correction to the Coulomb potential of the
S3+ ion is probably dynamic, and understanding the dynamics of the process in the
approximation used here may be useful for suggesting some corrections.

To discuss the applicability of the Coulomb approximation for the ion S3+ potential,
further we consider the energies En of electrons of the n−th energy level of sulfur. We
introduce also the effective radius RS,n of the n−th electron shell of the sulfur ion. We

denote with Ẽn the energies of the calculated states of the S3+−H+ system and also the
effective radius of the corresponding electron shell with R̃S,n, where n is an eigenstate
number. The nucleus charge of the sulfur atom is (+16), while the nucleus charge of the
ion is evidently S3+. It is known that the energies of states are proportional to the ion
charge, and the characteristic size of the electron cloud depends on the energy and ion
charge approximately as the inverse square root. Therefore, E1 ≈ 16

3 Ẽ1 ≈ 5.3Ẽ1 and

RS,1 ≈ 0.43R̃S,1. Also, for the next energy level, we have estimates E2 ≈ 4
9E1 ≈ 2.4Ẽ1

and RS,2 ≈ 0.64R̃S,1. Finally, for the third, valence electron shell, E3 ≈ 9
16E2 ≈ 1.4Ẽ1

and RS,3 ≈ 0.86R̃S,1. That is, RS,3 ≈ R̃S,1 and the energies of valence electrons are
close to the energy of the ground state of the S3+−H+ system. At the same time, the
solution of the dynamic problem shows that the only explicitly participating electron
is always at least at the 6th level of the S3+ − H+ system, and its energy is always
about 5 times greater than the energy of the valence electrons of S3+. Thus, estimates
show that there is a significant energy gap between the valence electrons of the sulfur
ion and the explicitly calculated electron which corresponds to some spatial separation
of the analysed particles. In this case, the approximation of the sulfur ion potential
with the formula for the Coulomb potential may be somewhat rough, but for ion-atom
collisions with energy of several eV, it is acceptable.

Another reason for the applicability of the Coulomb approximation for the S3+

potential is that the ions do not approach very closely during the collision. The H+ is
located as close as possible to the S3+ ion at a distance R of about Rmin = 2.5 a.u. It
is sufficient to allow the S3+ potential be approximated by the Coulomb potential.

6.2. Analysis of head-on collision simulation results

At the beginning of the process, the electron was represented by the 6th energy state,
and it conserved this shape when the ions approached, although the energy values
decreased for the ions close to each other. Therefore, it is natural that the electron
kept the 6th energy state at the end, which means that no electron transfer was
observed.

Further, we will discuss the next question. We know that the equations of classical
and quantum mechanics are time-reversible. If the collision process were described only
with the classical mechanics equations, then a head-on collision which unambiguously
follows the process of scattering should exactly repeat the process of ions approaching,
but in the opposite order.
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Let us consider the solution Φn(r⃗, R(t)) of equation (9), which depends on the
distance R(t) between the ions, which in turn depends on time. Since the electron is
initially in the 6th energy state, we take n = 6. Let us substitute the function

Ψ̃(r⃗, t) = exp

(∫ t

0

E6(R(t′))

iℏ
dt′
)

Φ6(r⃗, R(t)) (22)

into the non-stationary Schrödinger equation (6).
Below, we show that since ions move very slowly in comparison to electrons, the

condition ∣∣∣∣ℏ ∂

∂t
Φ6(r⃗, R(t))

∣∣∣∣≪ |E6(R(t))Φ6(r⃗, R(t))| (23)

is fulfilled. Indeed, let us denote as Φ0(r⃗) the stationary electron wavefunction of a
resting hydrogen atom in the ground state. The electron wave function of a hydrogen
atom moving with constant velocity V⃗ in the direction of the sulfur ion has the form
Φ0,moving(r⃗, t) = Φ0(r⃗ − V⃗ t − R⃗0), where R⃗0 is the initial hydrogen ion position. We

calculate the derivative ∂Φ0,moving(r⃗,t)
∂t = −∇Φ0(r⃗ − V⃗ t− R⃗0) ∗ V⃗ . Then∣∣∣∣∂Φ0,moving(r⃗, t)

∂t

∣∣∣∣ ≤ sup (|∇Φ0(r⃗)|) |V⃗ | ∼ 2A

l
|V⃗ |, (24)

where A is the amplitude of the function Φ0(r⃗) and l is the electron cloud charac-
teristic scale. Since in our considered system of particles, the initial electron cloud
corresponds to the 6th state of the sulfur ion-hydrogen ion particle system, instead
of Φ0(r⃗), we should write Φ6(r⃗). The estimate (24) is derived for the case where
the colliding particles are far from each other. When the colliding particles approach
each other, the electron cloud is divided into three parts, and we can assume that
l decreases three times. However, the relative velocity of the particles also decrease.
Since we are only interested in orders of magnitudes, we can also apply the estimate
(24) directly to the collision process. For the right side (23) we have the estimate∣∣∣E6(R(t))Ψ̃(r⃗, t)

∣∣∣ ∼ |E6(R(t))|A. Thus, the inequality (23) (taking into account that

maximum E6(R(t)) ∼ −22 eV and l = 1 a.u.) converts to

2ℏ|V⃗ |
l|E6(R(t))|

∼ 0.05 ≪ 1. (25)

Due to (25), the function Ψ̃(r⃗, t) of (22) for the collision at very low, eV-range,
energies satisfies the non-stationary Schrödinger equation (6) with high accuracy, and
we can observe that the electron in the collision process is always in the 6th energy
state, as at the beginning. One can also suggest the following explanation of why the
electron of the H atom after a collision tends to remain with the H+. It is known from
the fundamentals of mechanics that when a particle of a very small mass interacts with
particles of a very large mass, the energy of the light particle is conserved with high
accuracy. More accurately, the energy of a light particle can change during interactions
with heavy particles but it always approximately returns to its original value. The
electron we explicitly take into account initially has some energy as the hydrogen
atom, and this energy is quite large for the S3+ − H+ ion system. Therefore, the
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electron is located in a sufficiently high 6th excited energy state of the S3+ −H+ ion
system at the beginning. When the ions approach each other, as illustrated in the
snapshots of Fig.1, a significant part of the electron cloud is not concentrated between
the ions, but is in the vicinity of the ions and even outside the S3+ − H+ ion pair.
This is a consequence of the rather high energy of the electron. There are rather large
gaps between the energy levels of the S3+−H+ ion system. Therefore, the mentioned
property of approximate conservation of energy by a light particle can lead the electron
to be inclined to return to the 6th energy state, which was the initial one. We see that,
despite the rather large positive charge of the S3+ ion, it is not easy to transfer an
electron from a hydrogen atom to a sulfur ion, as one might expect.

Finally, the function (22) and the estimation (23) are used not only to the head-on
collision process but in general (as presented in the snapshots of Fig.1 and Fig.5). Such
a regular course and outcome of the collision is explained by the large difference in the
masses of the ions and the electron, and the significant energy of the electron in the
H atom. Now let’s analyze how one can transfer an electron to a sulfur ion as a result
of particle head-on collision. First of all, for the process, the inequality (23) should be
violated. This is possible at significant energies of colliding particles, for example in the
keV range. The probability of transferring an electron greatly depends on the initial
conditions of the collision. The absolute value of the expansion coefficients αn(R) of

Figure 10. Velocity dependence of the absolute value of the expansion coefficients αn(R) for b = 0 a.u. and

the distance between ions R = 10 a.u. corresponding to five different energies E (13 eV, 52 eV, 325 eV, 1.3
keV and 5.2 keV).
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the first six energy states for a head-on collision depending on the initial velocity of
the hydrogen ion are presented in Fig.10. Table 3 and Table 4 present the absolute

Table 3. The absolute value of the expansion coefficients αn(R) for b = 2.5 a.u. and the distance between

ions R = 8 a.u. corresponding to five different energies E (13 eV, 52 eV, 325 eV, 1.3 keV and 5.2 keV).

b = 2.5 [a.u.] |α1| |α2| |α3| |α4| |α5| |α6|
v = 5 · 104 [m/s] 8 · 10−4 2.25 · 10−2 1.39 · 10−2 1.7 · 10−3 3 · 10−6 0.9929
v = 1 · 105 [m/s] 8 · 10−4 1.44 · 10−2 1.6 · 10−3 4.6 · 10−3 3 · 10−6 0.9921
v = 2.5 · 105 [m/s] 8 · 10−4 1.72 · 10−2 7.04 · 10−2 5.88 · 10−2 9 · 10−6 0.9779
v = 5 · 105 [m/s] 9 · 10−4 0.1248 0.1683 0.1129 2 · 10−5 0.8704
v = 1 · 106 [m/s] 8 · 10−4 5.12 · 10−2 0.3672 0.1527 3 · 10−5 0.4806

Table 4. The absolute value of the expansion coefficients αn(R) for b = 5.0 a.u. and the distance between
ions R = 9 a.u. corresponding to five different energies E (13 eV, 52 eV, 325 eV, 1.3 keV and 5.2 keV).

b = 5.0 [a.u.] |α1| |α2| |α3| |α4| |α5| |α6|
v = 5 · 104 [m/s] 7 · 10−4 4.8 · 10−3 9 · 10−4 1.7 · 10−3 7 · 10−7 0.9958
v = 1 · 105 [m/s] 8 · 10−4 5.9 · 10−3 7 · 10−4 1.1 · 10−3 6 · 10−7 0.9942
v = 2.5 · 105 [m/s] 8 · 10−4 5.3 · 10−3 1.2 · 10−3 2.5 · 10−3 4 · 10−7 0.9853
v = 5 · 105 [m/s] 8 · 10−4 1.3 · 10−3 4.54 · 10−2 4.3 · 10−2 2 · 10−6 0.914
v = 1 · 106 [m/s] 8 · 10−4 8.31 · 10−2 0.1076 6.01 · 10−2 2 · 10−6 0.791

values of the expansion coefficients αn(R) corresponding to the impact parameters b
equal to 2.5 a.u. and 5.0 a.u.

The calculation results for a collision energy of E = 5 keV showed that it is highly
probable that an electron is transferred from the hydrogen atom to the sulfur ion and
the single electron transfer may occur. For the range of collision energies of several
hundred eVs, the transfer probability of an electron from hydrogen to the sulfur ion
is lower (and it takes place more likely in a head-on collision). We should also note
that at very high collision energies, the valence electron shell of the sulfur ion may be
destroyed, and the process becomes generally very complex. We should also note that
during the collision, the electron cloud changes significantly and rapidly. This can lead
to the emission of electromagnetic waves. The radiation can facilitate the transition
of the electron to the sulfur ion because the electron can lose part of its energy to the
radiation. The energy loss is favourable for the transition of the electron to the sulfur
ion. However, such a discussion is beyond the scope of this work.

7. Conclusions

In this paper, the problem of an atom-ion collision is considered using a simple model of
a hydrogen atom with an S3+ ion and numerical calculations. The system of considered
particles consisted of two positive ions and one electron. The valence electrons of the
sulfur ion were not counted as individual particles.

Of course, such a simple model of the sulfur ion somewhat coarsens the description,
but the model’s simplicity is an important advantage of our approach since it is possible
to carry out all further simulations and study the general scheme of the process.

The dynamics of the ions are described with the classical mechanics equations, while
the electron dynamics is described with the Schrödinger equation. The classical de-
scription of the ions is justified by the fact that the scattering cross-sections of the
colliding particles were not calculated, but only the charge transfer during a collision.
In such a description, the problem under consideration is close to the semiclassical
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in molecular physics at low velocities, where the positions of the nuclei are fixed and
are described classically. To analyze solutions to the dynamic problem, the first six
eigenstates of the S3+ −H+ system were calculated, which depend on the distance R
between the ions. To calculate the eigenstates, the proposed version of the FDM was
used and the finite-difference technique, which makes the representation of eigenstates
compatible with the representation of a solution to the collision dynamics problem.
FDMs-based calculations are attractive because they do not require a set of basis func-
tions to approximate the solution (as it is in the case of quantum chemistry packages),
and the difficult question of whether the small set of basis functions used in the calcu-
lations is sufficient does not arise. The accuracy of the calculations is easier to control.
The precision of the solution is influenced by the choice of appropriate initial and
boundary conditions which must accurately represent the physical system. The sum
of the squares of the expansion coefficients was also calculated and, for the collision at
very low eV-range energies, it is always close to 1. Moreover, the absolute values of the
first five expansion coefficients were always less than 6 · 10−2, which means that these
energy states practically did not participate in the collision. The performed simulations
of head-on collision showed that the electron returns to the H ion after the collision.
This can be explained as follows: the electron is always in the collision process in the
same initial electronic state, however, it changes significantly during the collision and
it is taking into account that the collision energies are not very high. Although, at
sufficiently high collision energies, when the proposed estimate (25) is not preserved,
it is highly probable that for the collision at the keV energy range an electron after the
collision will be transferred from the hydrogen atom to the sulfur ion. Furthermore,
studying the collision between S3+ and H with specified impact parameters for differ-
ent ranges of the energies (from eVs to keVs) involved considering both classical and
quantum mechanical aspects. Results obtained from our calculations show that the
impact parameter choice influences the trajectories of the colliding particles, and the
resulting scattering patterns provide valuable information about the ion-atom interac-
tion. Insights gained from these simulations contribute also to a deeper understanding
and interpretation of the collision dynamics.

In summary, a mixed quantum-classical description of ion-atom dynamics applied
here provides a valuable compromise between the detailed quantum mechanical treat-
ment and the computational efficiency of classical mechanics making it suitable for
studying large and complex systems. The method proposed is versatile and can be
adapted to different collision scenarios and environmental conditions, making it a
valuable tool for studying a wide range of ion-atom interactions.
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