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Abstract 

In this paper the problem of parametric identification of a historic masonry tower model is discussed. The 
tower leans and its foundation stiffness is a concern to authorities. The authors identified some modal charac-
teristics of the tower, natural frequencies and mode shapes. It is known, based on the first mode shape identi-
fied, that the structure behaves like a stiff solid on elastic foundation. Thus, a simple, five parameter plane 
model is considered. The unknown parameters are identified to be the solution to an optimisation problem, in 
which the sensitivity analysis and scatters of the modal identification are applied. A hierarchical process is 
formulated, where two natural frequencies are assumed to be the input data. In this approach, the number of 
unknown parameters increases incrementally, and the process changes from even-posed to under-posed succes-
sively. Such approach allows one to control the final under-posed identification problem and leads to an in-
creasingly better solution. 
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1. Introduction  

This paper discusses the problem of parameters identification of the Vistula Mounting 
tower model (see Fig.1). The tower dates back to the 15th century, however it was dam-
aged several times in military conflicts. Nowadays it is 22.65 m high, and its external 
diameter is 7.7 m. The structure has seven floors with concrete reinforced ceilings. Its 
walls were built using masonry and were restored at different times. The average wall 
thickness is 1.25 m. The tower was founded on weak and layered subsoil. The founda-
tions were made of boulders and lie just below the ground level. This is probably a 
cause, why the tower leans. This behaviour of the structure is now a concern of authori-
ties.  

The author’s task is to estimate foundation stiffness of the tower and create the model 
of the structure. For that purpose dynamic measurements were taken and some modal 
characteristics have been identified. Basing on the first mode shape a the type of a tower 
model was selected. A rigid solid body resting upon elastic foundation is considered to 
be a good approximation of the structure, since a considerable rotation - in comparison 
to the tower structural deformation - about the tower base is observable. Natural fre-
quencies of the first and the second coplanar mode shapes, and two coordinates of the 
first mode shape are used as the data in the model parameters identification. In order to 
solve this problem, a least square error function was formulated as the objective func-
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tion. Important elements of this task are scatters of the structure’s measured modal char-
acteristics. They are used to accurately define the optimisation problem. 

2. Experimental modal identification  

The Peak Picking method (see [1]) was used for modal identification of the tower. The 
method is suitable for any signals, also for low-energy vibrations, which occur in the 
tower. The method was selected for the investigation also because of the possibility of 
determining statistical errors of identified modal characteristics. This feature of the 
method was useful for this investigation. 

The mode shapes errors arise from the fact that only estimates of the auto-spectra, 
which are basic functions in the Peak Picking method, can be calculated. Real values of 
the functions could be obtained for signals infinite in time and that is practically impos-

sible. The estimates are affected by statistical errors, bias bε  and random rε , which give 

a final error b rε ε ε= + . They are presented in [1] and [2]. The formulae are: 
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 where ˆ ( )ppG f  is the estimate of auto-spectrum calculated for signal measured in a 

structural point p,  f∆  denotes the frequency resolution of the analyzed spectra, 

( )ˆ ( ) ''ppG f  is the second derivative of the  function ˆ ( )ppG f and dn  is a number of  sig-

nals ( )p t analyzed. 

If coordinates of a mode shape associated with the resonant frequency mf  are calcu-

lated according to the formula (2) (see [1]): 
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where ˆ ( )p mfφ  denotes the estimated mode shape coordinate at a discretization point p 

and ˆ ( )rr mG f  is the auto-spectrum value for mf , calculated for a signal ( )r t , measured at 

the structural reference point r, then the statistical error of the mode shape coordinates is 
calculated from the following formula: 

 ( )1ˆ ˆ ˆ
2p pp rrG Gε φ ε ε     = +       (3) 

The error of the measured natural frequencies has two components: the digitalisation 
error equal to the half of the spectrum resolution, and the random error calculated using 
dispersion of the measured resonant frequencies. 

Accelerations of points selected across the tower were measured during ambient vi-
brations according to the above-presented rules of the Peak Picking method. Wind and 
water waves from the nearby situated river (Fig. 1) caused major environmental excita-
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tion. The measuring points were arranged along two opposite walls at the tower height 
on nine levels. Accelerations in two horizontal directions, East-West (parallel to the wall 
surfaces) and North-South (perpendicular to the wall surfaces) were recorded at each 
point. Thus, 36 measuring points were set. Each measurement took 1024 seconds, 256 
samples were collected per second, so each signal consisted of 262144 samples. In order 
to estimate the signal spectra, time histories were divided into 32 sections ( 32dn = ).  

Only one resonant frequency of the tower was identified using signals measured 
across the North-South plane, whereas three were determined using time series measured 
in the East-West direction. Nature of related mode shapes was also specified using the 
analysis of phase shifts between signals measured at different structural points. Addi-
tionally, coordinates of two first mode shapes in two perpendicular planes were deter-
mined. Hence, it is known that 1 1.416 HzN Sf − =  and 1 1.446 HzE Wf − =  refer to the first 

two lateral mode shapes in two perpendicular directions: North-South and East-West, 
respectively. The mode shape associated with 1

E Wf −  is presented in Fig.2. Then, fre-

quencies identified in the East-West direction are 4.485 Hztf = , which relates to the 

torsional mode, and 2 6.570 HzE Wf − = , connected with the second lateral mode shape in 

this plane.  
 The following values of the errors were obtained for the tower’s natural fre-

quencies 1 0.00322N Sfε −  =  , 1 0.00337E Wfε −  =  , [ ] 0.00689tfε = and

2 0.00871E Wfε −  =  . The error for all the modes is the same and amounts to

[ ] [ ] 0.177rε φ ε φ= = , because [ ]bε φ  is negligibly small as it is of the 0.001 order (see 

also [3]). 
 

 
 

Figure 1. The Vistula Mounting Fortress 
Figure 2. Mode shape of the first resonant 
frequency of the tower in the East-West 

plane 
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3. Mathematical model of the tower and its identification  

In case of the Vistula Mounting Fortress tower the type of model is determined based on 
first mode shapes measured. The mode shape (Fig. 2) shows that the tower leans almost 
like a stiff solid therefore a model of a rigid solid body resting on an elastic foundations 
can be a reasonable mathematical approximation of the building’s behaviour. A small 
number of parameters is the advantage of this model. It is convenient because only a few 
modal characteristics of the tower are to be used as state variables in the model paramet-
ric identification. 

The plane model is the subject of interest. Therefore there are two dynamic degrees 
of freedom, namely: the displacement across the x axis and rotationϕ , relative to the y 

axis. The foothold of the Cartesian coordinate system xyz is placed in the centre of gravi-
ty of the structure. The following equation of motion is valid: 
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with the following five parameters: m mass of the tower, yJ  the tower mass moment of 

inertia with respect to y axis, cz  coordinate of the tower’s centre of gravity, and , xk kϕ  

foundation stiffness modules. Those five parameters are to be determined based on 
measured tower modal characteristics 

In the task of parametric identification of the mathematical model, an optimisation 
problem was formulated. The square error function is assumed to be the objective func-
tion: 
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where b denotes a vector of the design variables (the sought-after parameters of the 
model), ( )is b  stands for the state variables of the model, îs  represents measured state 

variables of the tower and iα  is a weight coefficient determined for each state variable. 

In order to find the minimum of the objective function (5) an iterative procedure is pro-
posed and the optimization problem is reformulated as minimisation of the objective 
function in relation to the design variables vector variations: 
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where ( ),k k k
isδ δb b  is the first variation of the state variable with respect to the design 

variable vector. Variations kδ b , calculated at each stage k are used for updating the b 

vector. Calculations continue until the relative variations kδ b  are smaller than the as-
sumed accuracies. The mathematically complicated relation ( , )isδ δb b  is substituted by 

approximation ( )T

i sbsδ δ= w b  determined by means of sensitivity analysis.  D
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In this approach the radial natural frequencies squared λ
i
 and the coordinates of the 

first mode shape 1nφφφφ  are the state variables. Thus, the objective function is formulated as 

follows: 
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where the vector bλw  and the matrix bWφφφφ  consist of the relative first variations of the 

radial natural frequency squared λ  and of the mode shape φφφφ  relative to the variations of 

the design variables, respectively. The coefficients are derived from the equation of 
motion for a discrete system and are presented for example in [4]  

The following values of state variables ( ) ( )
2 2

1 1
ˆ 2 81.99 rad/ sE Wfλ π −= =  determined 

from experiments were used in the optimisation procedure: 

( ) ( )
2 2

2 2
ˆ 2 1703.34 rad/ sE Wfλ π −= = , , 1

ˆ 1.806 [ ]E W
tφ − = − , 1

ˆ 0.453 [ ]E W
bφ − = − . Errors in 

measured state variables are used to specify weighted coefficients of state variables so 

that their sum is equal to 1. Hence, the values are: ( )1
ˆ 0.869α λ = , ( )2

ˆ 0.119α λ =  and 

( ) ( )1 1
ˆ ˆ 0.00588E W E W

t bα φ α φ− −= = . 

The final criterion for identification is defined by a relative difference between the 
measured and the calculated state variables. For each variable this difference must be 
smaller than its error obtained from the modal identification. Therefore, the criterion 

consists of the following conditions: ( ) 1 1
1
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The result obtained in the optimization is assessed by calculating the Normalized Modal 
Difference (NMD) between the first mode shape calculated for the model and the meas-
ured mode shape of the tower. 
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             Identified 
            parameters 
                  
 
The  
parameter name 

Starting 
value 

Boundary 
condition 

Identification 
result 

Number 
of itera-

tion steps 

NMD 
[%] 

St
ar

tin
g 

va
lu

es
 kϕ  [Nm] 1.00·101

0 
100 - ∞ 1.239·1010 

10 4.666 
kx  [N/m] 4.00·108 100 - ∞ 4.264·108 

zc [m] 10.00 0 – 15.00 9.921 
Jy [kg·m2] 4.30·107 106- ∞ 4.115·107 

m [kg] 
9.000·10

5 
(9-10) 
·105 

9.202·105 
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