Marek Beśka and Mateusz Gaeka (Gdańsk)

MOMENTS OF HERMITE-GAUSSIAN FUNCTIONALS

Abstract. Moments of finite products of Hermite-Gaussian functionals are expressed by covariances of a Gaussian sequence.

Introduction. Mixed moments of Hermite-Gaussian functionals play an important role in stochastic analysis of Wiener chaos (for extensive treatment of the ideas corresponding to Wiener chaos, also those regarding moments, see [J, (PT). In this paper, we present a new method of computing such moments. It allows us to formulate a necessary and sufficient condition (see Proposition 2.1 below) for vanishing of a moment of even order in the case of non-negative correlations of Gaussian random variables from Wiener chaos.

1. Hermite polynomials. Let \mathbb{R}^{d} denote the d-dimensional Euclidean space, equipped with the standard inner product $(\cdot, \cdot)_{d}$ and the Euclidean norm $\|\cdot\|_{d}$. Let (Ω, \mathcal{F}, P) be a fixed probability space. The Hermite polynomial H_{n} of degree $n \geq 1$ on \mathbb{R} is defined by

$$
H_{n}(x)=(-1)^{n} \exp \left(x^{2} / 2\right) \frac{d^{n}}{d x^{n}}\left(\exp \left(-x^{2} / 2\right)\right), \quad x \in \mathbb{R}, n \geq 1
$$

Additionally, we assume that $H_{0} \equiv 1$. The first Hermite polynomials are $H_{1}(x)=x, H_{2}(x)=x^{2}-1$. The polynomials H_{n} divided by $n!$ are the coefficients of the expansion in powers of t of the generating function $w(t, x)=$ $\exp \left(t x-t^{2} / 2\right), x, t \in \mathbb{R}$. In fact, we have

$$
\begin{equation*}
w(t, x)=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} H_{n}(x), \quad x, t \in \mathbb{R} . \tag{1.1}
\end{equation*}
$$

[^0]Note that for a standard Gaussian variable η we have

$$
w(t, x)=\exp (t x) E \exp (i t \eta)=E \exp (t x+i t \eta)=E \sum_{n=0}^{\infty} \frac{t^{n}}{n!}(x+i \eta)^{n}
$$

Now, using the Lebesgue dominated convergence theorem and comparing the above expansion with (1.1), we get

$$
\begin{equation*}
H_{n}(x)=E(x+i \eta)^{n}, \quad x \in \mathbb{R}, n \geq 0 \tag{1.2}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|\frac{t^{n}}{n!} H_{n}(x)\right| \leq \sum_{n=0}^{\infty} \frac{|t|^{n}}{n!} E\left[(|x|+|\eta|)^{n}\right] \leq E \exp [|t|(|x|+|\eta|)]<\infty \tag{1.3}
\end{equation*}
$$

Therefore, the sum in (1.1) converges absolutely for all $t, x \in \mathbb{R}$.
Another well known relationship between Hermite polynomials and Gaussian random variables is the result below (see [N]).

Lemma 1.1. Let (X, Y) be a two-dimensional Gaussian vector such that $E(X)=E(Y)=0, E\left(X^{2}\right)=E\left(Y^{2}\right)=1, E(X Y)=\rho$, where ρ is the correlation coefficient of X and Y. Then, for all $n, m \geq 0$,

$$
E\left[H_{n}(X) H_{m}(Y)\right]= \begin{cases}n!\rho^{n} & \text { if } n=m \\ 0 & \text { if } n \neq m\end{cases}
$$

Now, let $X=\left(X_{1}, \ldots, X_{d}\right)$ be a Gaussian random vector such that $E\left(X_{i}\right)=0$ and $E\left(X_{i}^{2}\right)=1$ for $i=1, \ldots, d$. The aim of this note is to compute the expectation

$$
E\left[H_{n_{1}}\left(X_{1}\right) H_{n_{2}}\left(X_{2}\right) \cdots H_{n_{d}}\left(X_{d}\right)\right]
$$

To formulate our result, we need some notations and definitions. For $x=$ $\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$ and $k=\left(k_{1}, \ldots, k_{d}\right) \in \mathbb{N}_{0}^{d}=(\mathbb{N} \cup\{0\})^{d}$, we write

$$
|x|=\sum_{i=1}^{d} x_{i}, \quad x^{k}=\prod_{i=1}^{d} x_{i}^{k_{i}}, \quad|k|=\sum_{i=1}^{d} k_{i}, \quad k!=\prod_{i=1}^{d} k_{i}!
$$

For $k=\left(k_{1}, \ldots, k_{d}\right) \in \mathbb{N}_{0}^{d}$ the integer $|k|$ will be called the length of the vector k. The set of all square matrices of dimension d with elements from \mathbb{R} $\left(\right.$ resp. $\left.\mathbb{N}_{0}\right)$ is denoted by $\mathcal{M}_{d}(\mathbb{R})$ (resp. $\mathcal{M}_{d}\left(\mathbb{N}_{0}\right)$). If $R \in \mathcal{M}_{d}(\mathbb{R})$, the j th column and i th row are denoted by R_{j} and R^{i} respectively. From time to time, we shall use the shorthand notation $R=\left[R_{j}^{i}\right]$. As usual, we identify rows and columns of R with vectors from \mathbb{R}^{d}. If $R \in \mathcal{M}_{d}(\mathbb{R})$ and $K \in$ $\mathcal{M}_{d}\left(\mathbb{N}_{0}\right)$, we denote

$$
|K|=\left(\left|K^{1}\right|, \ldots,\left|K^{d}\right|\right), \quad|R|=\left(\left|R^{1}\right|, \ldots,\left|R^{d}\right|\right),
$$

$$
K!=K^{1}!\cdots K^{d}!=\prod_{i, j=1}^{d} K_{j}^{i}!, \quad R^{K}=R^{1 K^{1}} \cdots R^{d^{K^{d}}}=\prod_{i, j=1}^{d} R_{j}^{i K_{j}^{i}}
$$

with the convention $0^{0}=1$. For $K=\left[K_{j}^{i}\right] \in \mathcal{M}_{d}\left(\mathbb{N}_{0}\right)$, let $u(K)$ denote the upper diagonal matrix of K, i.e.

$$
u(K):=\left[U_{j}^{i}\right], \quad \text { where } \quad U_{j}^{i}:= \begin{cases}K_{j}^{i} & \text { if } j \geq i \\ 0 & \text { if } j<i\end{cases}
$$

For $n \in \mathbb{N}_{0}^{d}$ let us introduce the following families of matrices:

$$
\begin{aligned}
\mathcal{M}_{d}^{0}\left(\mathbb{N}_{0}\right) & =\left\{K \in \mathcal{M}_{d}\left(\mathbb{N}_{0}\right): \operatorname{diag}(K)=0, K \text { is symmetric }\right\} \\
\mathcal{M}_{d, n}^{0}\left(\mathbb{N}_{0}\right) & =\left\{K \in \mathcal{M}_{d}^{0}\left(\mathbb{N}_{0}\right):|K|=n\right\}
\end{aligned}
$$

where $\operatorname{diag}(K)$ denotes the main diagonal of the matrix K.
The Hermite polynomials on \mathbb{R}^{d} are defined as tensor products of the Hermite polynomials on \mathbb{R} : for $n=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{N}_{0}^{d}$ and $x=\left(x_{1}, \ldots, x_{d}\right) \in$ \mathbb{R}^{d} we put

$$
H_{n}(x)=\prod_{i=1}^{d} H_{n_{i}}\left(x_{i}\right)
$$

Similarly to the one-dimensional case, the polynomials H_{n} divided by n ! are the coefficients of expansion in powers of $t=\left(t_{1}, \ldots, t_{d}\right) \in \mathbb{R}^{d}$ of the generating function

$$
w(t, x)=\exp \left(-\|t\|_{d}^{2} / 2+(t, x)_{d}\right), \quad t, x \in \mathbb{R}^{d}
$$

That is,

$$
w(t, x)=\sum_{n \in \mathbb{N}_{0}^{d}} \frac{t^{n}}{n!} H_{n}(x), \quad t, x \in \mathbb{R}^{d}
$$

2. Main result. We can now formulate the main result of this note.

Theorem 2.1. Let $X=\left(X_{1}, \ldots, X_{d}\right)$, $d \geq 2$, be a Gaussian random vector such that $E\left(X_{i}\right)=0$ and $E\left(X_{i}^{2}\right)=1$ for $i=1, \ldots, d$. Then, for the Hermite polynomial H_{n} on \mathbb{R}^{d} of degree $n=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{N}_{0}^{d}$ we have

$$
\begin{align*}
E H_{n}(X) & =E\left[H_{n_{1}}\left(X_{1}\right) H_{n_{2}}\left(X_{2}\right) \cdots H_{n_{d}}\left(X_{d}\right)\right] \tag{2.4}\\
& = \begin{cases}\sum_{K \in \mathcal{M}_{d, n}^{0}} \frac{n!}{\sqrt{K!}} Q^{u(K)} & \text { if } \mathcal{M}_{d, n}^{0} \neq \emptyset \\
0 & \text { if } \mathcal{M}_{d, n}^{0}=\emptyset\end{cases}
\end{align*}
$$

where Q denotes the covariance matrix of X.
Proof. From the definition of H_{n} and from (1.3), we conclude that

$$
\begin{aligned}
H_{n}(x) & =H_{n_{1}}\left(x_{1}\right) H_{n_{2}}\left(x_{2}\right) \cdots H_{n_{d}}\left(x_{d}\right) \\
& =E\left[\left(x_{1}+i \eta_{1}\right)^{n_{1}}\left(x_{2}+i \eta_{2}\right)^{n_{2}} \cdots\left(x_{d}+i \eta_{d}\right)^{n_{d}}\right]
\end{aligned}
$$

where $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}, n=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{N}_{0}^{d}$ and $\eta_{1}, \ldots, \eta_{d}$ is a sequence of independent standard Gaussian variables, independent of X. From the above and from (1.2) we deduce that (with $E_{\eta_{i}}$ denoting the expectation with respect to $\left.\eta_{i}, i=1, \ldots, d\right)$

$$
\begin{aligned}
& E \sum_{n \in \mathbb{N}_{0}^{d}}\left|\frac{t^{n}}{n!} H_{n}(X)\right|=E \prod_{i=1}^{d} \sum_{n_{1}=0}^{\infty}\left|\frac{t_{i}^{n_{i}}}{n_{i}!} H_{n_{i}}\left(X_{i}\right)\right| \\
& \quad \leq E\left[E_{\eta_{1}} e^{\left|t_{1}\right|\left(\left|X_{1}\right|+\left|\eta_{1}\right|\right)} E_{\eta_{2}} e^{\left|t_{2}\right|\left(\left|X_{2}\right|+\left|\eta_{2}\right|\right)} \cdots E_{\eta_{d}} e^{\left|t_{d}\right|\left(\left|X_{d}\right|+\left|\eta_{d}\right|\right)}\right] \\
& \\
& \quad \leq E_{\eta_{1}} e^{\left|t_{1} \eta_{1}\right|} E_{\eta_{2}} e^{\left|t_{2} \eta_{2}\right|} \cdots E_{\eta_{d}} e^{\left|t_{d} \eta_{d}\right|} E e^{\left|t_{1} X_{1}\right|+\left|t_{2} X_{2}\right|+\cdots+\left|t_{d} X_{d}\right|}<\infty .
\end{aligned}
$$

Therefore, by the Lebesgue dominated convergence theorem, we have

$$
\begin{equation*}
E w(t, X)=E \sum_{n \in \mathbb{N}_{0}^{d}} \frac{t^{n}}{n!} H_{n}(X)=\sum_{n \in \mathbb{N}_{0}^{d}} \frac{t^{n}}{n!} E\left[H_{n}(X)\right] \tag{2.5}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
E w(t, X) & =E \exp \left((t, X)_{d}-\|t\|_{d}^{2} / 2\right)=\exp \left((Q t, t)_{d} / 2-\|t\|_{d}^{2} / 2\right) \\
& =\exp \left(\frac{1}{2}((Q-I) t, t)_{d}\right)=\exp \left(\sum_{1 \leq i<j \leq d} \rho_{i j} t_{i} t_{j}\right)
\end{aligned}
$$

where I is the identity operator on \mathbb{R}^{d}. Consequently,

$$
\begin{equation*}
E w(t, X)=\sum_{m=0}^{\infty} \frac{1}{m!}\left(\sum_{1 \leq i<j \leq d} \rho_{i j} t_{i} t_{j}\right)^{m} \tag{2.6}
\end{equation*}
$$

Let us compute the components of the above sum. For simplicity, denote by S_{m} the set of all vectors

$$
k=\left(k_{12}, \ldots, k_{1 d}, k_{23}, \ldots, k_{2 d}, \ldots, k_{d-1, d}\right) \in \mathbb{N}_{0}^{d(d-1) / 2}
$$

such that $|k|=m$. It follows that

$$
\begin{aligned}
&\left(\sum_{1 \leq i<j \leq d} \rho_{i j} t_{i} t_{j}\right)^{m}=\sum_{k \in S_{m}} \frac{m!}{k!} \rho_{12}^{k_{12}} \cdots \rho_{1 d}^{k_{1 d}} \rho_{23}^{k_{23}} \cdots \rho_{2 d}^{k_{2 d}} \cdots \rho_{d-1, d}^{k_{d-1, d}} \\
& \times\left(t_{1} t_{2}\right)^{k_{12}} \cdots\left(t_{1} t_{d}\right)^{k_{1 d}}\left(t_{2} t_{3}\right)^{k_{23}} \cdots\left(t_{2} t_{d}\right)^{k_{2 d}} \cdots\left(t_{d-1} t_{d}\right)^{k_{d-1, d}} \\
&=\sum_{\substack{K \in \mathcal{M}_{d}^{0} \\
\|K\|=m}} \frac{m!}{\sqrt{K!}} Q^{u(K)} t^{|K|}
\end{aligned}
$$

where $\|K\|=\left|K^{1}\right|+\cdots+\left|K^{d}\right|$. From the above and from (2.6) we have

$$
\begin{equation*}
E w(t, X)=\sum_{m=0}^{\infty} \sum_{\substack{K \in \mathcal{M}_{d}^{0} \\\|K\|=m}} \frac{1}{\sqrt{K!}} Q^{u(K)} t^{|K|}=\sum_{n \in \mathbb{N}_{0}^{d}} \sum_{K \in \mathcal{M}_{d, n}^{0}} \frac{1}{\sqrt{K!}} Q^{u(K)} t^{n} \tag{2.7}
\end{equation*}
$$

Now, comparing (2.5) and (2.7) we get (2.4), and the theorem follows.

We see at once that $\mathcal{M}_{d, n}^{0}=\emptyset$ if $|n|$ is an odd integer. When $|n|$ is even, we have the result below.

Proposition 2.1. Let $n=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{N}_{0}^{d}$ be such that $|n|$ is an even integer and let $n_{i_{0}}=\max _{1 \leq i \leq d} n_{i}$. Then

$$
\mathcal{M}_{d, n}^{0} \neq \emptyset \Longleftrightarrow n_{i_{0}} \leq \sum_{\substack{i=1 \\ i \neq i_{0}}}^{d} n_{i}
$$

Proof. Without loss of generality, we may assume that

$$
n_{1} \geq \cdots \geq n_{d}
$$

(\Rightarrow) Assume that $n_{1}>n_{2}+\cdots+n_{d}$ and let $K \in \mathcal{M}_{d, n}^{0}$. Then the first row of K is

$$
K^{1}=\left(0, k_{12}, k_{13}, \ldots, k_{1 d}\right) \quad \text { and } \quad n_{1}=\left|K^{1}\right|=k_{12}+k_{13}+\cdots+k_{1 d}
$$

Hence, there exists $2 \leq i \leq d$ such that $k_{1 i}>n_{i}$. Therefore, $k_{i 1}=k_{1 i}>n_{i}$ and $\left|K^{i}\right|>n_{i}$. Consequently, $|K| \neq n$ and this contradicts the assumption that $K \in \mathcal{M}_{d, n}^{0}$.
(\Leftarrow) Notice first that if $n_{1}=n_{2}+\cdots+n_{d}$ then the matrix

$$
K=\left[\begin{array}{ccccc}
0 & n_{2} & n_{3} & \ldots & n_{d} \\
n_{2} & 0 & 0 & \ldots & 0 \\
n_{3} & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
n_{d} & 0 & 0 & \ldots & 0
\end{array}\right]_{d \times d}
$$

belongs to $\mathcal{M}_{d, n}^{0}$, so $\mathcal{M}_{d, n}^{0} \neq \emptyset$. Now, let $n_{1}<n_{2}+\cdots+n_{d}$. Then $p:=$ $n_{2}+\cdots+n_{d}-n_{1}>0$ and we see at once that p is even. For our further considerations, the following lemma will be necessary.

LEMMA 2.1. Let $n=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{N}_{0}^{d}$ be a non-increasing sequence such that $|n|$ is even and $|n|>2 n_{1}$. Then there exists a sequence $m=$ $\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{N}_{0}^{k}$ with $2 k+1 \leq d$ such that

$$
\begin{aligned}
s=\left(0, n_{2}-m_{1}, n_{3}-m_{1},\right. & n_{4}-m_{2}, n_{5}-m_{2}, \ldots \\
& \left.n_{2 k}-m_{k}, n_{2 k+1}-m_{k}, n_{2 k+2}, \ldots, n_{d}\right) \in \mathbb{N}_{0}^{d}
\end{aligned}
$$

and $|s|=n_{2}+\cdots+n_{d}-2|m|=n_{1}$.
Proof of Lemma 2.1. Let $\left\{e_{i}\right\}_{i=1}^{d}$ be the standard basis in \mathbb{R}^{d} and

$$
r:= \begin{cases}(d+1) / 2 & \text { if } d \text { is odd } \\ d / 2 & \text { if } d \text { is even }\end{cases}
$$

Moreover, define a sequence $\left\{p_{j}\right\}_{j=1}^{r}$ by

$$
p_{1}=0, \quad p_{j}=\sum_{i=2}^{j} n_{2 i-1}, \quad j=2, \ldots, r
$$

and a sequence $\left\{S^{(i)}\right\}_{i=0}^{p_{r}}$ of vectors in \mathbb{N}_{0}^{d} as follows:

$$
S^{(0)}=\left(0, n_{2}, n_{3}, \ldots, n_{d}\right), \quad S^{\left(p_{j}+l\right)}=S^{\left(p_{j}+l-1\right)}-e_{2 j}-e_{2 j+1}
$$

where $1 \leq l \leq n_{2 j+1}, j=1, \ldots, r-1$. It can be seen that for $j>1$, $S^{\left(p_{j}+l\right)}=S^{(0)}-n_{3} e_{2}-n_{3} e_{3}-\cdots-n_{2 j-1} e_{2 j-2}-n_{2 j-1} e_{2 j-1}-l e_{2 j}-l e_{2 j+1}$. From the definition of $\left\{S^{(i)}\right\}_{i=0}^{p_{r}}$ we have

$$
\left|S^{\left(p_{j}+l\right)}\right|=\left|S^{\left(p_{j}+l-1\right)}\right|-2, \quad 1 \leq l \leq n_{2 j+1}, j=1, \ldots, r-1
$$

i.e. the lengths $\left|S^{\left(p_{j}+l\right)}\right|$ decrease in arithmetic progression with common difference 2. By assumption,

$$
\left|S^{(0)}\right|=n_{2}+n_{3}+\cdots+n_{d}>n_{1}
$$

On the other hand, for $r=(d+1) / 2$,

$$
\begin{aligned}
\left|S^{\left(p_{r}\right)}\right|= & \left|S^{(0)}\right|-2\left(n_{3}+n_{5}+\cdots+n_{d}\right) \\
= & n_{2}+n_{3}+\cdots+n_{d}-2\left(n_{3}+n_{5}+\cdots+n_{d}\right) \\
= & n_{2}+\left(n_{3}+n_{4}\right)+\left(n_{5}+n_{6}\right)+\cdots+\left(n_{d-2}+n_{d-1}\right) \\
& \quad+n_{d}-2\left(n_{3}+n_{5}+\cdots+n_{d}\right) \\
\leq & n_{1}+2 n_{3}+2 n_{5}+\cdots+2 n_{d-2}+2 n_{d}-2\left(n_{3}+n_{5}+\cdots+n_{d}\right)=n_{1} .
\end{aligned}
$$

Similarly for $r=d / 2$,

$$
\begin{aligned}
& \left|S^{\left(p_{r}\right)}\right|=\left|S^{(0)}\right|-2\left(n_{3}+n_{5}+\cdots+n_{d-1}\right) \\
& =n_{2}+n_{3}+\cdots+n_{d}-2\left(n_{3}+n_{5}+\cdots+n_{d-1}\right) \\
& =n_{2}+\left(n_{3}+n_{4}\right)+\left(n_{5}+n_{6}\right)+\cdots+\left(n_{d-1}+n_{d}\right)-2\left(n_{3}+n_{5}+\cdots+n_{d-1}\right) \\
& \leq n_{1}+2 n_{3}+2 n_{5}+\cdots+2 n_{d-1}-2\left(n_{3}+n_{5}+\cdots+n_{d-1}\right)=n_{1}
\end{aligned}
$$

We conclude that there exists $1 \leq i_{0} \leq p_{r}$ such that $\left|S^{\left(i_{0}\right)}\right|=n_{1}$. Put $a=S^{(0)}-S^{\left(i_{0}\right)}$. Then we can define

$$
2 k:=\#\left\{a_{i}: a_{i} \neq 0\right\}
$$

and

$$
\begin{aligned}
m & :=\left(m_{1}, \ldots, m_{k}\right):=\left(n_{2}, n_{4}, \ldots, n_{2 k}\right)-\left(S_{2}^{\left(i_{0}\right)}, S_{4}^{\left(i_{0}\right)}, \ldots, S_{2 k}^{\left(i_{0}\right)}\right) \\
& =\left(n_{3}, n_{5}, \ldots, n_{2 k+1}\right)-\left(S_{3}^{\left(i_{0}\right)}, S_{5}^{\left(i_{0}\right)}, \ldots, S_{2 k+1}^{\left(i_{0}\right)}\right)
\end{aligned}
$$

From the construction of m and the definition of the vector s, we obtain

$$
|s|=\left|S^{(0)}\right|-2|m|=\left|S^{(0)}\right|-\left(\left|S^{(0)}\right|-\left|S^{\left(i_{0}\right)}\right|\right)=\left|S^{\left(i_{0}\right)}\right|=n_{1}
$$

Using Lemma 2.1 we can construct a vector $m=\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{N}_{0}^{k}$, where $2 k+1 \leq d$, such that $m_{i} \leq n_{2 i+1}$ for $i=1, \ldots, k$ and $2|m|=p$, i.e. $n_{1}=n_{2}+\cdots+n_{d}-2|m|$. Therefore, we can find a matrix K which belongs to $\mathcal{M}_{d, n}^{0}$. Namely, we set $K=A-B+C$, where

$$
A=\left[\begin{array}{ccccc}
0 & n_{2} & n_{3} & \ldots & n_{d} \\
n_{2} & 0 & 0 & \ldots & 0 \\
n_{3} & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
n_{d} & 0 & 0 & \ldots & 0
\end{array}\right]_{d \times d} \quad, \quad B=\left[\begin{array}{cc}
B_{11} & B_{12} \\
B_{12}^{T} & B_{22}
\end{array}\right]_{d \times d},
$$

where $B_{11}=[0]_{1 \times 1}, B_{12}=\left[m_{1} m_{1} m_{2} m_{2} \ldots m_{k} m_{k} 0 \ldots 0\right]_{1 \times(d-1)}$ and B_{22} is a null $(d-1) \times(d-1)$ matrix, and finally

$$
C=\left[\begin{array}{cccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & \ldots & 0 \\
0 & 0 & m_{1} & 0 & 0 & 0 & \ldots & 0 & \ldots & 0 \\
0 & m_{1} & 0 & 0 & 0 & 0 & \ldots & 0 & \ldots & 0 \\
0 & 0 & 0 & 0 & m_{2} & 0 & \ldots & 0 & \ldots & 0 \\
0 & 0 & 0 & m_{2} & 0 & 0 & \ldots & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & & \ldots & & 0 & 0 & m_{k} & 0 & \ldots & 0 \\
0 & & \ldots & & 0 & m_{k} & 0 & 0 & \ldots & 0 \\
0 & \ldots & & 0 & 0 & 0 & 0 & \ldots & 0 \\
\vdots & & \ddots & & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & & 0 & 0 & 0 & 0 & \ldots & 0
\end{array}\right]_{d \times d}
$$

Therefore, $\mathcal{M}_{d, n}^{0} \neq \emptyset$ and the proof of Proposition 2.1 is complete.

References

[J] S. Janson, Gaussian Hilbert Spaces, Cambridge Univ. Press, 1997.
[N] D. Nualart, The Malliavin Calculus and Related Topics, Springer, Berlin, 2006.
[PT] G. Peccati and M. S. Taqqu, Wiener Chaos: Moments, Cumulants and Diagrams, Springer, Milan, 2011.

Marek Beśka
Faculty of Applied Mathematics and Physics
Gdańsk University of Technology
Narutowicza 11/12
80-233 Gdańsk, Poland
ORCID: 0000-0003-0088-9850
E-mail: marbeska@pg.edu.pl

Mateusz Gałka
Faculty of Mathematics,
Physics and Informatics
University of Gdańsk
Wita Stwosza 57
80-308 Gdańsk, Poland ORCID: 0000-0003-3065-7807 E-mail: mgalka@mat.ug.edu.pl

[^0]: 2020 Mathematics Subject Classification: Primary 60E05; Secondary 60G15.
 Key words and phrases: Gaussian random vector, Hermite polynomials.
 Received 25 October 2019; revised 16 March 2020.
 Published online 10 June 2020.

