
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 108C (2017) 2463–2467

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science
10.1016/j.procs.2017.05.214

International Conference on Computational Science, ICCS 2017, 12-14 June 2017,
Zurich, Switzerland

10.1016/j.procs.2017.05.214 1877-0509

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science

This space is reserved for the Procedia header, do not use it

Modeling and Simulation for Exploring Power/Time

Trade-off of Parallel Deep Neural Network Training

Pawe�l Rościszewski

Faculty of Electronics, Telecommunications and Informatics
Gdańsk University of Technology, Gdańsk, Poland

pawel.rosciszewski@pg.edu.pl

Abstract
In the paper we tackle bi-objective execution time and power consumption optimization problem
concerning execution of parallel applications. We propose using a discrete-event simulation
environment for exploring this power/time trade-off in the form of a Pareto front. The solution
is verified by a case study based on a real deep neural network training application for automatic
speech recognition. A simulation lasting over 2 hours on a single CPU accurately predicts real
results from executions that take over 335 hours in a cluster with 8 GPUs. The simulations
allow also estimating the impact of data package imbalance on the application performance.

Keywords: high performance computing, energy efficiency, Pareto optimization, deep neural networks

1 Introduction and Motivations

Bridging the gap between computational science and artificial intelligence has probably never
been more relevant than it is right now. Due to recent advances in machine learning, big empha-
sis in the field of high performance computing (HPC) has been put on improving performance
of deep learning. Being able to efficiently utilize multiple computing devices, machine learning
engineers face a trade-off between performance and power consumption. They need to decide if
in given circumstances the computations should finish as soon as possible or if it is acceptable
that they run longer but consume less resources, which could be used more efficiently for other
applications or unused due to energy costs or imposed power limits. Energy-awareness has
been recently gaining importance in HPC. Hardware manufacturers focus on energy efficiency
of the computing devices, measured in performance per watt. Extensive work is held also in the
field of software engineering to develop multi-objective scheduling and parameter auto-tuning
strategies for finding optimal task assignments and execution parameters, taking into account
not only performance, but also power consumption.

In previous work we introduced MERPSYS, a modeling and discrete-event simulation en-
vironment as a proposed method for estimating execution time [2] and power consumption [1]
of parallel applications. In this paper we propose using MERPSYS for exploring power/time

1

This space is reserved for the Procedia header, do not use it

Modeling and Simulation for Exploring Power/Time

Trade-off of Parallel Deep Neural Network Training

Pawe�l Rościszewski

Faculty of Electronics, Telecommunications and Informatics
Gdańsk University of Technology, Gdańsk, Poland

pawel.rosciszewski@pg.edu.pl

Abstract
In the paper we tackle bi-objective execution time and power consumption optimization problem
concerning execution of parallel applications. We propose using a discrete-event simulation
environment for exploring this power/time trade-off in the form of a Pareto front. The solution
is verified by a case study based on a real deep neural network training application for automatic
speech recognition. A simulation lasting over 2 hours on a single CPU accurately predicts real
results from executions that take over 335 hours in a cluster with 8 GPUs. The simulations
allow also estimating the impact of data package imbalance on the application performance.

Keywords: high performance computing, energy efficiency, Pareto optimization, deep neural networks

1 Introduction and Motivations

Bridging the gap between computational science and artificial intelligence has probably never
been more relevant than it is right now. Due to recent advances in machine learning, big empha-
sis in the field of high performance computing (HPC) has been put on improving performance
of deep learning. Being able to efficiently utilize multiple computing devices, machine learning
engineers face a trade-off between performance and power consumption. They need to decide if
in given circumstances the computations should finish as soon as possible or if it is acceptable
that they run longer but consume less resources, which could be used more efficiently for other
applications or unused due to energy costs or imposed power limits. Energy-awareness has
been recently gaining importance in HPC. Hardware manufacturers focus on energy efficiency
of the computing devices, measured in performance per watt. Extensive work is held also in the
field of software engineering to develop multi-objective scheduling and parameter auto-tuning
strategies for finding optimal task assignments and execution parameters, taking into account
not only performance, but also power consumption.

In previous work we introduced MERPSYS, a modeling and discrete-event simulation en-
vironment as a proposed method for estimating execution time [2] and power consumption [1]
of parallel applications. In this paper we propose using MERPSYS for exploring power/time

1

This space is reserved for the Procedia header, do not use it

Modeling and Simulation for Exploring Power/Time

Trade-off of Parallel Deep Neural Network Training

Pawe�l Rościszewski

Faculty of Electronics, Telecommunications and Informatics
Gdańsk University of Technology, Gdańsk, Poland

pawel.rosciszewski@pg.edu.pl

Abstract
In the paper we tackle bi-objective execution time and power consumption optimization problem
concerning execution of parallel applications. We propose using a discrete-event simulation
environment for exploring this power/time trade-off in the form of a Pareto front. The solution
is verified by a case study based on a real deep neural network training application for automatic
speech recognition. A simulation lasting over 2 hours on a single CPU accurately predicts real
results from executions that take over 335 hours in a cluster with 8 GPUs. The simulations
allow also estimating the impact of data package imbalance on the application performance.

Keywords: high performance computing, energy efficiency, Pareto optimization, deep neural networks

1 Introduction and Motivations

Bridging the gap between computational science and artificial intelligence has probably never
been more relevant than it is right now. Due to recent advances in machine learning, big empha-
sis in the field of high performance computing (HPC) has been put on improving performance
of deep learning. Being able to efficiently utilize multiple computing devices, machine learning
engineers face a trade-off between performance and power consumption. They need to decide if
in given circumstances the computations should finish as soon as possible or if it is acceptable
that they run longer but consume less resources, which could be used more efficiently for other
applications or unused due to energy costs or imposed power limits. Energy-awareness has
been recently gaining importance in HPC. Hardware manufacturers focus on energy efficiency
of the computing devices, measured in performance per watt. Extensive work is held also in the
field of software engineering to develop multi-objective scheduling and parameter auto-tuning
strategies for finding optimal task assignments and execution parameters, taking into account
not only performance, but also power consumption.

In previous work we introduced MERPSYS, a modeling and discrete-event simulation en-
vironment as a proposed method for estimating execution time [2] and power consumption [1]
of parallel applications. In this paper we propose using MERPSYS for exploring power/time

1

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.05.214&domain=pdf

2464 Paweł Rościszewski et al. / Procedia Computer Science 108C (2017) 2463–2467Modeling and Simulation for Exploring Power/Time Trade-off of Parallel DNN Training Rościszewski

trade-off of parallel applications on the example of training deep neural network for automatic
speech recognition. Chosen existing approaches to multi-objective optimization of parallel ap-
plication execution are discussed in Section 2. The proposed approach is described in Section 3,
while in Section 4 we summarize the paper and propose future work directions.

2 Related Work

Multi-objective auto-tuning optimization has been proposed in [4] for parallel codes, where
configurations selected by an evolutionary algorithm were iteratively evaluated through their
execution on the target system. In case of long lasting applications, such approach might be
infeasible, so a method for fast configuration evaluation is needed. Many existing approaches to
optimization of parallel application execution are based on an assumption that a deterministic
analytical model of the application is available. For example, tackling the problem of analyzing
trade-offs between maximizing performance and minimizing energy consumption in a heteroge-
neous resource allocation problem, authors of [3] assume that an application is a static collection
of tasks. The estimated times to compute (ETC) and estimated energy consumed (EEC) are
given in the form of matrices defining the values for each task and device type. A similar
approach is used in [9], where the energy and makespan trade-offs in heterogeneous computing
systems are solved by linear programming techniques. In practice such a precise application
model is often not available and instead there is a working implementation of the application as
well as results from previous executions with specific configurations on the available hardware.
In order to allow engineers to fully explore the resource management possibilities, a method
is needed for estimating execution time and power consumption for different, often currently
unavailable configurations. Some works assume lack of exact prior knowledge about the appli-
cation. Task execution times are treated as stochastic variables in [5], where energy-efficient
task scheduling for heterogeneous computing systems is proposed. A static resource allocation
of bag-of-tasks application presented in [6] is robust towards the energy and makespan, so that
instead of hard constraints, probabilities of violating the deadlines are considered.

3 Proposed Solution and Results

In our approach we use the MERPSYS discrete-event simulation environment. In this paper
we describe a case study based on a real application and system described in Section 3.1. We
describe the model used in our simulations in Section 3.2 and the process of tuning the model
in Section 3.3. Finally, in Section 3.4 we show how the proposed ParetoVisualizer tool can
provide insights to the power/time trade-off of the simulated application.

3.1 Testbed Application and System

The application considered in the experiments is training an acoustic model based on a deep
recurrent neural network with 5 layers of 768 LSTM (Long short-term memory) cells each. The
training database consists of 4200 hours of transcribed speech recordings in Polish language
divided into 1061 archives, each of roughly 150MB size. The used training method is NG-SGD
(natural gradient stochastic gradient descent) with parameter averaging [8]. The training is
performed using the nnet3 implementation from the Kaldi [7] speech recognition toolkit with
the CTC (connectionist temporal classification) loss function. The number of GPUs used in
the computations is gradually increased from a certain initial to a final value.

2

Modeling and Simulation for Exploring Power/Time Trade-off of Parallel DNN Training Rościszewski

Real application executions for tuning the simulation model were run on 2 workstations, each
equipped with four NVIDIA GeForce GTX TITAN X GPUs with NVIDIA Maxwell architecture
and 12 GB of memory. Both workstations had 128 GB of RAM, were connected by Gigabit
Ethernet interconnect and running 4.4.0-53 Linux kernel, 361.93.02 NVIDIA driver, CUDA 8.0
and OpenMPI 1.6.5. First workstation was equipped with two Intel Xeon E5-2620 v3 6-core
CPUs and the second with two Intel Xeon E5-4650 v2 10-core CPUs.

3.2 Simulation Model

Modeling an application using the MERPSYS environment requires writing code in a Java based
meta-language reflecting the code of the real application where chosen fragments are replaced
by API calls representing atomic operations. In our case study the application model consists
of two process implementations : master responsible for orchestrating the training through dis-
tributing and averaging the neural network models and ordering data archive numbers, and
slave responsible for performing the NG-SGD model optimization. The master process runs
multiple iterations of p2pCommunicationSend and p2pCommunicationReceive atomic opera-
tions representing sending and receiving the model for each instance of the slave process. The
master process controls the number of slaves taking part in the computations, gradually in-
creasing it using the same algorithm that the original application. The slave process consists
of a loop performing p2pCommunicationReceive and p2pCommunicationSend operations rep-
resenting receiving and sending the model to the master process and a computation operation
between them. The computational complexity of the computation operation is a linear function
of the dataSize atomic operation parameter, which represents the size in bytes of the processed
training data package and depends on the archive number sent by themaster process. The space
of application parameters consists of the neural network model size, number of training epochs,
frame subsampling factor, number of training data archives and initial and final numbers of
slaves. The latter two specify how many slaves actually take part in the computations.

Modeling a system in the MERPSYS environment requires building a hardware graph using
a graphical Editor tool and providing functions for atomic execution time and atomic power
consumption of the atomic operations. In our case the hardware graph consists of 2 worksta-
tions connected through a Gigabit Ethernet interconnect, each consisting of 4 GTX TITAN X
devices connected with a Xeon CPU through an artificial ”CUDA Device To Host” intercon-
nect. The atomic execution time is a linear function of the computational complexity divided
by performance of the computing device. The atomic power consumption is the startup time of
a network link plus a linear function of data size divided by the bandwidth of the network link.

3.3 Tuning the Model

Before performing simulations, the MERPSYS environment requires tuning the coefficients used
by the atomic execution time and atomic power consumption functions. In our case study the
model has been tuned using results from real executions of the training application on one GPU
(Fig. 1a). Execution times of atomic operations have been measured and averaged from four
runs of 25 consecutive iterations. As shown in Fig. 1 the model tuned on the results from
executions on one slave is accurate also in case of multiple slaves with mean percentage error
ranging from 1.5% to 2.7%. The gain from balancing data archives grows with the number
of slaves reaching up to 8,25% in case of 8 slaves. The MERPSYS Simulator returns also an
estimation of total energy consumed by the application execution, as presented in [1]. In this
paper we used the same method, but instead of total consumed energy we consider average
power consumption calculated as the total consumed energy divided by total execution time.

3

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 Paweł Rościszewski et al. / Procedia Computer Science 108C (2017) 2463–2467 2465Modeling and Simulation for Exploring Power/Time Trade-off of Parallel DNN Training Rościszewski

trade-off of parallel applications on the example of training deep neural network for automatic
speech recognition. Chosen existing approaches to multi-objective optimization of parallel ap-
plication execution are discussed in Section 2. The proposed approach is described in Section 3,
while in Section 4 we summarize the paper and propose future work directions.

2 Related Work

Multi-objective auto-tuning optimization has been proposed in [4] for parallel codes, where
configurations selected by an evolutionary algorithm were iteratively evaluated through their
execution on the target system. In case of long lasting applications, such approach might be
infeasible, so a method for fast configuration evaluation is needed. Many existing approaches to
optimization of parallel application execution are based on an assumption that a deterministic
analytical model of the application is available. For example, tackling the problem of analyzing
trade-offs between maximizing performance and minimizing energy consumption in a heteroge-
neous resource allocation problem, authors of [3] assume that an application is a static collection
of tasks. The estimated times to compute (ETC) and estimated energy consumed (EEC) are
given in the form of matrices defining the values for each task and device type. A similar
approach is used in [9], where the energy and makespan trade-offs in heterogeneous computing
systems are solved by linear programming techniques. In practice such a precise application
model is often not available and instead there is a working implementation of the application as
well as results from previous executions with specific configurations on the available hardware.
In order to allow engineers to fully explore the resource management possibilities, a method
is needed for estimating execution time and power consumption for different, often currently
unavailable configurations. Some works assume lack of exact prior knowledge about the appli-
cation. Task execution times are treated as stochastic variables in [5], where energy-efficient
task scheduling for heterogeneous computing systems is proposed. A static resource allocation
of bag-of-tasks application presented in [6] is robust towards the energy and makespan, so that
instead of hard constraints, probabilities of violating the deadlines are considered.

3 Proposed Solution and Results

In our approach we use the MERPSYS discrete-event simulation environment. In this paper
we describe a case study based on a real application and system described in Section 3.1. We
describe the model used in our simulations in Section 3.2 and the process of tuning the model
in Section 3.3. Finally, in Section 3.4 we show how the proposed ParetoVisualizer tool can
provide insights to the power/time trade-off of the simulated application.

3.1 Testbed Application and System

The application considered in the experiments is training an acoustic model based on a deep
recurrent neural network with 5 layers of 768 LSTM (Long short-term memory) cells each. The
training database consists of 4200 hours of transcribed speech recordings in Polish language
divided into 1061 archives, each of roughly 150MB size. The used training method is NG-SGD
(natural gradient stochastic gradient descent) with parameter averaging [8]. The training is
performed using the nnet3 implementation from the Kaldi [7] speech recognition toolkit with
the CTC (connectionist temporal classification) loss function. The number of GPUs used in
the computations is gradually increased from a certain initial to a final value.

2

Modeling and Simulation for Exploring Power/Time Trade-off of Parallel DNN Training Rościszewski

Real application executions for tuning the simulation model were run on 2 workstations, each
equipped with four NVIDIA GeForce GTX TITAN X GPUs with NVIDIA Maxwell architecture
and 12 GB of memory. Both workstations had 128 GB of RAM, were connected by Gigabit
Ethernet interconnect and running 4.4.0-53 Linux kernel, 361.93.02 NVIDIA driver, CUDA 8.0
and OpenMPI 1.6.5. First workstation was equipped with two Intel Xeon E5-2620 v3 6-core
CPUs and the second with two Intel Xeon E5-4650 v2 10-core CPUs.

3.2 Simulation Model

Modeling an application using the MERPSYS environment requires writing code in a Java based
meta-language reflecting the code of the real application where chosen fragments are replaced
by API calls representing atomic operations. In our case study the application model consists
of two process implementations : master responsible for orchestrating the training through dis-
tributing and averaging the neural network models and ordering data archive numbers, and
slave responsible for performing the NG-SGD model optimization. The master process runs
multiple iterations of p2pCommunicationSend and p2pCommunicationReceive atomic opera-
tions representing sending and receiving the model for each instance of the slave process. The
master process controls the number of slaves taking part in the computations, gradually in-
creasing it using the same algorithm that the original application. The slave process consists
of a loop performing p2pCommunicationReceive and p2pCommunicationSend operations rep-
resenting receiving and sending the model to the master process and a computation operation
between them. The computational complexity of the computation operation is a linear function
of the dataSize atomic operation parameter, which represents the size in bytes of the processed
training data package and depends on the archive number sent by themaster process. The space
of application parameters consists of the neural network model size, number of training epochs,
frame subsampling factor, number of training data archives and initial and final numbers of
slaves. The latter two specify how many slaves actually take part in the computations.

Modeling a system in the MERPSYS environment requires building a hardware graph using
a graphical Editor tool and providing functions for atomic execution time and atomic power
consumption of the atomic operations. In our case the hardware graph consists of 2 worksta-
tions connected through a Gigabit Ethernet interconnect, each consisting of 4 GTX TITAN X
devices connected with a Xeon CPU through an artificial ”CUDA Device To Host” intercon-
nect. The atomic execution time is a linear function of the computational complexity divided
by performance of the computing device. The atomic power consumption is the startup time of
a network link plus a linear function of data size divided by the bandwidth of the network link.

3.3 Tuning the Model

Before performing simulations, the MERPSYS environment requires tuning the coefficients used
by the atomic execution time and atomic power consumption functions. In our case study the
model has been tuned using results from real executions of the training application on one GPU
(Fig. 1a). Execution times of atomic operations have been measured and averaged from four
runs of 25 consecutive iterations. As shown in Fig. 1 the model tuned on the results from
executions on one slave is accurate also in case of multiple slaves with mean percentage error
ranging from 1.5% to 2.7%. The gain from balancing data archives grows with the number
of slaves reaching up to 8,25% in case of 8 slaves. The MERPSYS Simulator returns also an
estimation of total energy consumed by the application execution, as presented in [1]. In this
paper we used the same method, but instead of total consumed energy we consider average
power consumption calculated as the total consumed energy divided by total execution time.

3

2466 Paweł Rościszewski et al. / Procedia Computer Science 108C (2017) 2463–2467Modeling and Simulation for Exploring Power/Time Trade-off of Parallel DNN Training Rościszewski

(a) 1 slave (b) 2 slaves (c) 3 slaves (d) 4 slaves

(e) 5 slaves (f) 6 slaves (g) 7 slaves (h) 8 slaves

Figure 1: Execution times [s] (vertical axis) for a number of consecutive iterations (horizontal
axis) depending on the number of slaves. Red lines represent the real results, green lines the
simulation results and dotted lines represent the simulation results with balanced data archives.

3.4 Visualizing the Trade-off

Figure 2: Screenshot from the
MERPSYS ParetoVisualizer.

In order to visualize the trade-off we first executed a simu-
lation of one training epoch where only one GPU took part
in the computations. Then we used the MERPSYS Web
interface to order an optimizer suite based on the afore-
mentioned single simulation instance, but we allowed the
final number of jobs to vary from 1 to 8 with a step of 1.
We started the MERPSYS Optimizer component config-
ured to run a ParetoVisualizer module. The above steps
have been repeated twice: first using real archive sizes and
then always using one, average archive size in the applica-
tion model.

Each optimizer suite is passed to the Optimizer com-
ponent, which is equipped with a programming API that
allows to iteratively enqueue chosen simulation instances
from the given range in the simulation queue and decide
which parameter combinations should be tested next. In
our case study simulations in Suite 1 were configured with
real archive sizes and Suite 2 with hypothetical ideally bal-

anced archive sizes. The Optimizer enqueued all 8 feasible simulation instances for each of the
suites and passed the results to the ParetoVisualizer. A screenshot from the ParetoVisualizer
is shown in Fig. 2. Hovering with the cursor over a point, the user can see values of those
parameters which were varying in the given suite. It should be noted that total time of the
simulations run on an Intel Core i7-4712HQ CPU used to draw the chart in Fig. 2 was 2 hours
and 10 minutes, while real execution times for the 16 points vary from 10 to 45 hours, giving the
total execution time of 335 hours. This shows that the proposed simulation method can predict
the execution parameters in significantly shorter time than the proper application execution.

4

Modeling and Simulation for Exploring Power/Time Trade-off of Parallel DNN Training Rościszewski

4 Summary and Future Work

The proposed method employing a discrete-event simulation environment allowed to accurately
predict execution time and power consumption of a deep neural network training application and
thus, exploring power/time trade-off of its execution. It allowed also estimating how balancing
data packages would improve the application performance, giving motivation for further code
improvements. Future work includes using the proposed method for other parallel applications
and changing parameters. The Optimizer component might prove useful also in cases when
exhaustive search of the parameter space is too computationally intensive. It may be a good
environment for developing optimization algorithms for parameter tuning and task mapping,
allowing to iteratively enqueue groups of simulations which can be performed in parallel.

Acknowledgments

The work was partially performed within grant funded by the home faculty of the author based
on decision no. MNiD/2016/2017/27. The work has been supported partially by the Polish
Ministry of Science and Higher Education. Sincere thanks to the VoiceLab.ai company for
providing computing resources and training data for the experiments.

References

[1] Pawe�l Czarnul, Jaros�law Kuchta, Pawe�l Rościszewski, and Jerzy Proficz. Modeling energy con-
sumption of parallel applications. In Maria Ganzha, Leszek A. Maciaszek, and Marcin Paprzycki,
editors, FedCSIS, pages 855–864, 2016.

[2] Pawe�l Czarnul, Pawe�l Rościszewski, Mariusz Matuszek, and Julian Szymanski. Simulation of paral-
lel similarity measure computations for large data sets. In 2015 IEEE 2nd International Conference
on Cybernetics (CYBCONF), pages 472–477, June 2015.

[3] Ryan Friese, Tyler Brinks, Curt Oliver, Howard Jay Siegel, and Anthony A. Maciejewski. Analyzing
the trade-offs between minimizing makespan and minimizing energy consumption in a heterogeneous
resource allocation problem. In INFOCOMP, The Second International Conference on Advanced
Communications and Computation, pages 81–89, 2012.

[4] Philipp Gschwandtner, Juan J. Durillo, and Thomas Fahringer. Multi-objective auto-tuning with
insieme: Optimization and trade-off analysis for time, energy and resource usage. In European
Conference on Parallel Processing, pages 87–98. Springer, 2014.

[5] K. Li, X. Tang, and K. Li. Energy-Efficient Stochastic Task Scheduling on Heterogeneous Comput-
ing Systems. IEEE Transactions on Parallel and Distributed Systems, 25(11):2867–2876, 2014.

[6] M. A. Oxley, S. Pasricha, A. A. Maciejewski, H. J. Siegel, J. Apodaca, D. Young, L. Briceño,
J. Smith, S. Bahirat, B. Khemka, A. Ramirez, and Y. Zou. Makespan and Energy Robust Stochas-
tic Static Resource Allocation of a Bag-of-Tasks to a Heterogeneous Computing System. IEEE
Transactions on Parallel and Distributed Systems, 26(10):2791–2805, 2015.

[7] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek, Nagendra Goel,
Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz, and others. The Kaldi speech
recognition toolkit. In IEEE 2011 ASRU workshop. IEEE Signal Processing Society, 2011.

[8] Daniel Povey, Xiaohui Zhang, and Sanjeev Khudanpur. Parallel training of deep neural networks
with natural gradient and parameter averaging. CoRR, vol. abs/1410.7455, 2014.

[9] K. M. Tarplee, R. Friese, A. A. Maciejewski, H. J. Siegel, and E. K. P. Chong. Energy and Makespan
Tradeoffs in Heterogeneous Computing Systems using Efficient Linear Programming Techniques.
IEEE Transactions on Parallel and Distributed Systems, 27(6):1633–1646, June 2016.

5

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 Paweł Rościszewski et al. / Procedia Computer Science 108C (2017) 2463–2467 2467Modeling and Simulation for Exploring Power/Time Trade-off of Parallel DNN Training Rościszewski

(a) 1 slave (b) 2 slaves (c) 3 slaves (d) 4 slaves

(e) 5 slaves (f) 6 slaves (g) 7 slaves (h) 8 slaves

Figure 1: Execution times [s] (vertical axis) for a number of consecutive iterations (horizontal
axis) depending on the number of slaves. Red lines represent the real results, green lines the
simulation results and dotted lines represent the simulation results with balanced data archives.

3.4 Visualizing the Trade-off

Figure 2: Screenshot from the
MERPSYS ParetoVisualizer.

In order to visualize the trade-off we first executed a simu-
lation of one training epoch where only one GPU took part
in the computations. Then we used the MERPSYS Web
interface to order an optimizer suite based on the afore-
mentioned single simulation instance, but we allowed the
final number of jobs to vary from 1 to 8 with a step of 1.
We started the MERPSYS Optimizer component config-
ured to run a ParetoVisualizer module. The above steps
have been repeated twice: first using real archive sizes and
then always using one, average archive size in the applica-
tion model.

Each optimizer suite is passed to the Optimizer com-
ponent, which is equipped with a programming API that
allows to iteratively enqueue chosen simulation instances
from the given range in the simulation queue and decide
which parameter combinations should be tested next. In
our case study simulations in Suite 1 were configured with
real archive sizes and Suite 2 with hypothetical ideally bal-

anced archive sizes. The Optimizer enqueued all 8 feasible simulation instances for each of the
suites and passed the results to the ParetoVisualizer. A screenshot from the ParetoVisualizer
is shown in Fig. 2. Hovering with the cursor over a point, the user can see values of those
parameters which were varying in the given suite. It should be noted that total time of the
simulations run on an Intel Core i7-4712HQ CPU used to draw the chart in Fig. 2 was 2 hours
and 10 minutes, while real execution times for the 16 points vary from 10 to 45 hours, giving the
total execution time of 335 hours. This shows that the proposed simulation method can predict
the execution parameters in significantly shorter time than the proper application execution.

4

Modeling and Simulation for Exploring Power/Time Trade-off of Parallel DNN Training Rościszewski

4 Summary and Future Work

The proposed method employing a discrete-event simulation environment allowed to accurately
predict execution time and power consumption of a deep neural network training application and
thus, exploring power/time trade-off of its execution. It allowed also estimating how balancing
data packages would improve the application performance, giving motivation for further code
improvements. Future work includes using the proposed method for other parallel applications
and changing parameters. The Optimizer component might prove useful also in cases when
exhaustive search of the parameter space is too computationally intensive. It may be a good
environment for developing optimization algorithms for parameter tuning and task mapping,
allowing to iteratively enqueue groups of simulations which can be performed in parallel.

Acknowledgments

The work was partially performed within grant funded by the home faculty of the author based
on decision no. MNiD/2016/2017/27. The work has been supported partially by the Polish
Ministry of Science and Higher Education. Sincere thanks to the VoiceLab.ai company for
providing computing resources and training data for the experiments.

References

[1] Pawe�l Czarnul, Jaros�law Kuchta, Pawe�l Rościszewski, and Jerzy Proficz. Modeling energy con-
sumption of parallel applications. In Maria Ganzha, Leszek A. Maciaszek, and Marcin Paprzycki,
editors, FedCSIS, pages 855–864, 2016.

[2] Pawe�l Czarnul, Pawe�l Rościszewski, Mariusz Matuszek, and Julian Szymanski. Simulation of paral-
lel similarity measure computations for large data sets. In 2015 IEEE 2nd International Conference
on Cybernetics (CYBCONF), pages 472–477, June 2015.

[3] Ryan Friese, Tyler Brinks, Curt Oliver, Howard Jay Siegel, and Anthony A. Maciejewski. Analyzing
the trade-offs between minimizing makespan and minimizing energy consumption in a heterogeneous
resource allocation problem. In INFOCOMP, The Second International Conference on Advanced
Communications and Computation, pages 81–89, 2012.

[4] Philipp Gschwandtner, Juan J. Durillo, and Thomas Fahringer. Multi-objective auto-tuning with
insieme: Optimization and trade-off analysis for time, energy and resource usage. In European
Conference on Parallel Processing, pages 87–98. Springer, 2014.

[5] K. Li, X. Tang, and K. Li. Energy-Efficient Stochastic Task Scheduling on Heterogeneous Comput-
ing Systems. IEEE Transactions on Parallel and Distributed Systems, 25(11):2867–2876, 2014.

[6] M. A. Oxley, S. Pasricha, A. A. Maciejewski, H. J. Siegel, J. Apodaca, D. Young, L. Briceño,
J. Smith, S. Bahirat, B. Khemka, A. Ramirez, and Y. Zou. Makespan and Energy Robust Stochas-
tic Static Resource Allocation of a Bag-of-Tasks to a Heterogeneous Computing System. IEEE
Transactions on Parallel and Distributed Systems, 26(10):2791–2805, 2015.

[7] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek, Nagendra Goel,
Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz, and others. The Kaldi speech
recognition toolkit. In IEEE 2011 ASRU workshop. IEEE Signal Processing Society, 2011.

[8] Daniel Povey, Xiaohui Zhang, and Sanjeev Khudanpur. Parallel training of deep neural networks
with natural gradient and parameter averaging. CoRR, vol. abs/1410.7455, 2014.

[9] K. M. Tarplee, R. Friese, A. A. Maciejewski, H. J. Siegel, and E. K. P. Chong. Energy and Makespan
Tradeoffs in Heterogeneous Computing Systems using Efficient Linear Programming Techniques.
IEEE Transactions on Parallel and Distributed Systems, 27(6):1633–1646, June 2016.

5

