
Mobile Offloading Framework: Solution
for Optimizing Mobile Applications

Using Cloud Computing

Henryk Krawczyk, Micha�l Nykiel(B), and Jerzy Proficz

Faculty of Electronics, Telecommunications and Informatics,
Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland

hkrawk@eti.pg.gda.pl, {mnykiel,jerp}@task.gda.pl

Abstract. Number of mobile devices and applications is growing rapidly
in recent years. Capabilities and performance of these devices can be
tremendously extended with the integration of cloud computing. How-
ever, multiple challenges regarding implementation of these type of
mobile applications are known, like differences in architecture, optimiza-
tion and operating system support. This paper summarizes issues with
mobile cloud computing and analyzes existing solutions in this field.
A new innovative approach consisting of an application model and a
mobile offloading framework are considered and adopted for practical
applications.

Keywords: Cloud computing · Mobile · Network · Optimization ·
Model · Framework · Offloading

1 Introduction

The capabilities of mobile devices such as smartphones, tablets and wearables are
increasing at very fast pace. Average processing power of a smartphone increased
almost 4 times from 2011 to 2014 [1]. Mobile network connection speeds more
than doubled in 2013 – the average mobile network downstream speed was 526
kbps in 2012 and almost 1.4 Mbps in 2013 [2]. It’s estimated that by 2018 there
will be over 7.4 billion mobile devices with 3G or 4G connection speed and global
mobile data traffic will exceed 15 exabytes per month. This is all result of an
increased demand from users, expecting continuous access to Internet services,
multimedia, social networks, etc.

Arguably the most important issue in mobile devices currently is battery life.
While CPU (Central Processing Unit) power, memory size, screen size and num-
ber of sensors increased significantly, we’re not seeing any noticeable increase in
battery capacity. For example the first iPhone, released in 2007, had a 5180 mWh
battery and the iPhone 5 s model, released in 2013, have a 5966 mWh battery.
The huge increase in processing capability over the 6 years has come with only a
15 % increase in battery capacity

Postprint of: Krawczyk H., Nykiel M., Proficz J., Mobile Offloading Framework: Solution for Optimizing
Mobile Applications Using Cloud Computing. In: Gaj P., Kwiecień A., Stera P. (eds) Computer Networks.
CN 2015. Communications in Computer and Information Science, vol 522 (2015), pp. 293-305, Springer,
DOI: 10.1007/978-3-319-19419-6_28

This is a post-peer-review, pre-copyedit version of an article published in 22nd International Conference on
Computer Networks (CN 2015). The final authenticated version is available online at:
https://doi.org/10.1007/978-3-319-19419-6_28

https://doi.org/10.1007/978-3-319-19419-6_28
https://doi.org/10.1007/978-3-319-19419-6_28

Fig. 1. The concept of offloading a part (component B) of mobile application consisting
of three components A, B and C from a mobile device to the cloud

Although processing power of smartphones and tablets are increasing very
rapidly, they are still far behind desktop computers or even laptops. Low perfor-
mance on tasks such as image and video processing, 3D modeling or processing
large amounts of numerical data prevents users from replacing their PCs with
smaller and cheaper devices.

In recent years these problems have been addressed by integrating cloud com-
puting with mobile devices [3]. Thanks to a new generation of mobile networks
the applications are able to transmit large amounts of data to the cloud-hosted
services. The concept of using remote servers and resources to extend capabili-
ties of smartphones and tablets enables computationally intensive tasks to run
efficiently while minimizing battery usage.

Mobile devices have many features and applications nowadays, from taking
pictures, recording videos and playing games to advanced augmented reality
software. With the computing power and storage space of the cloud these features
may be further extended and new applications are possible. This concept is
known in literature as computation offloading and refers to transferring certain
processing tasks from devices with hardware limitations to external machines
with more computational power [4]. Figure 1 presents the concept of using cloud
for offloading of data processing from mobile device. Application component B
can be executed in the cloud as parallel tasks B′

1, B′
2 and B′

3. Two advantages of
offloading this component will be reduced execution time and less battery usage
on mobile device.

However, there are still many unresolved issues with mobile cloud comput-
ing and existing solutions don’t provide solutions for all of them. A new elastic
mobile application model together with an innovative mobile offloading frame-
work that could be adopted for practical applications is presented in this paper.
Some examples of applications that could greatly benefit from this approach are
multimedia processing [5], mobile gaming [6] and augmented reality [7,8] appli-
cations. The cloud offloading could be implemented in many others to improve
battery life and performance of mobile devices.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Table 1. Comparison of existing solutions

Run-time
optimization

Application
modifications

OS modifi-
cations

Other

CloneCloud Performance None Significant —

Weblets Composite Significant None Requires using
one of
supported
application
patterns

μCloud None Significant None —

Cloudlet None None Significant Requires low-
latency
server,
private
cloud

eXCloud None None None —

MAUI Composite Small None Based on
outdated
OS

ThinkAir Energy/
performance

Small None Dedicated
compiler,
offloading
only if both
objectives
are met

Cuckoo None Small None —

2 Existing Solutions

Multiple frameworks and models designed for integration of cloud and mobile
devices exist. They differ in objective, as some of them are designed to maximize
performance of an application, others try to optimize energy usage of mobile
device by offloading computational-heavy tasks to cloud. There are also several
solutions that try to achieve multiple objectives at once. The most popular
solutions and differences between them are presented in Table 1.

CloneCloud [9] model is based on cloned version of mobile device’s operat-
ing system running as a virtual machine on remote server in the cloud. When
resource intensive task is started on the mobile device the execution is paused
and process state is transferred to the clone. Partitioning component decides in
run-time when to offload process to the cloud. Migration is fully automatic and
doesn’t require any changes in source code by application programmer. However,
it requires significant changes in the operating system of mobile device, specif-
ically a new implementation of Dalvik VM [10] in Android. Furthermore, the
CloneCloud model optimizes only application performance and doesn’t consider
energy consumption or transfer cost.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Another cloud integration model assumes that mobile application is built
from multiple loosely coupled components – weblets [11]. An application com-
posed from weblets is called elastic application and supports three topology
patterns: replication, splitting and aggregation. Elastic application optimization
is performed in run-time using cost model, which is based on various parame-
ters. However, authors don’t provide any details regarding implementation of
the optimization algorithm and example applications use only predefined con-
figurations. Another disadvantage of weblet model is that the application must
be built from scratch using provided SDK (Software Development Kit).

In μCloud [12] a mobile application is composed from multiple heterogeneous
components. Building an application is reduced to orchestrating existing com-
ponents to an execution graph. The biggest disadvantage of this model is that
optimization must be performed a priori by the developer and no run-time profil-
ing is proposed by the authors. Additionally, new development process requires
existing application to be completely rewritten.

Cloudlet [13] concept is based on migrating whole mobile operating system to
resource-rich server. When user starts a computationally intensive task virtual
machine on mobile device is paused and transferred to remote computer. The
main advantage of this model is that it allows any existing mobile application
to be migrated without changes in implementation. However, significant mod-
ification must be made to mobile operating system. Furthermore, migration of
whole virtual machine or even small VM overlay, as authors propose, requires
high speed connection and low-latency servers.

Extensible cloud or eXCloud [14] relies on migration of JVM (Java Virtual
Machine) stack frames to the cloud. Specialized pre-processor modifies byte code
of the application before it is loaded by the JVM. Among the advantages of this
solution is that it doesn’t require any changes to existing application implemen-
tation or mobile operating system. The biggest disadvantage is that eXCloud
only performs migration when resources on mobile device are insufficient and
doesn’t take into account performance or cost of the execution.

MAUI [15] is a framework that is able to optimize execution time and energy
use by offloading individual methods to the cloud. Programmer is required to
annotate methods allowed for remote execution and the profiler determines in
run-time if migration is beneficial. Modifications that must be implemented in
mobile application are relatively small, which is one of the biggest advantages
of MAUI model. However, MAUI is based on an old .NET Framework version
used in outdated Windows Mobile 6.5.

ThinkAir [16] use an Android emulator that allows to execute mobile appli-
cations on machines with x86 architecture. Decision whether code should be
offloaded to the cloud is based on energy consumption, execution time or both.
One of the shortcomings of ThinkAir model is that it doesn’t take into account
data transfer cost or network speed. Additionally programmer is required to use
a dedicated compiler which could be not up-to-date with latest Android version
and may not support new features or even fail to compile some applications.

Cuckoo [17] is a very simple offloading framework that was designed
to be simple to use for programmers. Application developer provides two

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

implementations of resource-intensive methods: local and remote. Among the
advantages of Cuckoo framework is that it doesn’t require any changes in oper-
ating system. However, offloading decisions in this model are based solely on
remote server availability and doesn’t consider performance gain, energy usage
or migration cost.

3 Proposed Solution

Research and analysis of existing solutions lead to conclusion, that the most
common flaws of aforementioned models and frameworks are as follows.

1. Implementation requires use of completely new architecture, patterns or com-
piler, hence existing applications must be rewritten from scratch.

2. Run-time optimization is not implemented or takes into account only single
parameter like performance or battery consumption.

3. The framework requires changes in mobile operating system, making it dif-
ficult to use in practical applications without support from manufacturer of
the OS.

Considering these issues authors decided that there is a need to design new
model of integration between mobile devices and the cloud, together with a
programming framework supporting computation offloading. Solution proposed
in this paper tries to address aforementioned problems, basing on experiences
and results from existing models.

3.1 Design Goals

First of all, proposed model must be elastic and flexible to allow development of
different kinds of mobile applications – both simple and complex. Programmer
should be able to use various architecture patterns and not be enforced to design
application in one way. That implies that any programming interface should be
minimal and integrated seamlessly into existing mobile system SDK (Software
Development Kit).

Application optimization should be context-aware and should be performed
in run-time, as parameters of network, device status or cloud availability could
change in any time. Framework should monitor the execution of an application
and collect all necessary data like execution time, CPU, memory, network and
energy usage, both in mobile device and in the cloud. Optimization method
should work on abstract application model and be able to minimize multiple
objectives at once.

To maximize potential practical applications of the framework it shouldn’t
require any changes to the mobile operating system. Any provided tools, compil-
ers or APIs (Application Programming Interface) must be designed as plugins,
extensions or libraries, in such a way that future updates of the system wouldn’t
break existing applications.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

3.2 Application Model

To build a feasible mobile application framework the most popular types of
applications should be analyzed and used as a foundation to create an universal
application model. As a result of an extensive research the following models were
identified.

1. Sequential model – control flow in application is sequential, the output from
one component is the input of exactly one other component. Simple image
processing is an example of this model.

2. Parallel model – same as sequential but the output from one component may
be passed to multiple components executing in parallel. Complex image filters,
processing of video streams or rendering of 3D scene are good representations
of this model.

3. Complex model – components of the application exchange data in arbitrary
way, as in any data processing network that could be represented as a DAG
(directed acyclic graph). A good example of this model would be an artificial
intelligence algorithm.

Because the sequential and parallel models are special cases of the complex
model, the later could be used as a general mobile application model. The model
consists of multiple components that contains blocks of data processing instruc-
tions. It can be represented in form of a directed graph, where nodes are the
application components and edges illustrate data flow. Some of these compo-
nents could be executed either on mobile device or on remote server, other are
constrained to the device because they require user input, specific device data or
mobile operating system environment. It is also possible that component must
be executed in the cloud, for example to exchange data with multiple users.

Mobile application cost model is based on proposed application model.
Figure 2 demonstrates a sample application and cost models. If N is a set of
components and E is a set of connections between two components the model is
defined as follows:

M = (N,E, cm, cc, ct, tm, tc, tt) (1)

E ⊆ {(ni, nj) : ni ∈ N ∧ nj ∈ N ∧ ni �= nj} (2)

cm : N → R, cc : N → R, ct : E → R, (3)

tm : N → R, tc : N → R, tt : E → R. (4)

The model contains four functions over set of components:

– execution time on mobile device tm(n),
– execution time in the cloud tc(n),
– cost of executing component on mobile device cm(n),
– cost of executing component in the cloud cc(n).

For purpose of this paper it is assumed that the cost is equal to energy used
during component execution by the device or by remote server. Components
that are constrained to the device have infinite cloud cost and cloud execution
time, analogically for the cloud constrained components. Two functions over the
set of edges (communication) are used in the cost model:

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Fig. 2. Example of the application (a) and cost model (b)

– transfer time tt(e),
– transfer cost ct(e).

Authors assume that time and cost of data transfer between two components
executed in the same environment (both on the device or both in the cloud)
is negligible and equals zero. If Nm is a subset of components executed on the
mobile device and Nc is a subset of components offloaded to the cloud then total
cost c of running the application could be calculated:

Nc ⊂ N, Nm = N \ Nc (5)

Ecm = {(nc, nm) : (nc, nm) ∈ E ∧ nc ∈ Nc ∧ nm ∈ Nm} (6)

Emc = {(nc, nm) : (nc, nm) ∈ E ∧ nc ∈ Nc ∧ nm ∈ Nm} (7)

Et = Ecm ∪ Emc (8)

c = α
∑

n∈Nc

cc(n) + β
∑

n∈Nm

cm(n) + γ
∑

e∈Et

ct(e). (9)

Introducing the α, β and γ coefficients to the equation allows to adjust the
cost model to different objectives. Table 2 presents different optimization objec-
tives that can be achieved by assigning different values to the coefficients.

3.3 Optimization Problem

The goal is to find a subset of components to be executed in the cloud that
minimizes the sum of total execution cost and transfer cost, while simultaneously
preserving total execution time t below a certain threshold tmax:

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Table 2. Example of optimization objectives

α β γ

Monetary cost 〈0, 1〉 〈0, 1〉 〈0, 1〉
Mobile device battery usage 1 0 0

Data transfer 0 0 1

Total energy use 〈0, 1〉 〈0, 1〉 0

min
Nc∈P(N)

α
∑

n∈Nc

cc(n) + β
∑

n∈Nm

cm(n) + γ
∑

e∈Et

ct(e).

subject to t � tmax

(10)

Execution time t is equal to the length of the critical path in DAG represent-
ing the application model with component execution times and transfer times
used as weights.

The optimization algorithm should compute optimal distribution of compo-
nents between the mobile device and the cloud, given the cost model as input.
Minimization of the cost without constraints could be solved in polynomial time,
because the optimization problem could be reduced to minimum cut problem
[18]. However, when the execution time constraint is considered the problem
becomes NP-hard in general. In special cases of sequential and parallel appli-
cation models the problem could still be solved in polynomial time. For gen-
eral approach a genetic algorithm has proved to provide good results for sparse
graphs, i.e. application models where the number of edges is significantly lower
than square number of components.

4 Mobile Offloading Framework

This paper introduces Mobile Offloading Framework (or MOFF) as an innovative
contribution to the field of mobile cloud computing. The idea of MOFF is to
provide lightweight middleware both for the cloud and mobile devices that allows
dynamic optimization of mobile application cost by offloading parts of data
processing to the cloud. Initial implementation of the framework is based on
Android operating system and allows of development of mobile applications using
both in Java and C++ language. MOFF supports Android version 4.0 and newer
which currently covers over 75 % of the mobile market [19].

The idea of MOFF Framework is to enable each component to be executed
on mobile device or in the cloud. Application developer is given a programming
library that supports development of components in Java or C++ program-
ming language. Developer can prepare one general implementation or different
implementations of the same component for mobile and cloud execution to take
advantage of resource-rich remote machines. Compiled components are embed-
ded in mobile application package (APK) together with Mobile Service needed
for run-time monitoring and communication with the cloud. All components are
also deployed to the Cloud Service which supports execution in the cloud.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

After implementation of all required components the application developer
must orchestrate them and provide the application model which is defined as
a JSON document. For example, a definition of the application model from
Fig. 2 would look like this:

{

components: [{

"id": "n1",

"output": [

"n2"

]

},{

"id": "n2",

"output": [

"n3", "n4"

]

},

/* ...definitions of components n3, n4, n5... */

{

"id": "n6",

"output": [

"n7", "n8"

]

},{

"id": "n7"

},{

"id": "n8"

}]

}

Typical sequence of events in mobile application execution using Mobile
Offloading Framework is shown in Fig. 3. When users starts the mobile applica-
tion (1) Mobile Service gathers information about the device and current exe-
cution context (like network connection type, battery level, etc.) via various
Android APIs and Linux kernel modules. This data is sent together with appli-
cation model definition to the Cloud Service (2).

In order to perform accurate optimization the cost model must be constructed
on top of the application model. The Cloud Service queries the database for his-
toric data regarding execution cost and time on mobile device and in the cloud
for each component (3). The Cloud Service tries to use data for the specific exe-
cution context or average from similar contexts in case that the specific one does
not exist in the database yet. When the cost model is constructed (i.e. functions
of cost and time have values for each component and communication between
them) optimization of application model can be performed by genetic algorithm.
The result of optimization is a partition of the components set into two subsets:
components that should be executed on mobile device and components that
should be executed in the cloud.

Results of the optimization are sent back to the mobile device (4) and the
application executes components that are assigned to it (5). The Mobile Service

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Fig. 3. Sequence of events in application execution with Mobile Offloading Framework.
Components n1 and n2 are a part of mobile application presented in Fig. 2

must constantly monitor execution time and cost of every component (6). It is
important to notice that cost and time functions could be different for every
device and depend on current execution context, i.e. network type, battery level,
device load, etc. Monitoring data is stored in centralized database (7), therefore
historical data from previous executions and other devices could be used as
a good basis for future optimizations.

When application tries to execute component that should be offloaded to
the cloud Mobile Service communicate with Cloud Service and transfers input
data over the network (8). The Cloud Service launches required component on
remote server (9), supervises the execution (10) and stores monitoring data in
database (11). When component processing is finished the output data is trans-
ferred back to the mobile device. The offloading process is transparent for the
application.

MOFF Framework introduces a few tweaks to further improve performance of
the offloading process. First obvious improvement is to execute two or
more consecutive cloud components in one batch rather than sending data to the
mobile device after each one. Secondly, the components that are executed in the
cloud are started immediately after the optimization is performed and are wait-
ing for input data from the mobile device. This approach helps to decrease delay
between sending the data and receiving results from the component because the
system process is already initialized.

The Mobile Service includes also some basic fail-over mechanisms. When
network connection is unavailable and optimization could not be performed all
components are executed on the device if possible. If connection is lost during
application execution the Mobile Service takes care of restarting the component
locally.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Fig. 4. The application model (a) and optimal component distribution (b) of the image
processing application

Table 3. The values of cost [mWh] and time [s] functions measured by MOFF

cm cc tm tc ct tt

n1 0.04 ∞ 0.09 ∞ e12 0.12 4.06

n2 0.73 0 1.47 0.31 e23 0.06 4.21

n3 4.31 0 8.72 1.86 e24 0.06 4.21

n4 4.31 0 8.72 1.86 e35 0.05 3.22

n5 0.07 ∞ 0.08 ∞ e45 0.05 3.21

Table 4. Test results of image processing application with and without optimization

single image 20 images

cost [mWh] time [s] cost [mWh] time [s]

not optimized 9.46 10.36 189.21 207.22

optimized 0.33 9.62 6.67 192.41

5 Case Study

MOFF was used to implement sample mobile application for processing images.
It consisted of five components: reading an image from the device, preprocess-
ing, applying filters using two parallel threads and displaying processed image.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Two implementations of preprocessing and filtering components were prepared:
mobile implementation using OpenCV4Android [20] and cloud implementation
using KASKADA services [21]. KASKADA is a distributed platform for process-
ing multimedia streams realized as a part of NIWA Center of Excellence [22].
The framework was used to optimize application using the battery saving objec-
tive. The application model and optimal solution is presented in Fig. 4. Table 3
contains values of the cost and time functions measured by the framework. Note
that components n1 and n5 are restricted to the device. Test results of processing
20 photos on HTC One X device connected to the internet via 3G connection
with and without optimization are presented in Table 4. Offloading processing
to the cloud reduced battery drain from 189.21 mWh (2.8 % of total battery
capacity) to 6.67 mWh (0.1 %) and reduced total processing time by 15 s.

6 Summary

The solution presented in this paper addresses three most common issues with
existing models: flexibility of run-time optimization function, programming effort
and mobile operating system support. Authors believe that Mobile Offloading
Framework has practical use in existing and future mobile applications.

Regarding future research the framework should be more extensively tested
by developing more advanced mobile applications. Additionally, more complex
execution monitoring could be implemented to improve optimization results in
more complicated applications, perhaps by including static code analysis. Sup-
port for different mobile operating systems is also worth considering.

In the near future Mobile Offloading Framework will be deployed to the
cloud based on Tryton supercomputer that is a part of NIWA Center of Excel-
lence project [22]. Tryton is located in Academic Computer Centre in Gdansk
(CI TASK) an is one of the fastest supercomputers in Europe with over 1.2
PFLOPS computing power, 2600 CPUs and 31000 cores. Powered by this
infrastructure MOFF could be easily adopted by application developers and
scientist to create efficient mobile applications.

Acknowledgments. This work was carried out as a part of the Center of Excellence in
Scientific Application Development Infrastructure “NIWA” project, Operational Pro-
gram Innovative Economy 2007–2013, Priority 2 “Infrastructure area R&D”.

References

1. Chitkara, R.: Application processors: driving the next wave of innovation. In:
Mobile Technologies Index, PwC (2012)

2. Cisco visual networking index: global mobile data traffic forecast update 2013–2018
(2014)

3. Khan, A.R., Othman, M., Madani, S.A., Khan, S.U.: A survey of mobile cloud
computing application models. In: Communications Surveys and Tutorials, vol.16,
no. 1, pp. 393–413. IEEE (2014)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

4. Kumar, K., Liu, J., Lu, Y.-H., Bhargava, B.: A survey of computation offloading for
mobile systems. In: Mobile Networks and Applications, vol. 18, no. 1, pp. 129–140.
Springer (2013)

5. Satyanarayanan, M.: Mobile computing: the next decade. In: Proceedings of the
1st ACM Workshop on Mobile Cloud Computing & Services: Social Networks and
Beyond (MCS 2010), pp. 1–6. ACM, New York (2010)

6. nVidia GRID game service. http://shield.nvidia.com/grid-game-streaming/
7. Google glass. http://www.google.com/glass/
8. Azuma, R.T.: A survey of augmented reality. In: Presence: Teleoperators and Vir-

tual Environments, vol. 6, no. 4, pp. 355–385 (1997)
9. Chun, B.G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: CloneCloud: elastic execu-

tion between mobile device and cloud. In: Proceedings of the Sixth Conference on
Computer systems, pp. 301–314. ACM (2011)

10. ART and Dalvik. http://source.android.com/devices/tech/dalvik/
11. Zhang, X., Jeong, S., Kunjithapatham, A., Gibbs, S.: Towards an elastic applica-

tion model for augmenting computing capabilities of mobile platforms. In: Mobile
Networks and Applications, vol. 16, no.3, pp. 270–284. Springer, New York (2011)

12. March, V., Gu, Y., Leonardi, E., Goh, G., Kirchberg, M., Lee, B.S.: μCloud:
towards a new paradigm of rich mobile applications. In: Procedia Computer Sci-
ence, vol. 5, pp. 618–624. Elsevier (2011)

13. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for VM-based
cloudlets in mobile computing. In: Pervasive Computing, vol. 8, no. 4, pp. 14–23.
IEEE (2009)

14. Ma, R.K.K., Lam, K.T., Wang, C.L.: eXCloud: Transparent runtime support for
scaling mobile applications in cloud. In: 2011 International Conference on Cloud
and Service Computing, pp. 103–110. IEEE (2011)

15. Cuervo, E., Balasubramanian, A., Cho, D.K., Wolman, A., Saroiu, S., Chandra, R.,
Bahl, P.: MAUI: making smartphones last longer with code offload. In: Proceeding
of the 8th International Conference on Mobile Systems, Applications, and Services,
pp. 49–62. ACM (2010)

16. Kosta, S., Aucinas, A., Hui, P., Mortier, R., Zhang, X.: Unleashing the power of
mobile cloud computing using ThinkAir. In: arXiv preprint arXiv:1105.3232 (2011)

17. Kemp, R., Palmer, N., Kielmann, T., Bal, H.: Cuckoo: a computation offload-
ing framework for smartphones. In: Gris, M., Yang, G. (eds.) MobiCASE 2010.
LNICST, vol. 76, pp. 59–79. Springer, Heidelberg (2012)

18. Hao, J.X., Orlin, J.B.: A faster algorithm for finding the minimum cut in a directed
graph. J. Algorithms 17(3), 424–446 (1994). Elsevier

19. Smarthphone OS market share, Q3 (2014). http://www.idc.com/prodserv/
smartphone-os-market-share.jsp

20. OpenCV4Android. http://opencv.org/platforms/android.html
21. Krawczyk, H., Proficz, J.: KASKADA - multimedia processing platform architec-

ture. In: Proceedings of the International Conference on Signal Processing and
Multimedia Applications, SIGMAP 2010. IEEE (2010)

22. NIWA center of excellence. http://www.niwa.gda.pl

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://shield.nvidia.com/grid-game-streaming/
http://www.google.com/glass/
http://source.android.com/devices/tech/dalvik/
http://arxiv.org/abs/1105.3232
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://opencv.org/platforms/android.html
http://www.niwa.gda.pl
http://mostwiedzy.pl

	Mobile Offloading Framework: Solution for Optimizing Mobile Applications Using Cloud Computing
	1 Introduction
	2 Existing Solutions
	3 Proposed Solution
	3.1 Design Goals
	3.2 Application Model
	3.3 Optimization Problem

	4 Mobile Offloading Framework
	5 Case Study
	6 Summary
	References

