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Abstract. The paper presents the results of modal analysis of railway current collector type 160EC. In the 
first place, the analysis was carried out analytically for a simplified two lumped mass pantograph model. 
Then numerical analysis was conducted in the Autodesk Inventor (AI) on the prepared multibody model 
using the AI modal analysis algorithm, which is based on the finite element method (FEM). Model elements 
which are most relevant for attaining a correct representation of vibration properties when using AI modal 
analysis were indicated. The influence of selected parameters of modal analysis algorithm on results 
accuracy was investigated, e.g. the FEM mesh density. The natural frequencies and shapes of the first few 
vibration modes are shown. The results indicate that the frequencies of natural vibrations of the moving 
pantograph components are within the range of up to tens of hertzs. The possible use of results of 
pantograph modal analysis at the design stage and in the operation phase was also discussed. 

1 Introduction  
The development of high-speed railways requires that 
modern current collectors, apart from the correct static 
characteristics, must be characterized by special dynamic 
properties to provide uninterrupted contact between the 
contact wire and the contact strips of the slipper [1-4]. 
The pantographs’ dynamic properties depend on the 
accepted design solutions, e.g. detailed construction of 
drive system, but also on the adjustment of parameters 
e.g. inertia of components, friction parameters, 
aerodynamic resistance, etc. [5-8]. It is expedient to 
analyse and pre-evaluate the construction of the 
pantograph and the proper selection of its parameters 
already at the design stage. 

Modern methods of current collectors designing use 
software packages of CAD, CAM and CAE (Computer 
Aided Design / Manufacturing / Engineering) type. 
Recently, software manufacturers strive to integrate the 
CAD/CAM/CAE processes into one complex program, 
enabling the implementation of optimization procedures. 
Among a number of software packages that integrate 
these processes, one of the more popular is Autodesk 
Inventor (AI) [9]. The AI environment provides 
convenient geometric designing of models with respect 
to manufacturing technology and the possibility of 
parameterization of executive documentation, which is 
an advantage in the case of a product intended for 
manufacturing in many variants. AI software allows to 
providing static and dynamic structural strength analysis 
of a device, as well as its frequency- and modal analysis 
[10]. The AI environment allows efficient and 
comprehensive modelling and analysis of even very 
complex three-dimensional (3D) structures. 

Modal analysis is used both in theoretical and 
experimental studies to analyse dynamic properties of 
technical objects - especially mechanical ones. The 
theoretical modal analysis uses a physical model of the 
object including its mass, stiffness and damping 
properties, taking into account their spatial distributions, 
which leads to the determination of mass, stiffness and 
damping matrices. Elements of these matrices are the 
coefficients of a system of normal differential equations 
of motion. The superposition principle of a linear 
dynamic system enables the transformation of these 
equations into a typical eigenvalue problem. Its solution 
called a modal data of the system is obtained in the form 
of a set of natural frequencies of simple harmonic 
motions, mode shapes and damping factors, which allow 
to predict the behaviour of an object in case of any 
disturbance of its equilibrium.  

The results of modal analysis are used for: structural 
modifications, diagnostics of structure condition, 
synthesis of control device in active systems for 
vibration suppression, and verification and validation of 
numerical models such as finite element models [11-14]. 
Currently, many commercial simulation software suits 
based on the finite element method (FEM) allow the 
creation of discrete models of almost any linear dynamic 
structure, which remarkably enlarges the capacity and 
range of theoretical modal analysis. 

2 Modal analysis of pantograph two 
degrees of freedom  
The 3D model of a pantograph in interaction with 
overhead contact line, which was created in Autodesk 
Inventor, is presented in Fig. 1a. Alternatively, Fig. 1b 
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shows the simple linear, viscous-damped, lumped 
parameter model of the current collector, as a more 
commonly used version in pantograph dynamic 
simulations [15, 16, 10]. It is a relatively simple 
conventional lumped mass model consisting of two 
equivalent masses, connected by springs and damping 
elements, representing the main components of 
pantograph, such as panhead, and arms. The model with 
one degree of freedom (DOF) is not considered here 
because the response frequency is relatively low. Even 
more a simple one-mass model with one-DOF, 
sporadically used to simulate selected phenomena such 
as waveform of contact force or contact wire uplift, is 
not considered here because it does not reflect too many 
significant physical quantities. Also, its response 
frequency is relatively low. 

a) 

 
b) 

 

Fig. 1. Current collector in interaction with overhead contact 
line: a) 3D CAD sketch excluding drive system; b) equivalent 
lumped two-mass model. 

The pantograph model (Fig. 1b) is a two-DOF system 
which can be described, omitting gravity forces, by an 
equation of motion in matrix notation as [5, 13]: 
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where: ma, ca, ka, ms, cs, ks represent the equivalent 
masses, dumping coefficients and stiffness of element of 
the model for pantograph arm and slipper respectively, 
Fext is the static lift force, Fc is the contact force. 

Since the static lift force Fext is constant and does not 
affect the vibration characteristic of the pantograph, Fext 
can be neglected. The change of the contact force Fc and 

interaction of overhead contact line are also omitted. The 
modal analysis was performed for the pantograph only. 

Passing to matrix notation the equation (1) becomes:  

                             FKyyCyM          (2) 

where: M, C and K are the mass, damping and stiffness 
matrices respectively; y, y  and y  are the corresponding 
displacement, velocity and acceleration and F represents 
forces applied to the pantograph. 

In case of an undamped and unforced system the 
matrices and vectors from (2) become: 
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As a result, the notation of equation (2) reduces to: 

                                 0KyyM          (4) 

Assuming a solution in the form of: tiet  )( Yy  , which 

leads to: tiet  2)(  Yy  , it can be expressed as: 

                     0YDYMK  )(][ 2         (5) 

where: Y is a nonzero two-element vector that represents 
the amplitudes of the motions of the point masses, and 

][)( 2MKD  
def

 is called the dynamic matrix. 
Equation (5) states the free vibrations eigenproblem 

for an undamped two-DOF system. For nontrivial 
solutions Y  0 the determinant of the dynamic matrix 
must become zero: 

                     0]det[)(det 2  MKD          (6) 

This forms the characteristic equation for free undamped 
vibrations. For a two-DOF system, the left side of (6) has 
a form of quadratic polynomial of variable ω2, which 
yield two roots: 2

1ω  and 2
2ω . 

Assuming a set of typical values of pantograph 
equivalent masses ma = 37.12 kg, ms = 19.87 kg and 
stiffness ka = 50 N/m, ks = 16000 N/m, the equation (6) 
takes a notation of: 
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The roots of equation (7) are real and nonnegative 
numbers: 

    22
1 (rad/s) 0.877ω   and  22

2 (rad/s) .742361ω       (8) 

called as the undamped natural circular frequencies. 

2

MATEC Web of Conferences 180, 04004 (2018)   https://doi.org/10.1051/matecconf/201818004004
MET’2017

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

Vectors Y1(ω1) and Y2(ω2) are mathematically called 
as eigenvectors: 
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   and   
1.0011

1
21 YY        (9) 

Note that in the first mode (ω1) the masses oscillate in 
phase while in the second one (ω2) they move opposite 
to each other. The visualization of an eigenvector as a 
motion pattern is called a mode shape of the system. 

Normalization criteria are often used in the analysis 
i.e. the highest absolute value of Yi is searched, and then 
Yi is divided by it. Normalized eigenvector is called , 
for assumed parameters of two-DOF pantograph model 
it is as follows: 
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After orthogonalization and orthonormalization it is 
possible to write modal equation of motion for 
generalized coordinates [13] as: 

            0ηKηM gg    or short  0ηKη g        (11) 

where: IMΦΦM g  T  is generalised mass matrix, 
that reduces to the identity matrix I hence in short 
notation it may be omitted, ][ 2T

iωdiag KΦΦK g  is 

generalised stiffness matrix, and  is generalised 
coordinates vector. 
Because the matrices Mg and Kg are diagonal, equation 
(11) uncouples into two homogeneous, ordinary second 
order differential equations already in canonical form. 
Once solutions a and s are available, they can be 
combined via the superposition procedure to get the 
physical response: 

                                       tt Φηy        (12) 

To solve this equation, its initial conditions in modal 
coordinates are needed. For analysed example of two-
DOF pantograph model the solution in generalised and 
physical coordinates for exemplary initial conditions 
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Fig. 2 shows waveforms of displacements y and 
velocities v for the two DOF model of current collector 
(see: Fig. 1b). 

a) 

 

b) 

 

Fig. 2. Response waveforms for analytical modal analysis for 
lumped mass model of pantograph for arms and slipper 
respectively: a) displacements ya, ys; b) velocities va, vs . 

In the case of the damped system, using (1) and (2), 
the equation (11) will take the following form: 

               )()()()()( 2 ttωdiagtt i fηηCη g         (16) 

where: Mg is reduced to the identity matrix I therefore it 
was omitted in the notation above, Kg becomes a 
diagonal matrix with squared frequencies stacked along 
its diagonal, f(t) is called a modal forces vector, the 
modal matrix Cg generally will not be a diagonal matrix. 
For such case, it is not possible to decoupling of modal 
equation of motion. 

The above example shows that modal analysis for a 
highly simplified current collector model can be carried 
out even analytically at relatively low time, especially in 
the case of omitting the damping phenomena, but it 
provides little information – in practice it is only 
possible to determine the basic vibration frequencies of 
the main components of the pantograph in this way. 

3 Computer modelling of current 
collectors in Autodesk Inventor  
In order to perform a comprehensive simulation analysis 
of the pantograph using AI, it is necessary to develop its 
basic physical model. The main operations at model 
creating and at modal analysis of the current collector in 
this environment are presented in Fig. 3. 
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Fig. 3. Flowchart of pantograph modal analysis using Autodesk 
Inventor. 

The process of modelling is typical in AI, although it 
should be noted, that some stages may be difficult 
because e.g. such materials as carbon for contact strips 
are not included in program library. For proper reflection 
of dynamic properties at modal analysis it is necessary to 
determine relevant parameters of those materials such as 
density, elasticity, Young's modulus etc. The correct 
determination of the types of mechanical contacts 
between pantograph parts together with the adoption of 
adequate values of contact parameters especially for 
mutually moving parts is of particular importance. In 
modal analysis AI allows only to define two types of 
contacts: bonded and spring, for the latter it is possible to 
independently set the normal and tangential stiffness. 
This process requires a lot of engineering experience, as 
these values affect the results of the collector 
eigenvibrations frequencies. Another important task is to 
set the parameters of FEM-mesh, especially in places of 
spring contacts, because its automatic generation can 
cause significant inaccuracy of analysis results. The 
program allows selective mesh densification in areas 
indicated by the user. 

Figure 4a shows the prepared basic physical model of 
the pantograph with its main components marked. Figure 
4b presents an enlarged part of the suspension system of 
the pantograph head. For obtaining representative results 
in modal analysis, this subassembly must be modelled 
with relatively high precision because it has a significant 
influence on the dynamic properties of the current 
collector. Particularly essential is the precise elaboration 
of the suspension springs model, wherein apart from the 
proper indication of material and dimensions, it is 
important to correctly place them in the nests and also 
appropriately set the density of the FEM-mesh, what is 
shown on Fig. 4c. 

a) 

 
b) 

 
c)  

 

Fig. 4. Autodesk Inventor model (excluding drive system) of 
160EC railway current collector: a) entire pantograph with 
marked main parts; b) slipper suspension unit; c) enlarged 
fragment of suspension unit with superimposed FEM-mesh. 

4 Finite element modal analysis results 
Based on the created AI model of the current collector, 
the modal analysis was performed. In the first stage, the 
study concerned only the slipper unit together with its 
suspension system, which was separated from the rest of 
the device. Among other, the aim was to determine the 
right FEM-mesh density distribution based on the 
comparison of the obtained frequency of slipper’s basic 
vibration mode with the results derived from the 
simplified two-mass model analysis (see Section 2) and 
from the laboratory experiment. Fig. 5 shows the 
displacement shapes and frequencies of the first three 
vibration modes of the slipper unit. The vibrations 
represented by modes 1 and 2 are of major importance in 
the interaction between the pantograph and the overhead 
contact line – note that their frequencies are very close. 
It can be stated that the oscillation of the upper mass in 
the equivalent lumped two-mass model is mainly a 
superposition of these two modes of vibration, and 
therefore its frequency should be within the interval 
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determined by two obtained values. Achieved results 
fulfill this condition. 

 

Fig. 5. Displacement shapes and corresponding frequencies of 
the first three vibration modes of the slipper unit obtained by 
AI modal analysis. 

If the slipper is treated as a lumped mass, then the 
natural frequency can be calculated as: 

             Hz 05.5
06.16

16188
2
1

2
1


 m

kf      (17) 

where k is equivalent stiffness of suspension springs, m 
is the sum of the masses of the components of the 
slipper. Obtained values correspond to mode 2 presented 
in Fig. 5. 

Subsequently, an analysis was performed for the 
entire pantograph, but without the drive system, for the 
selected uplift height within the normal operating range. 
The results for vibration modes with frequencies up to 
about 25 Hz are shown on Fig. 6. It should be noted that 
in modal analysis of the AI the graphically presented 
displacements are relative, i.e. they are scaled in relation 
to their highest value in a given vibration mode. This 
way they do not reflect the real absolute magnitude of 
deviations. On the Fig. 5 and Fig. 6, the fixed constraints 
i.e. the locations of the rigid mounting of the analyzed 
device are indicated, which constitute the boundary 
conditions for modal analysis. 
 

 

Fig. 6. Displacement shapes and corresponding frequencies of 
the pantograph eigenvibration modes with frequencies up to 
25 Hz obtained by AI modal analysis. 

It can be seen that the frequency of the collector first 
vibration mode is consistent in range magnitude with the 
lower frequency obtained from the analytical 
calculations of the two-mass model (see Section 2). It 
should be emphasized, however, that the created AI 
pantograph model does not cover its drive system yet – 
the work in this field continues, hence the difference 
between both values is noticeable. On the other hand, the 
frequencies of the main vibration modes of the slipper 
unit – modes No 2, 3, 4 – have not changed significantly 
with respect to results given above for the unit separated 
from pantograph arms. 

Looking at the pantograph vibration modes obtained 
by modal analysis, some of them associated with spring 
connection of the components are of practical 
importance in studying the dynamic interaction between 
the current collector and the overhead contact line, but 
the other result from the inevitable existence of clearance 
in articulated joints or from the limited rigidity of the 
long components e.g. lower and upper arm or slipper 
contact strips. The latter modes may be more interesting 
rather at the design stage than in the operational phase, 
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while the first group gives information that can be used 
at the exploitation check of the collector's technical 
condition. 

5 Conclusions 
Performed modal analysis indicates that the frequencies 
of the excited natural vibrations of the moving 
pantograph components are within the range of up to 
tens of hertzs. Higher frequencies generally involve 
harmonic distortions of components or vibrations caused 
by a slight clearance in moving links. Such marginal 
phenomena have a negligible effect in normal operation 
of the pantograph. The comparison of the results 
obtained for main vibration modes of the full-bodied AI-
model with the results obtained for the simplified model, 
e.g. with two degrees of freedom, allows for the 
adjustment or verification of equivalent parameters of 
the latter. Simple lumped parameters models with a 
small number of degrees of freedom are often used in 
simulation procedures for assessing the quality of 
dynamic co-operation between overhead lines and 
current collectors – as required by certification 
procedures for newly developed or renovated overhead 
contact lines. The use of a precise 3D-multibody FEM-
model in this case is not justified and would lead to 
significant complications and increased workload. 

The results presented in this article are of preliminary 
nature - currently the work is focused on completing the 
AI pantograph model including its propulsion system. 
Future study will concern the impact of changes in the 
most important parameters of the current collectors, 
related to the wear and deterioration of individual 
components, and will also focus on the frequencies and 
mode shapes of the eigenvibrations of the device. This 
may be a premise to use the results of modal analysis in 
the technical diagnostics of pantographs. 
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