
J Supercomput (2013) 63:46–71
DOI 10.1007/s11227-010-0499-7

Modeling, run-time optimization and execution
of distributed workflow applications in the JEE-based
BeesyCluster environment

Pawel Czarnul

Published online: 13 November 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract The paper presents a complete solution for modeling scientific and busi-
ness workflow applications, static and just-in-time QoS selection of services and
workflow execution in a real environment. The workflow application is modeled as
an acyclic directed graph where nodes denote tasks and edges denote dependencies
between the tasks. The BeesyCluster middleware is used to allow providers to pub-
lish services from sequential or parallel applications, from their servers or clusters.
Optimization algorithms are proposed to select a capable service for each task so that
a global criterion is optimized such as a product of workflow execution time and cost,
a linear combination of those or minimization of the time with a cost constraint. The
paper presents implementation details of the multithreaded workflow execution en-
gine implemented in JEE. Several tests were performed for three different optimiza-
tion goals for two business and scientific workflow applications. Finally, the overhead
of the solution is presented.

Keywords Workflow execution · Just-in-time service selection · Workflow
management environment · Workflow applications · Scientific and business
workflows

1 Introduction

There is a need for integration of various software components for a variety of ap-
plications, in various fields. In scientific computing, highly dedicated codes written
in languages such as C++/C/Fortran etc., either sequential or parallel, could be used
together to achieve a complex task. Grid computing [28, 31, 33] allows coordinated

P. Czarnul (�)
Department of Computer Architecture, Faculty of Electronics, Telecommunications and Informatics,
Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
e-mail: pczarnul@eti.pg.gda.pl

mailto:pczarnul@eti.pg.gda.pl

Modeling, run-time optimization and execution of distributed 47

resource sharing and integration of computational resources and building scientific
workflows. In a business service oriented environment, providers expose their ser-
vices using standards such as WSDL, UDDI, which allows others to invoke the ser-
vices using SOAP. Integration into workflows with QoS service selection is usually
performed [4, 5]. Services are also integrated with each other in context-aware appli-
cations in ubiquitous computing [15, 17].

Integration requires interoperability between services, optimization of QoS goals
while possibly meeting other QoS constraints, as well as security. The paper presents
a complete solution addressing all these issues with an ability to cope with runtime
service failures and unavailability.

Section 2.1 presents current approaches and models for integration of services
while Sect. 2.2 describes workflow management systems for scientific and business
environments. Section 3.1 defines the workflow model used by the proposed work-
flow management environment in BeesyCluster which is presented in Sect. 3.2. Sec-
tion 3.3 presents its editor, Sect. 3.4 the multithreaded workflow execution engine
in JEE using JMS, Sect. 3.5 optimization algorithms implemented by the author,
Sect. 3.6 workflow monitoring. Section 4 presents results for three different optimiza-
tion goals for two applications that can be regarded as extendable templates useful for
business and scientific purposes. Section 4.1 shows the overhead of the execution en-
gine and finally Sect. 5 summarizes the work.

2 Related work

2.1 Approaches and models

The most common approach [4, 28, 31] proposes to model a workflow or a com-
plex task as an acyclic directed graph G(V,E) where nodes denotes simple tasks
out of which the workflow is composed. Edges denote dependencies between partic-
ular tasks and are used to model a sequence of tasks, parallel execution of tasks or
synchronization.

Traditional approaches associate each task with code that is mapped to one of sev-
eral resources to be executed [3, 22]. In service oriented approaches it is assumed
that each task has a set of alternative services associated with it, which are capa-
ble of executing the given task i.e. to perform the function defined for the task and
generate needed output out of the given input data. Such services may be offered
by their providers on various terms such as specified execution time and cost. The
workflow is called abstract if there are more than one service assigned for at least one
node. In this case, one service needs to be chosen for each node to perform the given
task [4, 28, 33, 34]. Services must be chosen in such a way so that a certain criterion
is minimized or maximized, possibly also meeting other constraints. As an example,
the optimization goal can be minimization of a linear combination of the workflow
execution time and the total cost of selected services or minimization of the workflow
execution time with an upper bound on the total cost of selected services [33, 34]. The
workflow is called concrete if there is one service associated with each task. Such a
model is suitable for both scientific [31, 33] and business applications [4, 5]. Schedul-
ing in utility grids [31, 33] or workflow scheduling in grids [28] consider selection of

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

48 P. Czarnul

one service for each task and scheduling service execution considering service exe-
cution times and costs. Business applications [4, 5] usually consider execution time,
cost, availability [4, 20, 34, 35], accessibility [20], fidelity [7] or conformance [20],
security [20], reputation [34].

Yu and Buyya [29] points out that scheduling can be global/local and central-
ized/distributed. An optimization algorithm may use either global knowledge about
the workflow including all nodes and services or only local knowledge about a part
of the workflow or even one node to select services. The former may be required
to meet global constraints such as a constraint on the total cost of services selected
for all tasks. Also, one centralized manager may make decisions or the latter may be
taken in a distributed way.

Finally, service selection/scheduling may be performed statically before the exe-
cution of the workflow starts. However, in highly dynamic environments when new
services appear and existing disappear and when conditions such as execution times,
costs and others change [29], just-in-time decisions are necessary. In this case, a ser-
vice is chosen for a particular task just before the task is to be executed. Şensoy and
Yolum [23] presents an approach on how to select the best service selection mecha-
nism to satisfy the client’s requirements by observing results from various approaches
and learning in a dynamic environment.

There also exist AI-based approaches [21] such as rule-based planning that distin-
guish rules allowing to determine if services may be connected. Output of one service
must be compatible with input of another. The client can formulate a desired effect or
goal that must be achieved and an algorithm, based on the knowledge about functions
and effects, input and output of various services, is able to define intermediate goals
and select services to achieve the desired goal.

Apart from the aforementioned workflow model, Petri nets and finite automatas
are used to model workflow applications in ubiquitous computing [2]. In this case, a
service can be invoked in a certain context which is assumed to be any information
describing the situation of the given object. uWDL [15] specifies nodes, links along
with the processing flow and context information.

2.2 Workflow management systems for distributed applications

Yu and Buyya [29] provides detailed characterization of existing workflow man-
agement systems for grid environments and compares Gridbus, Kepler [18], Pega-
sus [13], Triana [19], P-GRADE [16], Directed Acyclic Graph Manager (DAGMan),
ICENI, GridFlow, GrADS, Askalon, UNICORE, Taverna, GridAnt. These systems
use middlewares or service technologies such as Globus Toolkit (in Kepler, Askalon,
Gridbus, Pegasus, ICENI, Triana), Unicore (in Unicore) or Web Services (in Triana,
Taverna, Askalon, Kepler).

In service oriented computing, the basic standards and technologies used for Web
Services include WSDL, SOAP and UDDI. The latter are complemented with stan-
dards such as RDF, OWL, OWL-S allowing definition of ontologies representing
the domain of services. Namely, concepts that are used in service descriptions and
queries for services are linked semantically in the ontology. This allows intelligent
semantic search for services matching a textual user query in terms of IOPE (input,

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Modeling, run-time optimization and execution of distributed 49

output, precondition, effects) and using ontologies [24]. The IOPE of a service along
with QoS parameters such as the execution time, cost, reliability, accessibility [4, 34]
can be described in OWL-S and mapped to UDDI [24]. Meteor-S [1] allows this type
of search along with selection of best services, composition and workflow execution.
Business workflows are often defined in the BPEL (Business Process Execution Lan-
guage for Web Services) format for which there exists several execution engines such
as Silver [14] for mobile devices and desktop systems, bexee [25], The ActiveBPEL
Engine [26].

For ubiquitous computing, FollowMe [17] is a platform that allows definition of
workflows using CPDL (Compact Process Definition Language) including events
triggering processes/activities. It allows running a workflow application on nodes
managed by FollowMe.

In this paper, the author presents a model and an integrated environment for def-
inition, run-time optimization and execution of scientific and business workflow ap-
plications when the availability of services is limited and changing in time. Before
the workflow is run, services are chosen statically for workflow tasks based on the
information available. Services are reselected just-in-time if some selected services
become unavailable, new ones appear or the conditions have changed. Practical work-
flow applications for scientific and business uses are modeled and run in this environ-
ment developed by the author [9] in BeesyCluster.1

The contribution of this work is the workflow management environment that uses
BeesyCluster, implemented using Java Enterprise Edition, as a middleware for pub-
lishing and running services. The motivation is to make use of many distinct features
of the latter for service integration. BeesyCluster [9, 12] allows users to access their
user accounts on distributed clusters or servers via WWW/Web Services and publish
sequential or parallel applications, both scientific and business, as services [12] in
a matter of seconds. The provider specifies the conditions including the price of a
service and other BeesyCluster users who can invoke such services via WWW/Web
Services or can later integrate them into own workflows. BeesyCluster allows very
quick registration of new resources such as clusters, servers and workstations in the
system as well as registration of user accounts to be used by BeesyCluster. This is
different from many other workflow management systems which use middlewares or
service technologies such as Globus Toolkit (in Kepler, Askalon, Gridbus, Pegasus,
ICENI, Triana), Unicore (in Unicore) or Web Services (in Triana, Taverna, Askalon,
Kepler) [29]. BeesyCluster only requires adding corresponding entries in the database
storing IPs of accessed locations and saving corresponding security certificates. This
is because ssh is used for establishing communication with the resources. The pro-
posed environment allows integration of services, especially bridging business and
scientific worlds by integration of two types of services. Secondly, the environment
allows plugging in various optimization algorithms for both static and dynamic se-
lection of services as well as partitioning of data for parallel computations [10] as
well as intelligent searching for services for particular workflow tasks [11]. Integra-
tion into workflows, security, file transfer, payment for services are all provided by
BeesyCluster.

1https://lab527.eti.pg.gda.pl:10030/ek/AS_LogIn.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://lab527.eti.pg.gda.pl:10030/ek/AS_LogIn
http://mostwiedzy.pl

50 P. Czarnul

3 A JEE-based workflow management environment

3.1 Model with just-in-time service selection

A workflow application is a complex task represented by an acyclic directed graph
G(V,E) where each vertex corresponds to a simple task and directed edges denote
dependencies between the simple tasks. We assume that the user defines input files
and the files that will be passed to particular initial tasks of the workflow before the
workflow is executed. The model distinguishes the following:

1. ti—denotes the ith task of the workflow.
2. di—denotes the size of input data passed to ti , di is given.
3. sij —denotes the j th service available to execute task ti . Only one service needs

to be chosen to execute this task. Furthermore, each service has QoS parameters
associated with it, in particular:

– cij —the cost of performing the service.
– tij —the time for performing task ti by service sij .
– Pij —the provider of service sij .
– Nij —the node on which service sij runs while spn denotes the speed of node n.
– dij —the size of data processed by service sij . Equal to di if the service is se-

lected or 0 otherwise. dijkl denotes the size of data passed from sij to skl .
– Possibly other QoS parameters such as the reliability of the service, confor-

mance with established standards etc.

It is assumed that each service is installed on a node e.g. a single computer, a clus-
ter etc. The value of a particular parameter of such a node results from a reduction
of values of the resources the service uses. For instance, the speed of a cluster on
which a service is installed denotes the total speed considering all cluster nodes
used by the service.

4. tcomm
ijkl —communication time of data of size dijkl sent from service sij to skl . This

depends on the nodes Nij and Nkl the services run on and is modeled as a sum of
startup time and size of data divided by bandwidth [27]:

tcomm
ijkl (dijkl) = t

startup
Nij Nkl

+ dijkl

bandwidthNij Nkl

.

5. t st
i : i ∈ |V | is the time at which service sij chosen to execute ti starts. Then
∀i,k:(vi ,vk)∈E

t st
k ≥ t st

i +
∑

j

tij +
∑

j,l

tcomm
ijkl (1)

tij is larger than 0 only for one j as only one service is selected. Similarly, for the
given i and k tcomm

ijkl is larger than 0 only for one pair of j and l since only one
service per node i and one per node k are selected. On the other hand, there may
be several tasks preceding task tk .

We consider three alternative optimization criteria where tworkflow (∀i,j tworkflow ≥
t st
i + ∑

j tij + ∑
j,l t

comm
ijkl) is the time when the last service finishes. The goal is to

select such sij for every ti so that one of the following is minimized:

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Modeling, run-time optimization and execution of distributed 51

1. vMIN_TC_PRODUCT = tworkflow(
∑

dij cij) (problem MIN_TC_PRODUCT)—pro-
duct of workflow execution time and the sum of costs of selected services or

2. vMIN_T_C_BOUND = tworkflow—minimization of the workflow execution time with
an additional constraint on the total cost of selected services i.e.

∑
dij cij < B

where B is the budget (problem MIN_T_C_BOUND) or
3. vMIN_TC_SUM = αtworkflow + ∑

dij cij —minimization of a linear combination
of workflow execution time and the total cost of selected services (problem
MIN_TC), α > 0.

Assuming that services for each task are found and selected before the execution
of the workflow starts, it may turn out that the particular service is not available at
the time the given task is to be executed. Also, the service may fail. In these cases,
another service for the task needs to be chosen just-in-time i.e. dynamically.

As an example, the workflow shown in Fig. 1 represents assembly of a product
using components acquired in parallel followed by integration and subsequent paral-
lel actions. This example can be regarded as a general template suitable for various
business or scientific applications such as:

1. Task t3 represents producing a jam out of various fruits (t1 and t2 correspond to
purchasing fruits) or assembly of toys out of simple components or assembly of
computer systems using individual components (t1 and t2 represent purchase of
components), tasks t4, t5, t6 represent subsequent distribution of final products to
various markets.

2. t1 and t2 represent collection of data, t3 integration and t4, t5, t6 represent publish-
ing the data in information portals.

3. t1 and t2 represent parallel processing of data on various HPC clusters, t3 repre-
sents data integration and t4, t5, t6 correspond to subsequent parallel processing.

For the assembly/distribution example, it is assumed that 13 units of component
A (task t1) and seven units of component B (task t2) are bought. There are several

Fig. 1 Example of an assembly/distribution workflow

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

52 P. Czarnul

Table 1 Service data for assembly/distribution workflow

Service Workflow node Time per unit [s] Cost per unit [mEUR]

pd1/pd11 1/2 8 12

pd2/pd12 1/2 8 12

pd3/pd13 1/2 9 10

pd4/pd14 1/2 9 10

pd5/pd15 1/2 10 8

pd6/pd16 1/2 10 8

pd7/pd17 1/2 11 7

pd8/pd18 1/2 11 7

pd9/pd19 1/2 12 6

pd10/pd20 1/2 12 6

is 3 8 32

ds1 3 3 12

ds2 3 5 6

ds3 3 7 4

ds4 4 3 12

ds5 4 5 6

ds6 4 7 4

ds7 5 3 12

ds8 5 5 6

ds9 5 7 4

providers offering each component on various terms such as delivery time tij and
cost cij (services pd1 to pd10 for task t1 and pd11 to pd20 for task t2). As usual,
lower delivery time results in a higher cost (Table 1).

Task t3 corresponds to the integration of components into a final product. There is
only one service is with the cost equal to the own costs and markups of the producer
of the product i.e. the entity simulating the workflow.

Finally, tasks t4, t5 and t6 correspond to distribution of the final product to three
various markets. For each, a distributor needs to be chosen (out of ds1 to ds3 for task
t4, ds4 to ds6 for task t5, ds7 to ds9 for task t6) for sending eight, five and seven
units, respectively.

3.2 BeesyCluster’s architecture and services

The author has implemented an environment for modeling and execution of work-
flow applications with just-in-time service selection based on the proposed model.
The environment is based on the BeesyCluster middleware. The latter is a JEE-based
front-end and middleware that allows publishing and consuming services offered by
various providers and consumers from locations managed by the former. BeesyClus-
ter [9, 12], designed and co-developed by the author, was deployed at Academic
Computer Center in Gdansk, Poland on large IA64 processor clusters and on a cluster

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Modeling, run-time optimization and execution of distributed 53

and servers at Faculty of Electronics, Telecommunications and Informatics, Gdansk
University of Technology.

A general architecture of the system is presented in Fig. 2. The user sets up an
account and registers possibly several system accounts on distributed clusters or
servers. The system accesses these accounts via SSH which makes it very easy to
add new servers or clusters to the system, either managed by individuals, companies
or universities. BeesyCluster allows the registered user to access these accounts via
WWW (Fig. 3) and Web Services [12]. It allows management of files such as copy-
ing, editing, management of directories and archives and running Unix applications
interactively or using a graphical interface through a browser as if they were run lo-
cally. Computational parallel applications available on accounts on high performance
clusters are additionally supported. BeesyCluster hides details of queuing systems

Fig. 2 BeesyCluster architecture

Fig. 3 Publishing a service in BeesyCluster

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

54 P. Czarnul

such as PBS, LSF, LoadLeveler by choosing a queue automatically based on the re-
quested number of processors. It also allows monitoring statuses and browsing results
of tasks.

Furthermore, each user who has access to any application installed on his/her ac-
count, either sequential or parallel, can publish it as a service in the BeesyCluster
middleware (Fig. 3) and grant access to other BeesyCluster users on specified terms.
The provider can define the cost of the service, periods of time when the service is
available and others. Each user has a virtual wallet which can be used to buy services
published by others. When a client runs a service offered by a provider, BeesyCluster
provides a sandbox to run the service securely on the provider’s account. Since, in
general, users can publish either business services (such as ordering of goods, printing
photos, translation etc.) as well as computational ones (such as parallel processing of
data like FFT, matrix multiplication etc.), it makes BeesyCluster a platform allowing
integration of businesses and science.

Furthermore, the workflow management environment developed by the author
within BeesyCluster extends previous works [9] and allows the following:

– Incorporation of such services into workflows as described by the model.
– Management of queuing systems. If the cluster on which the parallel application

represented by a service executes uses a queuing system (e.g. PBS, LSF) it will be
used and results fetched transparently to the user.

– Support for a complete workflow creation and execution cycle i.e.:
– workflow editing using a GUI.
– workflow optimization (service selection and data distribution).
– workflow execution in a distributed environment based on the schedule and dis-

tribution.

3.3 Workflow modeling applet

The author has developed a workflow editor in BeesyCluster as a Java applet shown
in Fig. 4 implementing the model proposed in Sect. 3.1. The applet communicates
with BeesyCluster’s server using secure sockets. It consists of a panel on which the
user can draw the workflow graph. The user is presented with a list of services avail-
able, either own or made available by other BeesyCluster users. One of BeesyCluster
modules allows automatic registration of applications installed from Linux packages
such as rpm or deb as BeesyCluster services [11]. In this case, categories and de-
scriptions embedded in the packages are used to describe the service automatically.
An intelligent search engine allows searching for services capable of performing the
given function. Keywords from the query are searched for in service description,
taking into account WordNet synonyms. This allows automatic and fast creation of a
large service database out of existing applications and using an efficient search mech-
anism. The user, knowing the requirements of a particular task i.e. what function it
should perform, what data it has to take and produce, can use the search mechanism
to obtain services whose descriptions contain concepts best matching the concepts in
the task requirements [11]. Out of the services presented, the user can narrow the list
and assign services capable to perform the given task to the node representing the
latter. For each service, apart from the defined cost and execution time, the author

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Modeling, run-time optimization and execution of distributed 55

Fig. 4 Assembly/distribution workflow in BeesyCluster’s editor

of a workflow can define the number of processors to be used, email for notification
about status and errors, extensions of output files which will be transferred to follow-
ing tasks or whether the service should be executed for each input file individually or
once. In the latter case, the service will read all input files from its dedicated direc-
tory. After editing of the workflow has been finalized, the user must indicate paths to
the input data located on any servers or clusters available to him/her. The system then
generates a description of the model which is sent by the applet to BeesyCluster’s
server and saved in a database. The implementation assumes that data are stored in
chunks in separate files and that data sizes from the model, i.e. di , correspond to the
number of files processed by the given task and dijkl corresponds to the number of
files copied between tasks ti and tk .

The user only specifies a workflow application and can invoke execution of the
workflow. If new services appear, conditions such as costs have changed, or any of
the services becomes unavailable or fails at runtime, the execution engine will auto-
matically reselect a new service so that the specified criterion is optimized. This is
very useful for both:

Scientific workflows—sometimes a cluster or a cluster node becomes unavailable
due to maintenance, network or hardware failure. It is also possible that due to pro-
gramming errors, the application published as a computational service fails. The
execution engine will repeat computations using an alternative service, again con-
sidering optimization criteria. In BeesyCluster, each service may be a sequential or
a parallel application to be run using the queuing system on the cluster it has been

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

56 P. Czarnul

installed on. The BeesyCluster middleware hides details of queuing the application.
Furthermore, many scientific workflows consider the problem of finding resources
to run the workflow tasks rather than choosing services to execute the tasks [3, 22].
The proposed model addresses this issue. If there are multiple services with same
executables installed on various clusters or servers of various speeds, and accessible
at various prices, choosing a service is equivalent to finding the best resource to run
the task on.

Business workflow—in a dynamically changing market with intense competition,
new businesses as well as offers constantly appear and change. In such an envi-
ronment, it is very likely that the set of services available for a task will differ from
the one available before the workflow execution starts. As above, this requires just-
in-time service selection considering available offers. Businesses can request regis-
tration of their own servers in BeesyCluster from which, upon acceptance, will be
able to publish services allowing ordering goods they produce such as TV sets, fruits
etc. or services they offer like consulting, translation etc. Registration requires only
adding the server’s name and IP address to the database and can be done in seconds.
Contrary to computational services on dedicated clusters, no queuing system will be
used in this case and the service is invoked immediately.

3.4 Multithreaded workflow execution engine

The workflow is stored in several tables in the BeesyCluster database and processed
using Enterprise Java Beans (EJBs) in the JEE-based BeesyCluster system (Fig. 5).
One object of SIWorkflowNodeBean represents a particular service used in the
workflow and contains in particular:

workflowId—identifier of the workflow whose node has this service associated
with.
nodeId—the node the service is assigned to.
serviceIndex—an index of the service in the set of services assigned to a partic-
ular workflow node.
runTime—execution time of the service for one data unit.
runCost—cost of running the service for one data unit.
clusterId—identifier of the cluster/server where the service is installed on.
filePath—the application/command published as this service.
queued—indicates whether the application is queued or run immediately.
outputFiles—defines (possibly using wild cards) files that will be copied to fol-
lowing services.
min/maxProcs—number of processors to be used by the application.
startDay/Hour—when to run the application, immediately if not specified.

BeesyCluster offers a management panel implemented by ServiceIntegra-
tionServlet where all available workflows are listed and can be run from (Fig 6).
When the particular workflow is selected for the run, the servlet does the following
(Fig. 7):

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Modeling, run-time optimization and execution of distributed 57

Fig. 5 Class diagram of core workflow classes

1. Creates an SIWorkflowInstance object which contains data for the particu-
lar instance of the workflow along with a name, description and the user running
it.

2. Creates and uses a WorkflowMappingSolver to find an initial assignment
of services to workflow nodes. The solver uses a file with workflow constraints.
As described in Sect. 3.5, BeesyCluster supports several algorithms for service
selection for the criteria mentioned in Sect. 3.1, either optimal or heuristic, using
global or local knowledge about the workflow. For instance, an algorithm with
a global knowledge may be run before the workflow starts and a fast heuristic
algorithm may be run for just-in-time reselection when new services appear or
existing services are not available.

3. Creates SIWorkflowNode objects for all workflow nodes out of the data stored
in the database. In particular, ServiceIntegrationServlet creates dedi-
cated directories on the nodes where the available services are located. This step
is performed in parallel by a pool of threads.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

58 P. Czarnul

Fig. 6 Workflow panel in BeesyCluster

4. Finds nodes corresponding to the initial tasks as well as workflow input data from
SIWorkflowInput.

5. For each initial task, it checks whether the previously selected service is available;
if not, a new alternative service is found using one of available algorithms.

6. Several DataCopier threads are spawned for fast and parallel copying of input
files to the locations of selected services.

7. After the copying threads synchronize using join, an JMS message is sent for each
following task. Each message starts execution of the onMessage() method of
SIMessageBean JMS bean which is responsible for execution of each service.

SIMessageBean bean executes the service as follows (Fig. 8):

1. Executes the given service using the input files already in the dedicated directory
on the server/cluster the service is installed on. The service may be invoked for
each individual input file or once in which case the service may read and process
all the input files at once. This depends on the flag set for the node in the editor.
If the queued value is non-zero then BeesyCluster will choose a queue on the
cluster based on the number of processors requested for the service and submit
a request to the queuing system e.g. PBS or LSF. Otherwise, the application as-
sociated with the service is run immediately. Communication with the cluster or
server is done using the jsch library.

2. Each SIMessageBean thread increments a counter of already executed tasks
preceding any of its successors by calling a synchronized method on the shared
WorkflowMappingSolver object. This way each thread is able to determine
if it has just executed the last predecessor of the given successor task [9]. If this is
the case, BeesyCluster checks availability of the service associated with the fol-
lowing task. If not available, one of service selection algorithms is run to reselect
the service.

3. The thread reads output files from the service using outputFiles of SIWork-
flowBean and copies to locations associated with following services. To min-
imize the copying time, if there are many small files, these are packed into an

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Modeling, run-time optimization and execution of distributed 59

F
ig

.7
In

te
ra

ct
io

n
di

ag
ra

m
:s

ta
rt

up
of

th
e

w
or

kfl
ow

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

60 P. Czarnul

F
ig

.8
In

te
ra

ct
io

n
di

ag
ra

m
:e

xe
cu

tio
n

of
a

se
rv

ic
e

fo
r

w
or

kfl
ow

no
de

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Modeling, run-time optimization and execution of distributed 61

Fig. 9 Communication
diagram: communication
between workflow nodes

archive that is copied and unpacked on the destination node. Otherwise, large files
are copied individually as packing would introduce additional overhead in this
case. If the service fails later, a new alternative must be found and data copied
again.

4. For each following nodes: if the thread has just executed the last predecessor task,
a new JMS message is sent along with parameters for invoking the given succes-
sor (Fig. 9) This allows the join construct apart from the sequence and parallel
execution of tasks by parallel threads and services.

The workflow execution engine uses the BeesyCluster middleware to check for
dynamic changes of conditions:

– Services becoming unavailable. When a service for the given node is to be ex-
ecuted, the execution engine calls the service through BeesyCluster which uses
jsch to run it via SSH on a remote node. The service may become unavailable in
the following situations:
– No connection possible with the node. BeesyCluster returns that the server can-

not be reached or connection has been refused. There is a separate thread that
checks for availability of nodes registered in BeesyCluster.

– The provider has blocked access to the service. The execution module selects a
new service on a different node and launches it.

– The service was invoked but the connection has been interrupted. Since the ser-
vice is supposed to write output files to its designated directory on the server,
the execution module can either poll for appearance of specific output files (can
be defined for each service in the workflow editor) or select a new service on a
different node.

– The service was invoked but has not terminated in the expected time frame
(which is the service execution time with a certain delay added). The execution
module selects a new service on a different node and launches it.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

62 P. Czarnul

– Services changing parameters. As in other service oriented environments, a provid-
er can change parameters of their services at any time, for instance increase the cost
of a service. A separate thread checks if any of the parameters have changed since
the workflow was defined or if any new services have appeared that might be better
suited for the given task.

Currently, the user specifies their requirements when the workflow is defined.

3.5 Optimization module with Pluggable service selection algorithms

The design of the workflow management module allows easy addition of a new op-
timization algorithm that is invoked in WorkflowMappingSolver. Currently,
BeesyCluster uses the following implemented by the author:

1. A fast heuristic algorithm FASTHEU which selects a service based only on the
services available for the given task. It works as follows. For goal vMIN_TC_

PRODUCT, for execution of a particular task ti , out of all services available for this
task it selects the service with the lowest value of tij cij . For goal vMIN_TC_SUM, for
task ti the service with the lowest αtij + cij is selected. Naturally, the algorithm is
not suited for solving vMIN_T_C_BOUND as it does not have a global knowledge to
always meet the cost constraint.

2. A Mixed Integer Linear Programming (MILP) method MILP for goals vMIN_TC_

SUM and vMIN_T_C_BOUND where integer variables denote which service is selected
for a particular task and the optimization goal and constraints contain only linear
combination of these variables. The solution is optimal but may take time for large
graphs.

3. A genetic algorithm where each chromosome represents assignments of one ser-
vice to each task [10]. This algorithm is able to solve any of the assumed goals.

4. Layered algorithm which divides the graph into layers and solves each layer using
the MILP algorithm. For large graphs, it is able to solve subdomains optimally
and reasonably quickly. In some cases, may not meet the cost requirements for
vMIN_T_C_BOUND.

It is possible to invoke a more complex and possibly more time-consuming algo-
rithm before the workflow execution starts and then use a faster but heuristic algo-
rithm for just-in-time selection after services for the particular task have changed.
However, for goal vMIN_T_C_BOUND an algorithm with global knowledge is needed to
meet the cost constraint.

3.6 Monitoring workflow execution

BeesyCluster offers a panel (Fig. 10) for management of workflow instances currently
running or recently completed for the given user. For each workflow it shows the
status, total cost of selected services, workflow execution time and time spent by the
optimization algorithm. Each workflow and workflow instance can be visualized and
deleted from the database.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Modeling, run-time optimization and execution of distributed 63

Fig. 10 Workflow instance panel in BeesyCluster

4 Simulations

The author has created two workflow applications in BeesyCluster which were sub-
sequently executed in a real environment for the three aforementioned optimization
goals. The applications show the suitability of the approach for business and scientific
uses in a dynamic environment. The applications can be regarded as practical tem-
plates which allow substitution of the services used with particular services required
for the practical application, as explained for the assembly/distribution workflow in
Sect. 3.1.

For each run, static optimization was performed first using the given algorithm
considering that all known services are available. The author has then considered
various probabilities which indicate availability of the services—for each task 20%,
40%, 60%, 80% or 100% of known services are available with an assumption that
at least one service for the task is present. If the service chosen before for the task
is not available, then the given algorithm reselects a new service considering the
optimization criterion. In case of an algorithm that uses global knowledge the services
already used for the executed tasks are also considered.

The simulations used the BeesyCluster instance available at https://lab527.eti.pg.
gda.pl:10030/ek/AS_LogIn through a user account who has access to several servers
and a cluster located Faculty of Electronics, Telecommunications and Informat-
ics, Gdansk University of Technology and at Academic Computer Center of GUT
with IA-64 and IA-32 clusters (http://www.task.gda.pl/kdm/index.html) including the
288-processor holk. The environment is used for research and teaching of high per-
formance computing.

The following two tests were performed:

Business workflow: The assembly/distribution workflow presented in Sect. 3.1 was
tested in the aforementioned BeesyCluster environment. For each task, services with
parameters as shown previously in Table 1 were published on various nodes in the
university network. This situation resembles well a service oriented environment
where independent providers publish services performing certain tasks with possi-
bly various execution times and prices. BeesyCluster allows providers to manage
such services derived from applications as well as parameters and adjust them at
any time. Such services are used in the workflow composed by a client. If a previ-
ously chosen service becomes unavailable or the terms of the services that could be
used for a task have changed, just-in-time reselection is invoked. For each distinct

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://lab527.eti.pg.gda.pl:10030/ek/AS_LogIn
https://lab527.eti.pg.gda.pl:10030/ek/AS_LogIn
http://www.task.gda.pl/kdm/index.html
http://mostwiedzy.pl

64 P. Czarnul

Fig. 11 Average tworkflow(
∑

dij cij) vs service availability for assembly/distribution workflow, various
costs for services

Fig. 12 Average αtworkflow + ∑
dij cij with α = 0.1 vs service availability for assembly/distribution

workflow, various costs for services

optimization criterion and each probability of service availability, several tests were
performed and averaged. The following criteria were optimized:

vMIN_TC_PRODUCT—for the minimization of a product of the workflow execution
time and the total cost of selected services, the FASTHEU algorithm described
in Sect. 3.5 was used. If a service needs to be reselected because the previously
chosen one is unavailable or conditions for other services have changed, the ser-
vice with the lowest tij cij value out of those available at the moment is selected.
Figure 11 shows that the average time-cost is lower for better service availability
i.e. closer to 100%. It can be seen that the algorithm selects services with higher

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Modeling, run-time optimization and execution of distributed 65

Fig. 13 Average αtworkflow +∑
dij cij with α = 1 vs service availability for assembly/distribution work-

flow, various costs for services

Fig. 14 Average αtworkflow + ∑
dij cij with α = 10 vs service availability for assembly/distribution

workflow, various costs for services

execution times but lower costs. tij cij is lower for such services than for those
with lower execution times and higher costs as shown in Table 1. This algorithm
may yield suboptimal results which are, however, considerably better than random
selection as shown in Fig. 11.
vMIN_TC_SUM—as for vMIN_TC_PRODUCT, the FASTHEU algorithm was used
which, if needed, selects the service with the lowest αtij + cij . Figures 12, 13
and 14 present results obtained for α = 0.1, α = 1, α = 10, respectively. In all
cases, the results are considerably better than the random approach. For α = 0.1
and α = 1, the better the availability of the services, the lower the average total cost

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

66 P. Czarnul

Fig. 15 Average tworkflow;
∑

dij cij < B , B = costofcheapestworkflow+costoffastestworkflow
2 vs service avail-

ability for assembly/distribution workflow, various costs for services

Fig. 16 Scientific workflow for
four successive simulations

of selected services. For α = 10, however, due to the large weight of the execution
time, services with higher costs and lower times are preferred. This is consistent
with lowest values of αtij + cij for services for particular values of α resulting
from Table 1.
vMIN_T_C_BOUND—in this case, it is not possible to use the aforementioned FAS-
THEU algorithm as in general it may not be able to meet the cost constraint. Fig-
ure 15 presents results obtained using the MILP algorithm. It can be seen that the
better availability of services, the lower the workflow execution time. In all cases,
the algorithm is able to meet the cost constraint.

Scientific workflow: optimization of execution time. In this example, a sequence of
four tasks forms a workflow (Fig. 16). This is a frequent case in scientific computing
where several tasks (e.g. simulations) need to be performed one by one where out-
put data from one task are input for another. For each task, there are five alternative
opx services. The execution time of service opx is 10(4.8 + x) seconds. 8.2 MB
of data in 10 files is passed between tasks through the BeesyCluster server. The
particular execution times and the data passed correspond to processing of data and
conversion from PS to PDF using ps2pdf14. This or a similar ratio of computa-
tion/communication can also be considered as representative for some mathematical
operations on input data etc. Various execution times result from various process-
ing speeds of computing nodes. If, as in the previous cases, just-in-time reselection
is required, the service with the lowest tij is chosen as costs are equal in this case
where a dedicated environment is assumed. If the same application is published as

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Modeling, run-time optimization and execution of distributed 67

Fig. 17 Average execution time vs service availability for sequential scientific workflow, same costs for
services

several services on various nodes with various speeds, such a workflow gives a reli-
able solution for minimizing the workflow execution time irrespective of node (and
service) failures. Figure 17 presents an average execution time for given service
availabilities. The better the availability, the lower the execution time, since there is
higher probability that quicker services (due to faster nodes) are available.

It should be noted that for the given workflow application, various optimization
algorithms may exhibit various performance. The total execution time comprises the
execution time of a scheduling algorithm, execution of services selected for particular
tasks, communication time and possibly rescheduling in case previously chosen ser-
vices become unavailable or conditions have changed. There is a trade-off between
the quality an algorithm returns that shortens the execution time of the workflow and
the algorithm execution time that adds up to the total execution time. FASTHEU is
fast but not optimal and turns out to be good for large workflow sizes, the genetic
algorithm slow but able to find a solution for all considered criteria. MILP is opti-
mal and best for small size workflows but unable to return optimal results for large
ones. This is related to what information is used for scheduling and rescheduling. Yu
et al. [32] considers meta-heuristics that optimize considering the whole workflow
and heuristics taking into account only partial information about the workflow. Yu
et al. [32] considers both deadline and budget constrained scheduling with bounds
on the execution time and cost, respectively. It also discusses LOSS and GAIN al-
gorithms for budget constrained scheduling which adjust the schedule resulted from
optimization of only time or only cost to meet the cost constraint and optimize the
execution time. Yu et al. [32] compares LOSS and GAIN to GA for budget con-
strained scheduling, and compares GA, deadline distribution among partitions [33]
and back-tracking algorithms for deadline constrained scheduling problem. Chin et
al. [8] proposes an adaptive scheduling algorithm with rescheduling ALSS (Adap-
tive List Scheduling for Service) for optimization of workflow makespan and states
it is better than AHEFT, SLACK, max-min, min-min and myopic algorithms. Yu
and Buyya [30] shows application of the genetic algorithm for workflow application

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

68 P. Czarnul

Fig. 18 Workflow for
performance/overhead testing

Fig. 19 Execution time vs length and number of parallel paths

scheduling. Reference [6] concludes that GAs are preferred for a large number of
concrete services per abstract service, otherwise integer programming is better.

4.1 Overhead of the environment

To measure the overhead of the solution, the author has measured execution times
for workflow applications of various sizes. The workflow is constructed from a cer-
tain number of parallel paths, out of which every one contains a given number of
sequenced tasks (Fig. 18). For each task there is one “date” service that just prints the
current date and time and returns immediately. The number of input files (each file is
of length 0) is equal to the number of parallel paths so each service takes one input
file as input and passes it on to the output.

The total execution time of the workflow is presented in Fig. 19 for various lengths
and various numbers of parallel paths. Section 3.4 discussed how multithreading is

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Modeling, run-time optimization and execution of distributed 69

used in the startup phase of workflow execution. This results in very similar execution
times for various numbers of paths such as 1–4. Apparently, the initialization phase
takes approximately 5 seconds. Since the whole overhead time includes initialization
like preparation of dedicated directories for services, authorization of the user to run
each service, remote invocation of each service via SSH, the overhead is reasonable. It
should be noted that in the latest version, BeesyCluster uses pooling of SSH sessions
with various clusters which means that subsequent remote commands via SSH use
the same session.

5 Conclusions and future work

The author presented a complete environment for modeling scientific and business
workflow applications modeled as acyclic directed graphs. Nodes of the graph model
simple tasks for which independent services capable of executing given tasks and
offered by various providers in the BeesyCluster middleware can be mapped. One of
several optimization algorithms can be run before workflow execution starts and also
when previously chosen services become unavailable or conditions on which services
are offered have changed.

Two practical applications have been tested in a real environment for various ser-
vice availabilities proving the solution can adapt to available services. The applica-
tions can be considered as templates that can be reused and extended for several other
scientific or business applications.

It was shown that the overhead of the execution engine is low compared to execu-
tion times that can be expected in practical workflows.

Future work will focus on support of handling extremely large data sets processed
by workflow services and testing more workflow applications.

Acknowledgement Work sponsored by research grant N N516 383534 “Strategies for management of
information services in distributed environments”.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Aggarwal R, Verma K, Miller J, Milnor W (2004) Constraint driven web service composition in
meteors. In: Proceedings of IEEE international conference on services computing (SCC’04), pp 23–
30

2. Ben Mokhtar S, Fournier D, Georgantas N, Issarny V (2005) Context-aware service com-
position in pervasive computing environments. In: Rapid integration of software engineer-
ing techniques, second international workshop: RISE, pp 129–144. Heraklion, Crete Greece.
http://hal.archives-ouvertes.fr/inria-00415111/en/

3. Blythe J, Jain S, Deelman E, Gil Y, Vahi K, Mandal A, Kennedy K (2005) Task scheduling strategies
for workflow-based applications in grids. In: CCGrid 2005, IEEE international symposium on cluster
computing and the grid, vol 2, pp 759–767

4. Canfora G, Penta MD, Esposito R, Villani M (2004) A lightweight approach for QoS-aware service
composition. ICSOC 2004 forum, IBM Tech Report Draft

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://hal.archives-ouvertes.fr/inria-00415111/en/
http://mostwiedzy.pl

70 P. Czarnul

5. Canfora G, Penta MD, Esposito R, Villani M (2005) Qos-aware replanning of composite web services.
In: Proc of IEEE international conference on web services, vol 1, pp 121–129. Res Centre on Software
Technol, Sannio Univ, Italy

6. Canfora G, Penta MD, Esposito R, Villani ML (2005) An approach for qos-aware service composition
based on genetic algorithms. In: GECCO’05: proceedings of the 2005 conference on genetic and
evolutionary computation. ACM, New York, pp 1069–1075. doi:10.1145/1068009.1068189

7. Cardoso J, Sheth A, Miller J (2002) Workflow quality of service. Tech Rep, LSDIS Lab, Department
of Computer Science, University of Georgia, Athens, GA 30602, USA

8. Chin SH, Suh T, Yu HC (2010) Adaptive service scheduling for workflow applications in service-
oriented grid. J Supercomput 52(3):253–283. doi:10.1007/s11227-009-0290-9

9. Czarnul P (2006) Integration of compute-intensive tasks into scientific workflows in BeesyCluster. In:
Computational science—ICCS 2006. LNCS, vol 3993. Springer, Berlin, pp 944–947

10. Czarnul P (2010) Modelling, optimization and execution of workflow applications with data distrib-
ution, service selection and budget constraints in BeesyCluster. In: Proceedings of 6th workshop on
large scale computations on grids and 1st workshop on scalable computing in distributed systems, in-
ternational multiconference on computer science and information technology, IEEE catalog number
CFP0964E, Wisla, Poland, pp 629–636

11. Czarnul P, Kurylowicz J (2010) Automatic conversion of legacy applications into services in Beesy-
Cluster. In: Proceedings of 2nd international IEEE conference on information technology ICIT’2010,
Gdansk, Poland

12. Czarnul P, Bajor M, Fraczak M, Banaszczyk A, Fiszer M, Ramczykowska K (2005) Remote task
submission and publishing in BeesyCluster: Security and efficiency of web service interface. In: Pro-
ceedings of PPAM, Poznan, Poland. LNCS, vol 3911. Springer, Berlin

13. Deelman E, Blythe J, Gil Y, Kesselman C, Mehta G, Patil S, Su MH, Vahi K, Livny M (2004) Pe-
gasus: mapping scientific workflows onto the grid. In: Across grids conference, Nicosia, Cyprus.
http://pegasus.isi.edu

14. Hackmann G, Haitjema M, Gill C, Catalin Roman G, (2006) Sliver: A bpel workflow process exe-
cution engine for mobile devices. In: Proceedings of 4th international conference on service oriented
computing (ICSOC). Springer, Berlin, pp 503–508

15. Han J, Kim E, Choi J (2004) Workflow language based on web services for autonomic services in
ubiquitous computing. In: Proceedings of international conference on artificial reality and telexis-
tence, ICAT, Coex, Korea

16. Laboratory of Parallel and Distributed Systems, MTA SZTAKI, Hungary: Parallel grid runtime and
application development environment, User’s manual, ver. 8.4.2. http://www.lpds.sztaki.hu/~smith/
pgrade-manual/manual.html

17. Li J, Bu Y, Chen S, Tao X, Lu J (2006) FollowMe: on research of pluggable infrastructure for context-
awareness. In: 20th International conference on advanced information networking and applications,
AINA 2006, vol 1. doi:10.1109/AINA.2006.182

18. Ludascher B, Altintas I, Berkley C, Higgins D, Jaeger-Frank E, Jones M, Lee E, Tao J, Zhao Y
(2005) Scientific workflow management and the Kepler system. Concurrency and computation:
practice & experience, special issue on scientific workflows. http://www.sdsc.edu/%7Eludaesch/
Paper/kepler-swf.pdf

19. Majithia S, Shields MS, Taylor IJ, Wang I (2004) Triana: a graphical web service composition and
execution toolkit. In: IEEE international conference on web services (ICWS’04). IEEE Computer
Society, Los Alamitos, pp 512–524. http://www.trianacode.org/

20. Patel C, Supekar K, Lee Y (2003) A QoS oriented framework for adaptive management of web service
based workflows. In: Proceedings of the 14th international database and expert systems applications
conference (DEXA 2003), Prague, Czech Republic, 2003. LNCS. Springer, Berlin, pp 826–835

21. Rao J, Su X (2005) A survey of automated web service composition methods. In: LNCS,
vol 3387/2005. Springer, Berlin, pp 43–54. http://www.springerlink.com/content/4m6w37g0jffk9bv4

22. Sakellariou R, Zhao H, Tsiakkouri E, Dikaiakos M (2007) Scheduling workflows with budget con-
straints. In: Gorlatch S, Danelutto M (eds) Integrated research in GRID computing, CoreGRID.
Springer, Berlin, pp 189–202. http://www.cs.man.ac.uk/rizos/papers/coregrid2005a.pdf

23. Şensoy M, Yolum P (2007) On choosing an efficient service selection mechanism in dynamic envi-
ronments. In: Proceedings of the 9th international workshop on agent-mediated electronic commerce
(AMEC IX), vol 13, pp 105–118

24. Srinivasan N, Paolucci M, Sycara K (2004) Adding owl-s to uddi, implementation and throughput.
In: First international workshop on semantic web services and web process composition (SWSWPC
2004), San Diego, USA

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://dx.doi.org/10.1145/1068009.1068189
http://dx.doi.org/10.1007/s11227-009-0290-9
http://pegasus.isi.edu
http://www.lpds.sztaki.hu/~smith/pgrade-manual/manual.html
http://www.lpds.sztaki.hu/~smith/pgrade-manual/manual.html
http://dx.doi.org/10.1109/AINA.2006.182
http://www.sdsc.edu/%7Eludaesch/Paper/kepler-swf.pdf
http://www.sdsc.edu/%7Eludaesch/Paper/kepler-swf.pdf
http://www.trianacode.org/
http://www.springerlink.com/content/4m6w37g0jffk9bv4
http://www.cs.man.ac.uk/rizos/papers/coregrid2005a.pdf
http://mostwiedzy.pl

Modeling, run-time optimization and execution of distributed 71

25. System bexee: Bpel execution engine (2004) http://bexee.sourceforge.net/index.html, Berne Univer-
sity of Applied Sciences

26. The ActiveBPEL Engine (2009) http://www.activevos.com/community-open-source.php, Active end-
points

27. Wilkinson B, Allen M (1999) Parallel programming: techniques and applications using networked
workstations and parallel computers. Prentice Hall, New York

28. Yingchun, Li X, Sun C (2007) Cost-effective heuristics for workflow scheduling in grid computing
economy. In: GCC’07: proceedings of the sixth international conference on grid and cooperative
computing. IEEE Computer Society, Los Alamitos, pp 322–329. doi:10.1109/GCC.2007.57

29. Yu J, Buyya R (2005) A taxonomy of workflow management systems for grid computing. J Grid
Comput 3(3–4):171–200. doi:10.1007/s10723-005-9010-8

30. Yu J, Buyya R (2006) A budget constrained scheduling of workflow applications on utility grids
using genetic algorithms. In: Workshop on workflows in support of large-scale science, proceedings
of the 15th IEEE international symposium on high performance distributed computing (HPDC), Paris,
France

31. Yu J, Buyya R (2006) Scheduling scientific workflow applications with deadline and budget con-
straints using genetic algorithms. Sci Program J 14(3–4):217–230

32. Yu J, Buyya R, Ramamohanarao K (2008) Workflow scheduling algorithms for grid computing.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.7107

33. Yu J, Buyya R, Tham CK (2005) Cost-based scheduling of workflow applications on utility grids. In:
Proceedings of the 1st IEEE international conference on e-science and grid computing (e-Science),
Melbourne, Australia. IEEE Comput Soc, Los Alamitos

34. Zeng L, Benatallah B, Dumas M, Kalagnanam J, Sheng Q (2003) Quality driven web services com-
position. In: Proceedings of WWW, Budapest, Hungary

35. Zeng L, Benatallah B, Ngu AH, Dumas M, Kalagnanam J, Chang H (2004) Qos-aware middleware
for web services composition. IEEE Trans Softw Eng 30(5):311–327. doi:10.1109/TSE.2004.11

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://bexee.sourceforge.net/index.html
http://www.activevos.com/community-open-source.php
http://dx.doi.org/10.1109/GCC.2007.57
http://dx.doi.org/10.1007/s10723-005-9010-8
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.7107
http://dx.doi.org/10.1109/TSE.2004.11
http://mostwiedzy.pl

	Modeling, run-time optimization and execution of distributed workflow applications in the JEE-based BeesyCluster environment
	Abstract
	Introduction
	Related work
	Approaches and models
	Workflow management systems for distributed applications

	A JEE-based workflow management environment
	Model with just-in-time service selection
	BeesyCluster's architecture and services
	Workflow modeling applet
	Multithreaded workflow execution engine
	Optimization module with Pluggable service selection algorithms
	Monitoring workflow execution

	Simulations
	Overhead of the environment

	Conclusions and future work
	Acknowledgement
	References

