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Abstract: Personalized medicine is emerging as a new goal in the diagnosis and treatment of diseases.
This approach aims to establish differences between patients suffering from the same disease, which
allows to choose the most effective treatment. Molecular imaging (MI) enables advanced insight
into molecule interactions and disease pathology, improving the process of diagnosis and therapy
and, for that reason, plays a crucial role in personalized medicine. Nanoparticles are widely used in
MI techniques due to their size, high surface area to volume ratio, and multifunctional properties.
After conjugation to specific ligands and drugs, nanoparticles can transport therapeutic compounds
directly to their area of action and therefore may be used in theranostics—the simultaneous imple-
mentation of treatment and diagnostics. This review summarizes different MI techniques, including
optical imaging, ultrasound imaging, magnetic resonance imaging, nuclear imaging, and computed
tomography imaging with theranostics nanoparticles. Furthermore, it explores the potential use of
constructs that enables multimodal imaging and track diseases in real time.

Keywords: molecular imaging; theranostics; personalized medicine; nanotechnology; nanoparticles;
imaging modalities

1. Introduction

In recent years, the vigorous growth of research techniques has led to a new scien-
tific discipline area described as molecular imaging (MI). The MI approach provides a
prospect of noninvasive real-time projection of many natural phenomena and processes
in cell cultures and throughout the body at the cellular and molecular tiers [1–4]. Overall,
MI demands implementing a particular apparatus either separately or together with a
molecular feature that can depict individual tissues in the body and specific biochemical in-
dicators. The acquired information can improve the knowledge about natural phenomena,
determine the present pathologies, and deliver data on disease mechanisms. Moreover,
MI has a tremendous perspective for the advancement of diagnostics, therapy, drug de-
velopment, and deep insight into nanoscale processes, such as the interplay between
proteins and enzymatic modifications. Together with the knowledge in genetics, genomics,
and proteomics, MI is considered one of the pivotal foundations for the development of
personalized medicine.
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In the last decades, the scientific community has seen a growing interest in nanotechnol-
ogy solutions and their subsequent applications, specifically in pharmacology, biomedicine,
cosmetics, and the food industry [5,6]. Nanoparticles (NPs) are mainly developed based
on carbon structures, metal and metal oxides, polymers, lipids, and semiconductors. Nan-
otechnology enables targeted delivery, improves stability in different environments and
conditions of the gastrointestinal tract, solubility, and bioavailability [7,8]. These properties
are essential for medicines used in pharmacology and active compounds in cosmetics
and nutraceuticals in fortified food. Antimicrobial properties of nanomaterials based on
silver and gold nanoparticles are used both in medicine (e.g., in silver-coated patches and
bandages), personal care products and cosmetics, and in the food industry (e.g., in chicken
farms or in food storage equipment) [9–11]. There is a significant number of clinical trials
involving nanoparticles; according to the ClinicalTrials.gov database, over 500 clinical trials,
including nanoparticles, have been registered up to today [12]. Some of the NPs have
already been approved by the Food and Drug Administration (FDA) and/or European
Medicines Agency (EMA) for use in humans, among them an improved pharmaceutical
form of numerous anticancer drugs and antibodies, iron derivatives, bone substitutes, and
recently, vaccines against COVID-19 [13–17].

However, the small sizes of nanoparticles and the ability of cell membrane penetration
may cause some health issues. External dimensions in the lower range of the nanoscale,
insolubility, specific morphological shape (e.g., needle shape and long rigid fibers), surface
reactivity, the potential for radical formation, or other surface properties that can enhance
cellular uptake, or allergenicity may cause toxic effects, including cell membrane damage,
oxidative stress, inflammation, and even genotoxicity [13,16,18,19].

There are several guidelines for nanomaterial handling and databases that help to
determine the properties and possible toxic effects of some nanomaterials, but the management
of toxicity and safe handling of nanoparticles are still debated and should be well-concerning,
especially before their application in oral and parenteral preparations [7,9,18–21].

In the context of molecular imaging, nanotechnology and nanomaterials, and in par-
ticular, nanoparticles, have great potential and constitute a new set of diagnostic tools. Due
to their varied size, shape, composition, and exceptional surface properties and reactivity,
nanoparticles are considered the most modifiable imaging agents. However, no well-
established size determines the sizes of nanoparticles. Scientists use the term to describe
structures ranging from 10 to 200 nm but not larger than 1000 nm [22]. Nanoparticles are
larger than many proteins and small molecules but still smaller than cells [23]. Due to their
relatively large sizes, they are absorbed by the endoplasmic reticulum. This phenomenon
can be partially counteracted by covering the surfaces of nanoparticles with polymers.
Due to the high surface area to volume ratio, it is possible to transfer target substances
(ligands), signaling elements (fluorochromes and isotopes), and therapeutic agents utilizing
nanoparticles. This means that developing a molecular probe in a nanoparticle with a
particular binding site generates a strong signal, thus enabling precise detection of the
cell’s specific structure. This anastomosis’s multivalent nature is directly related to avidity
and is especially important when the problem is the imaging technique’s sensitivity (e.g.,
magnetic resonance imaging; MRI).

Moreover, many signaling elements conjugated to the single nanoparticle increase
the likelihood of conjugating the construct at a specific binding site. Additionally, the
ability to transport therapeutic compounds directly to their area of action may presum-
ably reduce many undesirable effects of current therapies. Thus, by combining modern
molecular biology methods, advances in chemical synthesis, imaging techniques, and the
use of nanoparticles’ multifunctional properties, researchers are contributing to improving
diagnostics and therapy, leading to personalized medicine development.

Personalized medicine is a concept based on understanding the differences between
patients suffering from the same disease and understanding the complexity of diseases
simultaneously. Thanks to this knowledge, it is possible to select appropriate therapies for
specific groups of patients. Personalized medicine makes it possible to predict whether
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a particular therapy will be sufficient for a given patient. The principle of personalized
medicine or “the right medicine for the right patient at the right time” has been practiced
almost since the dawn of time. Already, Hippocrates (5th century BCE), based on Empedo-
cles’ theory, recommended therapy depending on the disturbances of the body’s four basic
moods. Historically, the first example of a personalized approach to therapy is transfusion
medicine. It is worth emphasizing that the authors of the theory of inheritance of blood
groups, which became the basis for the proper selection of blood donors and recipients,
were Polish researchers—Anna and Ludwik Hirszfeld.

Historically, a scientist who can be considered a pioneer of personalized medicine is
the American researcher of the renin–angiotensin system—John Laragh [24]. He showed
that the response to selected antihypertensive drugs depends on the baseline activity of
the renin–angiotensin system. The concept of Prof. Laragh has recently been confirmed
in a study conducted in patients with resistant hypertension (PATHWAY-2), in which the
antihypertensive efficacy of drugs acting through the renin–angiotensin system depended
on the baseline plasma renin activity [25]. Personalized medicine also means close interac-
tions between diagnosis and therapy, because these are precise diagnostic tools that help
establish differences between patients suffering from the same disease and then adjust
the treatment to specific groups of patients. An expression of this is the creation of a new
term—theranostics—a combination of the words therapy and diagnostics. The objective of
the theranostics approach is the simultaneous implementation of treatment and diagnostics.

This review will emphasize different imaging modalities with theranostics nanoparti-
cle properties—both intrinsic and ones that require the inclusion of a drug into the designed
nanoparticle (Table 1). Furthermore, we give special consideration and accentuate those
constructs that provide information and track the disease in real time.

Table 1. Summary of the depicted studies. Multimodal nanoparticles are listed multiple times.

Imaging Modality Nanoparticle Application Therapeutic Component Reference

Optical imaging Albumin nanocarrier Cancer Trastuzumab [26,27]

Polymer nanoassembly Cancer Camptothecin [28]

Silicon QDs Cancer Chlorambucil [29]

PEG-PLA Cancer Camptothecin [30]

PPy@MnO2-BSA(Ce6) Cancer Photothermal and
photodynamic therapy [31]

Bi@DLPC Cancer Photothermal therapy [32]

Dendrimer conjugated with CML,
labeled with 64Cu and rhodamine

Peripheral arterial
disease ———— [32,33]

Ultrasound SPIO trapped in MBs Cancer Coxorubicin [34]

Silica nanocarrier Cardiac stem cell
therapy Insulin-like growth factor [35]

MnO2 functionalized with
hyaluronic acid Cancer

Photodynamic therapy
employing indocyanine

green as a photosensitizer
[36]

Chitosan-deoxycholic acid,
containing perfluoropentane and

iron oxide
Cancer siRNA [37]

Bi@DLPC Cancer Photothermal therapy [38]

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Int. J. Mol. Sci. 2022, 23, 2658 4 of 14

Table 1. Cont.

Imaging Modality Nanoparticle Application Therapeutic Component Reference

MRI SPIO trapped in MBs Cancer Doxorubicin [34]

Silica nanocarrier Cardiac stem cell
therapy Insulin-like growth factor [35]

Chitosan-deoxycholic acid,
containing perfluoropentane and

iron oxide
Cancer siRNA [37]

Gadolinium loaded liposome Cancer Paclitaxel [39]

Mesoporous silica nanomaterial
with embedded Au-Cu9S5

Cancer Doxorubicin [40]

PPy@MnO2-BSA(Ce6) Cancer Photothermal and
photodynamic therapy [31]

CT

Gold nanoparticles conjugated
with RNA aptamer with

prostate-specific membrane
antigen

Cancer Doxorubicin [41]

Bi@DLPC Cancer Photothermal therapy [38]

PET RGD Peptide conjugated with
NOTA, and labeled with 64Cu

Cancer, Myocardial
infarction, and

Peripheral arterial
disease

———— [42–44]

Dendrimer conjugated with CML,
labeled with 64Cu and rhodamine

Peripheral arterial
disease ———— [32,33]

Mesoporous silica functionalized
with an antibody specific to

CD-105, and labeled with 64Cu
Cancer Doxorubicin [45]

Gold nanostar Cancer Phototermal therapy [46]

SPECT Dendrimer functionalized with
chlorotoxin and 131I Cancer Radiotherapy [47]

Liposome-based nanostructure
with embedded 186Re Cancer Radiotherapy [48]

2. Literature Search Methodology

Three search engines (PubMed, Scopus, and Web of Science) were utilized to prepare
the following manuscript with selected keywords: molecular imaging, nanotechnology,
theranostics, personalized medicine, nanoparticles, and imaging modalities. The literature
investigation scrutinized papers published only in English between 2001 and 2022. Addi-
tionally, three essential papers were included in the final literature review (1972, 1993, and
1994, respectively).

The overall amount of ~300 papers was preselected during the initial literature brows-
ing. Six people divided into teams of two evaluated ~150 research articles that differed by
the subject of interest, e.g., optical imaging, ultrasound, and nuclear imaging. Fleiss’ Kappa
analysis was employed to evaluate the compliance between two evaluators (0 demonstrates
no compliance, and 1 shows excellent compliance). A Kappa factor of >0.67 was applied
(good compliance) as a threshold to incorporate a paper. The definitive version of this
manuscript includes 68 research papers.

3. Optical Imaging

Presently, optical imaging is a novel and rapidly developing imaging technique that
allows for noninvasive evaluation of the person’s organism with a cellular resolution.
Fluorescence and bioluminescent imaging equipment are relatively cheap and easy to
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install. The system’s most important elements include the charge-coupled device (CCD)
matrix and optical filters with a light source. These techniques allow achieving a perfect
detection level—a range from picomolar to femtomolar concentrations. Additionally,
these methods are considered relatively safe, because the radiation energy is relatively
low compared to the gamma radiation emitted in positron emission tomography (PET)
and single-photon emission tomography (SPECT). However, low-energy radiation means
that the penetration depth is limited to only a few centimeters. For this reason, it is
practically impossible to analyze structures in large animals and humans without the use
of an endoscope, allowing you to get as close to the organs as possible. The use of a light
source in the form of a laser with higher energy results in damaging the analyzed tissues or
systems by high temperature [49]. The obstruction of low radiation penetration is not a
problem in mice and small animals (not larger than a rabbit) due to their small sizes. As
a result, many fluorescent and bioluminescent imaging markers can potentially visualize
internal organs in small animals, making optical imaging techniques suitable for preclinical
studies. The near-infrared-driven probes (700–900 nm) have been proposed for in vivo
theranostic imaging to overcome these boundaries.

Hapuarachchige et al. established a pretargeting strategy merged with an image guid-
ance technique to prevent the possible challenge with antibody–drug conjugates and their
inseparable high toxicity [26,27]. In this paper, BrCa BT-474 cancer cells with HER2 over-
expression were prestained with a functionalized trastuzumab monoclonal antibody and
drug delivery unit. Both elements are conjugated using the biorthogonal click chemistry
approach and incorporated as nanoclusters. Researchers have shown that the described
strategy characterizes better therapeutic effectiveness compared to the treatment with
a drug delivery element only. When combined with molecular imaging modalities, this
therapeutic platform can become a powerful theranostics strategy that will ultimately direct
cancer schematic evolution into accuracy, distinctiveness, and safety. In another study,
scientists developed self-verifying and self-tailoring programmed theranostics compounds
for cancer applications [28]. These novel incitement-receptive nanoparticles also contain
an anticancer drug (camptothecin), targeted element (folate), and a caspase-3 triggerable
fluorescent peptide (dabcyl-KFFFDEVDK-FAM). To turn off the fluorescence, researchers
employed the resonance energy transfer (FRET) effect. On the other hand, the fluorescence
signal is turned on following the reaction with caspase-3, which can track the apoptosis
phenomenon after delivering the theranostics nanoparticle. In murine HeLa xenografts in-
jected with the developed construct, the authors revealed the power of therapeutic tracking
and provided semiquantitative data up to 48 h. Additionally, tumor volume growth inhibi-
tion was observed up to 15 days, indicating that the developed single-nanoparticle-driven
platform is feasible for the therapeutic self-reporting visualization of cancer eradication.

As previously stated, researchers have developed numerous near-infrared (NIR) flu-
orescence probes for tracking physiological and pathological processes both in vitro and
in vivo [50–52]. Using NIR fluorescence provides more excellent spatial resolution and sen-
sitivity with a simultaneously reduced autofluorescence [53–56]. Zhu et al. depicted a NIR
prodrug DCM-S-CPT and its nanoparticles packed with polyethylene glycol-polylactic acid
(PEG-PLA) as a potent cancer therapy [30]. In this concept, a dicyanomethylene-4H-pyran
(DCM) derivative serves as NIR dye and has been functionalized through a disulfide linker
with camptothecin (CPT), an anticancer drug. During in vitro experiments, the authors
proved that a high GSH concentration inside tumor cells generates a disulfide linker seg-
mentation. This cleavage induces CPT therapeutic release and considerable fluorescence
initiation simultaneously. Additionally, the developed prodrug has been effectively em-
ployed for the in vivo monitoring of drug release and anticancer therapeutic performance
using NIR fluorescence. PEG-PLA nanoparticles incorporating DCM-S-CPT demonstrate
higher anticancer properties than free CPT and have more prolonged blood clearance. Thus,
DCM-S-CPT becomes an encouraging prodrug candidate offering meaningful progress
into the better comprehension and exploration of theranostics drug delivery strategies.
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Researchers have paid particular attention to small colloidal semiconductor nanocrys-
tals, quantum dots (QDs), in recent years. Due to nanometer sizes, longer duration of
fluorescence, better photostability, and a narrow emission spectrum, QDs are much more
stable and precise fluorescent markers than those used so far in medical diagnostics: or-
ganic dyes [57]. Another advantage of QDs is that they can be used for imaging several
molecular targets simultaneously, which is vital in cancer diagnostics in which numerous
genes and proteins are involved [58]. They can also be utilized during in vitro diagnostic
tests, where they enable the detection of many tumor biomarkers simultaneously, e.g., in
serum [59]. QDs become the basis for the creation of multifunctional nanoparticles. It is
possible connecting QDs with specific antibodies that recognize the antigen on neoplastic
cells. The surfaces of quantum dots enable attaching molecules with therapeutic activity,
providing, at the same time, drug transport and in vivo imaging [60].

Wang et al. developed pH-sensitive CdSe/ZnS-QDs conjugated with an anticancer
drug, doxorubicin (DOX) [61]. Nanoparticles release the drug when the pH inside the
cell milieu decreases. The basis of this strategy is the knowledge that cancer cells are
characterized by lower pH compared to healthy cells. The proposed nanoplatform showed
significant DOX discharge (65%) following incubation in a buffer at pH 5.0, which mitigates
the cancer tissue. Although the experiment was conducted at pH 7.4 (healthy tissue), the
Dox release was notably diminished (10%). The major limitation of the described study
was the absence of in vitro and/or in vivo evaluations of the developed construct.

Paul et al. utilized silicon QDs to create a photosensitive nanocarrier that employed o-
nitrobenzyl as a light-driven activation system for regulated anticancer drug (chlorambucil)
distribution [29]. The idle condition was granted by trapping chlorambucil and suppressing
QDs fluorescence signal through o-nitrobenzyl. As a result of QDs molecules excitation, the
caged drug was released, and the fluorescence signal was detectable, enabling real-time
tracking of the drug administration. The authors demonstrated in HeLa cells that the
proposed system was stable for 30 min.

4. Ultrasound Imaging

Ultrasound is considered one of the most popular diagnostic techniques. In recent
decades, due to the rapid development of ultrasound equipment, the ultrasound wave
itself, its physical properties, and propagation laws are currently the main limitation in
the quality of ultrasound imaging. With frequencies in the 1–10-MHz range and an ability
to focus the beam in a small area, short acoustic waves have found many applications
in biomedicine [62]. Most often, ultrasound waves are used for diagnostic imaging: ul-
trasound and ultrasound tomography. Ultrasound is also used for therapeutic purposes,
e.g., thermal therapies (hyperthermia and thermoablation). The efficiency of ultrasound
therapies can be improved by using special sound-active materials, e.g., nanoparticles [63].
Additionally, the contrast of ultrasound imaging can be improved with nanomaterials.
The same nanomaterials can simultaneously influence ultrasound therapies and imaging,
making them suitable for ultrasound therapy.

Researchers from Taiwan showed DOX and SuperParamagnetic Iron Oxide (SPIO)
Nanoparticles caged in microbubbles (Mbs)—DOX-SPIO-MBs—for brain tumor treat-
ment [34]. The proposed approach uses focused ultrasound to loosen the brain–blood
barrier and exact drug administration. DOX-SPIO-MBs served as a dual-modality MRI and
ultrasound contrast agent and provided magnetic targeting to improve DOX delivery. The
authors demonstrated in a rat glioma model enhanced DOX-SPIO-MB accumulation in
tumor tissue (22.4%) and durably yielded a meaningful superparamagnetic/photo-acoustic
imaging contrast agent.

Scientists from Stanford University created a theranostics silica-made nanoparticle
filled with insulin-like growth factor [35]. They suggested that a developed nanocarrier
can boost cardiac stem cell growth for heart disease therapy. The impedance discrepancy
between tissue and the silica nanoconstruct allows strengthened cell monitoring and
molecular imaging in vivo. Additionally, the nanoparticles were equipped with gadolinium,
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which utilizes synthesized structures in other high-resolution imaging modalities. Human
bone marrow mesenchymal stem cells were loaded with silica nanoparticles and embedded
into nude mice’s left ventricle wall. Ultrasound images revealed intensified scatter in
contrast to vehicle-only groups. Researchers determined that cell numbers down to 10,000
and 100,000 are detectable using ultrasound or MRI, respectively. Significantly, 1-week
post-stem cell implementation, viability, and survival were improved up to 40%; the
nanoparticles deteriorated in cells within 1 month after their initial administration.

Gao et al. synthesized oxygen-producing MnO2 nanoparticles, which can be tracked
by ultrasound regarding photodynamic therapy [36]. Photodynamic therapy assumes
that a photosensitizer generates reactive oxygen species (mainly H2O2) to initiate cell
degradation. Commonly, tumor cells are characterized by an enhanced production of
H2O2; thus, the authors synthesized oxygen-producing nanoparticles targeted at cancer,
allowing to monitor the adequate oxygen production in diseased tissue without beginning
photodynamic therapy. The developed construct comprised hyaluronic acid attached to
MnO2 nanoparticles and conjugated with indocyanine green (ICG) that served as a NIR—
excited photosensitizer. Hyaluronic acid enhanced tumor targeting by binding with CD44
antigen-expressing cancer cells and administering MnO2 molecules upon hyaluronidase
deterioration. Experiments performed on the squamous cell carcinoma cell line (SSC7)
demonstrated oxygen production with uninterrupted NIR excitement for up to 10 h and
increased the cytotoxicity in the evaluated cell line. In murine SCC7 xenografts, 6 h after
nanoparticle injection, the NIR light source was implemented. As a result of the conducted
experiments, tumor ablation was observed, suggesting the potential use of developed
nanoparticles for in vivo tracking and image-directed therapy.

Lee et al. proposed a novel theranostics strategy engaging a nanodroplet platform that
transitions into microbubbles, allowing siRNA therapy [37]. The nanodroplets conjugated
with siRNA have a size of ~257 nm. After contact with ultrasound waves, the initial
droplets encounter a transition to form gas microbubbles of 3822 nm. In human primary
breast and lung cancer cell lines, researchers noticed a four-fold decreasing in cell viability,
which confirms the effective administration of siRNA and subsequent gene silencing.

5. Magnetic Resonance Imaging

From a clinical perspective, MRI is one of the most important noninvasive diagnostic
tools for disease monitoring [64,65]. MRI is characterized by excellent spatial resolution,
but it is less sensitive than fluorescent imaging. In recent years, there has been visible
progress in the development of nanoparticle systems that allows for the improvement of
imaging and diagnostics by MRI [64–66]. The use of nanoparticles in MRI achieves greater
contrast, which allows for the better differentiation of pathologically altered tissues from
healthy tissues. Nanotechnology, in this aspect, is represented by inorganic nanoparticles
of iron, gold, cobalt oxide, or incorporated nanoparticles of gadolinium.

Recently, the Xin Zhou group developed a multipurpose liposome with incorporating
gadolinium-DOTA (MRI contrast agent) and functionalized with αvβ3 integrin (targeted
peptide) and paclitaxel (anticancer drug) [39]. Synthesized nanoparticles conquered pa-
clitaxel insolubility, enhanced drug transport efficacy to the tumor, and reduced adverse
symptoms. In vitro studies conducted in the A549 cancer cell line showed significantly
improved cytotoxicity effect when incubated with the liposome-based nanoparticles. MRI
revealed 16-times intensified T1 relaxivity in a cancer cell culture treated with function-
alized liposomes compared to the vehicle. During in vivo experiments, tumor-bearing
mice were injected with previously synthesized multifunctional nanoparticles and visu-
alized using MRI. Researchers observed the excellent inhibition of tumor growth after
nanoparticle administration.

Scientists from China and Singapore invented a novel MRI probe for drug release
tracking. Their strategy was based on a combination of a photothermal core (Au-Cu9S5)
and a paramagnetic ion/drug charging silica cover with a thermal-sensitive valve [40].
Encapsulated in silica shells, due to the NIR-II photothermal effect initiated in the core,
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they were released from the nanoparticle. Performed in vitro and in vivo studies indicated
that phase change material facilitates synergistic chemotherapy and mild hyperthermia
by avoiding early drug release and maintaining the regional temperature beneath 45 ◦C.
Moreover, conducted MRI imaging studies have proven a positive signal correlation be-
tween paramagnetic ions and a released drug, providing noninvasive drug release tracking
in real time.

In another research, Gue et al. presented a novel multifunctional nanoenzyme-
driven theranostics molecule—PPy@MnO2-BSA(Ce6), which was designed to allow MRI-
controlled photothermal and photodynamic therapy (PTT and PDT, respectively) in can-
cer [31]. The nanoparticles were prepared by polymerizing pyrrole and subsequent oxi-
dization with high-valent manganese salts (potassium permanganate; KMnO4). Next, the
complex was stabilized with bovine serum albumin (BSA). However, the synthesis’ major
point was functionalization with chlorine 6 (Ce6), which provided the whole nanopar-
ticle with unique and essential functions (a production of oxygen and reactive oxygen
species and conversion photons to heat). PPy@MnO2-BSA(Ce6) could become an intelligent
nanoparticle to track and direct the accurate cancer milieu with the listed features.

6. Computed Tomography

Computed tomography (CT) is a recognized and broadly used technique that allows
for tissue spatial imaging, providing detailed anatomical visualization. However, it is
worth noting that CT scan is characterized by a lower accuracy of soft tissue imaging,
where a MRI has a significant advantage. In CT scanners, the X-ray tube emitting X-rays
moves around the examined object, and changes in the intensity of radiation after passing
through the scanning objects are recorded by detectors located around the perimeter of the
device. Then, the obtained measurement values are processed electronically, and image
reconstruction is obtained. Several imaging probes found the application in clinical practice,
such as gold, iodine, bismuth salts, lanthanide, and iron oxide. Many of the listed materials
attenuating X-rays are encapsulated in nanoparticle platforms, e.g., lipoproteins, liposomes,
or polymeric compounds [67–73].

Korean researchers fabricated gold nanoparticles (GNP) designed for the simultaneous
imaging and therapy of prostate cancer [41]. RNA aptamer with prostate-specific mem-
brane antigen (PSMA) was conjugated to obtain the GNP-based nanostructure’s targeting
properties. An in vitro evaluation showed that PSMA-targeted GNP generated significantly
higher CT image intensity in LNCaP cells (PSMA high expression) than a PC3 (PSMA low
expression) cell culture. Furthermore, after DOX encapsulation within GNP, LNCAP cells
revealed a higher sensitivity than PC3 cells to DOX, consistent with the previous findings.
However, the study’s most significant limitation is the lack of performed experiments in
cancer animal models.

Yang et al. synthesized 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) functional-
ized with bismuth-based nanoparticles (Bi@DLPC) feasible for photothermal therapy (PTT)
induced by a NIR light source simultaneously monitored under photoacoustic (PA) and CT
imaging [38]. Bi@DLPC is characterized by properties beneficial for PTT and CT imaging
due to the excellent photothermal conversion capability and bismuth elements. Conducted
in vivo and in vitro experiments indicated Bi@DLPC efficacious uptake and accumulation
in MDA-MB-231 cells. Performed PTT resulted in inhibition of the tumor growth without
injuring the surrounding tissues and organs, giving clinical application potential.

7. Nuclear Imaging—PET and SPECT

Molecular imaging of living organisms has strong connections with nuclear medicine.
Since the beginning of the field, its goal has been to improve the noninvasive diagnosis and
treatment of patients using imaging equipment and radioisotopes both unconjugated and
conjugated to molecules specific to chosen cellular structures. Combining PET and SPECT
techniques with new isotope-labeled molecular probes has ushered nuclear medicine
into a new era directly related to imaging. In the last decade, the analysis of biological
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phenomena and processes using imaging have become more common and are now not
limited to radionuclide injections. In the rising age of enhanced individualization of
treatments, nanostructures can become a remarkably beneficial therapy instrument and
monitoring disease.

Nuclear imaging requires two particular radioisotopes: for SPECT—radionuclides
that emit gamma radiation (γ-), and PET—elements releasing positrons. Globally, for the
past decades, SPECT imaging has been considered a backbone of clinical nuclear medicine.
It broadly utilizes technetium-99m (99mTc) due to its advantageous physical features (6-h
half-life and energy emission at 140 keV) that suites scintillation crystal-based gamma cam-
eras. A worthwhile mention is that 99mTc could be produced “on site” using a 99Mo/99mTc
isotope generator. To date, several liposomal nanoparticles have been labeled with 99mTc
radionuclides to detect sentinel lymph nodes and cancer imaging purposes [48,74–79].
One of the widely used platforms for theranostics applications is branched synthetic
nanopolymers—dendrimers, conjugated with radioisotopes capable of emitting both β and
γ rays concurrently (131I, 177Lu, and 188Re) [47,80–82]. Zhao et al. developed a multifunc-
tional dendrimer-based nanomolecule labeled with 131I radioisotope for targeted SPECT
imaging. The nanoparticle was functionalized with a specific compound, chlorotoxin, to
enable in vivo matrix metalloproteinase-2-targeting glioma-bearing murine animal models.
Moreover, dendrimers loaded with iodine serve as remarkable computer tomography (CT)
contrast agents that accommodate multimodal imaging (e.g., SPECT and CT).

Goins et al. designed a liposome-based nanostructure with embedded radionuclide—
rhenium-186 (186Re). 186Re is considered an excellent theranostics isotope that exhibits a
favorable half-life of 89.3 h, perfect for the diagnostic, treatment, and monitoring of the
disease. Additionally, it is characterized by gamma energy emission at 137 keV, which suits
optimally for SPECT imaging. By dint of a prolonged half-life, imaging can be conducted a
couple of days after nanoparticle injection. The radiolabeled nanoliposome’s beta radiation
path length covers a distance of 2 mm, meaning the construct needs to be delivered only to
the cell’s region without being endocytosed.

PET imaging is a method of molecular tissue imaging widely utilized in the diagnosis
of various abnormalities providing quantitative data. The basis of this technique is the phe-
nomenon of positron–electron annihilation, resulting in the formation of two high-energy
photons (511 keV) emitted in opposite directions (180◦). Positrons are derived from the
decay of a radioactive isotope that is a component of an administered radiopharmaceutical.
The source of electrons is the examined subject’s tissues and body fluids.

Dobrucki et al. developed marker 64Cu-NOTA-PEG4-cRGD2 that binds to the αVβ3 in-
tegrin receptor, allowing to visualize the active process of angiogenesis in vivo with the PET
technique. This marker is based on a structure of dimeric cyclic peptide containing the Arg-
Gly-Asp (RGD) sequence labeled with NOTA (1,4,7-triazacyclononane-N,N’,N”-triacetic
acid) that is capable of binding radionuclides like 64Cu [42]. 64Cu-NOTA-PEG4-cRGD2
was effective for imaging ischemia-induced angiogenesis in animal models of myocardial
infarction or hindlimb ischemia (HLI) and increased the angiogenesis in xenografts of
tumor-bearing mice [42–44].

The second marker for PET imaging synthesized by the combined Dobrucki and
Kalinowski research group was MMIA (multimodal imaging agent) for imaging of the
receptor for advanced glycation end products (RAGE). This nanoparticle was based on
a fourth-generation polyamidoamine-dendrimer (G4 PAMAM) structure that was also
conjugated to NOTA binding 64Cu for PET imaging, with fluorophore (rhodamine) allowing
for optical detection and with the ligand specific for RAGE—carboxymethyl-lysine (CML)-
modified human serum albumin (HSA). MMIA was used to visualize the ischemic region
in mice after HLI (Figure 1) [32,33].
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ogy, and molecular events at various spatiotemporal scales. Shown here are representative images 
of a mouse subjected to surgical ligation of the right femoral artery to induce hindlimb ischemia 
followed by the inflammatory response, which is assessed with a receptor for an advanced glycation 
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renkov luminescence (D). 

Dr. Cai’s research team developed a mesoporous silica nanoparticle-based platform 
functionalized with an antibody specific to CD-105, labeled with 64Cu for in vivo PET im-
aging and tracking, and containing a therapeutic agent—doxorubicin [45]. PET imaging 
performed in 4T1 murine breast cancer xenografts showed prompt and constant deposi-
tion nanoconstructs in cancer tissue. The authors suggested that the mechanism responsi-
ble for this is the enhanced permeability and retention in cancer cells and specific uptake 
through binding to the CD105 antigen overexpressed in tumor vessels. Researchers have 
observed efficient doxorubicin delivery to tumor tissue, proving the usefulness of the cho-
sen nanoplatforms in the theranostics approach. Furthermore, the presented approach 
could be modified to target other cell structures, tumor types, and to synthesize multi-
modal imaging probes [83,84]. 

Liu et al. synthesized a gold nanostar (GNS) agent comprising multimodal properties 
involving X-ray-computed tomography (CT), surface-enhanced Raman scattering (SERS) 
identification, two-photon luminescence (TPL) imaging, photothermal therapy (PTT), and 
also labeled with 131I [46]. The scientists evaluated the yield for in vitro and in vivo photo-

Figure 1. Multimodal multifunctional nanoparticles allow the in vivo imaging of anatomy, physiology,
and molecular events at various spatiotemporal scales. Shown here are representative images of
a mouse subjected to surgical ligation of the right femoral artery to induce hindlimb ischemia
followed by the inflammatory response, which is assessed with a receptor for an advanced glycation
end product (RAGE)-targeted nanoparticle-based multimodal agent labeled with both fluorophore
(rhodamine) and radioisotope (64Cu). The anatomy was assessed with X-ray computed tomography
(CT) imaging (A). In contrast, molecular proinflammatory events were quantitatively assessed in vivo
with positron emission tomographic (PET) imaging (B), whole-body fluorescence (C), and Cherenkov
luminescence (D).

Dr. Cai’s research team developed a mesoporous silica nanoparticle-based platform
functionalized with an antibody specific to CD-105, labeled with 64Cu for in vivo PET
imaging and tracking, and containing a therapeutic agent—doxorubicin [45]. PET imaging
performed in 4T1 murine breast cancer xenografts showed prompt and constant deposition
nanoconstructs in cancer tissue. The authors suggested that the mechanism responsible
for this is the enhanced permeability and retention in cancer cells and specific uptake
through binding to the CD105 antigen overexpressed in tumor vessels. Researchers have
observed efficient doxorubicin delivery to tumor tissue, proving the usefulness of the
chosen nanoplatforms in the theranostics approach. Furthermore, the presented approach
could be modified to target other cell structures, tumor types, and to synthesize multimodal
imaging probes [83,84].

Liu et al. synthesized a gold nanostar (GNS) agent comprising multimodal properties
involving X-ray-computed tomography (CT), surface-enhanced Raman scattering (SERS)
identification, two-photon luminescence (TPL) imaging, photothermal therapy (PTT),
and also labeled with 131I [46]. The scientists evaluated the yield for in vitro and in vivo
photothermal heating and ablation (respectively) of primary sarcomas in mice. The authors
indicated that smaller GNS (30 nm vs. 60 nm) present a better tumor intake and profound
tumor tissue infiltration. Moreover, the GNS-injected dose was directly proportional to the
ratio of tumor uptake.

8. Conclusions and Future Perspective

The turn of the 20th and 21st centuries has undoubtedly brought enormous progress to
biomedical sciences and, at the same time, in diagnosing and treating various abnormalities.
Thanks to the combination of modern methods of molecular biology, advances in chemical
synthesis, and the use of nanoparticles’ multifunctional properties, we are getting closer
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to personalized medicine implemented with theranostics’ help that provides precise and
early diagnostics and therapy at the same time. To accomplish these goals, methods with at
least a sensitivity of 10−5–10−7 are needed. Such sensitive technology can allow for regular
monitoring of the patient’s treatment and early detection of the disease. Currently, the used
methods are not sensitive enough to detect the early spread of the disease. Therefore, this
is the cause of disease recurrence, despite the complete removal of even a small primary
tumor and the use of postoperative chemotherapy. It has long been suspected that a
primary tumor releases cancer cells into the bloodstream very early in the disease before
it becomes clinically symptomatic. A susceptible and specific technology will allow the
future assessment of the stage of cancer at the molecular and clinically asymptomatic
levels, giving the oncologist information and time to plan an effective treatment. Thus,
in the scientific world, work on multifunctional nanoparticles that can freely penetrate
cells and cause a specific biological effect is carried out very intensively. Currently, we are
witnessing tremendous progress in diagnosis and therapy. The concept of personalized
medicine is coming true; however, there is still much to be done, and advances in our
knowledge of knitted therapeutic and diagnostic probes are needed to Improve its potential
for clinical purpose.
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