
Metrika (2012) 75:877–894
DOI 10.1007/s00184-011-0357-5

Mixed systems with minimal and maximal lifetime
variances
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Abstract We consider the mixed systems composed of a fixed number of
components whose lifetimes are i.i.d. with a known distribution which has a pos-
itive and finite variance. We show that a certain of the k-out-of-n systems has the
minimal lifetime variance, and the maximal one is attained by a mixture of series and
parallel systems. The number of the k-out-of-n system, and the probability weights of
the mixture depend on the first two moments of order statistics of the parent distribu-
tion of the component lifetimes. We also show methods of calculating extreme system
lifetime variances under various restrictions on the system lifetime expectations, and
vice versa.
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e-mail: trychlik@impan.gov.pl

123



878 M. Beśka et al.

1 Introduction and auxiliary result

We consider a coherent system composed of n identical elements. We assume that the
non-negative component lifetimes are independent and have identical known distri-
bution function F with a positive and finite variance. Then the distribution function
of the system lifetime has the well-known Samaniego representation

P(T ≤ t) =
n∑

i=1

si P(Xi :n ≤ t), (1.1)

where X1:n ≤ · · · ≤ Xn:n denote the order statistics of component lifetimes. Under
the assumptions,

P(Xi :n ≤ t) =
n∑

k=i

Bk,n(F(t)), i = 1, . . . , n, (1.2)

where

Bk,n(x) =
(

n

k

)
xk(1 − x)n−k, 0 ≤ x ≤ 1, k = 0, . . . , n,

are the Bernstein polynomials of degree n. Vector s = (s1, . . . , sn), called the
Samaniego signature, depends on the system structure function ϕ as follows

si = 1

n!
∑

π∈�n

1{i}

⎛

⎝ max
1≤ j≤n

⎧
⎨

⎩ j ϕ

⎛

⎝
n∑

k= j

eπ(k)

⎞

⎠

⎫
⎬

⎭

⎞

⎠, i = 1, . . . , n, (1.3)

where �n stand for the family of all permutations of the set {1, . . . , n}, 1A is the
indicator function of set A, and ek denotes the kth standard basis vector in R

n for
k = 1, . . . , n. Obviously, distribution function (1.2) does not depend on the system
structure, and the signature is independent of the component lifetime distribution.

Samaniego (1985) proved representation (1.1) under the condition that F is con-
tinuous. Then all the order statistics are different almost surely, and the signature has
a natural probabilistic interpretation

si = P(T = Xi :n), i = 1, . . . , n. (1.4)

Navarro et al. (2008) extended (1.1) to the case of arbitrary (possibly discontinuous)
exchangeable joint distribution of X1, . . . , Xn , and so we drop the assumption of con-
tinuity of F here. By (1.3) (cf. also (1.4)), we can check that the Samaniego signature
of every system of size n belongs to the simplex

S
n =

{
s = (s1, . . . , sn) ∈ R

n : si ≥ 0, i = 1, . . . , n,

n∑

i=1

si = 1

}
. (1.5)
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Mixed systems with minimal and maximal lifetime variances 879

It is difficult to establish all coherent systems with n components, especially when n is
large. There are one trivial system with one element, and two systems, series and paral-
lel ones, with two elements. All the systems of sizes 3 and 4 were described in Kochar
et al. (1999) and Shaked and Suarez-Llorens (2003), respectively. Navarro and Rubio
(2010) presented an algorithm of determining all the systems with arbitrarily fixed
number of components. They verified that there are 180 and 16,145 essentially different
(up to renumbering of components) systems composed of 5 and 6 items, respectively.
The corresponding numbers of signatures are less, because some essentially different
systems have identical signatures. There are not known rules describing the distribu-
tion of system signatures over the set (1.5). Evidently, the signatures of k-out-of-n
systems, k = 1, . . . , n, correspond to the simplex vertices en+1−k, k = 1, . . . , n.

Formula (1.1) implies that the lifetime distribution of the coherent system with
signature s = (s1, . . . , sn) is identical with the lifetime distribution of randomly cho-
sen among the (n + 1 − i)-out-of-n systems, when the respective choice probabilities
are si , i = 1, . . . , n. For mathematical convenience, Boland and Samaniego (2004)
introduced the notion of mixed systems. The mixed system of size n with signature
s = (s1, . . . , sn) being an arbitrary point of (1.5), is the randomly chosen (n + 1 − i)-
out-of-n system, when the choice distribution is represented by the signature s. Navarro
et al. (2008) noticed that for every coherent and mixed systems of sizes smaller than
n there exists a mixed system with n components and the same lifetime distribution.
By (1.1), it is clear that whatever is the exchangeable distribution of the component
lifetimes, the shortest expected lifetime among all the mixed systems has the series
system, and the parallel one has the longest mean lifetime.

The purpose of this paper is to determine the mixed systems with minimal and
maximal lifetime variances under the additional assumptions that the component life-
times are independent with a known common distribution function F . When F has
a positive finite variance, we can determine the following positive, finite and strictly
increasing sequences

μi = E Xi :n =
1∫

0

F−1(x)nBi−1,n−1(x) dx, (1.6)

τi = E X2
i :n =

1∫

0

[F−1(x)]2nBi−1,n−1(x) dx, i = 1, . . . , n, (1.7)

where F−1(x) = sup{y : F(y) ≤ x}, 0 ≤ x ≤ 1, denotes the the right-continuous
upper quantile function of F , and nBi−1,n−1(x), 0 ≤ x ≤ 1, i = 1, . . . , n, are the
density functions of the consecutive order statistics from the standard uniform i.i.d.
sample of size n (see, e.g., Arnold et al. 1992, p. 109). The respective variances are
denoted as

σi = Var Xi :n = τi − μ2
i , i = 1, . . . , n. (1.8)
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880 M. Beśka et al.

Accordingly, for arbitrary s ∈ S
n the lifetime T = T (s) of the respective mixed system

has the moments

μ(s) = E T (s) =
n∑

i=1

siμi ,

τ (s) = E T 2(s) =
n∑

i=1

siτi ,

σ (s) = Var T (s) =
n∑

i=1

siτi −
(

n∑

i=1

siμi

)2

. (1.9)

We aim at determining the extreme values of (1.9) as the signatures range over (1.5).
When the parent distribution function F is fixed, and so (1.6) and (1.7) are known
numbers, this is the classic quadratic programming problem which can be numeri-
cally solved by means of standard procedures. Our purpose is to provide more general
conclusions valid for various F . The crucial tool for our study is the following theorem.

Theorem 1 Let X1, . . . , Xn, n ≥ 3, be i.i.d. random variables with a common dis-
tribution function such that 0 < Var X1 < ∞. Then, under notation (1.6) and (1.7),
the sequence

d(F, n; k) = τk+1 − τk

μk+1 − μk
, k = 1, . . . , n − 1, (1.10)

is increasing.

In Sect. 2, we show that the minimal lifetime variance has one of k-out-of-n sys-
tems, and apply Theorem 1 for proving that the lifetime variance is maximized for
a random mixture of the series ans parallel systems. The number of the k-out-of-n
system and the mixture coefficients depend on the parent distribution function F .
Final results are specified for the exemplary cases of uniformly and exponentially
distributed component lifetimes. In Sect. 3, we analyze bounds for the system lifetime
variances under restrictions on the first lifetime moment and vice versa. For instance,
we find the mixed systems with the minimal lifetime variance among the ones whose
lifetime expectations are not less than a prescribed minimal level. We also determine
the maximal lifetime means under an upper constraint on the variance. Such problems
are relevant in practice, and can be solved once we specify the component lifetime
distribution. Section 4 contains the proof of Theorem 1.

It is worth noting that Theorem 1 holds true for arbitrary non-degenerate distribution
functions F with finite second moments. It follows that all the results of Sects. 2 and 3
could be stated in a more general form. Namely, instead of the mixed system lifetime
T (s), we could write the order statistic X I :n with random index I that is independent of
original variables X1, . . . , Xn , and has the distribution P(I = i) = si , i = 1, . . . , n,
determined by the signature. Then the assumption that the support of F is contained
in the non-negative half-axis, natural in the reliability problems, may be dropped.
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Mixed systems with minimal and maximal lifetime variances 881

As far as we know, the problems of evaluating lifetime variances for arbitrary
mixed systems composed of items with a fixed lifetime distribution have not been
treated in the literature by now. There are known some lifetime variance estimates
for systems with fixed structure and varying distributions of component lifetimes.
Papadatos (1995) provided sharp upper bounds for the variances of order statistics
(and so k-out-of-n system lifetimes) coming from i.i.d. populations with an arbitrary
parent distribution, expressed in the distribution variance units. The bounds were
refined by Papadatos (1997) and Jasiński and Rychlik (2011) in the case of sym-
metrically distributed random variables. Jasiński et al. (2009) extended the results
of Papadatos (1995) to the case of arbitrarily fixed mixed systems. Rychlik (1994)
described methods of calculating sharp lifetime variance bounds for k-out-of-n sys-
tems built of exchangeable components with a known marginal lifetime distribution.
The results were extended in Rychlik (2011) to a slightly wider family of mixed sys-
tems with all the signature coordinates identical except for one. Also Rychlik (2008),
provided sharp non-parametric lower and upper bounds for the lifetime variances of
k-out-of-n systems composed of exchangeable elements, gauged in the single com-
ponent lifetime variance units.

There are also known few bounds for the mixed central moments of order two
for the order statistics. An optimal inequality for the covariance of the smaller and
greater of two i.i.d. random variables expressed in the population variance units was
determined by Papathanasiou (1990) (see also López-Blázquez and Salamanca-Miño
1999). This was sharpened for the finite support populations by López-Blázquez
and Salamanca-Miño (1999), and generalized to dependent samples by Balakrishnan
and Balasubramanian (1993). A similar inequality for the covariance of the min-
imum and maximum of three i.i.d. random variables was provided by Papadatos
(1999). Sharp bounds for the correlation of the minimum and maximum of two
i.i.d. variables from general and finite support populations were established by
Terrel (1983) and López-Blázquez and Salamanca-Miño (1999), respectively. The
former evaluation was generalized by Székely and Móri (1985) to the case of gen-
eral functions of arbitrary two order statistics from the i.i.d. sample of any size.
Castaño-Martinez et al. (2007) proved that the Székely-Móri bounds hold for the
sampling without replacement models as well. Various estimates of the correlation of
the smaller and greater of two random variables with arbitrary joint distributions
ca be found in Navarro and Balakrishnan (2010). On the other hand, there were
established numerous sharp evaluations of lifetime expectations of various mixed
systems (and especially k-out-of-n ones) under diverse assumptions on the mar-
ginal and joint distributions of the component lifetimes, but we do not cite them
here.

2 Systems with extreme lifetime variances

Theorem 2 Let T (s) be the lifetime of a mixed system with signature s =
(s1, . . . , sn) ∈ S

n, composed of n elements with i.i.d. lifetimes whose common dis-
tribution has a positive and finite variance. Then, under notation (1.6) and (1.8), the
following inequalities are sharp
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882 M. Beśka et al.

min
1≤i≤n

σi ≤ Var T (s)

≤

⎧
⎪⎨

⎪⎩

σ1, if σ1−σn ≥ (μn −μ1)
2,

σn, if σn −σ1 ≥ (μn −μ1)
2,

(μn−μ1)
2

4 + 1
4

(
σn−σ1
μn−μ1

)2+ σ1+σn
2 , if |σn−σ1| < (μn − μ1)

2.

(2.1)

If the minimum is equal to σk for some k = 1, . . . , n, then the lower bound is attained
by the (n + 1 − k)-out-of-n system. The upper bounds are attained in the consecutive
cases by the series and parallel systems, and the mixture of the series and parallel

systems with probabilities s1 = 1
2

[
1 − σn−σ1

(μn−μ1)
2

]
and sn = 1 − s1, respectively.

Obviously the above evaluations are invariant under translations, and equivariant
under scale transformations. We point out here that the lower bounds of Theorem 2
are attained by proper coherent systems, i.e. the k-out-of-n ones. The upper ones are
attained by mixtures of the series and parallel systems, and except for the trivial mix-
tures with either s1 = 1 or sn = 1, there do not exist coherent systems with signatures
(s1, 0, . . . , 0, 1 − s1) for 0 < s1 < 1. So it is still an open and challenging problem to
establish upper, possibly sharp bounds for the lifetime variances of coherent systems.

Proof of Theorem 2 The proof of the lower bound consists in minimizing the concave
function (1.9) over the convex, closed and bounded set (1.5). We have

σ(αs1 + (1 − α)s2) ≥ ασ(s1) + (1 − α)σ(s2) ≥ min{σ(s1), σ (s2)}

for arbitrary s1, s2 ∈ S
n and 0 ≤ α ≤ 1. Therefore

σ(s) = σ

(
n∑

i=1

si ei

)
≥ min

1≤i≤n
σ(ei ) = min

1≤i≤n
σi

for all s ∈ S
n .

For proving the latter inequality, we consider the planar representations of the first
two raw moments of the system lifetimes

M (s) =
(
E T (s), E T 2 (s)

)
=
(

n∑

i=1

siμi ,

n∑

i=1

siτi

)
, s ∈ S

n .

In particular M (ei ) = (μi , τi ), i = 1, . . . , n. The image of the whole simplex (1.5)
in the moment transformation M (Sn) = {M (s) : s ∈ S

n} is the convex hull spread
over the extreme points M (ei ), i = 1, . . . , n. It follows from Theorem 1 that this is
a polygon whose bottom is composed of the line segments joining consecutive points
M(ek) and M(ek+1), k = 1, . . . , n − 1. The polygon is bounded above by the edge
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Mixed systems with minimal and maximal lifetime variances 883

joining M(e1) and M(en). Accordingly,

M
(
S

n) =
{
(μ, τ) : τk + τk+1 − τk

μk+1 − μk
(μ − μk) ≤ τ ≤ τ1 + τn − τ1

μn − μ1
(μ − μ1),

μk ≤ μ ≤ μk+1, k = 1, . . . , n − 1

}
.

In the case n = 2, the set reduces to a line segment. We can further define

�
(
S

n) = {(E T (s), VarT (s)) : s ∈ S
n} =

{(
μ, τ −μ2

)
: (μ, τ) ∈ M

(
S

n)}

=
{
(μ, σ ) : τk + τk+1−τk

μk+1−μk
(μ−μk)−μ2 ≤σ ≤τ1+ τn −τ1

μn −μ1
(μ−μ1)

−μ2, μk ≤ μ ≤ μk+1, k = 1, . . . , n − 1

}
. (2.2)

It is easily seen that among all the systems with an arbitrarily fixed lifetime expec-
tation μ1 ≤ μ ≤ μn , the maximal variance τ1 + τn−τ1

μn−μ1
(μ − μ1) −μ2 is attained

by the combination of series and parallel systems with probabilities α = μn−μ
μn−μ1

and

1−α = μ−μ1
μn−μ1

, respectively. The global variance maximum is derived by maximizing

ς(α)=σ(αe1+(1−α) en)=ατ1+(1−α) τn −[αμ1+(1−α) μn]2, 0≤α≤1.

This is a quadratic concave function that has the global maximum at

α∗ = 1

2

[
1 − σn − σ1

(μn − μ1)
2

]
.

Under restriction to the unit interval, there are possible three cases. In the first case
α∗ ≥ 1 (i.e., when σ1 − σn ≥ (μn − μ1)

2), the restricted maximum equals to ς(1) =
σ (e1) = σ1. In the second one for α∗ ≤ 0 (i.e., for σn − σ1 ≥ (μn − μ1)

2), the
maximum is ς(0) = σ (en) = σn . Otherwise the local maximum coincides with the
global one and amounts to

ς(α∗) = σ (α∗e1 + (1 − α∗) en) = (μn −μ1)
2

4
+ 1

4

(
σn −σ1

μn −μ1

)2

+ σ1+σn

2
.

This completes the proof. ��

From the above proof we can immediately deduce the following constrained
extremes.
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Corollary 1 Under the assumptions of Theorem 2,

min
ET (s)=μ

Var T (s) = τk + τk+1 − τk

μk+1 − μk
(μ − μk) − μ2,

μk ≤ μ ≤ μk+1, k = 1, . . . , n − 1, (2.3)

max
ET (s)=μ

Var T (s) = τ1 + τn − τ1

μn − μ1
(μ − μ1) − μ2, μ1 ≤ μ ≤ μn .

The above extreme variances are attained by the mixture systems with signatures
μk+1−μ
μk+1−μk

ek + μ−μk
μk+1−μk

ek+1 and μn−μ
μn−μ1

e1 + μ−μ1
μn−μ1

en, respectively.

Formula (2.3) provides another proof of the first inequality in (2.1). Indeed, referring
to the concavity arguments, we can write

min
μ1 ≤ E T (s)≤μn

Var T (s) = min
1 ≤ k ≤ n−1

min
μk ≤ E T (s)≤μk+1

Var T (s) = min
1 ≤ k ≤ n−1

min{σk , σk+1}.

Corollary 2 If σ1 = σn (in particular, if the distribution function F is symmetric),
then we have

Var T (s) ≤ (μn − μ1)
2

4
+ σ1,

with the equality attained for the system with signature 1
2 (e1 + en).

Example 1 Consider the systems whose component lifetimes have the standard uni-
form distribution. Then

μi = i

n + 1
,

σi = i (n + 1 − i)

(n + 1)2 (n + 2)
, i = 1, . . . , n,

(cf. Johnson et al. 1995, p. 280). By Theorem 2,

min
s∈Sn

Var T (s) = σ1 = σn = n

(n + 1)2 (n + 2)
,

which tends to 0 at the rate O(n−2) as n increases to infinity. Due to Corollary 2, we
have

max
s∈Sn

Var T (s) = σ

(
e1 + en

2

)
= 1

4
− n

(n + 1) (n + 2)
. (2.4)

As the system size increases to infinity, the variances tend to 1
4 which is the variance

of the symmetric two-point distribution on 0 and 1. This is the maximal variance of
distributions with the support contained in any interval of length 1. We checked that
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Mixed systems with minimal and maximal lifetime variances 885

among all the coherent systems of sizes n = 3, 4, 5, the maxima are attained for the
systems with lifetimes Tc = min {X1, max {X2, . . . , Xn}} and for their duals with
lifetimes Td = max {X1, min {X2, . . . , Xn}}. The respective Samaniego signatures
are sc = ( 1

n , . . . , 1
n , 2

n , 0
)

and sd = (
0, 2

n , 1
n , . . . , 1

n

)
. They have lifetime variances

Var T (sc) = Var T (sd) = 1

12
− 2

(n + 1) (n + 2)
+ 1

n (n + 1)
− 1

n2 (n + 1)2

which tend to the lifetime variance of a single component, equal to 1
12 , as n increases.

We can not guarantee though, that the systems with such structures have maximal
lifetime variances for all n ≥ 6.

Example 2 Take the systems whose components have i.i.d. lifetimes with the standard
exponential distribution. Hence

μk =
n∑

i=n+1−k

1

i
,

σk =
n∑

i=n+1−k

1

i2 , i = 1, . . . , n,

(cf. Johnson et al. 1994, p. 500). It follows that

min
s∈Sn

Var T (s) = σ1 = 1

n2 .

Since

|σn − σ1| =
n−1∑

i=1

1

i2 <

n−1∑

i=1

1

i2 +
∑

1≤i< j≤n−1

2

i j
=
(

n−1∑

i=1

1

i

)2

= (μn − μ1)
2 ,

by Theorem 2

max
s∈Sn

Var T (s) = 1

4

(
n−1∑

i=1

1

i

)2

+ 1

2

n−1∑

i=1

1

i2 + 1

4

(∑n−1
i=1

1
i2

∑n−1
i=1

1
i

)2

+ 1

n2 . (2.5)

It is attained by the combination of the series and parallel systems with coefficients

s1 = 1

2

⎡

⎢⎣1 −
∑n−1

i=1
1
i2

(∑n−1
i=1

1
i

)2

⎤

⎥⎦

and sn = 1 − s1, respectively. If n tends to infinity, then s1 ↗ 1
2 ↙ sn whereas

(2.5) increase to infinity at the rate O(ln2 n). On the other hand, the maximal lifetime
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886 M. Beśka et al.

variances among all coherent systems of sizes up to n = 5 are attained by the parallel
ones. The lifetime variances of the parallel systems asymptotically approach the finite
number π2

6 . We do not claim that the parallel systems have maximal lifetime variances
among all the coherent systems of sizes n ≥ 6.

Example 3 Consider now the systems composed of elements with independent life-
times that have the Pareto distribution function Fθ (t) = 1 − t−θ , t ≥ 1, for some
θ > 2. Then

μi (θ) = Eθ Xi :n =
n∏

k=n+1−i

kθ

kθ − 1
,

τi (θ) = Eθ X2
i :n =

n∏

k=n+1−i

kθ

kθ − 2
, i = 1, . . . , n,

(cf. Johnson et al. 1994, p. 599). We show that for every integer n ≥ 2 there exists
θ(n) such that for all 2 < θ < θ(n)

max
s∈Sn

Varθ T (s) = σn(θ) = τn(θ) − μ2
n(θ). (2.6)

Observe that

lim
θ↘2

[τn(θ) − τ1(θ) − 2μ2
n(θ)]

= lim
θ↘2

⎡

⎣ θ

θ − 2

n∏

k=2

kθ

kθ − 2
− nθ

nθ − 2
− 2

(
n∏

k=1

kθ

kθ − 1

)2
⎤

⎦ = +∞.

In consequence, there is θ(n) > 2 such that

σn(θ) − σ1(θ) − [μn(θ) − μ1(θ)]2 = τn(θ) − τ1(θ) − 2μn(θ)[μn(θ) − μ1(θ)]
> τn(θ) − τ1(θ) − 2μ2

n(θ) > 0 (2.7)

for all 2 < θ < θ(n). Combining (2.7) with (2.1), we obtain (2.6), as claimed. The
same conclusion holds for the modified Pareto distributions Gθ (t) = Fθ (t + 1) =
1 − (t + 1)−θ , t > 0, θ > 2, which is more frequently used in the reliability stud-
ies. Indeed, the means and variances of the respective order statistics satisfy νi (θ) =
μi (θ) − 1, ςi (θ) = σi (θ), i = 1, . . . , n. Therefore for every n and 2 < θ < θ(n)

we have

ςn(θ) − ς1(θ) − [νn(θ) − ν1(θ)]2 = σn(θ) − σ1(θ) − [μn(θ) − μ1(θ)]2 > 0,

which implies that the parallel system has the maximal lifetime variance.

Similarly, one can construct lifetime distributions of components such that the series
system has the maximal lifetime variance. For instance, one can take the negative
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Mixed systems with minimal and maximal lifetime variances 887

Pareto distributions Fθ (t) = (−t)−θ , t ≤ −1, with θ slightly exceeding 2, truncate
them on the left at a large negative level, and shift them to the positive half-axis.
This means that there are component lifetime distributions for which maximal system
lifetime variances are attained by proper coherent systems, either parallel or series
ones, and no formula is redundant in (2.1).

3 Constrained extremes

Analyzing inequalities describing the moment set (2.2), it is possible to present further
constrained evaluations of the mean and variance of the mixed system lifetimes, dif-
ferent from the ones presented in Corollary 1. However, the shape of (2.2) depends
on the moments of order statistics of component lifetime distribution function, and
evaluations can be established under specification of the parent distribution.

For instance, for the standard uniform component distribution (2.2) has the form

�(Sn) =
{
(μ, σ ) : 2

k+1

n+2
μ− k(k+1)

(n+1)(n+2)
−μ2 ≤ σ ≤ μ− n

(n+1)(n+2)

−μ2,
k

n + 1
≤ μ ≤ k + 1

n + 1
, k = 1, . . . , n − 1

}
, (3.1)

where μ and σ denote the lifetime mean and variance of an arbitrarily fixed mixed
system composed of n items with independent and standard uniform lifetimes. Each
parabola composing the lower envelope is first increasing and then decreasing, and has

the maximum at k+1
n+2 ∈ (μk, μk+1) =

(
k

n+1 , k+1
n+1

)
. The upper bound is also increas-

ing-decreasing, and symmetric about 1
2 . Exemplary graphical representation of (3.1)

for n = 5 is given in Fig. 1.
We can easily check that

max
Var T (s)=σ

E T (s) = 1

2
+
(

1

4
− n

(n + 1)(n + 2)
− σ

)1/2

, (3.2)

for all σ1 = n
(n+1)2(n+2)

≤ σ ≤ ς(α∗) = 1
4 − n

(n+1)(n+2)
, and the maximum is attained

by the mixture of the series and parallel systems with coefficients s1 and sn defined as

s1 = n + 1

n − 1

[
n

n + 1
− 1

2
−
(

1

4
− n

(n + 1)(n + 2)
− σ

)1/2
]

<
1

2
< sn = 1 − s1.

The formula for the respective minimum differs from (3.2) only by putting minus
instead of plus in front of the square root expression, and it is attained by the dual
system with the interchanged weights of the series and parallel systems. The estimates
remain valid if we replace the variance condition by a less stringent one Var T (s) ≥ σ .
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888 M. Beśka et al.

Fig. 1 Set �
(
S5

)
for uniform standard distribution

Clearly, for all possible σ we have

min
Var T (s)≤σ

E T (s) = μ1 = 1

n + 1
,

max
Var T (s)≤σ

E T (s) = μn = n

n + 1
.

Similarly, for all μ1 = 1
n+1 ≤ μ ≤ μn = n

n+1 yields

min
E T (s)≤μ

Var T (s) = σ1 = min
E T (s)≥μ

Var T (s) = σn = n

(n + 1)2(n + 2)
.

We can also easily determine the maximal system lifetime variances under the
inequality restrictions on the respective mean. These are either the global maxima
maxs∈Sn Var T (s) (see (2.4)) or the restricted maximum maxE T (s)=μ Var T (s) (see
(3.1)) for the extreme value of admissible mean μ, and the choice depends on the
relation between μ and global maximum point 1

2 . For the practice purposes, the most
important are descriptions of systems with maximal lifetime mean under upper restric-
tions on the respective variance, and ones with minimal variance when a condition on
minimal lifetime expectation is imposed.
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Mixed systems with minimal and maximal lifetime variances 889

In the standard exponential case, the admissible pairs of means and variances satisfy
the relations

n∑

i=n−k

1

i2 −
(

n∑

i=n−k

1

i
− μ

)2

≤ σ ≤
(

n−1∑

i=1

1

i
+

∑n−1
i=1

1
i2

∑n−1
i=1

1
i

+ 2

n

)
μ

− μ2 − 1

n

(
n−1∑

i=1

1

i
+

∑n−1
i=1

1
i2

∑n−1
i=1

1
i

)
,

for
n∑

i=n−k+1

1

i
≤ μ ≤

n∑

i=n−k

1

i
, k = 1, . . . , n − 1. (3.3)

The lower bound consists of increasing concave quadratic functions with global max-
ima attained at the right-hand ends μk+1 = ∑n

i=n−k
1
i , k = 1, . . . , n − 1, of their

domains. The upper one is concave quadratic with the maximum presented in (2.5)
for

μ∗ = μn − α∗(μn − μ1) = 1

2

(
n−1∑

i=1

1

i
+

∑n−1
i=1

1
i2

∑n−1
i=1

1
i

+ 2

n

)
.

The exemplary set �(S5) is presented in Fig. 2.

Fig. 2 Set �
(
S5

)
for exponential standard distribution
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890 M. Beśka et al.

We immediately see that minE T (s)≥μ Var T (s) amounts to the lower bound in (3.3).
Moreover, maxE T (s)≥μ Var T (s) coincides with the global maximum described in
(2.5) when μ ≤ μ∗ and the upper bound in (3.3) otherwise. We also have

max
Var T (s)=σ

E T (s) =
n∑

i=n−k

1

i
−
(

n∑

i=n−k

1

i2 − σ

) 1
2

, (3.4)

when σk = ∑n
i=n−k+1

1
i2 ≤ σ ≤ σk+1 = ∑n

i=n−k
1
i2 , k = 1, . . . , n − 1, and

max
Var T (s)=σ

E T (s)= 1

2

⎡

⎢⎣
n−1∑

i=1

1

i
+
∑n−1

i=1
1
i2

∑n−1
i=1

1
i

+ 2

n
+
(

n−1∑

i=1

1

i
+
∑n−1

i=1
1
i2

∑n−1
i=1

1
i

+ 4

n
−4σ

) 1
2

⎤

⎥⎦ ,

when σn = ∑n
i=1

1
i2 ≤ σ ≤ ς(α∗) = 1

4

(∑n−1
i=1

1
i

)2+1
4

(∑n−1
i=1

1
i2∑n−1

i=1
1
i

)2

+1
2

∑n−1
i=1

1
i2+ 1

n2 .

If we replace the condition by Var T (s) ≤ σ , we get the bound of (3.4) when σ <

σn = ∑n
i=1

1
i2 , and μn = ∑n

i=1
1
i otherwise. It is an elementary task to calculate the

signatures of mixed systems attaining the bounds, and we omit presenting the solutions
here.

4 Proof of Theorem 1

We first prove an auxiliary result.

Lemma 1 Let f, h : (0, 1) �→ R be integrable with respect to a non-decreasing
non-constant right-continuous function μ : (0, 1) �→ R. If they satisfy

1∫

0

f (x) μ(dx) =
1∫

0

h(x) μ(dx) (4.1)

and

[ f (x) − h (x)](x − x0) > 0 μ − a.e. (4.2)

for some 0 < x0 < 1, then inequality

1∫

0

l(x) f (x) μ(dx) >

1∫

0

l(x)h(x) μ(dx),

holds for arbitrary non-decreasing, non-constant μ-a.e, and right-continuous function
l : (0, 1) �→ R under the condition that both integrals exist and are finite.
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Proof We can write condition (4.1) as

1∫

x0

[ f (x) − h(x)] μ(dx) =
x0∫

0

[h(x) − f (x)] μ(dx).

By (4.2), both the differences are positive μ-a.e. on the respective intervals. The
integrals are positive as well, because so is their sum. If l satisfies the assumptions,
we have

x0∫

0

[l(x)−l(x0)][h(x)− f (x)] μ(dx) ≤ [l(x0−)−l(x0)]
x0∫

0

[h(x)− f (x)] μ(dx)

≤ 0 = [l(x0)−l(x0)]
1∫

x0

[ f (x)−h(x)] μ(dx)

≤
1∫

x0

[l(x)−l(x0)][ f (x)−h(x)] μ(dx), (4.3)

and at least one of the above inequalities is strict. Combining (4.1) nad (4.3), we derive

1∫

0

[l(x) − l(x0)] [ f (x) − h(x)] μ(dx) =
1∫

0

l(x) [ f (x) − h(x)] μ(dx) > 0,

which is desired conclusion. Clearly, there is no need to subtract l(x0) in (4.3), if it is
non-negative. ��
Proof of Theorem 1 By (1.6) and (1.7), we can write (1.10) as

d(F, n; k) =
∫ 1

0 [F−1(x)]2 n
[
Bk,n−1(x) − Bk−1,n−1(x)

]
dx

∫ 1
0 F−1(x) n

[
Bk,n−1(x) − Bk−1,n−1(x)

]
dx

, (4.4)

k = 1, . . . , n − 1, and both the integrals are finite.
We first show that the denominator is strictly positive. Note that for all k =

1, . . . , n − 1 we have

1∫

0

n Bk,n−1(x) dx =
1∫

0

n Bk−1,n−1(x) dx = 1,

and

n[Bk,n−1(x) − Bk−1,n−1(x)]
(

x − k

n

)
> 0 if

k

n
�= x ∈ (0, 1),
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i.e., functions f = nBk,n−1 and h = nBk−1,n−1 satisfy the assumptions of Lemma 1
with respect to the Lebesgue measure μ. Accordingly, taking l = F−1 we show that
the statement is true and (4.4) is well-defined.

Observe that Bk,n, k = 1, . . . , n − 1, have the derivatives

B ′
k,n(x) = n

[
Bk−1,n−1(x) − Bk,n−1(x)

]
.

Owing to Rudin (1964, Theorem 6.30, p. 122), for every 0 < ε < 1
2 we can use the

integration by parts formula and write

1−ε∫

ε

[F−1(x)]2n
[
Bk,n−1(x) − Bk−1,n−1(x)

]
dx = −[F−1(1−ε)]2 Bk,n(1−ε)

+[F−1(ε)]2 Bk,n(ε) + 2

1−ε∫

ε

F−1(x)Bk,n(x) F−1(dx). (4.5)

According to Shiryaev (1996, p. 208), EX2
1 < ∞ implies that

lim
b→+∞ b2 F(−b) = lim

b→+∞ b2[1 − F(b)] = 0.

It follows that

lim
ε↘0

[F−1(1−ε)]2 Bk,n(1−ε)= lim
b=F−1(1−ε)↗F−1(1−)

b2
(

n

k

)
Fk(b)[1−F(b)]n−k =0,

lim
ε↘0

[F−1(ε)]2 Bk,n(ε)= lim
−b=F−1(ε)↘F−1(0)

b2
(

n

k

)
Fk(−b)[1−F(−b)]n−k =0

for all k = 1, . . . , n − 1. Therefore, as ε ↘ 0, (4.5) takes on the form

1∫

0

[F−1(x)]2n[Bk,n−1(x) − Bk−1,n−1(x)] dx = 2

1∫

0

F−1(x)Bk,n(x) F−1(dx).

Using similar arguments, we obtain

1∫

0

F−1(x)n[Bk,n−1(x) − Bk−1,n−1(x)] dx =
1∫

0

Bk,n(x) F−1(dx),

and finally

d(F, n; k) = 2

∫ 1
0 F−1(x)Bk,n(x) F−1(dx)

∫ 1
0 Bk,n(x) F−1(dx)

.
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Now fix 2 ≤ k ≤ n − 1, and define

f (x) = Bk,n(x)
∫ 1

0 Bk,n(u) F−1(du)
= αxk(1 − x)n−k, (4.6)

h(x) = Bk−1,n(x)
∫ 1

0 Bk−1,n(u) F−1(du)
= βxk−1(1 − x)n+1−k, (4.7)

say. Since F−1 is non-decreasing, and non-constant, both the integrals are positive,
and so are the constants α and β. Moreover, the integrals of both (4.6) and (4.7)
over [0, 1] with respect to F−1 amount to 1 (cf. (4.1)), and they satisfy (4.2) with
0 < x0 = β

α+β
< 1. So we apply Lemma 1 with μ = l = F−1, and get

d(F, n; k) = 2

1∫

0

F−1(x)Bk,n(x)
∫ 1

0 Bk,n(u)F−1(du)
F−1(dx)

> 2

1∫

0

F−1(x)Bk−1,n(x)
∫ 1

0 Bk−1,n(u)F−1(du)
F−1(dx) = d(F, n; k − 1),

which ends the proof. ��
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