
TASK QUARTERLY vol. 19, No 4, 2015, pp. 481–493

MODERN METHODS OF SOFTWARE

DEVELOPMENT

DAWID ZIMA

Department of Computer Systems Architecture

Gdansk University of Technology Narutowicza 11/12, 80-233 Gdansk, Poland

(received: 10 June 2015; revised: 10 July 2015;

accepted: 20 July 2015; published online: 1 October 2015)

Abstract: Software development methods consist of such activities like analysis, planning,

development, testing, deployment, maintenance and retirement. All of them can be divided into

two main categories – traditional and agile. The objective of this paper is to review some of the

most popular traditional, agile and open source development methods. Special attention was

paid to the common stages of all methods – testing and maintenance.

Keywords: Software development method, Agile, Open Source, Testing, Maintenance, Water-

fall, Scrum

1. Introduction

The development of software – regardless of its kind (firmware running

on a microprocessor, an operating system, a hardware driver, a video game, an

enterprise application solving business problems) – is a very complex task. It

requires communication with customers, defining tasks and relations between

them, making predictions, etc. – in other words – a plan for developing the

software. The software development method (or in other words: the software

development model or the software development life cycle) is a definition of an

abstract process used for the development of software, including activities like:

requirement analysis, coding, testing, maintenance, etc. A most general model is

presented in Figure 1.

Figure 1. General software development model

There are many existing software development methods like the Waterfall,

Scrum, Extreme Programming or Spiral model. All of them differ from one other,

have their own advantages, disadvantages and scopes of use [1, 2]. For example



482 D. Zima

some of them are too complex for small projects or emphasize risk management

more than others (which might be crucial for some projects). But all of them

have something in common: they are used for software development and can be

divided into two categories: traditional (considered as “heavyweight”) and agile

(“lightweight”).

The purpose of this paper is to describe some of the most common software

development methods and their categories (traditional, agile) for the Centre

of Competence named Novel Infrastructure of Workable Applications for the

development of applications and services in different areas. Special attention was

paid to the Open Source Software development methods (their nature enforces

some restrictions that are not seen in a closed-source projects) and to the common

stages of all software development methods: testing and maintenance.

2. Traditional software development methods

Traditional software development methods (often called “heavyweight”) are

the earliest and still commonly used models in many organizations [3]. All of them

implement a similar pattern: they consist of sequential (sometimes iterative) well

defined stages. They do not emphasize frequent communication with customers

and good response to the requirement change – rather well defined use-cases at the

beginning of the project. This predictive approach in traditional methods based

on the detail requirement analysis results in very expensive changes in client

requirements after they are defined (i.e. due to market changes or exploration

of new use-cases during development). The lack of an adaptive approach (which

is common in all agile methods) makes traditional models not suitable for small

projects and companies or for projects where requirements are not well defined

or are frequently changing.

The Waterfall software development model is considered as traditional and

one of the oldest software engineering models. The first formal description of this

method was introduced in 1970 by Winston W. Royce [4]. It consists of 5 high

level, non-overlapping, sequential stages as shown in Figure 2. This model is linear,

which means that each of the phases must be completed before the next one begins.

With its linear nature, this model is considered as inflexible and “heavy” due

to the separation of requirements analysis and implementation, which excludes

a swift response to requirement changes or exploratory development. When the

problem is discovered in stage n it is required to step back to stage n−1 to make

appropriate changes and go through next stages once again. It means that errors

committed in early stages are the most expensive ones. Due to its linear nature,

the Waterfall model can be applied to projects where all the requirements are

known, clear, well defined and the product definition is stable (no changes after

definition). Each phase has a clear definition of inputs and outputs, hence, this

model is well manageable.

Another example of the traditional development method is the Iterative

model [5] where the project is divided into smaller segments being developed in

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Modern Methods of Software Development 483

Figure 2. Waterfall Model diagram

Figure 3. Iterative Model diagram

multiple iterations. Each iteration is similar to the mini-waterfall model. With

this approach, software with limited features (incomplete implementation) can be

delivered after each iteration which helps to mitigate problems with integration,

explore potential issues / new requirements in early phases (iterations) and

allows incrementing changes to be monitored. The Spiral Model [6] is a risk-

driven software development method with an iterative approach. The main focus

on risk assessment is designed to enhance risk avoidance. This model has two

main distinguishing features: (1) a “cyclic approach for incrementally growing

a system’s degree of definition and implementation while decreasing its degree

of risk” and (2) a “set of anchor point milestones for ensuring stakeholder

commitment to feasible and mutually satisfactory system solutions”.

3. Agile software development methods

Agile in terms of software development means rapid and flexible response

to change. In February 2001, 17 software developers met together to discuss some

of the existing software development methods and published the Manifesto for

Agile Software Development [7]: “We are uncovering better ways of developing

software by doing it and helping others do it. Through this work we have come

to value: (1) Individuals and interactions over processes and tools, (2) Working

software over comprehensive documentation, (3) Customer collaboration over

contract negotiation, (4) Responding to change over following a plan. That is,

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


484 D. Zima

while there is value in the items on the right, we value the items on the left

more.”

Furthermore, twelve principles explaining what it is to be Agile has been

published [7, 8]: “(1) Our highest priority is to satisfy the customer through early

and continuous delivery of valuable software. (2) Welcome changing requirements,

even late in development. Agile processes harness change for the customer’s com-

petitive advantage. (3) Deliver working software frequently, from a couple of weeks

to a couple of months, with a preference to the shorter timescale. (4) Business

people and developers must work together daily throughout the project. (5) Build

projects around motivated individuals. Give them the environment and support

they need, and trust them to get the job done. (6) The most efficient and effective

method of conveying information to and within a development team is face-to-face

conversation. (7) Working software is the primary measure of progress. (8) Agile

processes promote sustainable development. The sponsors, developers, and users

should be able to maintain a constant pace indefinitely. (9) Continuous attention

to technical excellence and good design enhances agility. (10) Simplicity – the art

of maximizing the amount of work not done – is essential. (11) The best archi-

tectures, requirements, and designs emerge from self-organizing teams. (12) At

regular intervals, the team reflects on how to become more effective, then tunes

and adjusts its behavior accordingly.”

Despite four core values from the Agile Manifesto, some researchers [9]

have determined key agile values. Their research method was based on comments

analysis of the agile manifesto signatories from 2005 to 2011. They have found and

described top ten values: (1) flexibility, (2) customer-centric, (3) working software,

(4) collaboration, (5) simplicity, (6) communication, (7) natural, (8) learning,

(9) pragmatism and (10) adaptability.

According to the Forrester report [3] agile methods have become main-

stream of development approaches. The results of the survey conducted by D.West

et al. [3] show that 35% of the respondents have stated that Agile most closely

reflects their development process (in which Scrum is the most common chose –

10.9%). However, traditional (and “heavier”) methods are still present in many or-

ganizations (21% for the iterative development and 13% for the waterfall model).

The results of the survey conducted in Nokia show that “agile methods are here

to stay” [10] (60% of respondents would not like to return to the methods used

before agile transformation).

There are various existing methods considered as agile, i.e.: Extreme Pro-

gramming, Scrum, Crystal family of methodologies, Feature Driven Development,

the Rational Unified Process, Dynamic Systems Development Method, Adaptive

Software Development, Agile Modeling. Most of theses methods have been well

described and compared by P. Abrahamsson et al. [2]. They have also published

a set of rules helping answer the question: what makes a development method

an agile one. The method must be incremental, cooperative, straightforward and

adaptive [2].

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Modern Methods of Software Development 485

Figure 4. Forrester survey results [9]

As previously stated, according to the Forrester report [3], Scrum is the

most common choice of the development method from all the agile techniques

– 10.9% of the developers have stated that Scrum most closely reflects the

development process that they are currently using (all agile methods together

have reached 35%).

Scrum is an iterative and incremental process framework for software de-

velopment [11]. The Scrum Team consists of three different roles: the Product

Owner (responsible for managing the Product Backlog), the Development Team

(3–9 self-organizing, cross-functional developers creating Increments of the Prod-

uct after each Sprint) and a Scrum Master (responsible for ensuring Scrum rules

are followed).

The centre point of a Scrum model is Sprint. Sprint is a time-box of

one month or less (usually two weeks) after which Increment of the product is

created. Each Sprint consist of: Sprint Planning (creating Sprint backlog based on

Product Backlog), Daily Scrums (daily, 15 minutes long meetings for developers

to synchronize their work), development work, Sprint Review (inspection of

Increment at the end of the Sprint), Sprint Retrospective (opportunity for the

Scrum Team to inspect the Scrum process and improve next Sprints).

Product Backlog is a centralized point where all the requirements for the

product are stored. It is managed by the Product Owner. It consists of all features,

fixes, requirements of the product represented as Product Backlog Items with:

description, order, estimate and value. The Product Backlog may evolve as the

time goes on – i.e. new requirements may be defined or more accurate estimations

may be made. The Sprint Backlog consists of selected Product Backlog items and

is created during the Sprint Planning phase of each Sprint.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


486 D. Zima

Figure 5. Scrum Process

4. Open source software development methods

Open Source Software (OSS) is software the source code of which is

publically available and anyone can make a change to it. According to the official

definition of OSS by the Open Source Initiative organization [12] it is not only

the public availability of the source code that makes software open source, but

it is also the software license that must comply with the set of rules such as free

redistribution, etc. Examples of popular OSS licenses are: Apache License 2.0,

GNU General Public License (GPL), GNU Library or “Lesser” General Public

License (LGPL), MIT license. Some of the most popular OSS includes: Linux

Kernel, the Android operating system, Apache Web Server or MySql – the world’s

most popular open source database.

As previously mentioned, the source code of OSS is publicly available and

anyone can make a change into it. It means that a large community of volunteers

may be involved into the OSS development process. This is the main difference

between open source software and closed source software – classical software

development methods cannot be used for OSS development. However, S. Koch [13]

in his researches has found many similarities in OSS development to agile software

development principles (close collaboration with users, frequent release of the

working code, self-organizing teams). There are many existing OSS development

models – some of them have been well described and compared with each other

by M. Saini et al. [14].

E. S. Raymond [15] on the basis of his observations of the fetchmail and

Linux Kernel development process has divided the OSS development into two

main models: The Cathedral and the Bazaar. In the Cathedral model the software

source code is available after each version has been released – before the release

source code is known only to developers and the project is developed using “closed-

style” methods (“I believed that the most important software (. . .) needed to be

built like cathedrals, carefully crafted by individual wizards or small bands of

mages working in splendid isolation, with no beta to be released before its time.”).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Modern Methods of Software Development 487

In the Bazaar model, software is developed by the community i.e. via Internet

(“No quiet, reverent cathedral-building here – rather, (. ..) a great babbling bazaar

of differing agendas and approaches (. . .) out of which a coherent and stable system

could seemingly emerge only by a succession of miracles.”).

A. Capiluppi and M. Michlmayr [16] have proposed a model that combines

the above mentioned Cathedral and Bazaar models (the main assumption is

that both the models are not mutually exclusive). The project is started in

a Cathedral way, and when an appropriate level of maturity is reached, the

software development method transits to the Bazaar model. They emphasize

that the transition must be commenced at the right time to attract volunteers

(community) – when the prototype is functional and still there is some work

to be done. If the project is not stable or is too advanced (i.e. all features

have been implemented) potential contributors may not want to be involved.

A. Capiluppi et al. have analyzed two open source projects: Arla and Wine.

Adding new modules to the Wine project by the core development team helped

to succeed transition to the Bazaar model. In Arla transition it failed because the

number of new modules was decreasing. This shows that fresh developers from

the community tend to work on new functionalities rather than on old modules.

To successfully transit an open source project from the Cathedral to the Bazaar

model, core developers have to attract new developers by adding new modules

and provide new directions for the project.

Figure 6. Transition from the Cathedral to the Baazar model [16]

Another example of an OSS development model is the one used in the

FreeBSD operating system proposed by N. Jørgensen [17]. This model does not

define how the code is written, the requirements are gathered or how it is designed

– it is hidden in the “Code” stage and left for the developers. It rather shows

how the change is integrated into the project after having been developed. The

Jørgensen model consists of six sequential phases that applies to each code change:

Code, Review, Pre-commit Test, Development Release, Parallel Debugging and

Production Release. After the code is written, reviewed and tested (i.e. to

ensure that the build is not broken) in the first three stages, it is committed

to the development branch (fourth stage) and then inspected by other involved

developers to find bugs (“Parallel Debugging” stage). When the code is ready

(there are no other contraindications), then it is merged from the development

branch to the production branch.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


488 D. Zima

Figure 7. N. Jørgensen FreeBSD development model [17]

5. Software testing

The main purpose of testing is to detect errors [18]. The testing process is

not able to confirm that the system works well in all conditions, but is able to show

that it will not work under certain conditions. The testing may also verify whether

the tested software behaves in accordance with the specified requirements applied

by developers during the design and implementation phases. It also provides

information about the quality of the product and its condition. Having such

knowledge can help to address a variety of business decisions, i.e. whether to

continue a further project or the release date of the new version of the software

is at risk and so on. Testing can be implemented at any time of the software

development life cycle, however, the testing model is associated with the adopted

methodology of software development.

All the software testing methods can be divided into three main categories:

black-box, gray-box and white-box testing [18]. In the black-box testing method

software is examined without having any knowledge about internal implementa-

tion or algorithms – so the software is treated as a black-box that transforms the

provided input into the expected output (validation of functionality). Commonly

this method is applied to higher level of tests (i.e. acceptance tests). White-box

testing aims to validate the internal mechanism of the application, so it assumes

having knowledge about low level implementation details. A good example of

a white-box test are unit tests (validation of the application flow at a unit level)

or integration tests (validation of the application flow between units). Gray-box

testing is a combination of white and black boxes.

According to the SWEBOK (Software Engineering Body of Knowledge)

guide [19] the testing levels can be distinguished by the object of testing (Unit

Testing, Integration Testing, System Testing) or the purpose of testing (Accep-

tance Testing, Installation Testing, Alpha and Beta Testing, Regression Testing,

Performance Testing, Security Testing, Stress Testing, Back-To-Back Testing, Re-

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Modern Methods of Software Development 489

covery Testing, Interface Testing, Usability and Human Computer Interaction

Testing).

As mentioned previously, testing can be implemented at any time of the

software development life cycle, however, there are some development models

that have strong focus on testing. One of such methods is TDD [20] (Test-Driven

Development, classified as Agile). The idea of the TDD is simple: write a test

(which will initially fail), then write code (implementing the desired functionality)

to make test pass, refactor, repeat until all functionalities are implemented.

Figure 8. TDD diagram

Another example of a software development method emphasizing tests is

BDD (Behavior-Driven Development) proposed by Dan North [21]. It may be

considered as an extended version of TDD where, instead of testing units, each

system behavior is examined. In this technique having well specified requirements

is crucial (in a formalized way, i.e. using the Gherkin syntax and the Given-When-

Then pattern). When all system use-cases are specified, before implementing

them, a written acceptance test should be performed to cover each functionality

(similar to TDD).

6. Software maintenance

A software product has to be maintained after release (delivered to cus-

tomer) – faults and errors have to be fixed, performance has to be tuned over

the time, the product has to be adapted to changes of the environment (i.e. API

changes in external systems that the developed product has to cooperate with)

or customer requirements. Maintenance by the IEEE Standard has been defined

as: “the process of modifying a software system or component after delivery to

correct faults, improve performance or other attributes, or adapt to a changed

environment” [22]. The software maintenance phase is very often considered as

the most expensive and time consuming stage.

According to the research of B. P. Lientz and E. B. Swanson [23] all

maintenance activities may be categorized into four main categories (shown

in Figure 9): adaptive (changes related to the evolving environment), perfective

(functional changes of software after release, performance tunings), corrective

(fixing errors and faults), preventive (activities for better software maintainability

in the future).

The IEEE standard 1219–1998 [24] defines the Maintenance Process which

consists of activities and tasks necessary to modify an existing software product

while preserving its integrity (shown in Figure 10). The Maintenance Process

Implementation is a phase in which the maintainer develops and documents

all strategies and procedures that will be used during the software lifecycle

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


490 D. Zima

maintenance stage. After this phase there are three subsequent activities called

iteratively when there is a need for modification. Each modification request is

analyzed (i.e. its impact on organization or other systems), implemented, tested,

verified, reviewed and approved.

Figure 9. Modification Request

Figure 10. Maintenance Process

Some researchers (i.e. T. Stalhane et al. [25]), on the basis of literature

review and their own studies, have identified several cost drivers for corrective

maintenance: the size of the system to be maintained, the complexity of the

system, the phase where a defect is discovered, the maintainers’ experience with

the maintained system and the application domain of the system, tool and process

support. They have also prepared recommendations for the industry for reducing

the corrective maintenance effort by: classifying defects into orthogonal categories,

analyzing how frequently defects occur for each category and analyzing cost

drivers and productivity of corrective maintenance for each category.

S. Velmourougan et al. [26] prepared a software development life cycle model

to improve maintainability calledM-SDLC (Maintainability-Software Development

Life Cycle). They have proved in their studies that adoption of best maintenance

practices during each phase of the software development lifecycle can decrease the

number of failures (and needed maintenance effort) after software delivery.

7. Conclusion

All software development methods may be divided into two categories: tra-

ditional (older and “heavier”) and agile (new approach, “lighter”). The described

models are presented and compared in Table 1. During the last few years, after

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Modern Methods of Software Development 491

Table 1. Comparison of described software development methods

Method Name Classification Type Short Description

Waterfall Traditional Linear • 5 high level, non-overlapping, sequential

stages

• each of the phases must be completed

before the next one begins

• when the problem is discovered in stage n

it is required to step back to the stage n−1

Iterative

development

Traditional Incremental • project is divided into smaller segments

being developed in multiple iterations

• iteration is similar to the mini-waterfall

model

• software with limited features can be

delivered after each iteration

Spiral Model Traditional Incremental • risk-driven software development method

• main focus on risk assessment

Scrum Agile Incremental • product is created in Sprints (2–4 weeks

time-box)

• Sprint consist of: Planning, Daily Scrums,

development work, Review and Retrospec-

tive

• Product Backlog stores all client

requirements

The Cathedral

model

Open Source Incremental • software source code is available after each

release

• before release software is developed using

a “closed-style”

• possible transition to the Bazaar model

The Bazaar

model

Open Source Incremental • software developed by the community (i.e.

via Internet)

• “(. . .) a great babbling bazaar of differing

agendas and approaches (.. .) out of which

a coherent and stable system could seem-

ingly emerge only by a succession of

miracles”

FreeBSD

development

model

Open Source Incremental • does not define how the code is written,

requirements are gathered or how it is

designed

• six sequential phases that applies to each

code change

• “Parallel Debugging” stage

formalizing what agile methods are in 2001, a trend of growing popularity of agile

methods has been seen in many organizations [3]. The results of the survey con-

ducted in Nokia [10] on more than 1000 respondents from 7 countries (in Europe,

North America and Asia) during the period of transformation from non-agile to

agile appears to confirm the statement that this is not a temporary fascination

but a strong, growing trend becoming mainstream. Most of the respondents agree

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


492 D. Zima

on the generally claimed benefits of agile methods (higher satisfaction, a feeling

of effectiveness, improved quality and transparency) and 60% would not like to

return to the previous methods. However, classical methods (i.e. Waterfall or it-

erative model) are still popular in many companies [3]. Agile has been the subject

of many researches in a past decade. T. Dingsøyr et al. [27] have examined many

publications and citations about agile to see the progress of researches that was

made since the Agile Manifesto was introduced in 2001.

Choosing the right software development model for a project might be

essential and have great impact thereon (positive or negative). There is no

universal model for all kind of software projects, each of them has their own

advantages, disadvantages and scope of use. The Extended Decision Support

Matrix proposed by P. M. Khan et al. [28] may be helpful in choosing the right

model.

In the Centre of Competence named Novel Infrastructure of Workable

Applications (NIWA) operated at the Gdańsk University of Technology the

preferable software development methods are: agile and open source. The Scrum

approach is recommended to improve some platform components of NIWA and

the Redmine tool is largely used to design new user applications. In case of

virtual teams a Bazar approach is sometimes taken into consideration. However,

for developing many work flow applications a new software developing approach

has been created. It bases on the composition of the available IT services and is

called SOSE (Service Oriented Software Engineering). It could be considered in

another paper.

References

[1] Munassar N M A and Govardhan A 2010 Int. J. Comp. Sci. Issues 7 (5)

[2] Abrahamsson P, Salo O, Ronkainen J and Warsta J 2002 Agile Software Development

Methods: Review and Analysis, VTT Publications, 478

[3] West D, Grant T, Gerush M and D’Silva D 2010 Agile Development: Mainstream

Adoption Has Changed Agility, Forrester Research

[4] Royce W W 1970 proc. IEEE WESCON 26 (8)

[5] Larman C and Basili V R 2003 Computer 36 (6) 47

[6] Boehm B 2000 Spiral development: Experience, principles and refinements, CMU’s

Software Engineering Institute

[7] Beck K, Beedle M, Bennekum A, Cockburn A, Cunningham W, Fowler M, Gren-

ning J, Highsmith J, Hunt A, Jeffries R, Kern J, Marick B, Martin R C, Mellor S,

Schwaber K, Sutherland J and Thomas D 2014 Manifesto for Agile Software Develop-

ment, http://agilemanifesto.org/ (online)

[8] Fowler M and Highsmith J 2001 Software Development 9 (8) 28

[9] Madi T, Dahalin Z and Baharom F 2011 Content analysis on agile values: A perception

from software practitioners, 5 th Malaysian Conference in Software Engineering

[10] Laanti M, Salo O and Abrahamsson P 2011 Information and Software Technology 53

(3) 276

[11] Schwaber K and Sutherland J Scrum Guide, http://www.scrumguides.org/docs/

scrumguide/v1/Scrum-Guide-US.pdf (online)

[12] Open Source Initiative 2015, Available: http://opensource.org/ (online)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Modern Methods of Software Development 493

[13] Koch S 2004 Agile Principles and Open Source Software Development: A Theoretical

and Empirical Discussion, (in: Extreme Programming and Agile Processes in Software

Engineering), Springer 85

[14] Saini M and Kaur K 2014 International Journal of Software Engineering and Its

Applications 8 (3) 417

[15] Raymond E S 2015 The Cathedral and the Bazaar, http://www.catb.org/˜esr/writings/

cathedral-bazaar/cathedral-bazaar/index.html (online)

[16] Capiluppi A and Michlmayr M 2007 IFIP 234 31

[17] Jørgensen N 2001 Information Systems Journal 11 (4) 321

[18] Myers G J and Sandler C 2004 The Art of Software Testing, John Wiley & Sons

[19] Bourque P and F R E 2014 Guide to the Software Engineering Body of Knowledge,

Version 3.0, IEEE Computer Society

[20] Beck K 2003 Test-driven Development: By Example, Addison-Wesley Professional

[21] North D 2015 Introducing BDD, http://dannorth.net/introducing-bdd/ (online)

[22] I.S. 610.12 1990 IEEE Standard Glossary of Software Engineering Terminology, IEEE

Computer Society Press

[23] Lientz B P and Swanson E B 1980 Software maintenance management: a study of

the maintenance of computer application software in 487 data processing organizations,

Addison-Wesley

[24] 1219-1998 – IEEE Standard for Software Maintenance 1998, IEEE Computer Society

[25] Li J, Stalhane T, Kristiansen J M W and Conradi R 2010 26 th IEEE International

Conference on Software Maintenance, Timisoara

[26] Velmourougan S, Dhavachelvan P, Baskaran R and Ravikumar B 2014 Software Develop-

ment Life Cycle Model to Improve Maintainability of Software Applications, 4 th ICACC

[27] Dingsoyr T, Nerur S, Balijepally V and Moe N 2012 Journal of Systems and Software

85 (6) 1213

[28] Khan P M and Beg MM S 2013 Extended Decision Support Matrix for Selection of SDLC-

Models on Traditional and Agile Software Development Projects, Third International

Conference on Advanced Computing & Communication Technologies

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


494 TASK QUARTERLY vol. 19, No 4, 2015

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

