
1 

Modelling of concrete behaviour 

in uniaxial compression and tension with DEM 

M. Nitka and J. Tejchman

Gdańsk University of Technology 

80-233 Gdańsk-Wrzeszcz, Narutowicza 11/12, Poland 

micnitka@pg.gda.pl, tejchmk@pg.gda.pl 

Abstract 

The paper focuses on the discrete modelling of the behaviour of plain concrete during uniaxial 

compression and uniaxial tension using the discrete element method (DEM). The model takes 

into account the concrete heterogeneity at the meso-scale level. The effect of concrete density, 

size of aggregate grains and specimen size on the stress-strain curve, volume changes and 

fracture process is studied. In addition, the evolution of contact forces, grain rotations, 

displacement fluctuations and strain localization during deformation is investigated. The elastic, 

kinetic, plastic and numerical dissipated energy is calculated and analysed at a different stress-

strain stage. Concrete is described as a one-phase or three-phase material. Discrete macroscopic 

2D and 3D results are compared with corresponding experiments. A satisfactory agreement 

between experiments and calculations is achieved.  

Keywords: plain concrete, DEM, fracture, micro-structure, strain localization 

1. Introduction

Fracture (cracking process) is a fundamental phenomenon in quasi-brittle and brittle materials 

[1]-[3] (i.e. in materials which break without significant deformation when subjected to stress).  

It is a major reason of mechanical damage under loading that contributes to a significant 

degradation (reduction) of the material strength. It is highly complex due to a heterogeneous 

structure of brittle materials over many different length scales, changing in e.g. concrete from a 

few nanometers (hydrated cement) to the millimetres (aggregate particles). Therefore, the 

material heterogeneity should be taken into account when realistically modelling the material 

behaviour. An understanding of a fracture process is of major importance to ensure safety of the 

structure and to optimize the behaviour of material. 
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During a damage process, micro-cracks first arise in a hardening region before the peak on the 

stress-strain curve which change gradually during material softening into dominant distinct 

macroscopic cracks up to rupture [3]. Thus, a mechanical damage process is generally 

subdivided into two main stages: appearance of narrow regions of intense deformation 

(equivalent to the region of intense micro-cracking) ahead of macro-cracks and occurrence of 

discrete macro-cracks. A realistic description of localized zones (called also fracture process 

zones FPZs) in concrete (their width, length, shape and distance), which are not negligibly small 

as compared to the specimen size [1] and is of a particular major importance to understand 

concrete degradation and to determine a combined deterministic-statistical size effect. It is also 

extremely important to determine a characteristic length of micro-structure in continuum crack 

models for cementation materials and a transition phase in coupled continuous-discontinuous 

crack approaches [3]. This length is introduced into continuum models via e.g. non-local or 

strain-gradient theories to properly describe the size and spacing of localized zones, to obtain 

mesh-independent finite element results and to capture a deterministic size effect [1], [3], [4]. 

 

At the meso-scale, concrete may be considered as a composite material by distinguishing three 

important phases: cement matrix, aggregate and interfacial transition zones ITZs wherein [2], 

[5], [6]. In particular, the presence of aggregate and ITZs is important since the volume fraction 

of aggregate can be as high as 70-75% in concrete and ITZs with the thickness of about 50 µm 

are always the weakest regions in usual concretes [2] wherein cracking starts (because of their 

higher porosity). The advantage of meso-scale modelling is the fact that it directly simulates 

micro-structure and can be used to comprehensively study local phenomena at the micro-level 

such as the mechanism of the initiation, growth and formation of localized zones and cracks 

which affect the macroscopic concrete behaviour (the concrete behaviour at the meso-scale fully 

determines the macroscopic non-linear behaviour [1]). Thus, the mesoscopic results allow for a 

better calibration of continuous and discontinuous constitutive continuum models and an 

optimization design of concrete with enhanced strength and ductility. Discrete models (if they 

are enough consistent) might progressively replace experimental tests to study the influence of 

the concrete mesostructure (aggregates size, aggregates volume/mortar volume, macro porosity, 

etc.) on the concrete behaviour. The disadvantages are: enormous computational cost, inability to 

model aggregate shape accurately and difficult calibration procedure. In addition, it is difficult to 

assume geometric and mechanical properties of ITZs for concrete considered as a 3-phase body.  

 

The concrete behaviour at the meso-scale can be described with continuum models [5]-[8] and 

discrete models [2], [9], [10]. In this study we used a discrete approach. Within discrete methods, 
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the most popular ones are: a classical particle DEM [11]-[17], interface element models with 

constitutive laws based on non-linear fracture mechanics [18], [19] and lattice methods [2], [10], 

[20-29]. 

 

In the paper, in order to develop an understanding of the failure process of plain concrete at the 

aggregate scale, the discrete element method (DEM) was used [14], [30]. In DEM a mechanical 

response of materials is governed by interactions at contacts between constituent particles and 

between particles and boundaries being responsible for the emergent complexity of phenomena 

occurring in these materials. In order to reproduce the concrete behaviour, a three-dimensional 

spherical discrete element model YADE was used, which was developed at University of 

Grenoble [31], [32]. The model was successfully used for describing the behaviour of different 

engineering materials with a granular structure (mainly of granular materials by taking shear 

localization into account [33]-[35]). In the first research step, the concrete behaviour was 

investigated during simple quasi-static uniaxial tests without confining pressure (compression 

and tension). Our main aim was to check the capability of DEM to simulate fracture in concrete. 

Concrete was considered as a one-phase and three-phase material by taking breakable cohesive 

inter-particle bonds between particles. The process of strain localization and cracking were 

studied in detail. The effect of material density, size and grain distribution of aggregate and 

specimen size on the behaviour of concrete on stress-strain curve, volume change and fracture 

was shown. In addition, the evolution of contact forces, rotations, displacement fluctuations and 

porosity at the aggregate level during deformation was studied. The width of a localized zone 

was determined based on grain displacements and compared with the width of a damage zone 

based on broken contacts. Every kind of energy was calculated and analysed at different stress–

strain stages. Discrete results at global level were compared with corresponding experiments. 

Since the concrete micro-structure in experiments was not precisely known, the numerical quasi-

static simulations were mainly carried out under 2D stress conditions with the one-phase concrete 

model in order to significantly shorten the computation time. Only one 3D simulation for tension 

and compression was performed. However, the effect of the different parameters on the global 

behaviour of concrete was qualitatively similar in the 2D and 3D concrete models. The 

originality of this work comes from 3 points: 1) DEM calculations of concrete as a three-phase 

material, 2) analyses of micro-structural events (force chains, displacement fluctuations, grain 

rotations, local porosity change, strain localization, damage zones) at the aggregate level, and c) 

a determination of the width of localized zones based on resultant grain displacements in 

concrete. 
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In the research literature different discrete models have been developed for cohesive soils and 

quasi-brittle materials that differ besides the used bonding concept in dimensionality, particle 

shape and particle arrangement (e.g. [14], [15], [36]-[39]). They were mainly used to study the 

behaviour of cohesive materials at the global scale. Our discrete model with linear normal 

contacts between spherical aggregate and cement particles was intended as a minimum discrete 

model in terms of restricted inter-particle motions, bond contact and particle shape and particles' 

amount in order to capture both the macroscopic and mesoscopic behaviour of concrete. In 

addition, a simple construction method of the discrete element assembly was used to create the 

initial structure of concrete specimens. 

 

2. Discrete Element Method 

 

In order to study the evolution of micro-structure in plain concrete during fracture (strain 

localization and cracking propagation), a three-dimensional spherical discrete element model 

YADE [31], [32] was used. The model takes advantage of the so-called soft-particle approach 

(i.e. the model allows for particle deformation which is modelled as an overlap of particles). 

A linear normal contact model under compression was used. The algorithm used in YADE 

involves two steps. In the first one, interaction forces were computed when elements slightly 

interpenetrate each other (penetration below 10% of the radius). In the second step, Newton 

second law was used to compute, for each element, the resulting acceleration, which was then 

time integrated to find the new element position. This process was repeated until the simulation 

was finished. The dynamic formulation allowed the model for following highly non-linear 

behaviour characteristic of concrete in both: a tensile and shear failure mode. To maintain the 

numerical stability of the method and to obtain a quick convergence to a quasi-static state of 

equilibrium of the assembly of particles, damping forces were introduced. For the sake of 

simplicity, the aggregate and cement matrix particles in concrete were exclusively modelled as pure 

interacting spheres. The interaction force vector F  representing the action between two spherical 

discrete elements in contact was decomposed into a normal and tangential vector, respectively. 

The normal forces acting on spheres were modelled by an elastic law with cohesion. The normal 

and tangential forces were linked to the displacements through the normal stiffness Kn and the 

tangential stiffness Ks (Figs.1a-1c) 

 

𝐹⃗𝑛 = 𝐾𝑛𝑈𝑁,⃗⃗⃗⃗⃗      (1) 
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𝐹⃗𝑠 = 𝐹⃗𝑠,𝑝𝑟𝑒𝑣 + 𝐾𝑠Δ𝑋⃗𝑠,      (2) 

 

where U is the overlap between spheres, N


 denotes the normal vector at the contact point, sX  

is the incremental tangential displacement and 𝐹⃗ 𝑠,𝑝𝑟𝑒𝑣 is the tangential force from the previous 

iteration. 

  

a)    b) 

 

 

  

 

                                    c)                                                                       d) 

Figure 1: Mechanical response of DEM: a) tangential contact model, b) normal contact model, 

c) loading and unloading path in tangential contact model and d) modified Mohr-Coulomb model 

[31], [32] 
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The stiffness parameters were computed with the aid of the modulus of elasticity of the grain 

contact Ec and two neighbouring grain radii RA and RB (to determine the normal stiffness Kn) and 

with the aid of the modulus of elasticity Ec and Poisson’s ratio c of the grain contact and two 

neighbouring grain radii RA and RB (to determine the tangential stiffness Ks), respectively [31], 

[32] 

                                        𝐾𝑛 =  𝐸𝑐
2𝑅𝐴𝑅𝐵

𝑅𝐴+𝑅𝐵
             and           𝐾𝑠 =  𝜈𝑐𝐸𝑐

2𝑅𝐴𝑅𝐵

𝑅𝐴+𝑅𝐵
.                       (3) 

If the grain radius RA=RB=R, the stiffness parameters were equal to: Kn=Ec R and Ks=c Ec R, 

respectively (thus Ks/Kn=c). The contact forces 
sF



 and 
nF


 satisfied the cohesive-frictional 

Mohr-Coulomb equation (Fig.1c) 

                                           ‖𝐹⃗𝑠 ‖ − 𝐹𝑚𝑎𝑥
𝑠 − ‖𝐹⃗𝑛‖   tan 𝜇 ≤ 0 (before contact breakage) 

and 

                                                   ‖𝐹⃗𝑠 ‖ − ‖𝐹⃗𝑛‖   tan 𝜇 ≤ 0, (after contact  breakage),                    (4)  

 

where μ denotes the inter-particle friction angle and 𝐹⃑𝑚𝑎𝑥
𝑠   is the cohesive force between spheres. 

The normal force might be negative down to the minimum value of 𝐹𝑛
𝑚𝑖𝑛  if there was no a 

geometrical contact between spheres. If this minimum normal force between spheres 𝐹𝑛
𝑚𝑖𝑛 was 

reached, the contact was broken. Moreover, if any contacts between grains re-appeared, cohesion 

between them was not taken into account. A crack was considered as open if cohesive forces 

between grains disappeared when a critical threshold was reached. The movement of fragments 

(mass-spring systems with cohesion) was similar to the rigid body movement [32].  

 

A choice of a very simple linear elastic normal contact was intended to capture on average 

various contact possibilities in real concrete. One assumed that the cohesive force and tensile 

force were a function of the cohesive stress C (maximum shear stress at pressure equal to zero), 

tensile normal stress T and sphere radius R [31] 

𝐹𝑚𝑎𝑥
𝑠 = 𝐶𝑅2                           and                         𝐹𝑚𝑖𝑛

𝑛 = 𝑇𝑅2 .      (5) 

For two spheres in contact, the smaller values of C, T and R were assumed. To dissipate 

excessive kinetic energy in a discrete system, a simple local non-viscous damping scheme was 

adopted [40] which assumed a change of forces by using the damping parameter  

                                                        
kk k k

dampedF F-sgn(v)F  ,                                          (6) 

where kF


 and kv


 are the kth components of the residual force and translational velocity, 

respectively. A positive damping coefficient  is smaller than 1 (sgn(•) returns the sign of the kth 

component of velocity). The equation can be separately applied to each k-th component of a 3D 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


7 

 

vector x, y and z. The following five main local material parameters were needed for our discrete 

simulations: Ec, c, μ, 𝐹𝑛
𝑚𝑖𝑛 and  𝐹𝑠

𝑚𝑎𝑥 which were calibrated with real laboratory uniaxial tests 

on compression by van Mier [41] and tension by van Vliet and van Mier [42] of concrete 

specimens. In addition, the particle radius R, particle mass density  and damping parameters α 

were required. We did not increase the rolling resistance of pure spheres by including contact 

moments in order to decrease the material brittleness [33], [34] since the effect of contact 

moments was not significant due to fact that the aggregate rotations in concrete were very small 

during cracking (see Fig.18). Note that for higher stress states, our  model will have to probably 

include grain crushing and more complex contact laws [43], [44]. 

 

3. Discrete results at macro-level 

 

The numerical quasi-static simulations of uniaxial compression and uniaxial tension were carried 

out mainly under 2D stress conditions with one-phase concrete model in order to simplify 

calculations and to shorten their time (only one 3D simulation was carried out for comparative 

reasons). Qualitatively the effect of the different parameters on the global behaviour of concrete 

was similar as in the 3D three-phase concrete model. In the 2D simulations, the specimen depth 

was always equal to the sphere diameter d (i.e. only grain layer was simulated in a perpendicular 

plane) and the discrete calculations were carried out as for cylinders (instead of spheres). In the 

laboratory experiments, the following aggregate size was used: dmin0.125 mm and dmax=16 mm 

(uniaxial compression [41]) and dmin=0.25 mm and dmax=8 mm (uniaxial tension [42]). In the 

simulations for the simplicity, the spheres were assumed to approximately simulate both aggregate 

and cement matrix. They had the different diameter d, varying between dmin=0.125-2 mm (lower 

bound) and dmax=12 mm (upper bound). The maximum sphere diameter dmax was assumed as  the 

mean value from laboratory tensile and compressive tests to simulate the behaviour of the same 

concrete under two different stress conditions (compression and tension). The mean sphere diameter 

was always d50=2 mm. Thus, the sphere distribution curve included solely the linear sections 

between d50 and dmax and between dmin and d50. For the sake of simplicity, the entrapped air in 

macro-pores of concrete was not taken into account (note that the micro-porosity between grains 

cannot be considered as the macro-porosity). The modulus of elasticity Ec and Poisson’s ratio c of 

spherical contacts were taken as Ec=15 GPa and c=0.2 (Eq.3), respectively. The values of C and T 

(Eq.5) were chosen as 140 MPa and 25 MPa, respectively. The mass density was =2500 kg/m3 and 

the inter-particle friction angle was 𝜇=30o 
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                                                 a)                                                             b) 

Figure 2: Concrete specimens with stochastically distributed spheres between smooth rigid 

boundaries for discrete simulations of uniaxial compression (a) and uniaxial tension (b) 

following laboratory tests by van Vliet and van Mier [41], [42] 

 

For uniaxial compression 2D tests [41], the quadratic specimen 0.10.1 m2 (Fig.2a) was assumed 

and for uniaxial tension tests [42], a so called 'dog-bone' shape was chosen: the height 0.15 m, width 

0.10 m along the top and bottom and 0.06 m at the mid-height (Fig.2b). Some grain layers at the 

top and bottom of the concrete specimens were used to simulate steel plates in the loading 

machine. The top and bottom boundaries could freely move in a horizontal direction and the 

bottom was fixed in a vertical direction. Thus, the both horizontal boundaries were assumed to 

be ideally smooth (as in experiments). The effect of the wall roughness on the results (that is 

known to have a big impact [41]) was not investigated (page 6). Next, a constant velocity was 

applied to the grains along the top boundary to induce tensile or compressive deformation. Due 

to the information lack on the internal structure of test specimens [41], [42], each concrete 

assembly was constructed in a very simple way by putting spheres of a different diameter into a 

concrete specimen at random according to linear grain distribution curves (with the inter-

granular friction equal 𝜇=0 in order to obtain a relatively dense specimen). The assembly was 

then allowed to settle to a state when the kinetic energy was negligible and then all contact forces 

between spheres were deleted. Next, the parameter 𝜇  was set to its final value of 𝜇 =30o. 

Afterwards the assembly was subjected to the upper boundary driven compression or tension. 

The particle packing was random and thus was slightly different during each new specimen 

construction. The particle packing slightly (less than 10%) affected the results using the same 
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grain distribution curve. During the tests, the prescribed vertical strain rate was slow enough 

(𝜀̇ =10-3 [1/s]) in order to ensure the test was conducted in quasi-static conditions (see Fig.5A). 

Due to this simple method, the initial coordination number (average number of contacts at the 

single particle) was relatively high [45]: 5-6 (2D calculations) and 11 (3D calculations). The 

damping parameter was always chosen as =0.08 (Eq.6). In the case of <0.08 too excessive 

kinetic energy was always created during fracture (the tensile numerical test could not be performed 

without numerical damping due to excessively high velocities of particles). In turn, the effect of the 

-value on global results for ≥0.08 became smaller (see Fig.5B). 

 

Effect of initial specimen density (2D analyses) 

 

In all concrete specimens, 75% of their volume was filled in with the spheres of the diameter 

d2 mm which simulated aggregate particles. Next, the spheres with the diameter below d<2 mm 

(which corresponded to the cement matrix) were added to reach the total sphere volume ratio 

V1=Vs/V (Vs - the sphere volume and V – the specimen volume): V1=75%-125%. At V1=100% and 

V1=125% some overlaps between spheres obviously occurred (the initial internal forces were 

removed). The total sphere volume ratio indirectly corresponds to porosity in granulates (n=Vp/V, 

where Vp=V-Vs - the volume of void-space) and can be considered as a physical parameter for the 

given concrete. The total number of spheres was 3617-11168 (uniaxial compression) and 4537-

13193 (uniaxial tension). The maximum sphere diameter was taken as dmax=12 mm and the 

minimum sphere diameter as dmin=1 mm. The calculation time for the uniaxial test was 8-12 hours 

on PC 2.7 MHz.  

 

The calculated vertical normal stress 𝜎𝑦  versus the vertical normal strain 𝜀𝑦  for uniaxial 

compression was shown in Fig.3A as compared to experiments [41] and for uniaxial tension in 

Fig.3B as compared to experiments [42] for d50=2 mm. The denser the specimen, the higher was 

apparently the concrete initial stiffness and strength and smaller was the material ductility. As 

compared to the experiments, the calculated material response of 2D concrete specimens was 

always too brittle. The results of the global modulus of elasticity E , compressive strength fc and 

tensile strength ft with V1=90% (E=30 GPa, fc=43 MPa, ft=4.5 MPa) corresponded well to the 

experimental results (E=30 GPa, fc=43 MPa, ft=2.7 MPa). The modulus of elasticity E was 

connected directly with the modulus of elasticity of the grain contact E2Ec (Fig.4). 
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A) 

B) 

Figure 3: Calculated stress-strain y-y curves during uniaxial compression (A) and uniaxial tension 

(B) for 2D concrete specimens (dmin=1  mm, d50=2 mm, dmax=12 mm and with 7 different sphere 

volume ratio V1: a) V1=75%, b) V1=80%, c) V1=85%, d) V1=90%, e) V1=95%, f) V1=100% and g) 

V1=125% (‘exp’ – experiments by van Vliet and van Mier [41], [42]) 

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


11 

 

 

        A) 

  B) 

Figure 4: Calculated stress-strain y-y curves during uniaxial compression (A) and uniaxial tension 

(B) for 2D concrete specimens (dmin=1 mm, d50=2 mm, dmax=12 mm and V1=90%) with different 

normal contact modulus of elasticity Ec: a) Ec=1.5 GPa, b) Ec=15 GPa, c) Ec=30 GPa and d) 

Ec=150 GPa (‘exp’ – experiments by van Vliet and van Mier [41], [42]) 
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Figure 5 shows the effect of the prescribed strain rate along the specimen top 𝜀̇ and damping 

parameter α on the stress-strain diagram during uniaxial compression. For 𝜀̇ < 10−2 1/s (Fig.5A) 

and ∝ = 0.08 (Fig.5B) the material response was similar and could be treated as quasi static.  

 

A) 

B) 
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Figure 5: Calculated stress-strain y-y curves during uniaxial compression for 2D concrete 

specimens (dmin=1 mm, d50=2 mm, dmax=12 mm and V1=90%): A) effect of different prescribed 

strain rate (α=0.08): a) 𝜀̇ = 10−5 1/s, b) 𝜀̇ = 10−4 1/s, c) 𝜀̇ = 10−3 1/s, d) 𝜀̇ = 10−2 1/s, e) 𝜀̇ =
2 × 10−2  1/s, f) 𝜀̇ = 10−1  1/s and g) 𝜀̇ = 2 × 10−1  1/s and B) effect of damping parameter 

(𝜀̇=10-3 1/s): a) ∝ = 0, b) ∝ = 0.01, c) ∝ = 0.05, d) ∝ = 0.08,  e) ∝ = 0.1 and f) ∝ = 0.2   
 

 

Effect of minimum sphere size (2D analyses) 

 

The minimum sphere diameter was varied: dmin=1.0 mm, dmin=0.5 mm and dmin=0.25 mm (with 

d50=2 mm, dmax=12 mm and V1=90%). The sphere number was 3’992, 8’791 and 23’488 during 

compression (with the coordination number equal to 5.1, 5.3 and 5.8) and 4’935, 10’949 and 28'862 

during tension (with the coordination number equal to 5.0, 5.4 and 5.8), respectively. 

 

The stress-strain curves indicated that the smaller the minimum sphere size dmin during compression 

was, the concrete strength fc remained the same, but the brittleness and pre-peak non-linearity were 

smaller (Fig.6A). However, during tension (Fig.6B), the material ductility was insensitive to dmin, 

but the tensile strength ft  was higher with increasing dmin due to the effect of the larger mean grain 

size which contributed to a wider localized tensile zone and a size effect [3], [6]. The calculated 

initial stiffness and strengths for dmin=0.25 mm were in agreement with the experiments but the 2D 

post-peak responses were again too brittle. The calculation time with the smallest sphere diameter 

was 72 hours on PC.  
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A) 

B) 

Figure 6: Calculated stress-strain y-y curves during uniaxial compression (A) and uniaxial tension 

(B) for 2D concrete specimens (d50=2 mm, dmax=12 mm and V1=90%) with different minimum 

sphere diameter dmin: a) dmin=1 mm, b) dmin=0.5 mm and c) dmin=0.25 mm (‘exp’ – experiments by 

van Vliet and van Mier [41], [42]) 
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In Fig.7 the evolution of the global void ratio e=Vp/Vs is shown (Vp – micro-pore area between 

grains and Vs - solid area (aggregate and cement matrix area). In order to exactly determine the 

area of micro-pores, the specimen was divided into very small squares. During uniaxial 

compression (Fig.7a), first insignificant contractancy and then after peak strong dilatancy 

appeared in the concrete specimen. For uniaxial tension (Fig.7b) global dilatancy occurred only 

in the concrete material. 

a) 

 

b) 

Figure 7: Evolution of global void ratio e in 2D concrete specimens from DEM (1-phase material, 

dmax=12 mm, dmin=0.5 mm, d50=2 mm and V1=90%): a) uniaxial compression and b) uniaxial 

tension  
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Effect of specimen height during tension (2D analyses) 

 

The calculations were carried out with geometrically similar concrete specimens under tension 

according to experiments by van Vliet and van Mier [42] (Fig.8). The specimen height varied 

between 0.075-0.6 m (dmin=0.5 mm, d50=2 mm, dmax=12 mm and V1=90%) (Fig.8). 

 

The simulation results of Fig.8 showed that the tensile strength increased with decreasing height (as 

in the experiment [42]). It was higher by 60% for the smallest specimen as compared to the biggest 

one (similarly as in the laboratory test [42], i.e. 50%). However, the softening rate did not increase 

with the height (as in real tests).  

A) 

 

 B) 
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Figure 8: Calculated stress-strain y-y curves (A) during uniaxial tension with different specimen 

height (B) for 2D concrete specimens: a) h=75 mm, b) h=150 mm, c) h=300 mm and d) h=600 mm 

(dmin=1 mm, d50=2 mm, dmax=12 mm, V1=90%, h=1.5D)  

 

Effect of specimen depth (3D analyses) 

 

The 3D calculations were carried out with the specimen depth of t=10 cm as in experiments 

(dmax=12 mm, dmin=1.0 mm, d50=2 mm and V1=90%), Fig.9. During compression (Fig.9A), the 

specimen included 291’577 spheres (the initial coordination number was n=11). In the case of 

tension (Fig.9B), 337’982 spheres were used (n=10.7). The calculation time was extremely long, i.e. 

30 days. 

A)  
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B) 

Figure 9: Calculated stress-strain y-y curves during uniaxial compression (A) and uniaxial tension 

(B) (dmax=12 mm, d50=2 mm and V1=90%): a) 2D results with specimen depth t=d with dmin = 1mm, 

b) 2D results with specimen depth t=d with  dmin=0.25 mm and c) 3D results with t=100 mm and 

dmin=1.0 mm (‘exp’ – experiments by van Vliet and van Mier [41], [42]) 

 

In the 3D simulations as compared to the 2D ones, the material response became more ductile and 

stress fluctuations were significantly smaller due to a higher coordination number. The 3D stress-

strain curves were also closer to the experimental ones both for compression and tension than the 

3D outcomes (Fig.3). These results showed that 3D results were more realistic than the 2D results 

and the effect of the third dimension of micro-structure was pronounced.  

 

Effect of three phases (2D analyses) 

 

Concrete included 3 different phases: aggregate, cement matrix and interfacial transitional zones 

(ITZs) analogously as in lattice models [2], [28] (Fig.10) with dmax=12 mm, dmin=0.5 mm, d50=2 mm 

and V1=90%. The interfacial transition zone (ITZ) is a special region of the cement paste around 

particles which is perturbed by their presence [46]-[48]. Its origin lies in the packing of the 

cement grains against the much larger aggregate which leads to a local increase in porosity 

(micro-voids) and a presence of smaller cement particles. A paste with lower w/c (higher packing 

density) or made with finer cement particles leads to ITZ of smaller extent. This layer is highly 

heterogeneous and damaged and thus critical for the concrete behaviour [46]-[48]. According to 
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Königsberger et al. [48] two different types of failure exist for ITZs: ITZ-aggregate separation 

(related to delamination processes directly at the aggregate surface) and ITZ failure (related to 

cracking). An accurate understanding of the properties and behaviour of ITZ is one of the most 

important issues in the meso-scale analysis because damage is initiated at the weakest region and 

ITZ is just this weakest link in concrete. In our simulations, the ITZs were characterised by a 

weaker contact model between spheres (no additional particles forming ITZs were thus included). 

All spheres with the diameter larger than 1 mm were considered as aggregate (Ec=50 GPa, c=0.2, 

𝜇=30o, C=140 MPa, and T=25 MPa). All spheres with the diameter smaller than 1 mm were taken 

as the cement matrix (Ec=10 GPa, c=0.2, 𝜇=30o, C=140 MPa and T=25 MPa). The large aggregate 

spheres with the diameter larger than 2 mm included ITZs only (due to their large perimeter) with 

the properties: Ec=5 GPa, c=0.2, 𝜇=30o, C=100 MPa and T=15 MPa. Due to the information lack, 

the choice of the sphere diameter limit with respect to ITZs was arbitrary (our intention was to show 

a qualitative effect of ITZs on the concrete behaviour). The stiffness proportion between aggregate, 

cement matrix and ITZ was taken in the proportion 10:2:1 similarly as in the lattice beam model by 

Lilliu and van Mier [2].  

 

Figure 10: Structure of concrete as three-phase material (2D concrete specimen): a) aggregate 

spheres d>2 mm with ITZs, b) aggregate spheres 1 mmd2 mm and c) cement spheres d<1 mm 

 

The 2D results of Fig.11 show that the presence of 3 phases improved the stress-strain curves in a 

post-peak regime by an increase of fracture energy. By including ITZs, a propagation way of cracks 

simply grew due to an increase of the material heterogeneity. An increase of the propagation length 

of ITZs diminished the strength but increased the ductility. 
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A) 

 B) 

Figure 11: Calculated stress-strain y-y curves during uniaxial compression (A) and uniaxial 

tension (B) from 2D DEM (dmax=12 mm, dmin=0.5 mm, d50=2 mm and V1=90%): a) 1-phase 

material, b) 3-phase material (ITZs at spheres with diameter larger than 2 mm), (exp – experiments 

by van Vliet and van Mier [41], [42]) 
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Energy evolution  

 

The evolution of the energy transformation with its elastic and dissipative characteristics and 

kinetic energy was demonstrated and played a fundamental role in the stability behaviour. The 

evolution of the total elastic energy was analysed during the continuing deformation process 

without separation into recoverable and stored terms. In a discrete concrete system there exist 3 

main energies: elastic, kinetic and dissipated energy. In addition, the numerical dissipation also 

exists (Eq.6). The elastic internal energy stored at contacts N between aggregate grains Ee, 

expressed in terms of work of the elastic contact tangential forces Fs on the elastic tangential 

displacements Us and the contact normal forces Fn on the elastic penetration depths U was 

                                                             𝐸𝑒 = ∑ (
|𝐹𝑠

𝑒|2

2𝐾𝑠
)𝑁

1 +
|𝐹𝑛

𝑒|2

2𝐾𝑛
).                                                   (6) 

The kinetic energy Ec of grains was caused by their translation and rotation 

                                                             𝐸𝑐 = ∑ (
1

2
𝑚𝑣2 +

1

2
𝐼 𝜔2̇ )𝑁

1 ,                                               (7) 

where m is the mass, I denotes the moment of inertia of a particle, v - translational velocity and 

𝜔̇ - rotational velocity. 

 

The dissipated energy Dp, expressed in terms of work of the tangential (shear) forces on 

conjugate sliding displacements and moments on conjugate rotations was determined as: 

                             p p pD D D                  with              ∆𝐷𝑝 = ∑ (𝐹𝑠
𝑝𝑙𝑈𝑠

𝑠𝑙𝑖𝑝)     𝑁
1                        (8) 

Let us note that the dissipated energy was calculated incrementally at each time step and 

summed for the time period of contact of two respective spheres. In addition, the numerical 

dissipation Dn was specified during translation. The total accumulated energy 

                                                               E = Ee + Ec + Dp + Dn                                                 (9) 

was equal to the external boundary work W expended on the assembly by the external vertical 

force on the vertical top displacement. 

 

Figure 12 shows the calculated  total accumulated energy E, elastic internally stored energy at 

contacts Ee, frictional dissipation Dp kinetic energy Ec and numerical damping Dn in the 2D 

concrete specimen during compression and tension. The internal accumulated energy E and 

external work W were almost equal during the tests. The total energy E in compression was almost 

50 times higher than in tension. The evolution of the elastic internal energy in a normal and 

tangential direction was similar to the evolution of the mobilized specimen strength (expressed 

by the vertical normal stress along the top edge). The elastic internal energy Ee was obviously 

higher than the plastic damping Dp due to cohesion. The elastic energy portion due to tangential 
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force action was smaller (in particular for compression) than that due to the normal force action 

in view of the lack of plastic damping in a tangential direction.  

 

Various kinds of energy had different proportions at different stress–strain stages. During 

compression the elastic internal energy Ee was equal to 60% at εy
p=0.15% (vertical normal strain 

corresponding to the maximum mobilized strength). The plastic dissipation Dp was equal to only 

3% of the total energy at εy
p=0.15%. At εy=0.20%, it was already equal to 15% of the total 

energy. In turn, the numerical damping Dn equals 15% of the total energy at εy
p=0.15% and 70% 

of the total energy at εy
p=0.20%. In tension, the plastic dissipation Dp was negligible at 

εy
p=0.02%. At εy=0.20%, it was equal to 10% of the total energy. The elastic internal work Ee 

was equal to 40% at εy
p=0.02%. The numerical damping Dn equals 60% of the total energy at 

εy
p=0.15% and εy

p=0.20%. The plastic damping, kinetic energy and numerical damping start to 

significantly increase from the peak load at εy
p=0.15% (compression) and εy

p=0.02% (tension). 

The impact of the numerical damping was of a major importance although quasi-static problem 

was considered.  

A) 
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B) 

Figure 12: Calculated energies in 2D concrete specimens using DEM (1-phase material, 

dmax=12 mm, dmin=0.5 mm, d50=2 mm and V1=90%, α=0.08) during: A) uniaxial compression and 

B) uniaxial tension (α=0.1): a) external work, b) internal energy, c) normal elastic work in normal 

direction, d) elastic work in tangential direction, e) kinetic energy, f) plastic dissipated energy 

and g) numerical damping 

 

4. Discrete results at micro-level 

 

The macroscopic outcomes were mainly demonstrated for the one-phase concrete material. Figures 

13 and 14 show the evolution of fracture in 2D concrete specimens (1-phase and 3-phase material) 

under compression and tension from two single runs. In the specimen subjected under compression, 

several inclined cracks occurred in the deformation direction (Fig.13A). In the specimen subjected 

to tension initially two almost horizontal cracks were initially created near the mid-height due to the 

assumed the deformation symmetry (Fig.13B). At failure, one crack dominated. In the 3-phase 

material, initially a lot of micro-cracks around grains (in ITZs) appeared (Figs.14A and 14B). Later, 

they connected with each other to form a main crack. The main crack was longer and more curved 

than in the 1-phase material. The coordination number and the total contact number continuously 

decreased in the specimens due to material dilatancy and successive fracture (Fig.15). At the 

beginning of the deformation, the total contact number in the specimen was approximately equal 

to 26’000 (compression) and 24’700 (tension) (Fig.15). When cracks were created, the contact 

number apparently decreased. At large deformation, the contact number was solely 22'500 

(compression, y=0.3%) and 23'000 (tension, y=0.05%).  
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                           a)                                                     b)                                           c) 

A) 

   

                           a)                                                     b)                                           c) 

B) 

Figure 13: Fracture evolution in concrete specimen using 2D DEM (one-phase material, 

(dmax=12 mm, dmin=0.5 mm, d50=2 mm and V1=90%): A) during uniaxial compression (a) yy=0.05% 

(initially), b) yy=0.15% (peak), c) yy=0.25% (after peak) and B) during uniaxial tension 

(yy=0.005% (initially), b) yy=0.015% (peak), c) yy=0.05%)) 

 

                  

                           a)                                                     b)                                           c) 

A) 
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                           a)                                      b)                                           c) 

B) 

Figure 14: Fracture evolution in concrete specimen using 2D DEM (three-phase material, 

(dmax=12 mm, dmin=0.5 mm, d50=2 mm and V1=90%): A) during uniaxial compression (a) y=0.05% 

(initially), b) y=0.15% (peak), c) y=0.25% (after peak) and B) during uniaxial tension (y=0.005% 

(initially), b) y=0.015% (peak), c) y=0.05%)) 

                                   

a)                                                                            b) 

A) 
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a)                                                                  b) 

B) 

Figure 15: Evolution of coordination number (a) and contact number (b) in 2D concrete specimens 

from DEM (1-phase material, dmax=12 mm, dmin=0.5 mm, d50=2 mm and V1=90%): A) uniaxial 

compression and B) uniaxial tension 

 

 

Figures 16-19 demonstrate the distribution of changes of void ratio e-eo (where eo is initial void 

ratio), resultant sphere rotations and displacement fluctuations during deformation of 2D specimens. 

Changes of void ratio were calculated from the quadratic cell equal to 5d505d50 moved by d50. The 

plots of displacement fluctuations were obtained by drawing the displacement difference vector 

(𝑉𝑖
⃗⃗⃗ −  𝑉⃗⃗𝑎𝑣𝑔 ) for each sphere with respect to the background translation corresponding to the 

homogeneous (affine) strain in the entire specimen ( 𝑉𝑖
⃗⃗⃗ represents the sphere displacements during 

k=1000 iterations (with the time increment ∆𝑡𝑠 = 10−8𝑠 ) and 𝑉⃗⃗𝑎𝑣𝑔 =
1

𝑛
∑ 𝑉⃗⃗𝑖

𝑛
𝑖  is the average 

displacement in the entire specimen). 

 

The porosity distribution was non-uniform in the concrete specimens (Fig.16). Localized 

porosity regions were subjected to a local volume increase. In these regions, some small sphere 

rotations appeared when the contacts were broken (in the order of about 1o for compression and 

0.01o for tension) (Figs.17 and 18). The spheres might continuously rotate (tension) or after an 

initial significant increase they stabilized (compression), Fig.18. 
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                      a)                                          b)                                          c) 

A) 

 

 

                                

                              a)                                   b)                                  c) 

B) 

 

Figure 16: Calculated distribution of local void ratio changes (red colour – volume increase, pink 

colour – volume decrease) in 2D concrete specimens using DEM (1-phase material, dmax=12 mm, 

dmin=0.5 mm, d50=2 mm and V1=90%) during: A) uniaxial compression at y=0.15% (a), y=0.20% 

(b) and y=0.25% (c) and B) uniaxial tension at y=0.010% (a), y=0.015% (b) and y=0.050% (c) 

(sign (+) - dilatancy) 

 

   A) 

 

                   a)                                        b)                                         c) 
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       B) 

                  a)                                          b)                                         c) 

Figure 17: Calculated distribution of resultant sphere rotations in 2D concrete specimens using 

DEM (1-phase material, dmax=12 mm, dmin=0.5 mm, d50=2 mm and V1=90%) during: A) uniaxial 

compression at y=0.15% (a), y=0.20% (b) and y=0.25% (c) and B) uniaxial tension at y=0.01% 

(a), y=0.015% (b) and y=0.05% (c) (black colour - higher rotations) 
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B) 

Figure 18: Calculated evolution of sphere rotations in 2D concrete specimens using DEM (1-phase 

material, dmax=12 mm, dmin=0.5 mm, d50=2 mm and V1=90%) during: A) uniaxial compression  and 

B) uniaxial tension (considered are 3 different spheres 'a', 'b' and 'c') 

 

Figure 19 presents spontaneous displacement fluctuations having the form of cells circulating as 

quasi-rigid bodies (so-called vortex structures) which were the inherent characteristics of shear 

localization in granular materials [34], [49], [50]. The individual sphere displacements were able 

to form long-range deformation vortex structures which rotated as rigid bodies. During 

compression and tension one vortex was obtained which was more visible during tension 

(Figs.19a and 19b). Its diameter was 1 cm (5×d50) for tension and 0.6 cm (3×d50) for 

compression. It started to form before the peak on the stress-strain curve and disappeared when a 

macro-crack was created (Figs.19d and 19e). Its rotation was about 0.1-0.4o. The vortex structure 

was well visible if the number of iterations k was high enough, e.g. k1000 (∆𝑡𝑠 = 10−8). It is 

difficult to say at this stage of research whether vortex structures have any significant impact on 

the concrete behaviour and how they could be taken into account in strength calculations. The 

reason is that the mechanisms ruling the creation of vortices are not fully recognized yet. 
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a)                                                                        b)  

c) 

    

d)                                                                       e)  

Figure 19: Calculated displacement fluctuations in 2D concrete specimens using DEM (1-phase 

material, dmax=12 mm, dmin=0.5 mm, d50=2 mm and V1=90%): a), b) distribution during uniaxial 

compression at y=0.15% (a) and uniaxial tension at y=0.02% (b), c) zoom on vortex in uniaxial 

tension, d), e) vortex rotation evolution versus vertical normal strain during uniaxial compression 

(d) and uniaxial tension (e) 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


31 

 

 

The evolution of the contact force network in the concrete specimens was demonstrated in 

Fig.20. Forces were transmitted via  two-phase network of contact forces: a strong contact force 

network (so-called force chains), which bear the majority of the loading and transmit it on the 

entire system and were the predominant structure of internal forces at micro-scale, and a 

complementary surrounding weak network of particles that provides lateral stability to force 

chains. The thickness of lines in Fig.20 represents the magnitude of normal contact force 

between two particles (red colour –normal compressive contact forces and blue colour – normal 

tensile contact forces). The maximum single sphere contact force was about: 200 N 

(compression) and 45 N (tension). The distribution of internal contact forces was non-uniform 

(Fig.20). During compression, the high normal compressive forces were in a direction parallel to 

the deformation direction and small normal tensile forces were horizontally directed. In uniaxial 

tension, high normal tensile forces were parallel to the deformation direction. However, in a 

fractured region during tension, some compressive forces also surprisingly occurred. The number 

of contacts diminished in localized zones due to cracking connected to dilatancy (Fig.15), 

leading to a reduction of the amount of force chains. Initially all chain forces grew during 

loading (Fig.21). If a single force chain broke due to cracking, the neighbouring force chains 

took on the load up to their own breakage (Fig.21).A relationship between collapse of force 

chains, local porosity changes and appearance of vortices merits further investigations. 

     

a)                                            b)                                                 c) 

      A)  

d)                                           e)                                                 f) 
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                 a)                              b)                                 c) 

              B) 

                      d)                           e)       f) 

Figure 20: Calculated distribution of contact forces  in 2D concrete specimens using DEM (1-phase 

material, dmax=12 mm, dmin=0.5 mm, d50=2 mm and V1=90%) during deformation: A) uniaxial 

compression at y=0.10% (a), y=0.18% (b), y=0.21% (c) y=0.23% (d), y=0.25% (e) and y=0.3% 

(f) and B) uniaxial tension at y=0.005% (a), y=0.008% (b), y=0.010% (c) y=0.017% (d), 

y=0.025% (e) and y=0.03% (f) (red colour –normal compressive contact forces and blue colour 

– normal tensile contact forces) 

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


33 

 

A) 

B) 

Figure 21: Calculated evolution of forces in neighbouring chains ('a', 'b' and 'c') in concrete 

specimens during deformation using DEM (1-phase material, dmax=12 mm, dmin=0.5 mm, d50=2 mm 

and V1=90%): A) uniaxial compression and B) uniaxial tension (red colour – normal compressive 

contact forces and blue colour – normal tensile contact forces) 

 

The calculated resultant sphere displacements from the quadratic cell equal to 5d50×5d50 moved 

by d50 across a localized zone during compression and tension were depicted in Fig.22. In order 
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to calculate more accurately the width of a localized zone, the calculated sphere displacements 

were fitted first by the error function ERR [51]  

                                                              𝐸𝑅𝐹(𝑥) =  
2

√𝜋
∫ 𝑒−𝑡2𝑥

0
𝑑𝑡.                                             (10) 

The halved error function evaluated at 
𝑥

𝑠√2
 for positive x-values gives the probability that a 

measurement under the influence of normally distributed errors with the standard deviation s has 

a distance less than x from the mean value. The fitting function parameter s in Eqs.10 was used 

to determine the width of a localized zone wc (based on the experimental results [47], the width 

wc might be calculated from the equation wc=4×s). Thus, 95% of the values of the normal 

distribution function area were within the distance of 2 standard deviations in both directions 

from the mean value. The calculated width of a localized zone changes between 1.5-3.0 mm 

during compression and between 1.5-2.5 mm during tension based on the displacement jump 

shown in Fig.22 [i.e. (0.125-0.25)dmax and (0.75-1.5)d50]. It was approximately in agreement 

with experimental results by Skarzynski and Tejchman [52] for usual sand and gravel concrete 

notched beams under 3-point bending obtained by means of the digital image correlation 

technique DIC technique: 2.5-3.5 mm. It was approximately equal to the width of a damage zone 

at the same place (3-5 mm) which corresponded to a region with broken contacts between 

spheres (Fig.23). 

     A) 

 

I) II) 
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   a) 

    b) 

    c) 

                                                 I                                                                  II 

Figure 22: Calculated displacements along 2D specimen height during uniaxial compression at 

yy=0.2% (I) and uniaxial tension at yy=0.02% (II) versus section coordinate across localized zone 

in 2D concrete specimens using DEM: A) displacement map with marked sections across localized 

zone, a) displacement profile along line α-α, b) displacement profile along β-β, c) displacement 

profile along profile γ-γ (dashed line correspond to DEM result and solid line correspond to error 

function ERR) 

 

 

Summing up, the numerical simulations of uniaxial compression and uniaxial tension tests show 

that discrete model was capable to satisfactorily reproduce the most important macroscopic 

properties of cohesive-frictional materials in uniaxial load states without it being necessary to 
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describe perfectly the concrete micro-structure with respect to the aggregate shape, aggregate 

distribution curve, minimum aggregate size and ITZs' width. The main advantage of the 

described model is that the micro-structure of the real concrete can be simulated and its effect on 

the concrete behaviour may be evaluated in numbers using simple contact laws. In addition, 

different micro-structural events (strictly connected to each others) may be studied in detail. The 

discrete simulation outcomes should contribute to a better calibration of enhanced constitutive 

models for concrete with respect to non-local and second-gradient terms that requires an accurate 

description of the micro-scale deformation within localized zones and a characteristic length of 

micro-structure [3], [6]. The results will also contribute to a better calibration of our 

discontinuous constitutive FE models and a transition point in our combined continuous-

discontinuous FE models [3], [53], [54]. In turn, the knowledge on porosity-force chain 

correlations will allow for introducing stress fluctuations (connected to a collapse of force 

chains) to capture the stress-strain evolution more realistically.  

a) 
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b) 

Figure 23: Calculated regions of damaged contacts between grains in 2D specimen during: a) 

uniaxial compression at yy=0.2% and b) uniaxial tension at yy=0.02% (black spheres correspond to 

spheres with broken contacts) 

 

The limitations of our model is the long computation time and the knowledge lack on the 

mechanical and geometric properties of micro-structure components (e.g. of ITZs). Moreover, in 

order to describe the concrete behaviour under high confining pressure, aggregate crushing and 

more sophisticated contact models will be probably required [43], [44]. 

 

In the next step, the 3D fracture process will be investigated using DEM in experimental notched 

concrete beams wherein DIC was used to measure the width of a localized zone [52]. When 

constructing the concrete beams, the real internal concrete 3D structure used in tests will be 

reproduced.  

 

6. Summary and conclusions  

 

Comparing the numerical simulations with the experimental tests shows that our simple discrete 

model was able to realistically reproduce the experimental results for real concrete at macro-

level under quasi-static uniaxial compression and tension and to describe some influential micro-
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structural phenomena occurring at particle level which strongly affect the macroscopic 

behaviour. 

 

DEM proved its capability to model concrete. The agreement of discrete stress-strain results with 

experimental ones increased with 3D analyses, presence of small particles and 3 different phases 

(aggregate, cement matrix, ITZs). The denser the specimen, the higher was the concrete strength 

and smaller is the material ductility. The smaller the minimum sphere size, the larger was the 

concrete tensile strength and compression ductility. The tensile strength increased with decreasing 

specimen size. Since the discrete results strongly depended on the internal concrete micro-structure, 

it is advantageous to reproduce it realistically in 3D calculations (the 3D results strongly differed 

from the 2D simulation results). 

 

The distribution of internal contact forces in concrete specimens was non-uniform. The number of 

contact forces continuously decreased in concrete specimens due to dilatancy connected to material 

fracture. Some grain rotations occurred in fractured regions (in the order of 1o for compression and 

0.01o for tension). Vortex structures might also form in localized regions. The width of a 2D 

localized zone based on grain displacement varied between 1.5-3 mm. It was similar to the width of 

a damage zone characterized by the breakage of spherical contacts. 

 

The plastic dissipation was smaller than the internal elastic energy due to cohesion. The plastic 

dissipation and kinetic energy significantly increased after the peak load during a cracking 

process.  
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