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Abstract

The UNited RESidue (UNRES) force field was tested in the 14th Community Wide Experiment on the Critical Assessment of
Techniques for Protein Structure Prediction (CASP14), in which larger oligomeric and multimeric targets were present compared
to previous editions. Three prediction modes were tested (i) ab initio (the UNRES group), (ii) contact-assisted (the UNRES-
contact group), and (iii) template-assisted (the UNRES-template group). For most of the targets, the contact restraints were derived
from the server models top-ranked by the DeepQA method, while the DNCON2 method was used for 11 targets. Our consensus-
fragment procedure was used to run template-assisted predictions. Each group also processed the Nuclear Magnetic Resonance
(NMR)- and Small Angle X-Ray Scattering (SAXS)-data assisted targets. The average Global Distance Test Total Score (GDT TS)
of the ‘Model 1’ predictions were 29.17, 39.32, and 56.37 for the UNRES, UNRES-contact, and UNRES-template predictions,
respectively, increasing by 0.53, 2.24, and 3.76, respectively, compared to CASP13. It was also found that the GDT TS of the
UNRES models obtained in ab initio mode and in the contact-assisted mode decreases with the square root of chain length, while
the exponent in this relationship is 0.20 for the UNRES-template group models and 0.11 for the best performing AlphaFold2
models, which suggests that incorporation of database information, which stems from protein evolution, brings in long-range
correlations, thus enabling the correction of force-field inaccuracies.

Keywords: protein structure prediction, multiscale modeling, UNRES force field, free and bioinformatics-assisted modeling,
replica-exchange molecular dynamics

1. Introduction

Computer simulations of proteins and their complexes play an increasing role in biophysics, biochemistry, and
biomedicine, having such practical applications as drug design [1, 2, 3, 4]. Despite the development of high-speed
computers, especially the ANTON supercomputer dedicated to run Molecular Dynamics (MD) simulations [5, 6]
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and Graphics Processing Unit (GPU)-based computers [7, 8], long-time all-atom simulations are possible only for
relatively small proteins, comprising about 100 residues. Therefore, multiscale modeling is usually the method of
choice, in which different parts of the system are treated at appropriate resolution. An important part of the multiscale
approach is coarse-grained modeling, in which groups of atoms are merged into extended interaction sites [9]. Owing
to the elimination of the fast degrees of freedom, coarse graining enables us to extend the time scale of simulations by
several orders of magnitude [10].

The quality of the force field is a key issue, especially if long-term protein dynamics and protein-protein or protein-
ligand binding is concerned. This is especially important when using coarse-grained models, because reduction of
representation usually implies more sophisticated interaction potentials [11, 12], which are not so easy to parame-
terize. In particular, the site-site interaction potentials of most coarse-grained force fields are usually too “sticky”,
this resulting in too compact modeled structures [13, 14, 15, 16, 17]. Assessment of the force field is, therefore,
necessary. One of the hardest tests is that of the ability of a force field to reproduce the native structures of pro-
teins. The Community Wide Experiments on the Critical Assessment of Techniques for Protein Structure Prediction
(CASP), conducted since 1992 every other year, enable protein-structure modelers to test their approaches with the
proteins, the structures of which had not been solved at prediction time and, consequently, provide an impartial and
unbiased test. Knowledge-based approaches, especially the AlphaFold approach developed by DeepMind [18, 19],
which scored tremendous success in CASP13 and effectively solved the problem of protein-structure prediction for
single-domain proteins in CASP14, have the upper hand in the protein-structure prediction as such. Nevertheless, the
CASP experiments are an ideal means to test the force fields.

In the last years, we have been developing the physics-based UNited RESidue (UNRES) force field for studying
the structure, dynamics, and thermodynamics of proteins and protein complexes [20, 21, 22, 23, 24, 25, 26]. UNRES
is a highly-reduced physics-based model with only two interaction sites per residue. Its effective energy function is
defined as a cluster-cumulant expansion of the potential of mean force of a protein in water [21, 25]. The solvent is
implicit in UNRES and interactions with it are included in the effective potentials. Recently, we developed a scale-
consistent theory of force-field derivation, owing to which the atomic details of a system are implicitly included in
the resulting coarse-grained effective energy function [12, 25]. This feature solves part of the problem of force-field
“stickiness” pointed out in ref. 17, because the force field contains explicit terms that couple the backbone-local and
backbone-electrostatic conformational states, which prevent too compact local chain fragments [26]. On the other
hand, part of the “stickiness” problem in UNRES, as well as in other coarse-grained force fields, is likely to be
caused by the absence of explicit terms that account for the transfer of an interaction site from the solvent to protein
inside. This problem is now being addressed in our laboratory. The upgraded UNRES force field was calibrated
with 9 training proteins of various structural classes [26]; this recent version has been termed the NEWCT-9P force
field. This force field has already been tested in CASP13, demonstrating significant improvement over the previous
versions of UNRES in the ab initio, as well as bioinformatics- and data-assisted prediction [27, 28, 29, 30, 31]. We
used our prediction protocol [27], which is based on Multiplexed Replica Exchange Molecular Dynamics (MREMD)
[32] simulations with UNRES [33]. The results of CASP13 demonstrated that UNRES already performs reasonably
well, the main problem, compared to knowledge-based approaches, being its coarser resolution. Therefore, before
CASP14, we focused on developing UNRES to treat very large systems and not on upgrading the force field. A
concise description of UNRES and its recent modifications is provided in section S-1 of the Supplementary Material.

In this paper we report the performance of UNRES extended to large protein systems with the NEWCT-9P force
field in the CASP14 blind-prediction experiment in the ab initio, contact-assisted, and template-assisted modes. In
each mode, we also carried out Nuclear Magnetic Resonance (NMR)- and Small Angle X-Ray Scattering (SAXS)-
data-assisted predictions, which were very limited this time. In what follows we describe the prediction methodology
that we used in CASP14 (section 2) and the results obtained (section 3). The conclusions from the study are summa-
rized in section 4.

2. Methods

2.1. Prediction protocol

We used the protocols for protein-structure prediction without bioinformatics input [27, 30] and with using the
consensus fragments derived from server predictions [28, 34]. The procedure consists of five stages. In stage 1,
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restraints to assist prediction are prepared. The restraint-penalty functions have been described in detail in our earlier
work [30, 31, 35] and are also summarized in section S-2 of the Supplementary Material. In stage 2, the UNRES
implementation [22, 33] of MREMD [36], with geometry restraints defined in stage 1, if applicable, is used to search
the conformational space of the target protein. The simulation procedure used to handle the CASP14 targets is briefly
described in subsection 2.2.

In stage 3, the conformations from the last section of the MREMD run are processed by using the Weighted
Histogram Analysis Method (WHAM) [37] and their relative free energies are calculated. The purpose of these
calculations is to enable us to estimate the probabilities of the obtained conformations to occur at a desired temperature
(note that a conformational ensemble resulting from MREMD simulations contains conformation simulated at all
replica temperatures). The information from WHAM is carried over to stage 4, in which, first, the probabilities of
the conformations from the simulated ensemble are calculated at a selected temperature (usually 260 K or 280 K).
The ensemble is subsequently subjected to Ward’s minimum-variance clustering [38] into 5 families. For each cluster
(family), the conformation of the cluster that is closest to cluster center is selected as a candidate prediction. The
models are ranked according to the probabilities of the clusters they are selected from. The probability of a cluster is
defined as the sum of the probabilities of all conformations that belong to it. Consequently, the free energies of the
respective clusters are included in candidate-prediction ranking. The procedure of WHAM calculations and cluster
analysis has been described in detail in our earlier work [22].

In stage 5, the five coarse-grained models selected and ranked in stage 4 are converted to all-atom structures, by us-
ing the Protein Chain Reconstruction Algorithm (PULCHRA) [39] and Side-Chains with Rotamer Library (SCWRL)
[40] algorithms and refined by running a sequence of 500 minimization steps, a short (0.3 ps) canonical MD run,
and 500 final minimization steps, by using the Assisted Model Building with Energy Refinement, version 2014 (AM-
BER14) package [41] with the ff14SB force field and Generalized Born Surface Area (GBSA) implicit-solvent model.
The resulting refined all-atom structures are submitted to CASP. The protocol was applied to both monomeric and
oligomeric targets, the difference being only in the generation of the initial structures.

Prediction type is defined by the restraints determined in stage 1. In the CASP14 exercise, we ran unassisted,
contact-assisted and server-model-assisted predictions and, consequently, participated as three groups: the UNRES
group (group 360), the UNRES-contact group (group 096), and the UNRES-template group (group 018), respectively.
The UNRES group used only weak secondary-structure restraints determined by the Predict Secondary Structure
(PSIPRED) server [42] as implemented in our earlier work [30], the UNRES-contact group used the secondary-
structure restraints and the residue-residue contact restraints, which were determined from selected server models
and, for 11 targets, by the DNCON2 method [43], and the UNRES-template group used the restraints from the con-
sensus fragments derived from the server models. For this purpose, the server models were selected based on their
quality assessed by the by means of the DeepQA server [44] and fragments of similar structure were picked to derive
the distance and angle restraints [28, 34]. Additionally, the knowledge-based Dynamic Fragment Assembly (DFA)
pseudopotentials [45, 46] were also determined, which were added to the energy function. There were only three
data-assisted targets, of which only the structure of one NMR-assisted target (T1088) was solved by the completion of
CASP14, the other two targets cancelled. All three UNRES-based groups treated the data-assisted targets. The respec-
tive experimental data are available from https://predictioncenter.org/download area/CASP14/extra experiments/.

A scheme illustrating the above-described protocol is shown in Figure 1. The UNRES model and other elements
of the prediction protocol are described in detail in the references cited above and are also briefly described in sections
S-1 and S-2 of the Supplementary Information, respectively.

2.2. Simulation details (stage 2 of the prediction protocol)

For all targets, except the three data-assisted targets (S1063, N1077, and N1088), we ran temperature MREMD
[36]. For H1081 and T1099, canonical MD simulations of 1,000,000 and 200,000 steps, respectively, were run for
the UNRES and UNRES-contact groups due to time and resource constraints. MREMD is an extension of REMD
[47]. In REMD, a number of independent trajectories are run at different temperatures and, after a given number of
steps (every 10,000 MD steps in this work), the temperatures are exchanged between trajectories according to the
Boltzmann criterion. The exchange occurs if a high-energy structure has a low bath temperature and a low-energy
structure has a higher bath temperature, this enabling the high-energy structure to get out of the region it is stuck in,
and enabling the low-energy structure to explore finer details of the low-energy region of the conformational space. In
MREMD several replicas are run at each temperature to enable efficient exploration of the conformational space [36].
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Figure 1. Scheme of prediction of CASP14 targets by the UNRES, UNRES-contact, and UNRES-template groups. Panel A sum-
marizes the calculation flow and panel B shows the restraints used by the respective UNRES-based groups. The arrows in panel B
connect the restraints to the groups which applied them. The experimental restraints (SAXS and NMR) are printed in grey and the
corresponding boxes and arrows are dashed lines, because these restraints were provided for three CASP14 targets only.

4

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


A. Antoniak et al. / Journal of Molecular Graphics and Modeling 00 (2021) 1–17 5

In this work, the Langevin-dynamics implementation with UNRES [10, 48] with the variable times step (VTS) [48]
and adaptive multiple time step algorithm (A-MTS) [49] was used to run MD trajectories. The replicas were run at 12
temperatures (260, 272, 279, 284, 288, 291, 294, 298, 308, 322, 341, and 370 K), 4 trajectories per temperature (48
trajectories total) per target. Replicas were exchanged every 10,000 MD steps. The spacing of replica temperatures
was determined by using the Hansmann algorithm [50], which maximizes the walk of replicas in the temperature
space and was found to be optimal for most of the proteins. Each trajectory consisted of 20,000,000 steps, 4.89 fs
step length (97.8 ns UNRES time, amounting to about 0.1 ms real time [10]). Water friction was scaled by the factor
of 0.01 in the computation of the friction and stochastic forces, as in our earlier work [10]. Snapshots were collected
every 10,000 steps and the snapshots from the second half of simulations were taken for analysis, which assured
convergence [22, 26].

The energy function was a sum of the UNRES energy and appropriate penalty terms discussed in section S-2 of
the Supplementary Material, as given by eq. (1).

U = UUNRES + wdihVdih + wcontVcont + wtemplateVtemplate + eDFA + wS AXS VS AXS + wNMRVNMR (1)

where UUNRES is the UNRES energy, Vdih is the energy of backbone-virtual-bond-dihedral-angle restraints (that con-
trol the secondary structure), Vcont is the contact-restraint energy, Vtemplate is the template-restraint energy, eDFA is the
energy of the DFA pseudo-potentials, VS AXS is the SAXS-restraint energy, VNMR is the NMR-restraint energy, and the
ws are the weights of the respective terms. For the definition of the restraint terms, see section S-2 of the Supple-
mentary Material. The weights wtemplate = 0 and eDFA = 0 for the UNRES and UNRES-contact groups, additionally,
wcont = 0 for the UNRES groups, wdih = wcont = 0 for the the UNRES-template group, wS AXS = 0 for all targets but
S1063 and wNMR = 0 for all targets but N1077 and N1088.

For the data-assisted targets, Hamiltonian replica exchange was run, with replicas differing in the weight of the
NMR or the SAXS term [eq. (1)]. In these simulations, in addition to running replicas at different temperatures to
enable the conformations heat up or cool down, the weight(s) of the restraint(s) are varied from replica to replica.
Consequently, if a trajectory has a large weight of the restraint potential and is stuck in a conformation that satisfies
part of restraints but is very far from the minimum of the restraint function, while another one has a low restraint-
potential weight but is close to satisfy all restraints, exchanging the restraint weights enables the first one to get out of
the unfavorable region, while the other one to get closer to satisfying the restraints. For S1063, 4 Hamiltonian replicas
were assigned to each of the 12 temperatures listed above, with wS AXS = 0, 143.62, 379, and 1000, respectively, the
statistical weights in WHAM processing being calculated with wS AXS = 1000. For N1077 and N1088, 8 Hamiltonian
replicas were assigned to each temperature, the weights being wNMR = 0, 0.0634678, 0.18963, 0.295432, 0.444649,
0.653766, 0.824766, and 1, respectively, the statistical weights of the conformations being calculated for wNMR = 1.
The weights were selected to maximize the number of walks in the weight space, by using a variant of the Hansmann
algorithm [50], adapted to the weight space.

For most of the monomeric targets, the initial structures for simulations for all groups were randomly picked from
the server models with top DeepQA scores selected to generate restraints for the UNRES-template groups (section
S-2.4 of the Supplementary Material). The server models were, in turn, selected from the ‘stage 2’ models generated
by the servers participating in CASP14, which were available 72 hours after the release of a target. Additionally, we
generated up to 10 models by our in-house installation of the I-TASSER (Iterative Threading ASSEmbly Refinement)
knowledge-based protein-structure modeling software from the Zhang group [51]. All models were scored by using
the DeepQA server [44] and ranked from the highest to the lowest DeepQA score. The numbers of models used to
start simulations are collected in Table S1 of the Supplementary Material. Each initial structure was energy minimized
with the Limited Memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) [52] algorithm. If the final energy was higher
than 105 kcal/mol, the next model was tried. For T1029 and T1033, randomly-generated structures were used to start
MREMD simulations by the UNRES and UNRES-contact groups (Table S1).

For the oligomeric targets, the HHPred server [53] was used to find the oligomers of homologous proteins and
the initial structures were built based on these templates, as in our previous work [30, 31]. The oligomers of weakly
homologous targets were assembled from monomer models (directly from servers or from UNRES-based predictions),
by using the Symmetry Assembler (SAM) program from the Grudinin group [54] or manually, by using PyMol [55],
based on optimal packing or external information of the function of a given protein. Two special cases were H1081
and T1099, which were the largest oligomeric targets.
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H1081 is a 20-mer, each monomer comprising 758 residues, 15,160 residues total. The monomer sequence is
highly homologous to that of acid induced arginine decarboxylase from E. coli (PDB: 2VYC), which forms a decamer.
The 20-mer initial models of H1081 were built by modeling the decamer first, by means of SwissModeller [56].
Subsequently, two decamers were stacked over each other so as to make contacts between residues and rotated by 5,
10, 15, and 20 degrees. Two additional models were created by positioning the decamers side-by-side. These initial
models were energy-minimized and four of them, which had reasonably low energies, were selected for simulations.

The duck hepatitis virus capsid (target T1099) comprises 240 subunits, 262 residues each, 62,880 residues total.
The virus capsid has the T=4 icosahedral symmetry (https://viralzone.expasy.org/808), according to the Caspar and
Klug system [57]. The smallest subunit is a tetramer. We selected Zhang-server model 1, which generated the least
overlaps when assembled into capsid subunits, to construct the initial model of the capsid. In the first step of capsid-
model construction, four monomers were superposed on the the respective tetramer from the known structure of the
human hepatitis B virus (PDB: 3J2V). The distances between the center of the masses of the monomers were increased
to avoid clashes. The structure was then energy minimized with the UNRES force field. Subsequently, a decamer was
built by adding neighboring units. Because the C-terminal parts severely overlapped in the decamers, the C-terminal
section, from residue 171 on, which was largely disordered in the server models, was randomly re-generated to avoid
overlaps and subjected to local energy minimization. Finally, the central tetramer was extracted from the decamer and
its 60 copies were superposed on the 3J2V capsid structure to generate the initial capsid model. Two variants of the
capsid model, differing in the geometry of the randomly-generated C-terminal section, were constructed. Both models
were energy minimized and subjected to conformational search. Because, for this target, the smallest unit containing
all interactions had to be submitted, which was a hexamer, the capsid models obtained in simulations were cut into 60
overlapping hexamers, which were together subjected to cluster analysis.

The resources used varied depending on target size. For targets up to 200 amino-acid residues, the 20,000,000 MD
steps took up to 24 wall-clock hours with 576 cores (12 cores per trajectories). For targets with up to 500 residues,
about 6 wall-clock days were required with these resources. For the largest target, T1099, 200,000 MD steps required
about a 2 days of calculations with 24 cores (for this target we ran only canonical MD). The latter timing corresponds
to about 1 ns of UNRES time or 1 µs of real time (about 500 ns/day), taking into account the at least 1,000-fold time-
scale extension of coarse-grained time-scale compared to all-atom time-scale [10]. It should be noted that all-atom
simulations of a related hepatitis virus took 30 ns/day with 2016 cores of CRAY X6E [58]. We used Cray XC40 of the
Interdisciplinary Center of Mathematical and Computer Modeling of the University of Warsaw, ICM, the Intel Xeon
E5 v3 cluster at the Centre of Informatics – Tricity Academic Supercomputer & Network (CI TASK) in Gdansk, and
the Intel Xeon cluster at the Academic Computer Centre Cyfronet AGH in Krakow.

2.3. Comparison of the models with the experimental structures

The Global Distance Test Score (GDT TS) [59, 60] is a primary measure used in CASP to compare the structures
of the models of proteins or their domains with the respective experimental structures. It is the average of the per-
centage of residues in the computed structure that are within 1 Å, 2 Å, 4 Å, and 8 Å distance, respectively, from their
counterparts in the experimental structure, as given by eq. (2). The GDT TS measure was used throughout this paper
to discuss the quality of UNRES group models.

GDT TS =
GDTP1 +GDTP2 +GDTP4 +GDTP8

4
(2)

where GDTPn is the percentage of the Cα atoms whose distance from the Cα atoms of the experimental structure is
below the n Å cut-off. The α-carbon Root-Mean-Square Deviation (Cα-RMSD or RMSD) was also used for comparing
models with the experimental structures; it is defined by eq. (3).

RMS D = min
t,R

√

√

1
n

n
∑

i=1

‖XTi − (RXM + t)i‖
2 (3)

where XM and XT are the coordinates of the model (M) and the target (T) structures, n being the number of the Cα

atoms, whereas R and t are the rotation matrix and the translation vector of the model with respect to the experimental
structure, which are determined to minimize the RMSD.
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The primary measures of the similarity of the models of oligomeric proteins to the respective experimental struc-
tures, which are used since CASP12 [61, 62], are the Interface Patch Similarity (IPS), and Interface Contact Similarity
(ICS) [61], respectively, which are expressed as the Jaccard coefficient and the F1 score, respectively [61]. The IPS
is the ratio of the number of interface-patch residues common to the model and to the target and that of the number of
all interface residues that occur in the model and in the target [eq. (4)] [61].

IPS (M,T ) = JC(IM , IT ) =
|IM ∩ IT |

|IM ∪ IT |
(4)

where IM and IT are the sets of residues in the interface patch of the model and of the target, respectively, and | . . . |
denotes the number of elements in a set. The ICS [eq. (5)] is the harmonic mean of precision (P; the percentage of
the correct interchain contacts among all interchain contacts in the model [eq. (6)], and recall [R; the percentage of
correctly reproduced native interchain contacts, eq. (7)].

ICS (M,T ) = F1(P,R) =
2 × P(M,T ) × R(M,T )

P(M,T ) + R(M,T )
× 100% (5)

P(M,T ) =
|CM ∩ CT |

|CM |
× 100% (6)

R(M,T ) =
CM ∩ CT

|CT |
× 100% (7)

where CM and CT are the sets of interface contacts present in the model and in the target, respectively.
The other measures of comparison of the models of oligomeric proteins to the respective experimental structure

are the global (over the whole oligomer) RMSD and GDT TS, and the interface RMSD (I-RMSD), which is com-
puted from eq. (3) with the set of superposed atoms reduced to those present in the protein-protein interfaces in the
experimental structure.

3. Results and Discussion

All three UNRES-based groups submitted models of 63 regular single-chain targets, which were not cancelled. We
processed a total 16 (out of 22 total) oligomeric targets, the UNRES group submitting the models of 15, the UNRES-
contact group of 10, and the UNRES-template group of 16 of them. All three groups submitted the models of all 3
data-assisted targets, 5 models of each; however, the SAXS assisted target (S1063) was cancelled and the models of
the first NMR-assisted target (N1077) were not evaluated due to not resolving the structure in time. The single-chain
targets comprised 93 domains, of which 23 were of easy Template Based Modeling (TBM-easy) type, 31 of hard
Template Based Modeling (TBM-hard) type, 15 on the border between Free Modeling and Template Based Modeling
(FM/TBM), and 23 of Free Modeling (FM) type, respectively. Multidomain proteins (MultiDom) constituted a set
of 10 targets. Additionally, 9 more proteins consisted of multiple domains and the submitted models of their whole
structures were also evaluated in CASP. Therefore, in addition to analyzing our results obtained for the the MultiDom
category, we analyzed the results of all 19 multidomain proteins, grouping them into the D0 category (which also
includes the MultiDom targets). The domains and the entire proteins are together denoted by the term Evaluation
Units (EUs) [63]. Altogether, our predictions comprised 112 EUs.

In the subsequent subsections of this section we describe the results of the UNRES, UNRES-contact, and UNRES-
template groups. In all comparisons, we used the values of the measures of the model-target similarity downloaded
from the official CASP14 page (https://predictioncenter.org/casp14/index.cgi) under the “Parseable data” link.

3.1. Regular single-chain targets

3.1.1. General results

The violin plots of the GDT TS distributions of the first models, where the maximum, the minimum, and the
mean values, as well as the approximate distributions are displayed, for all EU categories (TBM-easy, TBM-hard,
FM/TBM, FM, MultiDom, and D0), are shown in Figure 2. The respective plots for the best models and all models
are shown in Figure S2A and S2B and detailed results are summarized in Table S2 of the Supplementary Material,
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Figure 2. Violin plots of the GDT TS of the first models of the respective CASP14 EU types and all EUs for the UNRES, UNRES-
contact, and UNRES-template groups. The mean, minimum, and the maximum values in the violin plots are shown as black
horizontal lines, the GDT TS ranges are shown as vertical lines, and approximate distributions are shown as color-filled shapes.

respectively. Because the UNRES group models of targets T1046s1 and T1046s2 were erroneously submitted twice
as the UNRES and as the UNRES-template models, respectively, these two targets are omitted from the analysis of
the UNRES-template group results.

As could be expected, the distributions are shifted towards higher GDT TS in the order
GDT TSUNRES < GDT TSUNRES−contact < GDT TSUNRES−template. It can, therefore, be concluded that the
model quality increases with increasing the content of knowledge-based information, including the case
of FM-modeling targets. It can also be noted that, for all groups, the GDT TS decreases in the or-
der GDT TSTBM−easy > GDT TSTBM−hard ≈ GDT TSFM/TBM. For the UNRES and UNRES-contact groups,
GDT TSFM > GDT TSMultDom ≈ GDT TSD0, this meaning that the model quality decreases for multidomain targets
compared to single-domain ones. Thus, model accuracy decreases with increasing target difficulty for these two
groups. Conversely, for the UNRES-template group, the GDT TS is slightly greater for the MultiDom and D0 targets,
compared to the FM targets.

3.1.2. Comparison with CASP13

The differences between the average GDT TS values of the first, best, and all models in CASP14 from those ob-
tained in CASP13 by the three groups [the present UNRES group corresponding to the CASP13 UNRES group (group
288), the UNRES-contact group to the CASP13 wf-BAKER-UNRES group (group 492) and the UNRES-template
group to the CASP13 KIAS-Gdansk group (group 208)] are shown in Figure S3A – S3C of the Supplementary Ma-
terial. Because there were only 2 multidomain CASP13 targets, which were assigned to a separate category (FM-sp),
and could be matched to the CASP14 MultiDom category, we compared the average GDT TS of all multidomain
CASP14 targets (the D0 category assigned in this work) with their CASP13 counterparts. Even though the CASP13
targets were different and had presumably different degree of difficulty than those of CASP14, comparing the mean
GDT TS values from both experiments gives some insight on the progress of the prediction procedure.

It can be seen from Figure S3 that there is no major change in the UNRES group model quality except for the
‘Model 1’ predictions of the FM/TBM domains (∆GDT TS=3.12, 77% significance by Student’s test). Overall, ∆GDT TS

is 0.53 (63 % significance) and 0.94 (70 % significance) for the first and the best UNRES models, respectively,
and 0.09 (55 % significance) averaged over all models. This small overall GDT TS increase, is understandable,
because the UNRES force field has not been upgraded since CASP13. The increase was likely caused by starting the
conformational search (which was carried out by MREMD) from multiple server models in CASP14 and from one
server model only in CASP13.

For the UNRES-contact group, the average GDT TS has remarkably increased only for the TBM-easy domains,
with ∆GDT TS of 2.52 (78 % significance), 3.71 (90 % significance) for the first and the best models, respectively,
and by 4.02 (100 % significance) for all models. Small increase in GDT TS is also observed for the TBM-hard
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Figure 3. Violin plots of the GDT TS of the first UNRES-template, selected-server, and all server models of the respective EU types
and all EUs of the single-chain proteins. The mean, minimum, and the maximum values are shown as black horizontal lines, the
GDT TS ranges are shown as vertical lines, and approximate distributions are shown as color-filled shapes.

domains (by 0.95, 0.91, and 1.11 for the first and the best models and on average, respectively), while some decrease
is observed for the FM/TBM and FM targets except for the all-model-averaged GDT TS of the FM/TBM domains.
Overall, GDT TS increased by 2.24 (85 % significance), 2.83 (91 % significance) and 3.07 (100 % significance) for
the first, best models, and all models, respectively.

The greatest increase of GDT TS has occurred for the UNRES-template group (by 3.76, 92 % significance, 3.18,
89 % significance, and 3.65, 100 % significance) for the first, best, and all models, respectively. The GDT TS
decreased with respect to CASP13 only for the FM category domains (3.18, 76 % significance, by 2.03, 69 % sig-
nificance, and by 2.90, 94 % significance for the first, best, and all models, respectively). Still, UNRES-template
performs significantly better than UNRES and UNRES-contact for the FM domains (Figures 2 and S2). Consistent
increase in average GDT TS, for the first, the best, and all models, is observed for all remaining target categories.

3.1.3. Comparison of UNRES-template models with server models

Because the UNRES-template predictions had heavy input from the server models, we compared the average
GDT TS values from the UNRES-template models with those from the server models selected to derive restraints and
those from all server models. The respective violin plots of GDT TS are presented, along with the errorbar plot of
the differences, with boxes indicating the statistical significances of the differences, in Figure 3 and Figure S4C of the
Supplementary Material (first models) and in Figure S4A and S4B of the Supplementary Material (best models and all
models), respectively. Detailed plots for selected targets are shown in Figure S6A – S6D (TBM-easy and TBM-hard
EUs), S7A – S7C (FM/TBM and FM EUs), and S8A – S8B (multidomain proteins) of the Supplementary Material.

Analyzing the results averaged over all models, which have reasonable statistical significance, it can be seen from
Figure 3 and from Figure S4 that the GDT TS values of the UNRES-template models are smaller than those for the
selected server models for the TBM-easy (by 1.14, 85 % significance), TBM-hard (by 1.98, 89 % significance), and
FM/TBM domains (by 1.67, 79 % significance), while they are larger for the FM domains (by 1.12, 76 % significance),
for the MultiDom (by 2.24, 87 % significance) and for the D0 targets (by 1.68, 74 % significance). The results are
qualitatively similar for the ‘Model 1’ and best-model predictions; however, they have lower statistical significance
due to smaller sample sizes. The net improvement over the server models for these two targets categories is consistent
with the results of our previous studies [28, 29, 31, 64] and is a consequence of the physics-based character of
UNRES, which enables it to correct wrong templates and achieve correct packing. For all categories, the average
GDT TS values are greater for the UNRES-template models than those averaged over all server models, which means
that our server-model-selection procedure enables us to pick good models to derive restraints.

The differences of the GDT TS values in the CASP14 and CASP13 experiments for the UNRES-templates, all
server, selected server and for all target categories are shown as errorbar plots in Figure S5A – S5C of the Supple-
mentary Material, the boxes representing their statistical significances superposed. It can be seen that, overall, the
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Figure 4. Plots of the GDT TS of the ‘Model 1’ predictions of the CASP14 EUs obtained by the UNRES, UNRES-contact, and
UNRES-template groups (A) and those from the server models selected to derive the restraints for UNRES-template predictions,
all servers, UNRES-template, and AlphaFold2 (the winner group) (B). The logarithmic scale is used on both axes. The straight
lines correspond to fitting the power function [eq. (8)] to the respective points.

GDT TS of the first, best, and all models from the selected and from all servers increased significantly compared to
CASP13, by about 5 and 15 units, respectively, the statistical significance exceeding 90 %. The greater increase for
all servers compared to that of selected servers demonstrates that server-model quality has overall improved since
CASP13. For all servers, the average GDT TS also increased in all categories, independent of whether the first, the
best or all models are considered. For selected servers, the GDT TS increased for all target categories except for FM
and D0; for the last category UNRES-template has slight GDT TS increase. Together with higher average GDT TS of
the UNRES-template models of the MultiDom- and D0-type targets, compared to that of selected-server models (Fig-
ure S4C of the Supplementary Material), this suggests that UNRES contributes the added value mostly to multidomain
targets.

3.1.4. Dependence of model quality on chain length

To find out how the model quality changes with chain length and how does this dependence relates to that of
the server models and the AlphaFold2 group, which outperformed all other groups in CASP14, we analyzed the
plots of GDT TS of the first models vs. chain length, shown in Figure 4A (the three UNRES-based groups) and B
(AlphaFold2, servers, and UNRES-template). The relationships are similar for other models. The GDT TS values
corresponding to all EUs were used to make these plots. It can be seen from Figure 4A that, albeit the points are
scattered, they are grouped around straight lines in the log-log scale, which suggests a power relationship, as given by
eq. (8).

GDT TS X(N) = bX × N−aX (8)

where GDT TS X is the GDT TS value for an EU model of CASP14 group X, N is the chain length, and aX and
bX are coefficients. The coefficients obtained after least-squares fitting, together with their standard deviations, are
summarized in Table S3 of the Supplementary Material.

For the UNRES and for the UNRES-contact group the weighted percentage of structure within the three RMSD
cut-offs included in GDT TS (1, 4, and 8 Å) drops approximately with the square root of the chain length, this
corresponding to a random-walk behavior. This relationship suggests that the errors in structure propagate without any
correction and the introduction of contact information only uniformly increases the GDT TS, compared to UNRES.
Conversely, the double-logarithmic plots of GDT TS (N) for the UNRES-template group and server models have more
than twice as low slopes than those of UNRES and UNRES-contact, which suggests that the evolution information
inherent in templates results in error correction. As could be expected, the least slope is observed for the AlphaFold2
models. However, even in this case, GDT TS drops with chain length. On the other hand, because the accuracy of
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experimental structures is also usually lower for larger protein, the non-zero slope could result from the error inherent
in the determination of the experimental structures.

3.1.5. Rankings of UNRES-based groups

From section 3.1.2 it follows that of the three UNRES-based groups the UNRES-template group progressed most
significantly (in terms of GDT TS) with respect to CASP13, except for the FM targets. Less significant progress of
the UNRES and UNRES-contact groups resulted from the fact that the UNRES force field was not developed since
CASP13, due to focusing our effort on upgrading UNRES to handle large targets. Because the other groups used
machine-learning methods, the ranking of the UNRES group is only 120 (82 % of all the groups) for the first models
of all targets and 126 (84 % of all groups) for the best models. The UNRES-contact group ranks 111 (76 %) and 114
(85 %) for the first and the best models, respectively. For the FM EUs, the rankings are better: 89 (64 %) and 97
(69 %) for the first and the best UNRES models and 90 (64 %) and 94 (67 %) for the first and the best UNRES-contact
models, respectively. For the UNRES-template group, the rankings are 31 (21 %) and 34 (23 %) for the first and the
best models overall, and 32 (23 %) for both the first and the best FM EU models, respectively. As could be expected
from the GDT TS analysis presented in section 3.1.3, the UNRES-template models of the MultiDom EUs have the
highest ranks, which are 22 (16 %) and 29 (21 %) for the first and the best model, respectively.

3.1.6. Prediction examples

In this section we discuss three examples of UNRES-based predictions of three regular targets, whose experimental
structure have already been released: T1026 (TBM-hard), T1038 (TBM-easy), and T1090 (FM).

Target T1026 (a monomer of the Faba bean necrotic stunt virus; PDB: 6S44) is a β-sandwich single-domain pro-
tein. The T1026-D1 evaluation unit contains residues from 27 to 172. For this target, all UNRES-template models have
higher GDT TS compared to the parent templates (Figure S6C). The UNRES-template model 3, with GDT TS=78.60,
is ranked 7th among all 517 submitted models. The GDT TS plots of the UNRES-template, UNRES-contact, UN-
RES, and other group models and the best models of the UNRES-based groups are shown in Figure S9A of the
Supplementary Material. Although the best UNRES-contact and UNRES models do not rank that well (219 and 294,
respectively with GDT TS of 52.40 and 46.58, respectively), they exhibit the correct topology of the β-sandwich, only
the curvature or packing of its two halves being slightly different than in the experimental structure, this resulting in
lower a GDT TS and a higher RMSD (Figure 5A).

Target T1034, the BIL2 domain from T. thermophila BUBL1 locus (PDB: 6TMM) is a 156-residue β-structure
protein. The T1043-D1 evaluation unit contains all 156 residues of this protein. Although the UNRES-template
models do not have the highest GDT TS compared to the selected-server models (Figure S6A), the average is still
above that of selected-server models. The GDT TS of UNRES-template model 2 is 85.74 and it ranks 19th among
all 559 models of this target. The UNRES-template model 1 ranks 13th with GDT TS=84.94 among 122 ‘Model 1’
predictions. The best UNRES-contact model (model 1) ranks 44th with GDT TS=62.34 and the best UNRES model
(model 1) ranks 505th with GDT TS=42.31. The GDT TS plots and the experimental structure and the best UNRES-
based groups models are shown in Figure S9B and in Figure 5B, respectively. It can be seen from Figure 5B that
the β-sheet topology is gradually distorted when passing from the UNRES-template to the UNRES model, to become
largely different from that in the experimental structure, which is reflected in high RMSD in the UNRES model.

The free-modeling target T1090 (the S. pombe chromatin remodelling protein, PDB: 7K7W) has the α/β-barrel
fold. The T1090-D1 evaluation unit comprises residues from 2 to 192. As in the case of T1034, some of the selected
server models have higher GDT TS than the UNRES-template models; however, the average over UNRES-template
model is higher than that over selected-server models (Figure S7C). The GDT TS plots and best UNRES-based models
are shown in Figure S9C and in Figure 5C, respectively. The best UNRES-template model (model 4, GDT TS=60.71,
RMSD=3.75 Å) ranks 39th out of 517 models submitted for this target, model 1 of this group ranks 16th among all
113 ‘Model 1’ predictions. The best UNRES-contact model (model 1, GDT TS=32.13) ranks 374th and the best
UNRES model 1, (GDT TS=34.79) ranks 368th. It can be seen that the barrel topology is destroyed in both UNRES
and UNRES-contact models.

3.2. Regular oligomeric targets

The composition, difficulty, and method of initial-model generation of the oligomeric targets processed by the
UNRES-based groups are summarized in Table S4 of the Supplementary Material. These targets were divided into 23
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Figure 5. From left to right: the experimental, UNRES-template (UT), UNRES-contact (UC), and UNRES (U) models of targets
T1026-D1 (A), T1034-D1 (B), and T1090-D1 (C). The PDB IDs of the experimental structures, the model numbers, the GDT TS
and Cα-RMSD values of the models are shown below the respective panels. The experimental structures are rainbow-colored
from the N- to the C-terminus, the models are colored according to the corresponding GDT TS-line colors in Figure S9 of the
Supplementary Material.
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Figure 6. Candlestick plots of the Jaccard coefficient [eq. (4) of section 2.3] (A) and F1 score [eq. (5) of section 2.3] (B) of the
first models of the oligomeric targets obtained in CASP13 (red) and CASP14 (green) by the UNRES-based groups and all other
groups. The lower and upper horizontal black lines correspond to the maximum and the minimum value, the central black lines are
the mean values and the boxes are the ranges of the standard deviations.

EUs. The candlesticks plots of the Interface Patch Similarity and Interface Contact Similarity, expressed as the Jaccard
coefficient [JC; eq. (4)] and the F1 score [eq. (5)], respectively [61], averaged over all, first, and the best models of
the oligomeric targets, respectively, obtained by the UNRES, UNRES-contact, UNRES-template, and other groups,
respectively, are shown in Figure 6A and B and in Figure S10A – S10D of the Supplementary Material, respectively.
The numerical values of these two measures for the consecutive targets are collected in Table S5 of the Supplementary
Material. Because of a small number of targets, we did not do the plots for the respective target categories.

It can be seen from Figure 6 and from Figure S10 that, in both CASP13 and CASP14, the mean values of the
JC and the F1 scores are comparable for all UNRES-based groups. The average scores calculated over all groups
are also comparable to those calculated over the UNRES-based models. However, the maximum values are greater
for the UNRES-template group compared to the UNRES and the UNRES-contact group and the maximum values
from other groups are greater than those from the UNRES-template group. It can also be noted that the F1 and JC

values corresponding to the UNRES-template group and to other groups are significantly lower compared to those
of CASP13, which can be explained by the greater difficulty of the CASP14 target compared to the CASP13 targets,
regarding both total number of residues and assembly complexity [65] (Table S5).

Of the UNRES-based groups, UNRES-template ranked best in the oligomeric-target-prediction category. For the
first models, the rankings are 8 (33 % of all participating groups) in the easy-, 14 (40 %) in the medium-, 22 (67 %) in
the hard-target category, and 15 (38 %) for all targets, respectively. For the best models, the rankings are 11 (46 %),
16 (46 %), 22 (67 %), and 17 (44 %) for easy, medium, hard, and all targets, respectively. The overall ranks of the
UNRES group are 24 (62 %) for the first and 23 (59 %) for the best models, and those of the UNRES-contact group
are 26 (67 %) for the first and 25 (64 %) for the best models, respectively.

As follows from Table S5, some of the predictions ranked very well. For the medium-difficulty target T1087o,
which is a homodimer composed of two antiparallel-packed helical hairpins, each having additionally a long polypro-
line helix, UNRES and UNRES-template ranked 4 (model 1) and 6 (model 1), respectively. For the homotetrameric
target T1073, model 5 of the UNRES group ranked 8. For the heterodimeric target H1047, UNRES model 2 ranked
10. Because the experimental structures of these proteins have not yet been released, we do not show the pictures
of our models. Instead, as the illustration of the capacity of the new upgraded UNRES to handle large system, in
Figure 7, we show the structure of the UNRES-template model of whole duck hepatitis capsid (target T1099o), com-
pared with the respective experimental structure (PDB: 6VGH). For this target, only the subunits were evaluated and
UNRES-template ranked 60 for unit T1099ov2 (model 3), 73 for unit T1099v0 (model 1), and 75 for unit T1099ov1
(model 5), respectively, out of 136 submitted models total (Table S5).

3.3. Data-assisted targets

As mentioned, we treated 3 data assisted targets: S1063 (SAXS-assisted), N1077, and N1088 (both NMR-
assisted). The structure of S1063 has not been solved and the target has been cancelled; however, we managed to

13

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


A. Antoniak et al. / Journal of Molecular Graphics and Modeling 00 (2021) 1–17 14

Figure 7. Experimental structure (left) and UNRES group model 1 (right) of target T1099o (duck hepatitis virus capsid, 260 mers).
The chains are colored differently to show symmetry elements.

produce models, which are in good agreement with the SAXS data and, therefore, we present these results. The target
is a homotetramer and most of the servers return a long α-helix with a small N-terminal, largely β-structure, part for
a monomer. The initial structures for UNRES simulations were generated by manual assembly of the helices from
tFold-IDT model 1. All structures consistent with the experimental SAXS data consist of long rod-like shapes, in
which the pairs of dimers are connected by the N-terminal sections. The plots of the experimental distance distribu-
tion and those corresponding to the 5 models from the UNRES-template group are shown in Figure S11A, while the
‘Model 1’ prediction is shown in Figure S11B of the Supplementary Material.

Of the two NMR-assisted targets, the structure of N1088 has been solved but has not been published yet. A picture
of the structure is available from the CASP14 web page under the “Results(Automatic Evaluation)→Assisted→NMR”
tab. The structure is a 226-residue β-barrel, part of which seems to exist in two states [66], the N1088-D1 evaluation
unit was distinguished, which consists of residues 1-30 and 90-226. The templates to derive restraints for the UNRES-
template group and the starting models were taken from BAKER-ROSETTASERVER models 1–5, FEIG-S models
1, 2, 4, and 5, tFold-IDT models 3–5, and tFold models 3 and 5. The UNRES-template model 1 of the entire target
ranked 2 (out of 9 groups) among the first models, with GDT TS=61.06, while the best UNRES-template models
(model 3), with GDT TS=62.61, ranked 3 out of all 43 models. For N1088-D1, the UNRES-template model 1 ranked
1 (out of 9 groups), with GDT TS=69.13, and the best UNRES-template model 2 ranked 2 out of 43 models, with
GDT TS=70.48. The UNRES-contact and UNRES groups did not fare that well, ranking 6 and 7, respectively, and
18 and 22, respectively, for the first and the best models, respectively. The GDT TS graphs of the UNRES, UNRES-
contact, and UNRES-template models in comparison with those of other groups are shown in Figure S12A of the
Supplementary Material, while the best UNRES-template model is shown in panel B of the Figure.

4. Conclusions

We tested the ability of the UNRES force field to predict protein structures in unassisted and bioinformatics-
assisted mode in the CASP14 experiment. In this CASP experiment, the number of experimental-data-assisted targets
was very limited this time (1 target with structure solved by the completion of CASP14) and, therefore, UNRES could
not be reasonably tested in this category. UNRES was upgraded to handle very large targets, which enabled us to
simulate the 15,160-residue 20-mer (H1081) and whole virus capsid (T1099o; 68,800 residues).

Because the UNRES force field was not upgraded since CASP13, the performance of unassisted UNRES (the UN-
RES group) remained largely unchanged in terms of GDT TS for the monomeric (Figures S3 of the Supplementary
Material) and in terms of the F1 and JC measures for the oligomeric targets (Figure 6 and Figure S10 of the Supple-
mentary Material). The performance of contact-assisted UNRES (the UNRES-contact group) improved slightly for
monomeric targets (Figure S3 of the Supplementary Material), owing to improved method of contact acquisition (from
server models ranked according to DeepQA [44] or by using DNCON2 [43]). The largest improvement for single-
chain targets was achieved by the server-model-assisted protocol (UNRES-template; Figure S3 of the Supplementary
Material). However, this improvement is largely due to the improvement of the server models used to derive restraints
(Figure 3 and Figure S4 of the Supplementary Material). The most significant improvement of the UNRES-template
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group over the server models selected to derive restraints was achieved for multidomain proteins; for this category,
the improvement over CASP13 was also very significant (Figure S3 of the Supplementary Material). Interestingly,
a significant improvement over the server models was also achieved for the FM targets, while the performance of
server-model-assisted UNRES in this category deteriorated since CASP13. This observation suggests that the FM
targets were more difficult in CASP14 than in CASP13. Similarly, the overall performance of the UNRES-template
group and of other groups on oligomeric targets was worse in terms of F1 and JC , compared to CASP13 (Figure 6
and Figure S10 of the Supplementary Material), which probably results from larger size and greater complexity of the
CASP14 oligomeric targets compared to the respective CASP13 targets [65].

One conclusion from this study is that UNRES needs to be improved in terms of local accuracy to achieve better
resolution. The respective work is currently underway in our laboratory. On the other hand, the analysis of the
dependence of GDT TS on protein size shown in Figure 4 suggests that GDT TS decreases with the square root of
the number of residues for the UNRES and the UNRES-contact groups (a random-walk behavior). For the UNRES-
template group and the server models, the GDT TS decreases with the power of 0.2-0.24 of the number of residues,
and the exponent is only 0.11 for the best-performing AlphaFold2 group. This observation strongly suggests that the
force field alone is missing important long-range correlations, which are empirically included in knowledge-based
methods through evolutionary information. Such correlations could emerge if the force field was detailed enough;
however, this does not seem viable even if all-atom force fields are considered. Therefore, longer-range correlation
terms in the cluster-cumulant expansion of the potential of mean force [21, 25] should probably be included in UNRES
and other coarse-grained force fields that work in the ab initio mode to improve the quality of the modeled protein
structures.
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