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The aim of the paper is to propose an application of the continuum damage model proposed
by Lemaitre to the elasto-viscoplastic constitutive equations of the Bodner–Partom model.
The proposed approach has been implemented into subroutines of the FE code MSC.Marc as
the user’s viscoplastic subroutine UVSCPL and has been used to perform the FE numerical
simulations. Comparison is given of the following two variants: 1) uniaxial creep test results
for a nickel-based B1900+Hf superalloy at high temperatures and 2) calculation based on the
constitutive equations with the inclusion of isotropic damage models.
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1. Introduction

The Bodner–Partom constitutive model belongs to the group of unified theo-
ries, proposed by Bodner and Partom [7] at the beginning of the 1970s. These
constitutive equations have been frequently utilized in modelling of the elasto-
viscoplastic hardening of a number of materials, with a great many practical
engineering applications [2]. Its application in the elasto-viscoplastic static and
dynamic analysis of plates and shells is shown in many examples: Kłosowski
et al. [21] and [23], Sansour and Kollmann [30], Woźnica [39], Kłosowski
[20], Stoffel [34] and [35], Sansour and Wagner [31] and [32], Steck [33],
Kłosowski and Woźnica [22]. Description of the behaviour of glassy poly-
mers (see e.g.: Frank and Brockman [16], Zaïri et al. [42]) and technical
coated fabrics (see e.g.: Kłosowski et al. [24]) is also shown with reference to
the presented model. On the other hand, Chełmiński and Gwiazda [14] stud-
ied application to the model of Bodner–Partom monotonicity of operators of the
viscoplastic response.

In the present paper the author makes a detailed investigation of modelling
of continuum damage for application in the elasto-viscoplastic Bodner–Partom
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model. In the second part of the paper, which is preceded by an introduction, the
detailed description of the model is given. In the third part the author proposes
an application of the continuum damage model proposed by Lemaitre [25]
to the elasto-viscoplastic constitutive equations of the Bodner–Partom model.
Next section concerns the description of the finite element procedure which was
used for the open commercial FE program implementation. The last part gives
numerical simulation examples of the creep tests for B1900+Hf alloy.

2. Bodner–Partom equations

At the beginning it is necessary to assume the isotropic material and strain
additivity, where the total strain rate ε̇ is decomposed into the elastic part ε̇

E

and the inelastic part ε̇
I according to the formula

(2.1) ε̇ = ε̇
E + ε̇

I .

Therefore, the relation between the stress rate σ̇ and strain rate ε̇
E , for the

assumed isotropic material, is defined as:

(2.2) σ̇ = B∗ : ε̇
E = (1 −D) · B :

(
ε̇ − ε̇

I
)
,

where D ∈ 〈0, 1〉 is the scalar parameter of the isotropic damage and B∗ is the
effective tensor of elasticity for the damaged material, which is expressed by the
standard elasticity tensor B, reduced by the damage parameter.

Since Kachanov [19] and Rabotnov [29] have proposed the concept
of effective stress, numerous damage models have been developed (see e.g.:
Kachanov [18] or Lemaitre [26]). Most of the investigations on continuum
damage use a power law for the damage equation evolution. Bodner and Chan
[6] proposed an alternative functional form of the evaluation equation which
leads to an exponential equation for damage development:

(2.3) Ḋ =
h

H
·
[
ln

(
1

D

)(h+1)/h
]
·D · Q̇,

where h and H are the damage material parameters and Q is the multiaxial
stress function obtained from the equation included in [17]:

(2.4) Q̇ =
(
α1 · σ+

max + α2 · J (σ) + α3 · tr (σ)+
)z
,

where σ+
max and tr (σ)+ are the maximum principal tensile stress and the first

stress invariant, respectively. Next α1, α2, α3, z are the material constants.
It should be noted that the parameters α1, α2 and α3 satisfy the condition
α1 + α2 + α3 = 1.0.
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It is necessary to point out that Bodner and Chan [6], besides of the
isotropic damage model, described the procedure considering the directional
damage by the load-history dependent softening variables. In this procedure
the directional damage is expressed by the second-order symmetric tensor with
a scalar effective value.

The inelastic strain rate ε̇
I in the Bodner–Partom model is calculated ac-

cording to the equation

(2.5) ε̇
I =

3

2
· ṗ · σ

′

J (σ′)
,

where ṗ is the equivalent plastic strain, σ
′ and J (σ′) =

√
3

2

(
σ
′ : σ

′
)

are the

deviatoric parts of stress and the stress invariant. It should be noted that in
the literature it is possible to find two ways of calculating ṗ – the rate of the
equivalent plastic strain, which includes the isotropic damage evolution (see e.g.
[6] and [7] for details)

(2.6) ṗ =
2√
3
·D0 · exp




−1

2
·





(
R+

(
X :

σ

J (σ)

))
· (1 −D)

J (σ′)





2·n

· n+ 1

n




,

or

(2.7) ṗ =
2√
3
·D0 · exp




−1

2
·





(
R+

(
X :

σ

J (σ)

))
· (1 −D)

J (σ′)





2·n



,

where the material parameters D0 and n represent the limiting plastic strain rate
and the strain rate sensitivity parameter, respectively. The isotropic hardening
R is given as

(2.8) Ṙ = m1 · (Z1 −R) ·
(
σ : ε̇

I
)
−A1 · Z1 ·

(
R− Z2

Z1

)r1

,

where m1, A1, r1, Z1 and Z2 are the material parameters. The material constants
m1, A1, r1 are the hardening rate coefficient, recovery coefficient, and recovery
exponent for isotropic hardening, respectively. The values Z1 and Z2 are the
limiting value of isotropic hardening and the fully recovered value of isotropic
hardening, respectively.

Subsequently, the kinematic hardening X is defined as

(2.9) Ẋ = m2 ·
(

3

2
· Z3 ·

σ

J (σ)
− X

)
·
(
σ : ε̇

I
)
−A2 · Z1 ·

3

2
·





2

3
J (X)

Z1





r2

· X

J (X)
,
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where m2, A2, r2, Z3 are material parameters. The material constants m2, A2,
r2 are the hardening rate coefficient, recovery coefficient, recovery exponent for
kinematic hardening, respectively, and Z3 is the limiting value of the kinematic
hardening. Additionally, at the beginning of calculations the initial value of the
isotropic hardening is assumed as R (t = 0) = Z0. It should be noted that the

relation
(
σ : ε̇

I
)
, used in Eq. (2.8) and Eq. (2.9), is called the plastic work rate.

In this described model the 20 parameters have to be determined; 14 pa-
rameters of the base model: E, ν, D0, n, Z0, Z1, Z2, Z3, m1, m2, A1, A2, r1,
r2, and 6 parameters of damage evolution: h, H, α1, α2, α3, z. In the work [8]
Bodner proposed the concept of reduction of the number of parameters, where
Z0 = Z2 = Z, A1 = A2 = A and r1 = r2 = r. According to this assumption 11
parameters of base model have to be determined: E, ν, D0, n, Z0 = Z2 = Z, Z1,
Z3, m1, m2, A1 = A2 = A, r1 = r2 = r. Detailed description of the identifica-
tion procedure for the material parameters is described by Chan et al. [11] and
Woźnica and Kłosowski [40].

In the work [6], Bodner and Chan investigated a nickel based super alloy
B1900+Hf. For this material the uniaxial creep test results at various temper-
atures are given. The material constants for Bodner–Partom constitutive equa-
tions have been established, see Table 1. It should be noted that the damage
evolution, under constant stress conditions (creep tests), was described by the
equation:

(2.10) D = exp

[
−H
Q

]h

,

where the stress function Q has the simplified form:

(2.11) Q = t · σz.

Table 1. Parameters for Bodner–Partom model for B1900+Hf [6].

base parameters of the model

temp. E ν D0 n Z0 m1 Z1 A1 temp.
T [◦C] [MPa] [−]

�
s−1

�
[−] [MPa]

�
MPa−1

�
[MPa]

�
s−1

�
T [◦C]

871 141525 0.3 104 1.03 2400 0.270 3000 0.0055 871

982 125391 0.3 104 0.85 1900 0.270 3000 0.02 982
1093 107539 0.3 104 0.70 1200 0.270 3000 0.25 1093

base parameters of the model damage parameters
temp. Z2 r1 m2 Z3 A2 r2 H h z

T [◦C] [MPa] [−]
�
MPa−1

�
[MPa]

�
s−1

�
[−] [(MPa)z · s] [−] [−]

871 2400 2.0 1.52 1150 0.0055 2.0 2 · 1027 1.0 8.3
982 1900 2.0 1.52 1150 0.02 2.0 4 · 1024 1.0 8.3

1093 1200 2.0 1.52 1150 0.25 2.0 5 · 1020 1.0 8.3
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3. Proposed approach of damage evolution
in Bodner–Partom model

The author of the present paper proposed the application of the damage
concept described by Lemaitre [25] in the Bodner–Partom model. The damage
evolution is specified by the following expression:

(3.1) Ḋ =

(
Y

S

)s

· ṗ,

where the variables s, S are the damage material parameters and ṗ is the rate
of the equivalent plastic strain assumed according to Eqs. (2.6) or (2.7). The
function Y , used in Eq. (3.1), is specified by the Young’s modulus E, Poisson’s
ratio ν, the current values of damage D, the Huber–Mises equivalent stress σeq

and the hydrostatic stress σH , and is called the damage strain energy release
rate. It is expressed by the equation

(3.2) Y =
σ2

eq

2 · (1 −D)2 · E
·
(

2

3
· (1 + ν) + 3 · (1 − 2 · ν) ·

(
σH

σeq

)2
)
.

The function of the energy density Y , in above equation, in the case of uniaxial
stress state can be rewritten as

(3.3) Y =
σ2

2 · (1 −D)2 · E
·

The proposal of Lemaitre damage evolution is not the only one which can be
found in the literature (see e.g.: Tai [36], Wang [38], Chandrakanth [12] and
[13], Dhar [15], Bonora [9], Xiao [41], Życzkowski [43]), where the authors
propose alternative versions of the Eq. (3.1).

The damage model proposed by Lemaitre [25] is successfully applied to

the Chaboche model [10], see e.g.: Amar and Dufailly [1]. It should be

noted that the Chaboche model is an extension of the Perzyna law [28], based

on the orthogonal condition in the plastic law, which requires an established

yield criterion. On the other hand in the Bodner–Partom model the existence

is assumed of the inelastic deformation from the beginning of the deformation

process, without references to the yield limit.

Identification of the values of damage material parameters s and S is based

on the concept proposed by Amar and Dufailly [1]. The present author also

investigates the identification and validation of the damage parameters for the

Lemaitre model, described in the paper [3]. Referring to paper [1], the value

of the parameter s is chosen arbitrarily; only the factor S has to be deter-

mined. It should be noted that only the parameter S is accepted as temperature-

dependent.
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At the beginning of the identification process, the numerical simulation of

the uniaxial tensile tests were performed on the basis on the known material

parameters (see Table 1) for the Bodner–Partom model with damage. From the

numerical simulation the rupture time tr was defined. Then we can make the

following transformation of the Eq. (3.1):

(3.4)

Ḋ · (1 −D)2·s =

(
σ2

2 · E · S

)s

· ṗ,

1∫

0

(1 −D)2·s dD =
1

2 · s+ 1
=

tr∫

0

(
σ2

2 · E · S

)s

· ṗ dt

which leads to the specified value of the parameter S:

(3.5) S =
(2 · s+ 1)1/s

2 · E ·




tr∫

0

(
σ2·s · ṗ

)
dt




1/s

.

In this variant of identification, the value of the parameter s = 3.0 [−] is

predetermined. According to the assumed procedure, the following damage pa-

rameters for the investigated superalloy B1900+Hf are specified and given in

Table 2. The basic parameters for Bodner–Partom model are known and have

been collected in Table 1. The detailed identification procedure of the damage

parameters s and S, for the Lemaitre model of damage evolution, is described

by the author in the paper [3].

Table 2. Damage parameters of the Bodner–Partom model for B1900+Hf.

temp. S s

T [◦C] [MPa] [−]

871 0.900 3.0
982 0.275 3.0

1093 0.023 3.0

In practical applications it is necessary to specify the value of the critical

damage Dc, which indicates the limit of the theory. It should be noted that this

factor must be lower than 1.0. It usually lies between 0.2 and 0.8, depending on

the type of material [25].

It is worth pointing out that in the proposed approach, the damage parameter

has the additive character. It is dependent on the rate of the equivalent plastic

strain, see Eq. (3.1), when in the concept proposed by Bodner and Chan the

damage is directly calculated as a function of time and stresses, see Eq. (2.10).

However, both concepts belong to the group of the isotropic continuum damage

models.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


MODELLING OF CONTINUUM DAMAGE FOR APPLICATION ... 121

4. Description of applied program and procedure

In the numerical analysis the MSC.Marc system was used. To apply the
Bodner-Partom model to the MSC.Marc system the user-defined subroutines
UVSCPL [37] are applied. The fundamental part of the algorithm used in the
implementation of UVSCPL subroutines is presented in Figs. 1 and 2 in the
form of flow charts. Early this subroutine was used successfully by the author for
implementation of the Chaboche model with damage [4] and for the introduced
Bodner–Partom model without damage (see e.g.: [2] and [5]).

[step 1] →





∆X =
∆t

2
·
(
Ẋj−1 + Ẋj

)
, Xj = Xj−1 + ∆X

∆R =
∆t

2
·
(
Ṙj−1 + Ṙj

)
, Rj = Rj−1 + ∆R





[step 2] → [σ′

jj, J (σ′

jj) , J (σ′

j) , J (Xj)]

[step 3] → Dj = exp ·
[
− H

(t · σz)

]h

[step 4] →




ṗj =

2√
3
·D0 · exp




−1

2
·





(
R+

(
Xj :

σj

J (σj)

))
· (1 −Dj)

J
(
σ

′

j

)





2·n

· n+ 1

n









[step 5] →
[
ε̇

I
j =

3

2
· ṗj ·

σ
′

j

J (σ′
j)

]

[step 6] →
[
Ẇ I

j = σj : ε̇
I
j

]

[step 7] →



Ẋj = m2 ·
(

3

2
· Z3 ·

σj

J (σj)
− Xj

)
· Ẇ I

j −A2 · Z1 ·
3

2
·





2

3
· J (Xj)

Z1





r2

· Xj

J (Xj)





[step 8] →
[
Ṙj = m1 · (Z1 −Rj) · Ẇ I

j −A1 · Z1 ·
(
Rj − Z2

Z1

)r1
]

[step 9] →
[
∆ε

I
j = ε̇

I
j · ∆tj

]

[step 10] →
[
∆σj = (1 −Dj) · B ·

(
∆εj − ∆ε

I
j

)]

Fig. 1. Flow chart of the UVSCPL subroutine with the damage model proposed by Bodner
and Chan.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


122 A. AMBROZIAK

[step 1] →





∆X =
∆t

2
·
(
Ẋj−1 + Ẋj

)
, Xj = Xj−1 + ∆X

∆R =
∆t

2
·
(
Ṙj−1 + Ṙj

)
, Rj = Rj−1 + ∆R

∆D =
∆t

2
·
(
Ḋj−1 + Ḋj

)
, Dj = Dj−1 + ∆D





[step 2] →
[
σ

′

j , J
(
σ

′

j

)
, J (σj) , J (Xj)

]

[step 3] →




ṗj =

2√
3
·D0 · exp




−1

2
·





(
Rj +

(
Xj :

σj

J (σj)

))
· (1 −Dj)

J (σ′
j)





2·n

· n+ 1

n









[step 4] →
[
ε̇

I
j =

3

2
· ṗj ·

σ
′

j

J (σ′
j)

]

[step 5] →
[
Ẇ I

j = σj : ε̇
I
j

]

[step 6] →



Ẋj = m2 ·
(

3

2
· Z3 ·

σj

J (σj)
− Xj

)
· Ẇ I

j −A2 · Z1 ·
3

2
·





2

3
· J (Xj)

Z1





r2

· Xj

J (Xj)





[step 7] →
[
Ṙj = m1 · (Z1 −Rj) · Ẇ I

j −A1 · Z1 ·
(
Rj − Z2

Z1

)r1
]

[step 8] → Yj =
σ2

eq

2 · (1 −Dj)
2 · E

·
(

2

3
· (1 + ν) + 3 · (1 − 2 · ν) ·

(
σH

σeq

)2
)

[step 9] → Ḋj =

(
Y

S

)s

· ṗj

[step 10] →
[
∆ε

I
j = ε̇

I
j · ∆tj

]

[step 11] →
[
∆σj = (1 −Dj) · B ·

(
∆εj − ∆ε

I
j

)]

Fig. 2. Flow chart of the UVSCPL subroutine with the proposed damage evolution in the
Bodner–Partom model.
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5. Numerical simulation of creep tests for B1900+Hf alloy

In the paper two concepts of the damage evolution in the Bodner–Partom

model are described. Numerical simulations of strain-time relations based on the

constitutive equations with the damage models are performed for the nickel-

based superalloy B1900+Hf. The results of numerical simulations obtained from

the procedure described by Bodner and Chan (see Fig. 1, B–P v1) are compared

with the proposed procedure (see Fig. 2, B–P v2).

Fig. 3. Creep curves for B1900+Hf at 871◦ C, σ = 517 [MPa] = const.

Fig. 4. Damage parameter evolution for B1900+Hf at 871◦ C, σ = 517 [MPa] = const.
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Like in the paper [6], the numerical simulations of the uniaxial creep tests at

various temperatures (see Fig. 3, Fig. 5, Fig. 7) were carried out. Additionally the

damage evolution parameters for these variants of simulation are given in Fig. 4,

Fig. 6 and Fig. 8. The strain-time functions obtained from the two investigated

damage models gave similar results (very small differences can be observed only)

in the considered range of time. The functions of the damage evolution (see

Fig. 4, Fig. 8 and Fig. 6) also gave small differences.

Fig. 5. Creep curves for B1900+Hf at 982◦ C, σ = 283 [MPa] = const.

Fig. 6. Damage parameter evolution for B1900+Hf at 982◦ C, σ = 283 [MPa] = const.
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Fig. 7. Creep curves for B1900+Hf at 1093◦ C, σ = 79.5 [MPa] = const.

Fig. 8. Damage parameter evolution for B1900+Hf at 1093◦ C, σ = 79.3 [MPa] = const.

6. Concluding remarks

A new approach is proposed to the problem of continuum damage modelling

for application in elasto-viscoplastic Bodner–Partom constitutive equations. The

proposed method combines the damage model developed by Lemaitre and the

Bodner–Partom model. The results obtained in numerical simulations of creep

tests for B1900+Hf confirms the validity of the approach. Moreover, the ob-

tained results encourage the author to continue the outlined research based on
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126 A. AMBROZIAK

broader experimental data. Such experiment can provide a perspective of appli-

cation of other types of damage evolution equation to various elasto-viscoplastic

constitutive models.
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