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1. Introduction

The issue of geometrical layout design of the transport 
routes has a very long history. Initially, the existing options 
have been very limited due to the level of both, computer 
technology and geodetic methods of setting out the routes. 
Therefore, numerous simplifications and approximate 
methods have been widely used. The revolution in the 
field of computer technology, which occurred at the end of 
the twentieth century, did not result in an immediate im-
provement in the design of geometrical layout of transport 
routes. Most of the traditional algorithms are still being 
used without any changes and their simplifying assump-
tions have not been replaced by more accurate ones. 

In many cases the development of commercial Com-
puter-Aided Design (CAD) applications is characterized 
by an excessive form of expansion which is not accom-
panied by the substantial content improvement. To solve 
this, it is necessary to carry on a development of the new 
computational algorithms taking into account the current 
state-of-the-art, which will inspire further research (Koc, 
Chrostowski 2013). Of particular importance here is the 
problem of vehicle dynamics, and, therefore, the proper 
modelling of curvature becomes crucial (Baykal 1996; 
Koc, Palikowska 2012; Li et al. 2010; Long et al. 2010). 

 The development of a method for precise determina-
tion of route coordinates seems to be the most appropria-
te course of action (Ahmad, Ali 2008; Bosurgi, D’Andrea 
2012; Bosurgi et al. 2016; Kobryń 2011, 2014; Koc 2014; 
Ziatdinov et al. 2012a, 2012b). This paper provides the 
examples of such an approach, which radically diverges 

from the traditional approach. The analytical solutions, 
the most favourable in practical use, are obtained using the 
method described in the paper.

2. Joining two route segments

The examination of elementary geometrical situation is 
used to introduce the basic facts and notations. The ex-
ample, presented in Fig. 1, shows two horizontal curves K1 
and K2, away from one another, have their relative position 
clearly defined; curve K1 has its endpoint curvature k1 and 
the curve K2 is at its point of origin, the curvature k2. A 
system of coordinates x, y with its point of origin O is cre-
ated in a way to make the point O to be the tangential point 
of curve K1 and the x axis (Fig. 1).

Coordination systems of both curves, K1 and K2 (sys-
tem x1, y1 and system x2, y2 respectively) are simultane-
ously transformed to the same system of coordinates x, y. 
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Fig. 1. Schema of the geometrical route layout
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The coordinates ( , ) of the point O2, the position of 
the origin point of a curve K2 and the value of the angle of 
a tangent θ at that point are obtained.

The main task consists of inscribing the transition 
curve y(x) which joins the points O and O2 and fulfils the 
boundary conditions. As it is shown in the literature (Koc, 
Mieloszyk 1998), the differential equations method has 
been applied to solve this task analytically. The differential 
equations method has evolved as a result of the general-
ization of lateral unbalanced acceleration identification re-
garding to transition curves (Mieloszyk, Koc 1991). 

Thus, the transition curve in an explicit form that has 
been searched among the solutions of the following dif-
ferential equation:

 , (1)

where  – the successive de-
rivatives of a function y(x), with boundary conditions as-
sumed for x = 0 and 

 
(i.e. at the origin and the end 

points of the designed geometrical layout).
A number and type of the boundary conditions are 

dependent on the requirements imposed on the curve. A 
number of the boundary conditions determines the order 
of a differential equation.

Fig. 1 in the point O, the following boundary condi-
tions are assumed:

 , (2)

where k1  – value of curvature at a point O;  – value of the 
first derivative of curvature at point O.

The appropriate boundary conditions are assumed at 
the point O2 (where in k2 and  stand for the value of a 
curvature and a value of the first derivative of a curvature 
while  stands for the slope of the tangent at that point):

. (3)

Several examples of an application of the presented 
method have been described in the paper of Koc and Mie-
loszyk (1998). Whereas, as proved in the mentioned paper, 
the serious limits have appeared: the curvature monotoni-
city condition has not always been fulfilled. It turned out 
that the obtained results are useful only in the restricted 
range of values of the parameters. Very high sensitivity of 
the solutions to slight the changes of values of geometri-
cal layout parameters has been observed (Koc, Palikowska 
2012). The method is not the universal one; the appropria-
te functions are adjusted separately to individual cases.

Therefore, the appropriate approach to a problem is to 
focus on curvature modelling. As a result of the curvature 

modelling, the unambiguous and advantageous solution 
identifying the transition curve is possible to obtain. Ho-
wever, it should be taken into account that the curvature 
modelling forces the necessity of adjusting the position of 
a curve K2 (a position of the curve K2 cannot be set as an 
entry parameter in the process of a geometrical layout de-
sign regrettably).

3. General method of modelling curvature 

Similarly as previously, as a result of generalization of the 
lateral unbalanced acceleration identification regarding to 
different types of the transition curves (Mieloszyk, Koc 
1991), the curvature function k(l) is being searched among 
the solutions of the following differential equation:

 , (4)

where l – arc length from the original point of a curve to the 
chosen point along the curve; kʹ(l), ..., k(m–1)(l), k(m)(l) – suc-
cessive derivatives of the curvature function k(l), with bound-
ary conditions at the original point (for l = 0) and at the final 
point (for l = lk) of the transition curve.

The boundary conditions are:

 , (5)

 . (6)

The differential Eq (4) order is m = n1 + n2 + 2 while 
the obtained curvature function k(l) is of a class Cn in the 
range 〈0, lk〉, where n = min(n1, n2). The presented method 
enables joining route segments of a different curvature. An 
introduction of the signed curvature enables the joint of 
two circular arcs with the radii R1 (m) and R2 (m), both 

with C-shaped transition curve (e.g., , ) 

and S-shaped transition curve (e.g., , ).

3.1. Linear curvature changes (K0 curve)

As it is known, the linear curvature change occurs on a 
transition curve named clothoid, often used in the high-
way alignment, joining a straight route segment (k1 = 0) 

with a circular arc segment ( ).

It is premised that the linear curvature change on the 
specified transition curve length lk is obtained as a result 
of the assumption of two elementary boundary conditions 
(in the generalized approach of the presented case):

  (7)
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and the differential Eq (8) is as follows:

 . (8)

After determining the constants, the solution of the 
differential Eqs (7)–(8) is as follows:

 . (9)

Since the resulting solution (9) is a function of the 
class C0, it is included in the category referred as the K0 
curves.

The primary task is to determine the coordinates of 
the curve described by the curvature (9) in a Cartesian co-
ordinate system x, y. It is assumed that the original point O 
of the system is located at the end point of the curve with 
the curvature k1 and x axis is tangent to the curve at that 
point (Fig. 1). The formula of the desired transition is writ-
ten in parametric form:

 , (10)

 . (11)

The parameter l represents a current position of the 
chosen point along the curve length. The function of slope 
of the tangent θ(l) is defined by the formula:

 . (12)

In the presented case:

 . (13)

The determination of x(l) and y(l) using formulas (10) 
and (11) requires, in a general case, an expansion of the 
integrands in the Taylor series, and the mentioned case in 
the Maclaurin series.

As a result of the expansion procedure, the following 
parametric equations are obtained as follow:

  

 

 

. (14)

  

.  (15)

It is easy to ensure that the above parametric equa-
tions for k1 = 0 describe a clothoid transitional curve. In 
the S-shaped transition case (i.e. reverse curvatures, cur-
vatures with different signs), however, a problem with 
the monotonic course of the function θ(l) appears. In the 
C-shaped transition case (i.e. sign k1 = sign k2) function 
θ(l) is a monotonic one, while in the S-shaped transition 
case on the graph of the function θ(l) an extremum ap-
pears at the point l0 (Fig. 2), in which:

 . (16)

The values of l0 and θ(l0) result from the following 
relationships:

 , (17)

 . (18)

In the presented case the parametric Eqs (14) and 
(15) for the transition curve are valid for l ∈  〈0,  l0〉; for 
l ∈  (l0,  lk〉 after expansion of the functions cos  θ(l) and 

Fig. 2. Slope of the tangent θ(l) chart, described by formula (13), 
for S-shaped joining of circular arcs with curvatures  rad/m
and

 
 rad/m (lk = 50 m)
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sin θ(l) in Taylor series and integration the following para-
metric equations are obtained:

 

. (19)

 

. (20)

The correct solution in the S-shaped transition case 
(Fig. 3) is obtained using two pairs of the parametric equ-
ations:

 − the pair of the formulas (14) and (15) for l ∈ 〈0, l0〉;
 − the pair of the formulas (19) and (20) for l ∈ (l0, lk〉.

From a practical point of view, it is very important to 
determine the value of the slope of the tangent at the end 
of the transitional curve. It equals:

 . (21)

Determination of the value θ(lk) enables joining of the 
transitional curve K with the curve K2, fulfilling the condi-
tion of both curves tangent conformity at the joining point.

3.2. Nonlinear curvature changes (K1 curve)
As presented in section 3.1, the solution for a linear cur-
vature change is unambiguous and unique, nonlinear so-
lutions, obtained assuming different boundary conditions 
and different forms of differential equation, are various.

The nonlinear case, which refers to the classical tran-
sition curves joining the straight route segment with the 
circular arc segment, identified as Bloss curve (Mieloszyk, 
Koc 1991), has been considered. 

The following boundary conditions have been adopted:

  (22)

the differential equation is as follows:

 . (23)

As a result of solving the differential Eqs (22), (23) 
the following formula k(l), describing the curvature of the 
transition curve, has been obtained:

 . (24)

Since the obtained solution (24) is a function of C1 
class, it is included in the category referred as the K1 curves.

The slope of the tangent function θ(l) is defined by 
the formula:

 . (25)

The following parametric equations have been obtai-
ned after the function cos θ(l) and sin θ(l) expansion in 
Maclaurin series and integration of them:

 

, (26)

Fig. 3. Horizontal ordinates y(x) chart, described by the formulas 
(14), (15), (19) and (20) for S-shaped joining of circular arcs with 
curvatures 

 
rad/m and  rad/m (lk = 50 m)
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. (27)

Assuming that k1 = 0, the parametric Eqs (26) and 
(27) identify the Bloss curve.

The nonlinear curvature k(l), in the case of C-oval 
transition, has been presented (one of the circular arcs lies 
partly inside the other) in Fig. 4.

In S-shaped transition case (i.e. sign k1 ≠ sign k2) on 
the chart of the function θ(l) an extremum appears in the 
point l0 , in which:

 . (28)

The parametric Eqs (26) and (27) of the transition 
curve are valid for l ∈ 〈0, l0〉. As a result of solving the 3rd 
degree of Eq (28), the following formula for the value l0 has 
been obtained:

 , (29)

where the angle φ values result from the relationship:

 . (30)

The transitional curve’s parametric equations for 
l  ∈  (l0,  lk〉 are determined by expanding the functions 
cos θ(l) and sin θ(l) in Taylor series. By the usage of for-
mulas (26) and (27), the correct solution for the S-shaped 
transitional case has been obtained (Fig. 5).

The slope of the tangent θ at the end of the transi-
tion curve, enabling to join the transition curve K with the 
curve K2 with fulfilment of the condition of both curves 
tangent conformity at the joining point, is analogous to the 
linear curvature case (Section  3.1.) i.e. it is described by 
the formula (21).

3.3. Methodology of K0 and K1 curves evaluation 
In order to evaluate the properties of K0 and K1 curves, 
these solutions will be compared to another known 
curves, which curvature functions k(l) belong to the simi-
lar continuity class (i.e. they have the similar degree of the 

smoothness) and at joining points with the arcs the ob-
tained transitions have at least G2 continuity. As the ref-
erence curves, two families of Bezier curves, presented in 
Section 4, have been chosen.

Two evaluation methods of the dynamic properties 
of K0 and K1 curves versus to the mentioned Bezier cur-
ves have been applied. The first method, presented by Koc 
and Mieloszyk (1998), is based on the dynamic model and 
the estimation of the dynamic effects. An essential goal of 
the dynamic analysis is to determine the function of oscil-
lations X(t) and resultant acceleration of oscillating mo-
tion X″(t) in areas where changes of horizontal curvature 
of the route occur.

The second method of the evaluation of dynamic 
effects is based on the Lateral Change of Acceleration 
criterion (LCA diagram) presented in the papers Baykal 
(1996) and Tari (2003). The evaluation of LCA enables the 
determination of the conformity of horizontal geometry of 
route related to the vehicle-road dynamics.

 The evaluation results, obtained using both methods, 
are presented in Section 5.

4. Bezier curves

Two curves of Bezier family, cubic C-Bezier curves (Cai, 
Wang 2009) and Pythagorean hodograph quintic Bezier 
curves (Habib, Sakai 2007a) have been chosen. Both fami-
lies allow to ensure the monotonicity condition of the cur-
vature function (S-shaped transition).

Fig. 4. Nonlinear curvature k(l) chart for C-oval joining 
of circular arcs with curvatures  rad/m 
and 

 
rad/m (lk = 75 m)

Fig. 5. Horizontal ordinates y(x) chart for S-shaped joining 
the circular arcs with curvatures  rad/m 
and  rad/m (lk = 75 m)
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4.1. Cubic C-Bezier curve
The family of cubic C-Bezier curves has been proposed for 
G2  continuity of joining two circular arcs by a single-seg-
ment curve in a highway route design, in the paper (Cai, 
Wang 2009). Cubic C-Bezier curves are used for joining two 
circular arcs with S-shaped (i.e. arcs with reverse curvature), 
C-oval (i.e. arcs with conform curvature when one of the arcs 
lies partly inside the other) and broken back C-shaped tran-
sitions (i.e. non-enclosing arcs with conform curvatures). 

Cubic C-Bezier curve has been defined as:

   

(31)

for the parameter t in the interval . Among 
control points  of Bezier curve, points P0 and P3 are 
at the same time Bezier nodes and the tangency points of 
the curve and the arcs (Figs 6 and 7).

The algorithm for determination of the control points 
 has been presented in the paper Cai and Wang 

(2009). The algorithm takes into account the geometrical 
parameters of the designed layout (i.e. arc radii and the 
position of the arc centres C0 and C1). The unit vectors Ti 
corresponding with control points Pi determine the value 
of the angle θ (Figs 6 and 7).

The first and second derivatives of P(t) are:

,  (32)

 

,  (33)

where a shape parameter m – introduced and the rela-
tionship between arc radii is represented by a parameter 

.

In the case of S-shaped transition (i.e. a case of the 
reverse curvatures of two circular arcs) one of two pairs of 
relationship is between m and l:

1) 
 
and  or

2)  and .

It has to be satisfied in order to ensure the monotonic 
curvature of the obtained solution.

In the case of C-shaped transition (i.e. a case of the 
conform curvatures of two non-enclosing circular arcs), 

when a relationship  is fulfilled, the obtained 
curvature has a single extremum (the monotonicity con-
dition cannot be satisfied). The monotonicity condition is 
satisfied in the case of C-oval transition, in which one of 
the circular arcs lies inside the other.

It should be outlined that the algorithm ensures that 
a single-segment transition is obtained without changes of 
the position of the arc centres C0 and C1.

4.2. Quintic Bezier curve
Pythagorean hodograph (abbreviated further as PH) Bezier 
curves have been presented in the papers Habib and Sakai 
(2007a) and (2007b). Quintic Bezier curve is given as:

  (34)

to a parameter t in the interval 0 ≤ t ≤ 1. Among the con-
trol points  of Bezier curve, points P0 and P5 are at 
the same time Bezier nodes and the tangency points of the 
curve and the arcs (Figs 8 and 9).

The presented curve is assumed to be a Pythagore-
an hodograph curve as its  is expressed as the 
square of a polynomial in t. To ensure this, the first deriva-
tive is defined as:

Fig. 6. Schema of S-shaped joining of the circular arcs using         
a cubic C-Bezier curve

Fig. 7. Schema of C-shaped joining of the circular arcs using       
a cubic C-Bezier curve
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 ,  (35)

where

 , (36)

 . (37)

The algorithm of the construction of PH quintic Bezi-
er curve consists of determination of the control points 

 on the basis of coefficients u0, u1, u2 and v0, v1, v2, 
taking into account the shape parameter m and the distance 
R between the centres of the arcs Ω0 and Ω1 (Figs 8 and 9).

In all cases S-shaped, C-oval and C-shaped transi-
tions specifying relationships between geometrical param-
eters are met to ensure that the obtained solution has the 
monotonic curvature (S-shaped and C-oval) or a single ex-
tremum curvature (C-shaped).

Unfortunately, as a result of the construction of PH 
quintic Bezier curve, the position of the centre C1 of the 
arc Ω1 varies. Only the distance  between the cen-
tres of the arcs is constant. This restriction is the disad-
vantage in a comparison with the construction of a cubic 
C-Bezier curve. It has ensured a constant position of both 
centres C0 and C1 of the arcs Ω0 and Ω1.

5. Analysis of the dynamic properties

In order to compare the dynamic properties of the mentioned 
curves, the case of geometrical layout of two circular arcs Ω0 
and Ω1 with reverse curvature has been considered (Table 1).

As a result of inscribing K0 curve of the assumed 
length lk = 600 m in the geometrical layout presented in 
Table 1, the position of the centre C1 = (583.109; –572.33) 
of the arc Ω1 and the distance  1220.61  m be-
tween the centres of the arcs have been obtained. 

Next, preserving the position of the centres C0 and 
C1 for different values of shape parameter m ∈ {0.7; 1; 2}, 
the family of cubic C-Bezier curves has been constructed.  

Then, taking the position of the centre C0 of the arc 
Ω0 and obtained distance  1220.61 m, the shape 
parameter m = 0.895, which guarantees the monotonic 
curvature of the obtained transition, has been adjusted. 

The similar coordinates of the points of tangency between 
curves and the arc Ω1 and similar positions of the centre 
C1 of the arc have been obtained. Finally, as a result of con-
struction of K1 curve of the length lk = 600 m, the position 
of the centre C1 = (615.11; –550.91) has been obtained.

The constructed curves are presented in Fig. 10.

Fig. 8. Schema of S-shaped joining of the circular arcs using PH 
quintic Bezier curve

Fig. 9. Schema of C-shaped joining of the circular arcs using PH 
quintic Bezier curve

Table 1. Parameters of the geometrical layout of two circular 
arcs Ω0 and Ω1 with a reverse curvature (i.e. sign k1 ≠ sign k2)

Position of the centre of the arc Arc radius

C0 (0; 500) R0 500 m

C1
determined as result of the 

construction algorithm R1 700 m

Fig. 10. Horizontal ordinates y(x) chart for S-shaped curves
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The geometrical parameters of the constructed S-sha-
ped curves are presented in Table 2.

In order to evaluate the dynamic properties of the 
presented curves (Table  2), the functions of oscillations 
X(t) and resultant acceleration of oscillating motion X″(t) 
have been determined. It has been assumed that the func-
tion of lateral unbalanced acceleration a(l) along the tran-
sition curve, as proved by Koc and Mieloszyk (1998), re-
sults directly from the function of a curvature k(l):

 , (38)

where R – radius of the circular arc; amax – value of lateral 
unbalanced acceleration on the circular arc.

Lateral unbalanced acceleration along the transition 
curves, described in Table 2, is presented in Fig. 11.

Basing on the assumption that horizontal curvatu-
re changes are a forcing factor of the lateral oscillations, 
a numerical method for determination of the function of 
oscillations X(t) has been presented in the paper (Koc, Pa-
likowska 2012).

The following values of the parameters have been as-
sumed (for rail vehicle):

 − free vibration frequency ω = 3.51 1/s;
 − Lehr damping coefficient D = 0.175;
 − constant velocity v = 120 km/h;
 − lateral unbalanced accelerations a0max = 0.6 m/s2 and
 − a1max= –0.43 m/s2 on the arcs Ω0 and Ω1.

The resultant acceleration of oscillation motion X″(t) 
for compared curves has been presented in Fig. 12. Tak-
ing into account the maximum values of resultant accel-
eration of oscillation motion X″(t), K1 curve has the most 
convenient dynamic properties. Cubic C-Bezier curve 
with the shape parameter m = 0.7 and PH quintic Bezier 
curve have similar dynamic properties, which are assessed 
as more favourable than the properties of K0 curve.

Apart from the evaluation based on resultant accel-
eration of oscillating motion X″(t), the analysis of LCA has 
been carried out. LCA is the change of resultant accelera-
tion occurring along the curve normal respect to time. The 
resultant acceleration is formed by the free forces acted on 
a vehicle (with a mass m and an instantaneous velocity v) 
moving on a curved orbit (Baykal 1996; Tari 2003).

Three functions: v=v(l) – function of velocity related 
to the road, k=k(l) – function of curvature related to the 
road and u=u(l) – function of super elevation related to 

Table 2. Parameters of the constructed S-shaped curves

Curve K0 K1 PH quantic C-Bezier
Shape parameter, m – – 0.895 0.7 1
Curve length l, m 600 600 597.05 599.98 599.54
Tangency point (x; y) (583.05; 127.67) (577.45; 148.08) (579.59; 127.82) (583.09; 127.67) (583.09; 127.67)
C1 (x; y) (583.33; −572.33) (615.11; −550.91) (583.09; −572.18) (583.09; −572.33) (583.09; −572.33)

Fig. 11. Lateral unbalanced acceleration along the S-shaped 
curves

Fig. 12. Acceleration of oscillating motion X″ as a function       
of curve length l
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the road, are needed to derive the function of LCA for any 
curve using the formula (39):

 , (39)

where p – horizontal width of the road platform; at – tan-
gential acceleration produced by motor force; l – arc length 
measured from the origin point of the curve to the chosen 
point on the route; g – gravity constant.

LCA diagram for compared curves is presented in Fig. 13. 
The motion model with constant velocity v  =  120  km/h, 
maximum value of super elevation u0max  =  0.15 m and 
u1max = 0.11 m on the arcs Ω0 and Ω1 respectively and gravity 
constant g = 9.81 m/s2 have been assumed.

Three main criteria of evaluation of the dynamic pro-
perties of the transition curves based on LCA diagram 
have been suggested in the paper Tari (2003), based on the 
first of Tari criteria and examination of the continuity of 
LCA function, It is concluded that only K1 curve satisfies 
the condition of continuity.

This proves that K1 curve is superior to other cur-
ves which have discontinuities at the joining points (i.e. 
tangency points curve-arc). Discontinuities in the form of 
jump on the cubic C-Bezier curve with a shape parameter 
m = 0.7 and PH quintic Bezier curve are characterized by 
the smallest values in comparison to other curves. Accor-
ding to Tari (2003), the presented advantage of K1 curve is 
sufficient to prefer K1 curve to other curves.

The second criterion compares the extreme values of 
LCA, taking into account that values of LCA are greater 
or equal than 0.3 m/s3  which are felt by humans, while a 
value of LCA = 0.6 m/s3 is the threshold value above which 
humans feel uncomfortably.

Maximum value of LCA for K1 curve is slightly above 
the passenger feeling threshold, while for cubic C-Bezier 
curve with a shape parameter m = 0.7 and PH quintic Be-
zier curve is below this threshold. Although, the second 
criterion prefers Bezier curves to K1 curve, the dominant 
role in comparison has a conclusion from the first one.

The third criterion examines differences between the 
slope values of the two tangents on the diagram of LCA at 
the points where different route elements join. It is only 
useful in the cases when the compared curves are found 
equivalent regarding the first and the second criteria.

6. Conclusions

1. A general method of modelling the curvature of a high-
way route using differential equations is presented in the pa-
per. The method enables to join route segments of different 
curvature. The advantage of the method consists of identi-
fying analytical solution which belongs to the assumed class 
depending on the order of differential equation.

2. The presented method enables to identify the diffe-
rent types of transitional curves. A solution for linear cur-
vature change (K0 curve) and selected nonlinear case (K1 
curve) have been presented in the case of S-shaped and 
C-oval transitions. The single-segment transitions which 

satisfy a monotonicity condition of the curvature have 
been obtained in all cases.

3. The obtained transitional curves have been com-
pared with a family of cubic C-Bezier curves and PH quin-
tic Bezier curve using the mentioned curves as transition 
curves, joining two circular arcs with the reverse curva-
ture (i.e. S-shaped transition). The similar length of the 
curves lk ≈ 600 m and similar positions of the tangency 
point curve-arc and the centre C1 of the arc Ω1 have been 
obtained in the geometrical layout used for comparison. 
The algorithm of construction of cubic C-Bezier curve has 
appeared to be the most flexible one. It preserves the posi-
tion of the centres C0 and C1 of the arcs Ω0 and Ω1, and it 
has the least restrictive geometrical conditions for existing 
of the solution.

4. The analysis of dynamic properties has been based 
on two methods and led to the conclusion that K1 curve 
has the most advantageous vehicle-road dynamic prop-
erties among the compared curves. Slightly, less favour-
able properties have been identified with regard to cubic 
C-Bezier curve with the properly adjusted shape param-
eter (m = 0.7) and PH quintic Bezier curve. Both of the 
above mentioned curves have better dynamic properties 
than K0 curve. 

5. The analysis has proved that transitions, character-
ized by linear curvature changes (i.e. spiral curves), are in-
ferior to nonlinear solutions and they are not adequate for 
the road dynamics. The application of linear curvatures in 
a highway alignment has no further justification.
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