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Abstract

With the advances in systems-on-a-chip technologies, there is a growing demand to deploy intelligent vision systems on low-cost
microcomputers. To address this challenge, much of the recent research has focused on reducing the model size and computa-
tional complexity of contemporary convolutional neural networks (CNNs). The state-of-the-art lightweight CNN is MobileNetV3.
However, it was designed to achieve a good trade-off between accuracy and latency on a single large core of a Google Pixel 1
smartphone. Accordingly, MobileNetV3 is not optimized for platforms with different hardware characteristics and its predecessors
may perform better for a given target platform. The aim of this paper is twofold: 1) to analyze the performance of different compact
CNNs on Raspberry Pi 4; 2) to manually adapted the most promising models to better utilize the Raspberry Pi 4 hardware. After
exploring a number of modifications, we present a new CNN architecture, namely MobileNetV3-Small-Pi, which is 36% faster and
slightly more accurate on ImageNet classification compared to the baseline MobileNetV3-Small.
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1. Introduction

Convolutional neural networks (CNNs) have been constantly progressing over the last decade, leading to significant
advancements in a wide variety of computer vision tasks including image classification [9, 32, 29, 13, 50, 2], object
detection [12, 14, 15, 28, 46], crowd counting [34, 35], semantic segmentation [16, 37, 52], among others [1]. A
general trend of CNN design has been to find deeper and more powerful models to achieve super-human accuracy.
Unfortunately, the high accuracy has been achieved at the cost of vastly increased computation time, memory usage,
and energy consumption.

In the meantime, with the advancements in systems-on-a-chip [8, 31], there has been increasing demand to run high
quality CNNs real-time on resource-constrained platforms in various applications such as robotics, self-driving cars
[6, 33], and augmented reality [43, 27, 17]. Thereby, much recent research has focused on designing lightweight archi-
tectures, which have fewer parameters and require less computational power while maintaining reasonable accuracy.
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It has been found that there is a significant redundancy in most of the existing full-scale CNNs [48, 19]. As a result,
SqueezeNet [25], ShuffleNet [51], and the MobileNet family [23, 42, 22] have been proposed, which significantly
shrink the conventional CNNs without considerably decreasing accuracy. They utilize less expensive operations, such
as 1×1 convolution [25], group convolution [51], or depthwise convolution [23].

MobileNetV3 is the state-of-the-art lightweight CNN. Nevertheless, it was designed to achieve a good trade-off
between accuracy and latency on a single large core of a Google Pixel 1 smartphone. Accordingly, MobileNetV3
is not optimized for platforms with different hardware characteristics and its predecessors may perform better for a
given target platform. In this paper, we manually adjust MobileNet architectures for Raspberry Pi, which is the most
well-known single-board computer. Since the release of Raspberry Pi in 2012, researchers around the world have
documented its use in a variety of science and engineering projects [5, 10, 18].

The aim of this paper is twofold: 1) to analyze the performance of different compact CNNs from the MobileNet
family on Raspberry Pi 4, and 2) propose improvements to the MobileNet family to obtain faster and more accurate
architecture for mobile applications on Raspberry Pi 4.

The rest of the paper is organized as follows. Related work is described in Section 2. Section 3 provides information
about the dataset used and training settings. An analysis of MobileNets performance on the Raspberry Pi 4 is presented
in Section 4. Section 5 introduces our modification of MobileNetV3-Small and briefly reviews our other attempts to
optimize MobileNets for Raspberry Pi 4. Obtained results are discussed in Section 6. Conclusions and future work
close the paper.

2. Related Work

One of the first parameter-efficient CNN architectures was SqueezeNet by Iandola et al. [25]. It has 50 times
fewer parameters than AlexNet while preserving AlexNet accuracy. The reduction of parameters was achieved by
employing three main strategies: (1) replacing the majority of 3×3 filters with 1×1 filters; (2) reducing the number
of input channels to 3×3 filters; and (3) using delayed downsampling so that convolution layers have large activation
maps. The basic building block of SqueezeNet consists of a squeeze layer (which has only 1×1 filters) followed by an
expand layer that has a mix of 1×1 and 3×3 convolution filters. Besides, when the input and output of the block are
of the same dimensions, they are connected by a shortcut.

MobileNetV1 by Howard et al. [23] has shifted the focus from reducing parameters to reducing the number of
composite multiply-accumulate operations (Mult-Adds) per image. It exploits depthwise separable convolutions [26]
as an efficient replacement for traditional convolution layers. A traditional convolution both filters and combines inputs
in one step to produce a new feature. A depthwise separable convolution effectively factorizes traditional convolution
by separating spatial filtering from the feature generation mechanism. It is defined by two separate layers: a depthwise
convolution followed by a pointwise 1×1 convolution. The depthwise convolution applies a single filter per each
input channel. The pointwise convolution then applies a 1×1 convolution to combine the outputs of the depthwise
convolution.

Concurrently with Howard et al. [23], Zhang et al. [51] proposed a new architecture called ShuffleNet, which in-
tegrates a bottleneck design, depthwise separable convolution, group convolution and channel shuffle. The ShuffleNet
unit replaces 1×1 convolutions of the bottleneck module [21] by group convolutions and places a channel shuffle
operation after the first convolution to mix features among different groups. Grouped convolution, which was origi-
nally introduced in AlexNet [30], divides its input and output into small groups, and calculates the outputs by using
only input channels within the same group. Nevertheless, channel shuffle is difficult to implement efficiently since it
requires moving feature maps to another memory space. Accordingly, ShuffleNet is slower than MobileNetV1 even
though they have roughly the same number of operations.

CNNs use either pooling layers or convolutional layers with stride larger than one to decrease the spatial dimen-
sion of feature maps. In a slow downsampling strategy, downsampling is mainly performed in the later layers of the
network, thus more layers have large spatial dimensions. On the contrary, in a fast downsampling strategy, downsam-
pling is mainly performed at the beginning of the network. Qin et al. [38] applied the latter strategy to MobileNetV1
and achieved inference speedup under the same complexity. The proposed FD-MobileNet implements the faster
downsampling by consecutively applying depthwise separable convolutions with large strides at the beginning of the
network.
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Sinha et al. proposed thinner versions of MobileNetV1 called Thin MobileNet [44] and Ultra-thin MobileNet
[45]. They eliminated a few layers, replaced the standard non-linear activation function ReLU with either Drop Ac-
tivation [44] or Swish [45], and introduced random erasing regularization technique in place of drop out. Random
erasing is a kind of data augmentation method where we randomly select rectangular regions in an image, and erase
the pixels of that region and substitute them with random values.

The work on MobileNet has been continued by Brzeski et al. [7] and Sandler et al. [42]. The former proposed a
novel residual depth-separable convolution block, which is an improvement of the basic building block of MobileNet.
They modified the original block by adding an identity shortcut connection (with zero-padding for increasing di-
mensions) from the input to the output. The latter improved the original architecture by utilizing a bottleneck design
[21]. The main building block of MobileNetV2, which is named inverted residual with linear bottleneck, consists
of three layers: a 1×1 pointwise convolution responsible for increasing dimensions, a 3×3 depth-wise convolution,
and a 1×1 pointwise convolution responsible for reducing dimensions. Besides, shortcuts are used directly between
the bottlenecks. This structure maintains a compact representation at the input and the output, while expanding to a
higher-dimensional feature space internally to increase the expressiveness of nonlinear per-channel transformations
[22].

Hu et al. [24] suggested a mechanism that allows the network to perform feature recalibration, through which it can
learn to use global information to selectively emphasize informative features and suppress less useful ones. Their idea
is implemented by a so-called Squeeze-and-Excitation (SE) block that explicitly models interdependencies between
channels. The SE block can be used directly in existing state-of-the-art architectures by replacing components with
their SE counterparts.

Alongside the hand-crafted networks described above, there are also efficient architectures discovered by Neural
Architecture Search (NAS). NAS automates the design process by employing a reinforcement learning (RL) method
that explores a predefined search space to find the network architectures with a good trade-off between accuracy and
latency. Unlike the initial work [53], where latency was estimated by Mult-Adds, later research has directly measured
real-world latency by executing the model on actual hardware platforms. For instance, MnasNet [47], which built
upon the MobileNetV2 architecture and the SE block, utilizes latency on the Google Pixel 1 smartphone as the reward
to perform RL search. Compared to MobileNetV2, the baseline MnasNet model improves the classification accuracy
on ImageNet by three percentage points with similar latency.

Howard et al. [22] extended the MnasNet approach through a combination of complementary search techniques as
well as novel architecture advances. The revised framework first uses platform-aware NAS to search for the global
network structures and then uses the NetAdapt algorithm [49] to determine the number of filters in each layer. In
addition to network search, Howard et al. [22] also introduced several network improvements to further enhance
the final model. They redesigned the computationally-expensive layers at the beginning and the end of the network.
Besides, they introduced a new nonlinearity, h-swish, a modified version of the swish nonlinearity, which is practical
for the mobile setting. Lastly, in contrast with Hu et al. [24], they utilized the SE block inside the residual layer
after the depthwise filters in the expansion in order to apply attention on the largest representation. As a result, two
MobileNetV3 models were released: MobileNetV3-Large and MobileNetV3-Small which are targeted for high and
low resource use cases respectively.

3. Experimental Setup

In this section we briefly describe a dataset used for our experiments, a training setup with hyperparameter values as
well as our methodology for evaluation. We also mention issues that occurred during the training of existing proposals
of MobileNet modifications.

3.1. Dataset

We evaluated different neural networks from the MobileNet family on a dataset released for ImageNet Large Scale
Visual Recognition Challenge 2012 (IamgeNet 2012) [41]. The train set of IamgeNet 2012 contains 1,200,000 labeled
images depicting 1000 object categories. The validation set has 50,000 images with labels from 1000 categories.
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3.2. Training Settings

For training our models we used a computer with an AMD Ryzen Threadripper 2920X CPU and GeForce RTX
2080 Ti GPU. The performance tests were conducted on a Raspberry Pi 4B computer with an ARM Broadcom
BCM2711 processor, 4 GB of RAM memory and 64-bit Ubuntu 20 LTS installed.

Both training and testing were performed using MxNet library. The reason behind this choice is that MxNet pro-
vides many common architectures along with the training scripts. Thus, it allows for reproducing the reported accuracy
of these neural nets.

We trained all models with a batch size of 256 using the Nesterov’s Accelerated Gradient optimizer with momentum
value 0.9. The initial learning rate was set to 0.1 with a tenfold decay in the 40th and 60th epochs. We also used gradual
warmup for first 5 epochs. We initialized weights with MSRA function [20] and set the weight decay value to 0.0001.
We used label smoothing with the α set to 0.1.

For data augmentation we used mixup training with the λ randomly sampled for each batch from the beta distribu-
tion (α = 0.2).

3.3. Evaluation method

In order to evaluate each architecture, we wanted to know its accuracy as well as how fast it classifies a single
image. To achieve this goal, we used profiler from MxNet library and we measured the time that is needed to classify
50 thousand pictures from the IamgeNet 2012 validation dataset. First, the test set was divided into 50 equal parts.
Then, we ran a classification of one picture (batch size set to 1) in a loop for each part of the test data. We repeated this
step three times to minimize the risk that other system processes could affect the measurement. Finally, we computed
an average from all times obtained from all loops for all test data parts.

3.4. Training issues

We were unable to finish training for two architectures - Squeeze-and-excite MobileNet and FD-MobileNet. This
was because of very slow data processing. In both cases, the reason was the SE building block.

We also had to slightly modify two architectures - Thin MobileNet and Ultra-Thin Mobile Net. Both models were
designed to be trained on the CIFAR-10 dataset, which consists of 32x32 images. The ImageNet 2012 dataset consists
of photos with a higher resolution, thus we had to increase the size of layers.

4. MobileNets performance on Raspberry Pi 4

In this section we analyze accuracy and inference time obtained for MobileNets on Rasperry Pi 4. Table 1 presents
performance of different architectures from the MobileNet family (upper part of the table) and their existing modi-
fications (lower part of the table). The second and third columns present accuracy values: reported by inventors of a
certain architecture and reproduced by the authors of this paper, respectively. Note, that Thin MobileNet and Ultra-
Thin Mobile Net were originally optimized on the CIFER-10 dataset.

Each architecture from the MobileNet family was originally implemented in TensorFlow Lite library and optimized
for a Google Pixel 1 mobile phone. Originally, each subsequent version of MobileNet (upper part of Table 1) had
better performance that its predecessor by means of classification accuracy as well as latency (not reported here).
An exception was made for MobileNetV3-Small, which by assumptions had to be fast and compact with acceptable
accuracy.

For basic MobileNet family architectures we managed to reproduce accuracy values with MxNet library. Further-
more, for MobileNetV1 we achieved higher accuracy value than those for MobileNetV2. This is due to better values
of hyperparameters during the training process.

Since we did not manage to finish training for Squeeze-and-Excite MobileNet and Fast downsampling strategy, we
decided to use accuracy values reported by inventors of these two models in the further analysis.

The fourth column in Table 1 shows the inference time measured according to the procedure described in Subsec-
tion 3.3. It should be noticed that we did not obtain decreasing times for first four architectures, as could be expected.
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Table 1. Lightweight CNNs performance on Raspberry Pi 4.

Accuracy [%] Time [ms]
Architecture Reported by inventors Our implementation

MobileNetV1 70.60 72.90 305.05
MobileNetV2 72.00 72.70 370.46
MobileNetV3-Large 75.20 75.32 397.20
MobileNetV3-Small 67.40 67.72 200.57

Squeeze-and-Excite MobileNet 74.70 - 389.34
Ultra-thin MobileNet - 61.58 153.88
Thin Mobilenet - 63.96 126.01
FD-MobileNet 65.30 - 100.98

Both MobileNetV2 and MobileNetV3 Large are slower than MobileNetV1. A similar observation was reported by
Bianco et al. [4]. They compared MobileNetV1 and MobileNetV2 on two different computer architectures, a work-
station equipped with a NVIDIA Titan X Pascal, and an embedded system based on a NVIDIA Jetson TX1 board. In
both cases, MobileNetV1 worked faster than MobileNetV2.

We performed time measurements using MxNet profiler, which allows developers to check performance for each
layer in a network. In this way we found out that two layers are responsible for the main difference in times of
classification for the MobileNet family, i.e. batch normalization and convolution layers. However, these layers are
functionally connected with each other. Exact times are reported in Table 2. Note, that in MobileNetV2 and Mo-
bileNetV3 the fully connected layer was replaced with a functionally equivalent pointwise convolution layer. Thus,
convolution time reported for MobileNetV1 is the sum of times for convolution and fully connected layers measured
with the profiler.

Table 2. Times needed to perform computations for selected layers in the MobileNet family. The time reported for MobileNetV1 is the sum of
times for convolution and fully connected layers.

Time [ms]
Layer MobileNetV1 MobileNetV2 MobileNetV3 Large MobileNetV3 Small

BatchNorm 23.36 41.62 40.83 33.65
Convolution 257.34 298.39 300.45 134.27

Figure 1 presents the overall performance of the aforementioned architectures. Note, that some architectures are
dominated by others by means of both time and accuracy values. This is the case for Thin MobileNet and Ultra-
Thin MobileNet as well as MobileNetV2, which does not work well on the Raspberry Pi with the MxNet library.
Nevertheless, other architectures from the MobileNet family present a good compromise between accuracy and speed.

Depending on an application, one can choose from the Pareto efficient architectures. When time is crucial and
accuracy can be reasonable, the best choice is Fast downsampling strategy. On the other hand, when accuracy is
crucial and time is secondary, one should choose MobileNetV3 Large or Sqeeze-and-Excite MobielNet which has
comparable performance.

The relative difference between inference time of specific CNNs depends on the environment in which the network
is run. This confirms the legitimacy of searching for improvements in the MobileNet architectures.

5. Proposed modifications

In this section we describe our modification of MobileNetV3-Small. We decided to modify MobileNetV3-Small
because it is relatively fast and has reasonable accuracy. Ahmed et al. [3] noticed that when the filter size is 3×3 pixels,
the accuracy is better than when applying filter size of 5×5 pixels or 7×7 pixels. Therefore, we replaced 5x5 filters
with filters of a 3×3 size. Besides, we increased the number of channels especially in the later layers.
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Fig. 1. Comparison of the performance of MobileNet architectures and their modifications. The Pareto efficient architectures are marked in blue,
while the dominated ones are marked in red. Abbreviations: MN - MobileNet, SE - Squeeze-and-Excite, FD - Fast Downsampling.

Although the selection of an activation function has a minor influence on the computational costs, it has a significant
impact on the network accuracy. Ramachandran et al. [40] showed that changing activation function from ReLU to
Swish improves classification accuracy. While this nonlinearity improves accuracy, it comes with non-zero cost in
embedded environments, as the sigmoid function is much more expensive to compute on mobile devices [22]. To deal
with this problem, Howard et al. [22] proposed a hard-Swish activation function. Moreover, they found out that most
of the hard-Swish benefits are realized in the deeper layers. Nevertheless, hard-Swish still introduces some latency
cost. Considering all arguments presented above as well as our experimental findings which are presented in Section
6.2, we decided to replace hard-Swish with ReLU in our modification of MobileNetV3-Small. Table 3 shows our final
architecture, which we name as MobileNetV3-Small-Pi.

6. Results

6.1. Comparison with the MobileNet family and their modifications

Figure 2 depicts comparison of the performance of MobileNetV3-Small-Pi and networks from the MobileNet
family. We do not show Pareto dominated architectures here. The fastest architecture is Fast downsampling strategy
with accuracy that enables one to use it in practice, especially in the case of when time is crucial.

The accuracy of MobileNetV3-Small-Pi is 68.32%, which is an improvement over the baseline by 0.92% and 0.6%
over the replicated result. Besides, our architecture is 36% faster, since we shortened the inference time from 201 ms
to 148 ms (Table 4).

Table 4 also presents a comparison of times needed to perform computations for selected layers by MobileNetV3-
Small and MobileNetV3-Small-Pi. These two layers were responsible for the slowdown of MobileNetV2 on Raspberry
Pi with usage of MxNet library. We observed speedup for the two layers for MobileNetV3-Small-Pi in comparison
with the original architecture. This is confirmed by the total execution time of the two architectures.
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Table 3. Architecture of MobileNetV3-Small-Pi

Layer Filter Size Channels Stride Expansion Activation function

Convolution 3x3 16 2 - ReLU
Bottleneck; SE 3x3 16 2 16 ReLU
Bottleneck 3x3 16 2 72 ReLU
Bottleneck 3x3 32 1 88 ReLU
Bottleneck; SE 3x3 32 2 96 ReLU
Bottleneck; SE 3x3 64 1 240 ReLU
Bottleneck; SE 3x3 64 1 240 ReLU
Bottleneck; SE 3x3 64 1 120 ReLU
Bottleneck; SE 3x3 256 1 144 ReLU
Bottleneck; SE 3x3 256 2 288 ReLU
Bottleneck; SE 3x3 512 1 576 ReLU
Bottleneck; SE 3x3 512 1 576 ReLU
Convolution 3x3 576 1 - ReLU
Global Avg Pooling 7x7 - - - -
Convolution; no batch norm 1x1 1024 1 - ReLU
Convolution 1x1 1000 1 - -
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Fig. 2. Comparison of the performance of networks from the MobileNet family and their modifications. The Pareto efficient existing architectures
are marked in blue. Our architecture is marked in yellow. Abbreviations: MN - MobileNet, SE - Squeeze-and-Excite, FD - Fast Downsampling.

Table 4. Comparison of times needed to perform computations for selected layers by MobileNetV3-Small and MobileNetV3-Small-Pi.

Time [ms]
Layer MobileNetV3-Small MobileNetV3-Small-Pi

BatchNorm 33.65 27.64
Convolution 134.27 99.72

Total 200.57 147.52

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


2256 Wojciech Glegoła  et al. / Procedia Computer Science 192 (2021) 2249–2258
W. Glegoła et al. / Procedia Computer Science 00 (2021) 000–000

6.2. Other attempts to improve the MobileNet family

Initially, we tried to improve the MobileNetV1 architecture. Firstly, we investigated different activation functions.
When replacing ReLU with Swish, we achieved classification accuracy of about 73.4%, which is 0.5% better than the
original. However, computations of Swish function last 100 ms in comparison to 26.8 ms for ReLU. The total run time
of this modification is about 436 ms which is the worst time obtained by us during experimentation. Next, we replaced
ReLU with Hard-swish, which resulted in an accuracy increase from 72.9% to 74.4%. However, the inference time
of this architecture is 391 ms, which is only 6 ms less than that of MobileNetV3 Large. We also experimented with
ReLU6. Replacing ReLU with ReLU6 decreases the inference time by 6 ms, but deteriorates the accuracy by 0.7% .

Secondly, we checked the influence of batch normalization reduction on MobileNet performance, we removed
batch normalization operations occurring after pointwise convolution. This modification achieves classification ac-
curacy 70.22% and total run time of about 283 ms. Time for computing batch normalization and convolution layers
decreased by approx 11.58 ms and 9.36 ms, respectively.

The last modification was the removal of a fully connected layer and decreasing the number of channels from 1024
to 1000. This modification did not have any impact on the inference time. We observed a decrease in accuracy by
1.14%, which is in line with findings by Qian, et al. [36].

7. Conclusions and Further Work

In this paper we compared the performance of all baseline architectures from the MobileNet family on Rasp-
berry Pi 4 with the usage of MxNet library. Moreover, we proposed a new compact CNN architecture, namely
MobileNetV3-Small-Pi, which is 36% faster and slightly more accurate on ImageNet classification compared to
the baseline MobileNetV3-Small. Our results are useful for practitioners, who are provided with a new state-of-
the-art architecture for Raspberry Pi, as well as for researchers, who have a complete view of what solutions
have been explored so far and which research directions are worth exploring in the future. As for the latter, we
suggest the investigation of a new activation function, i.e. a Fast Exponentially Linear Unit (FELU) [39], which
could bring further improvements in the MobileNet architectures. Besides, we encourage other researchers to ex-
ploit the platform-aware architecture search approach [11] that could help to improve MobileNets performance on
a specific platform. For those who want to continue our research we made our architectures publicly available at
https://gitlab.com/WGlegola/faster-mobilenets.
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