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Abstract

Artificial Intelligence algorithms are being increasingly used in industrial applications.
Their important function is to support operation of diagnostic systems. This paper presents
a new approach to the monitoring of a regenerative heat exchanger in a steam power plant,
which is based on a specific use of the Recurrent Neural Network (RNN). The proposed
approach was tested using real data. This approach can be easily adapted to similar mon-
itoring applications of other industrial dynamic objects.
Keywords: recurrent neural network, intelligent industrial monitoring, Almeida–Pineda
recurrent back-propagation, regenerative heat exchanger, steam power plant.

1 Introduction

Non-invasive monitoring methods (NDMs) are
important from both the theoretical and practical
points of view. Therefore, this area is developing in
a very dynamic way, and more and more effective
algorithms and their applications are being searched
for and researched. In NDMs, Artificial Intelligence
algorithms are being used increasingly frequently.
These methods are more and more often used in in-
dustrial applications. They are particularly impor-
tant for solving those problems where an accurate or

fast enough model is not available. Artificial Intel-
ligence algorithms can be used to support an expert
in analyzing dynamically changing operating con-
ditions of a given monitored system. Such support
might consist in a prompt indication that the sys-
tem being monitored has reached an unfavorable,
usually a dangerous level of its operating condition,
which consequently might result in a damage, much
quicker wear and tear of the system’s components,
or some other disadvantageous situations. An im-
mediate detection of unfavorable conditions is par-
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ticularly important in the application range consid-
ered and discussed in this work.

This paper focuses on monitoring values of cer-
tain selected parameters in a steam power plant sys-
tem, i.e. the regenerative exchanger and its depen-
dent devices in particular. A faultless operation of
the exchanger is important because it significantly
affects operational safety of the plant and the power
of circulation. It is also a key factor in the effi-
ciency of the system as the efficiency and power
of the system are the crucial parameters in every
steam power plant. These parameters depend, in
particular, on the flow conditions of the conden-
sate through the successive groups of the turbine
stages. At the same time, the condensate flow is
significantly dependent on the operation of the re-
generation exchangers. Therefore, in order to en-
sure effective and safe operation of the power plant,
it is necessary to maintain proper operation of the
regenerative heat exchangers and to apply appropri-
ate monitoring systems with the option of detecting
undesirable operating conditions.

The proposed approach can be easily adapted to
other applications for monitoring the operating con-
ditions of a dynamic system.

1.1 Related works

The calculation models used to describe the re-
lationship between the parameters of individual de-
vices of a steam power plant are most often based
on the mass and energy balance [3, 4, 32]. However,
they are considered to fulfill their function only at
the design stage, and are thought to not be suitable
for use during the block operation [15, 18, 19]. The
main reason mentioned in the literature is the lack
of adequate reference data describing the correct
and efficient operation of the steam power plant,
to which it would be possible to compare the ac-
tual parameters of the block operation obtained un-
der variable conditions [9]. The authors of the
paper [13] also claim that classical computational
models are not suitable for diagnostic applications
with high dynamics changes. The reason for this
is the inability to generate reference data quickly.
Therefore, to overcome this problem, the solutions
based on artificial intelligence are commonly appli-
cable. Such solutions include, for example, Arti-
ficial Neural Networks (ANN [2, 8, 27, 33]). The
paper [30] presents the usefulness of ANNs to de-

termine Future Exit Gas Temperature (FEGT) in a
500 MW thermal power plant. The ANN presented
in the paper gives a good approximation of the con-
sidered system and is a tool that well modulates
the non-linear dependence of the boiler outlet gas
temperature. The authors claim that the solution
which they propose may significantly improve the
performance of complex systems of steam power
plants. In the study [6], an ANN and a Radial Ba-
sis Neural Network (RBNN, [27]) were also used
to monitor system parameters in real time. The au-
thors analysed a boiler operating in a thermal power
plant of 200 MW. They examined the impact of the
system parameters on the boiler efficiency and heat
rate. They noted that due to a large amount of mea-
surement data generated online, it is not possible
to study this impact using classical mathematical
models. They underlined the need to create ded-
icated expert systems for continuous monitoring.
Such systems would support operators’ decisions
to ensure a safe and efficient operation of the sys-
tem. In the article [14] an ANN was used to detect
damage to the steam boiler. The authors focused
on the type of damage that would lead to shutting
down the boiler and stopping the whole installation.
The authors have shown that the network that they
used is able to correctly recognize the first symp-
toms of a faulty operation of the steam boiler, e.g.
too low a temperature of the so-called superheated
steam. Additionally, they noted that despite a high
complexity of the system and many parameters hav-
ing a mutual influence on each other, the presented
ANN worked with a satisfactory speed and accu-
racy. In [7] the authors used the measurement data
obtained from a real system with a rated power of
210 MW. The ANN applied was expected to deter-
mine the steam temperature behind the so-called su-
perheater temperature based on the unit load value,
amount of fuel feed and feed water flow. In [32]
the authors have noted that the ANN can success-
fully replace traditional steam system models (us-
ing mass and energy balances). This article de-
scribes the neural model which was supposed to
predict the power output of a coal-fired power plant.
It was assumed that the model of a power plant was
built from two interconnected subsystems: a boiler
part and a turbine part. The operation of each sub-
systems was simulated with a different ANN. The
first ANN was supposed to map the behavior of the
steam boiler, while the second ANN was to model
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stages. At the same time, the condensate flow is
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is the inability to generate reference data quickly.
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based on artificial intelligence are commonly appli-
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ficial Neural Networks (ANN [2, 8, 27, 33]). The
paper [30] presents the usefulness of ANNs to de-
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in the paper gives a good approximation of the con-
sidered system and is a tool that well modulates
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temperature. The authors claim that the solution
which they propose may significantly improve the
performance of complex systems of steam power
plants. In the study [6], an ANN and a Radial Ba-
sis Neural Network (RBNN, [27]) were also used
to monitor system parameters in real time. The au-
thors analysed a boiler operating in a thermal power
plant of 200 MW. They examined the impact of the
system parameters on the boiler efficiency and heat
rate. They noted that due to a large amount of mea-
surement data generated online, it is not possible
to study this impact using classical mathematical
models. They underlined the need to create ded-
icated expert systems for continuous monitoring.
Such systems would support operators’ decisions
to ensure a safe and efficient operation of the sys-
tem. In the article [14] an ANN was used to detect
damage to the steam boiler. The authors focused
on the type of damage that would lead to shutting
down the boiler and stopping the whole installation.
The authors have shown that the network that they
used is able to correctly recognize the first symp-
toms of a faulty operation of the steam boiler, e.g.
too low a temperature of the so-called superheated
steam. Additionally, they noted that despite a high
complexity of the system and many parameters hav-
ing a mutual influence on each other, the presented
ANN worked with a satisfactory speed and accu-
racy. In [7] the authors used the measurement data
obtained from a real system with a rated power of
210 MW. The ANN applied was expected to deter-
mine the steam temperature behind the so-called su-
perheater temperature based on the unit load value,
amount of fuel feed and feed water flow. In [32]
the authors have noted that the ANN can success-
fully replace traditional steam system models (us-
ing mass and energy balances). This article de-
scribes the neural model which was supposed to
predict the power output of a coal-fired power plant.
It was assumed that the model of a power plant was
built from two interconnected subsystems: a boiler
part and a turbine part. The operation of each sub-
systems was simulated with a different ANN. The
first ANN was supposed to map the behavior of the
steam boiler, while the second ANN was to model
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the operation of the steam turbine. The output sig-
nals from the first network were given as the inputs
for network two. The output parameter of the sys-
tem of both networks was the predicted power. In
the studies carried out, the data from the measure-
ments of real coal-fired steam power plant blocks
were used. Another aspect of using ANNs in con-
nection with steam power plants is the prediction
of NOx emission into the atmosphere [35]. The
authors modeled the relationship between the pa-
rameters of a 660 MW boiler and the level of NOx

emission, while minimizing the level of emissions.
ANNs are also used in other types of power plants,
e.g. nuclear ones [28, 29]. However, the idea of
using these methods remains similar.

1.2 Motivations

The following considerations motivated the ap-
proach proposed in this work:

– Diagnostics of the regenerative exchanger is an
important task in a steam power plant. Within
this diagnostics, mass and energy balances are
obtained. This is precise but time-consuming.
The reference values obtained using this ap-
proach are then compared with those from actual
measurements. This is also time-consuming. All
this means that the traditional approach to moni-
toring the regenerative exchanger cannot be used
online. The approach proposed in this work is
free of this disadvantage. It is based on an on-
line comparison of real values coming from the
measurements with the reference values gener-
ated in the proposed approach.

– The literature proposes solutions using the idea
of comparing values from measurements with
reference values. However, these are solutions
dedicated to operation in steady power states of a
steam power plant. It is important to ensure cor-
rect operation of the system in various (includ-
ing transient) states of a power plant. It seems
that the approach proposed in this study meets
the following condition: the parameters of the
correct operation of heat exchangers can be de-
termined under varying operating conditions. As
a consequence, this approach can be applied to a
wide range of power load. This is a big advan-
tage because the solutions proposed in the liter-
ature can be used for small load changes.

– The proposed approach may be developed in
the future. First of all, it can be extended e.g.
by using a hierarchical system. Secondly, it
may be enriched with additional methods and
mechanisms to obtain knowledge describing the
dynamics of changes taking place in the re-
generative exchanger of a steam power plant.
Such knowledge will perfectly complement tra-
ditional diagnostic methods.

1.3 Novelty elements

The novelty elements of the proposed approach
can be concluded as follows:

– An original approach to online monitoring of the
regeneration exchanger of a condensation power
plant is proposed. Its idea is to monitor a number
of selected parameters of an exchanger and to
generate reference values for them. Their com-
parison with the actual values (from measure-
ments) may be the basis for the mechanism of
signaling irregularities, i.e. a damage or other
unfavorable situations, which need to be pre-
vented in good time. However, in this work we
do not focus on this particular issue. The prob-
lem of online monitoring of the regeneration ex-
changer of a condensation power plant has not
been considered in the literature so far.

– In the proposed approach the Recurrent Neu-
ral Network (RNN, [21, 22, 23, 24, 26, 34])
plays an important role as its purpose is to de-
termine online reference values for a correct op-
eration of the regenerative exchanger. This net-
work can promptly react to rapid changes in
the parameters of the monitored system, which
undoubtedly is a great advantage. A typical
Almeida–Pineda Recurrent Back-propagation
algorithm (APRBp, [1, 22, 23]) is used to learn
RNNs. So far, the literature has not consid-
ered the use of dynamic methods (e.g. RNNs)
for monitoring the steam plant regeneration ex-
changer.

– The proposed approach has been tested for dif-
ferent power loads in the range from 120 MW
to 190 MW taking into account the actual mea-
surement data during the operation of a 200 MW
condensation power plant. Different operating
modes related to the range and dynamics of load
changes were considered. Several modes, not
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just one, for the whole power load range, were
taken into account in order to better compare the
results obtained.

1.4 Structure of the paper

Section 2 describes the approach to monitor-
ing the regenerative exchanger of a steam plant and
its components proposed in this paper. Section 3
presents the results of the simulations. Section 4
summarizes the conclusions.

2 Description of the proposed ap-
proach and its components

This section introduces issues related to the
operation of a steam power plant (Section 2.1.1),
and in particular the regeneration exchanger (Sec-
tion 2.1.2). In addition, an RNN used for its mon-
itoring (Section 2.2.1) and its learning algorithm
(Section 2.2.2) are described. Based on these de-
scriptions, the details of the approach proposed in
this paper are presented (Section 2.3).

2.1 Description of the steam power plant

This article considers a steam power plant with
a power of P=200 MW. Its general diagram is
shown in Figure 1 and a simplified diagram in Fig-
ure 2 [11]. Section 2.1.1 describes the general
working principle of power plant operation, and
Section 2.1.2 describes the role of regeneration ex-
changers in the power plant.

Figure 1. General block diagram including
location of the measuring points.

Figure 2. Simplified diagram of a 200MW steam
power plant block, whose general detailed diagram
is shown in Figure 1. The monitored regeneration

exchanger has a grey background.

2.1.1 Working principle of the steam power
plant

The idea of the block under consideration is
as follows. The boiler (B) heats up and evapo-
rates the feed water. It is also supposed to super-
heat the generated steam. The steam generated in
boiler B (so called fresh steam) goes to the part of
the high-pressure steam turbine (HP), where it ex-
pands. This steam drives the blades of the turbine,
which contributes to the production of electricity of
a determined power. The steam then goes to the
interstage superheater and is superheated there to
the fresh steam temperature at the boiler outlet (B).
In subsequent stages, the heated steam goes to the
hull of the intermediate pressure turbine (IP) and
then to the hull of the low pressure turbine (LP).
In the IP and LP, the steam expands again and pro-
duces energy. After leaving the low-pressure part,
the steam is directed to water-cooled condensers in
an open system. The condensate then flows succes-
sively through the surface regeneration exchangers
PNC97-PNC94 supplied by the outlets of the LP
low-pressure turbine and IP intermediate-pressure
turbine. In each of these exchangers the water is
heated up. The water (as a heated working medium)
goes to the direct contact heater, where it is deaer-
atored. Before the water flows back into the boiler
(B), it is additionally heated by three surface regen-
eration exchangers. (PWC93-PWC91).
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its components proposed in this paper. Section 3
presents the results of the simulations. Section 4
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2 Description of the proposed ap-
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This section introduces issues related to the
operation of a steam power plant (Section 2.1.1),
and in particular the regeneration exchanger (Sec-
tion 2.1.2). In addition, an RNN used for its mon-
itoring (Section 2.2.1) and its learning algorithm
(Section 2.2.2) are described. Based on these de-
scriptions, the details of the approach proposed in
this paper are presented (Section 2.3).

2.1 Description of the steam power plant

This article considers a steam power plant with
a power of P=200 MW. Its general diagram is
shown in Figure 1 and a simplified diagram in Fig-
ure 2 [11]. Section 2.1.1 describes the general
working principle of power plant operation, and
Section 2.1.2 describes the role of regeneration ex-
changers in the power plant.

Figure 1. General block diagram including
location of the measuring points.

Figure 2. Simplified diagram of a 200MW steam
power plant block, whose general detailed diagram
is shown in Figure 1. The monitored regeneration

exchanger has a grey background.

2.1.1 Working principle of the steam power
plant

The idea of the block under consideration is
as follows. The boiler (B) heats up and evapo-
rates the feed water. It is also supposed to super-
heat the generated steam. The steam generated in
boiler B (so called fresh steam) goes to the part of
the high-pressure steam turbine (HP), where it ex-
pands. This steam drives the blades of the turbine,
which contributes to the production of electricity of
a determined power. The steam then goes to the
interstage superheater and is superheated there to
the fresh steam temperature at the boiler outlet (B).
In subsequent stages, the heated steam goes to the
hull of the intermediate pressure turbine (IP) and
then to the hull of the low pressure turbine (LP).
In the IP and LP, the steam expands again and pro-
duces energy. After leaving the low-pressure part,
the steam is directed to water-cooled condensers in
an open system. The condensate then flows succes-
sively through the surface regeneration exchangers
PNC97-PNC94 supplied by the outlets of the LP
low-pressure turbine and IP intermediate-pressure
turbine. In each of these exchangers the water is
heated up. The water (as a heated working medium)
goes to the direct contact heater, where it is deaer-
atored. Before the water flows back into the boiler
(B), it is additionally heated by three surface regen-
eration exchangers. (PWC93-PWC91).
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2.1.2 The role of regenerative heat exchangers
in a steam power plant

Regenerative heat exchangers are used in con-
densing steam blocks to heat up the water feeding
the steam boiler. It is a solution commonly used
in low and high power systems, and the number
of these exchangers is selected individually [16].
The dependence of power on the exchangers oper-
ation specifically results from the internal flow of
the medium. It depends on the amount of conden-
sate extracted from the blade system for regenera-
tive heat exchangers.

A parameter that describes the operation of the
regeneration exchanger well is the final temperature
difference t f . It is the difference between the sat-
uration temperature of the heating steam extracted
from the turbine hull ts (pc) and the temperature of
the heated condensate at the output from the regen-
eration exchanger tw2 (Figure 3).

Figure 3. Diagram of temperature changes in the
Cascade Closed Feedwater Heater [17].

From the thermodynamic point of view, the fi-
nal temperature difference t f can be treated as a pa-
rameter determining the efficiency of the heat ex-
change taking place in the regeneration exchanger
between the temperature of extracted steam ts (pc)
and the temperature of boiler feed water tw2:

t f = ts (pc)− tw2. (1)

In this system, the saturation temperature ts of
the extracted steam is determined indirectly by the
measured pressure pc, while the temperature of the
condensate tw2 at the outlet from the exchanger is
measured directly.

The simulation part considers in particular the
steam powered exchanger from the low-pressure
part turbines (LP). In Figure 2, the exchanger is
marked with a grey background and has a surface
structure, which means that the heat exchange be-
tween the heating steam and the condensate occurs

through the surface. Therefore, the separated medi-
ums do not mix with each other. In this case the en-
ergy balance equation is expressed as follows (Fig-
ure 4)

·
m ·h1 +

·
mw ·hw1 =

·
m ·h′+ ·

mw ·hw2, (2)

where
·

m ·h1 is the steam heat flow being introduced
into the exchanger for heating up the feed water
flow of the boiler

·
mw with enthalpy hw1;

·
m is the

condensate streams with enthalpy h′ (generated by
cooling the heating steam), and

·
mw ·hw2 is the water

heat flow from the exchanger. Symbols
{ ·

m,
·

mw

}

are mass streams, while {h1,hw1,h′,hw2} are the en-
thalpy (heat content).

Although equation (2) is simplified (it does not
take into account, e.g. the potential and kinetic en-
ergy of the streams), its use for continuous online
monitoring of the regeneration exchanger is rather
problematic. The aim of the approach proposed in
this work is therefore to eliminate the need to use
equation (2).

Figure 4. Diagram of a regeneration exchanger
with cascade condensate flow [17].

2.2 Description of the Recurrent Neural
Network and its learning algorithm

There are many recurrent types of neural net-
works [36]. Their characteristic feature is having
their own internal state (memory). It can be im-
plemented in different ways, e.g. by untypical re-
turn connections between their layers or by intro-
ducing time delays into the network structure. The
network state (memory) is used to process input
signals and provide dynamic behavior over time.
Therefore, RNNs are frequently used to process se-
quential data, such as text, audio, video and sensor
data. For this type of data, the use of a convolu-
tional neural network (CNN, [25]) or a deep neu-
ral network (DNN, [12, 31]) is not justified because
these types of networks are not intended to process
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time-dependent input data. In this work, RNNs with
a discrete operating time will be considered [10]
due to the specificity of the measurement data. The
feedback structure of this network has been selected
using the trial and error method.

Figure 5. General structure of the Recurrent
Neural Network considered in this paper.

2.2.1 The Recurrent Neural Network structure

In this work the RNN network is considered, the
structure of which is shown in Figure 5. The basic
type of network was used to show that the validity
of the proposed idea does not depend on the type
of the RNN. The comments on this network are as
follows:

– It has a three-layer structure. Input signals are
delivered to the input layer of the network and
do not have to be synchronized with each other.
The first two layers contain non-linear neurons,
and the output layer contains only linear neu-
rons. It allows us to generate signals outside the
range typical for the non-linear activation func-
tion used. The structure of a single neuron is
typical.

– A single RNN neuron receives signals at its in-
puts depending to which network layer it be-
longs (see Figure 5). The first-layer neurons
receive network inputs signals (all or selected
ones) and feedback signals from the other first-
or second-layer neurons (output signals). The
second layer neurons receive the output signals
from the first layer neurons. In contrast, the
third-layer (output) neurons receive only the out-
put signals from the second layer neurons.

– In the neural network under consideration,
weights (real) are used to set the strength of con-
nections between neurons. These weights have
an additional function in the case of feedback
signals, i.e. if the weight value is 0, the connec-
tion associated with this weight is not included
in the network.

– An important feature of the considered RNN is
the way to connect the feedback signals with
neurons. In the simulations it was assumed that
this connection can be done in any way except
self-connecting. Therefore, some feedback sig-
nals may be ignored.

– The activation function in linear neurons is lin-
ear with equation y(x) = x, while in other neu-
rons it is a hyperbolic tangent of the form

tanh(x) =
ex − e−x

ex + e−x =
e2·x −1
e2·x +1

. (3)

– In order to simplify the visualization of spe-
cific connections between RNN neurons, they
can be presented as two asymmetrical oriented
graphs. The first can illustrate the forward flow
of signals (from the inputs to the network out-
puts). The second graph can illustrate the flow
of feedback signals (from the inputs to the out-
puts of the network). If, in addition, a learning
method bases on the back-propagation, then a
third graph can also be drawn regardless of the
forward and backward graphs. Its task is to il-
lustrate the propagation of error signals from the
network outputs to its inputs. These errors are
used to correct the values of network weights.

2.2.2 The Recurrent Neural Network learning
algorithm

The simplest possible method was also used
to learn the Recurrent Neural Network (RNN) to
demonstrate that the effectiveness of the approach
proposed in this work does not depend on the learn-
ing algorithm used. Such method is the Pineda and
Almeida algorithm [22, 23]. It is a typical algo-
rithm aimed at minimizing the target function ac-
cording to the gradient descent method. Therefore,
the details of this algorithm will not be considered.
However, a dependency describing how to modify
the network weights is of special importance. As-
suming, for the sake of simplicity, that the indexing

6

N

N

N

N

N

N

N

N

N

network inputs network outputs

feedforward signals

feedback signals

neurons with non-linear activation functionN

N neurons with linear activation function

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


149T. Niksa-Rynkiewicz, N. Szewczuk-Krypa, A. Witkowska, K. Cpałka, M. Zalasiński, A. Cader

time-dependent input data. In this work, RNNs with
a discrete operating time will be considered [10]
due to the specificity of the measurement data. The
feedback structure of this network has been selected
using the trial and error method.

Figure 5. General structure of the Recurrent
Neural Network considered in this paper.
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do not have to be synchronized with each other.
The first two layers contain non-linear neurons,
and the output layer contains only linear neu-
rons. It allows us to generate signals outside the
range typical for the non-linear activation func-
tion used. The structure of a single neuron is
typical.

– A single RNN neuron receives signals at its in-
puts depending to which network layer it be-
longs (see Figure 5). The first-layer neurons
receive network inputs signals (all or selected
ones) and feedback signals from the other first-
or second-layer neurons (output signals). The
second layer neurons receive the output signals
from the first layer neurons. In contrast, the
third-layer (output) neurons receive only the out-
put signals from the second layer neurons.

– In the neural network under consideration,
weights (real) are used to set the strength of con-
nections between neurons. These weights have
an additional function in the case of feedback
signals, i.e. if the weight value is 0, the connec-
tion associated with this weight is not included
in the network.

– An important feature of the considered RNN is
the way to connect the feedback signals with
neurons. In the simulations it was assumed that
this connection can be done in any way except
self-connecting. Therefore, some feedback sig-
nals may be ignored.

– The activation function in linear neurons is lin-
ear with equation y(x) = x, while in other neu-
rons it is a hyperbolic tangent of the form

tanh(x) =
ex − e−x

ex + e−x =
e2·x −1
e2·x +1

. (3)

– In order to simplify the visualization of spe-
cific connections between RNN neurons, they
can be presented as two asymmetrical oriented
graphs. The first can illustrate the forward flow
of signals (from the inputs to the network out-
puts). The second graph can illustrate the flow
of feedback signals (from the inputs to the out-
puts of the network). If, in addition, a learning
method bases on the back-propagation, then a
third graph can also be drawn regardless of the
forward and backward graphs. Its task is to il-
lustrate the propagation of error signals from the
network outputs to its inputs. These errors are
used to correct the values of network weights.

2.2.2 The Recurrent Neural Network learning
algorithm

The simplest possible method was also used
to learn the Recurrent Neural Network (RNN) to
demonstrate that the effectiveness of the approach
proposed in this work does not depend on the learn-
ing algorithm used. Such method is the Pineda and
Almeida algorithm [22, 23]. It is a typical algo-
rithm aimed at minimizing the target function ac-
cording to the gradient descent method. Therefore,
the details of this algorithm will not be considered.
However, a dependency describing how to modify
the network weights is of special importance. As-
suming, for the sake of simplicity, that the indexing
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of neurons is continuous and their number is in the
range ⟨1,Nneurons⟩, the formula for updating the
weights takes the following form

wr,s (k+1) =
(

wr,s (k)+
−η · ys (k) · ŷr (k)

)
, (4)

where wr,s is the weight for r-th input of the neuron
s, ys (k) is the output signal from neuron s, and ŷr (k)
is the output signal from the neuron r connected to
the neuron s through the wr,s weight. It is also worth
adding that such a way of error propagation in a net-
work is analogous to the method described in [5].

Figure 6. The idea of the proposed approach to
online monitoring of the regenerative exchanger in

a steam power plant.

2.3 Description of the proposed approach

The comments on the proposed approach are as
follows:

– The idea of the proposed approach is the prac-
tical possibility to determine the final tempera-
ture difference t f in two ways (Figure 6). The
first way concerns the determination of t f on the
basis of the data coming from the sensors not
directly related to the operation of the regener-

ative exchanger. These are the sensors moni-
toring the instantaneous value of the power P
with which the steam power plant operates and
the current temperature T of the condenser cool-
ing water. These two attributes have been se-
lected by the authors from several hundred at-
tributes available in the process of the monitor-
ing of the power plant (see Figure 1). The sec-
ond way concerns the parameter t f determined
on the basis of the data coming from the sensors
directly related to the operation of the regenera-
tion exchanger.These are the sensors monitoring
the temperature of the extraction steam ts (pc)
and the boiler feed water temperature tw2 (see (1)
and Figure 3). In practice, it is of key importance
to monitor the differences between the t f deter-
mined using both approaches and to react appro-
priately to these differences in advance. This is
shown in Figure 6.

– In the proposed approach, the use of RNNs is
crucial for two reasons. Firstly, the ability to
generalize the knowledge accumulated in the
RNNs and the ability of RNNs to filter the input
signals make it possible to ignore fluctuations in
the values of the monitored quantities which are
typical for power plant operation. Secondly, the
ability offered by RNNs to adapt to changing op-
eration conditions allows the RNN used to con-
stantly adapt to different states of the operation
of the power plant.

– In the proposed approach, preparing the RNN
for work does not require training. This is a key
feature that distinguishes the RNN from feed-
forward networks. After it starts running in the
system as shown in Figure 6, the RNN needs ac-
tually only a few steps to adjust to the current
situation resulting from the values of the sen-
sors {P,T} and {pc, tw2}. This consequently re-
sults in minimizing the error signal (Figure 6).
Then, the monitoring system goes to its stan-
dard operation mode. At this stage, the differ-
ences between the operation of the regenerative
exchanger and the operation expected from the
rest of the power plant system can be signalled
in advance, which may provide an impulse for
an operator intervention.

– The use of the RNN for monitoring the regener-
ation exchanger creates a possibility of signaling
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undesired operating conditions and taking action
to prevent failure (this issue is not considered in
this paper).

Table 1. Summary of the considered simulation
scenario.

item
no.

total number
of samples

Pmin

MW
Pmax

MW
∆P

MW
main

feature

I 2893 189.09191.53 2.44
fixed
load

II 2893 119.02153.3234.30
small

load changes

III 401 146.97180.0533.08
rapid

load changes

IV 6186 119.02191.5372.39
big

load changes

Table 2. Summary of the sample values of the
signals processed by the RNN according to the

concept shown in Figure 6.

item
no.

x1 : P MW x2 : T ◦C d : t f
◦C

1 190.3076 20.4346 -6.3784
2 190.0635 20.2148 -6.3784
3 190.1856 20.3613 -6.1226
4 190.1856 20.5078 -6.1970
5 190.4297 20.5078 -6.3435
6 189.9414 20.5811 -6.5249
7 190.6738 20.4346 -6.5621
8 190.3076 20.4346 -6.3435
9 190.0635 20.5811 -6.3435
10 190.0635 20.5078 -6.4507

However, there is also a drawback to the pro-
posed approach. It becomes apparent when there is
a noticeable error between the expected and actual
values t f (Figure 6). In such a situation an impulse
of the differential signal is sent to the monitoring
system, but it disappears after a certain time. It dis-
appears because the RNN is being learned to the
current situation in the power plant. Therefore, it is
necessary to construct a system for evaluating the
dynamics of the error signal changing and a system
for signaling failures of the regeneration exchanger
to make this situation to be detected and accounted
for. In the construction of such systems support-

ing measuring signals might be taken into account.
However, this is an engineering problem and it is
not considered in this work.

Figure 7. Outline drawings showing the actual and
reference values t f for the simulation scenarios
under consideration: a) I, b) II, c) III, and d) IV.

Table 3. Comparison of the MSE error values
obtained using the methods described in the

literature and the one proposed in this paper for
considered simulation scenarios I-IV. The best

results for each scenario are in bold.

method
scenario

I
scenario

II
scenario

III
scenario

IV
FBNN [4] 0.0384 0.0852 0.0887 0.1354
RBF [4] 0.0346 0.1125 0.1024 0.0591

FBNN [11] 0.0368 0.0847 0.0884 0.1297
FBNN [20] 0.0368 0.0845 0.0938 0.1268
our result 0.0077 0.0140 0.0368 0.0095

3 Simulations

This Section describes the assumptions made
in the simulations (Section 3.1), a comparison of
the results obtained using different methods (Sec-
tion 3.2) and the conclusions of the simulation (Sec-
tion 3.3).

8

1
N

2
N

3
N

4
N

5
N

6
N

network inputs

network output

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


151T. Niksa-Rynkiewicz, N. Szewczuk-Krypa, A. Witkowska, K. Cpałka, M. Zalasiński, A. Cader
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to prevent failure (this issue is not considered in
this paper).
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concept shown in Figure 6.
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◦C
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2 190.0635 20.2148 -6.3784
3 190.1856 20.3613 -6.1226
4 190.1856 20.5078 -6.1970
5 190.4297 20.5078 -6.3435
6 189.9414 20.5811 -6.5249
7 190.6738 20.4346 -6.5621
8 190.3076 20.4346 -6.3435
9 190.0635 20.5811 -6.3435

10 190.0635 20.5078 -6.4507

However, there is also a drawback to the pro-
posed approach. It becomes apparent when there is
a noticeable error between the expected and actual
values t f (Figure 6). In such a situation an impulse
of the differential signal is sent to the monitoring
system, but it disappears after a certain time. It dis-
appears because the RNN is being learned to the
current situation in the power plant. Therefore, it is
necessary to construct a system for evaluating the
dynamics of the error signal changing and a system
for signaling failures of the regeneration exchanger
to make this situation to be detected and accounted
for. In the construction of such systems support-

ing measuring signals might be taken into account.
However, this is an engineering problem and it is
not considered in this work.

Figure 7. Outline drawings showing the actual and
reference values t f for the simulation scenarios
under consideration: a) I, b) II, c) III, and d) IV.

Table 3. Comparison of the MSE error values
obtained using the methods described in the

literature and the one proposed in this paper for
considered simulation scenarios I-IV. The best

results for each scenario are in bold.

method
scenario

I
scenario

II
scenario

III
scenario

IV
FBNN [4] 0.0384 0.0852 0.0887 0.1354
RBF [4] 0.0346 0.1125 0.1024 0.0591

FBNN [11] 0.0368 0.0847 0.0884 0.1297
FBNN [20] 0.0368 0.0845 0.0938 0.1268
our result 0.0077 0.0140 0.0368 0.0095

3 Simulations

This Section describes the assumptions made
in the simulations (Section 3.1), a comparison of
the results obtained using different methods (Sec-
tion 3.2) and the conclusions of the simulation (Sec-
tion 3.3).
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Figure 8. Structure of the Recurrent Neural
Network used in the simulation.

3.1 Simulation assumptions

The following assumptions were made in the
simulations:

– The simulations were carried out with the use of
an authorial test environment prepared in C#.

– Four scenarios were considered, which corre-
spond to the typical operating conditions of a
condensing power plant, i.e. steady state opera-
tion (Scenario I), operation with moderate power
changes (Scenario II), operation with abrupt
load power changes (Scenario III) and operation
with a wide range of power changes (Scenario
IV). The details of these options are presented
in Table 1.

– The RNN worked in the system considered
in 2.3 and shown in Figure 6. Example values

of the signals processed by the RNN are shown
in Table 2. These signals were not pre-processed
(e.g. filtered or reduced).

– The RNN with the structure shown in Figure 3 is
used. It is a special form of the network shown
in Figure 5. For simplicity, a linear indexing
of neurons was adopted. The network structure
was selected by the trial and error method. It can
be easily seen that some return connections (e.g.
between N3 and N1) do not occur in the network.
All the 0-weighted connections are not shown in
Figure 8. The weight matrix mapping the struc-
ture of the connections between the neurons of
the considered network takes the following form

W =


0 w1,2 0 w1,4 w1,5 0
w2,1 0 w2,3 0 w2,5 0

0 w3,2 0 w3,4 w3,5 0
w4,1 0 w4,3 0 w4,5 0
w5,1 w5,2 w5,3 w5,4 0 0

0 0 0 0 w6,5 0



.

(5)

– The RNN weight matrix (5) was initiated in a
random way before the learning process.

– In the simulations, the value of the learning fac-
tor η = 0.25 was assumed. To compare the re-
sults, a standard mean square error (MSE, [19])
was used.

3.2 Comparison of the results

A comparison of the results obtained using the
methods considered in the literature can be summa-
rized as follows:

– In order to compare the results obtained using
the approach to monitoring the regenerative ex-
changer of a steam power plant proposed in this
work with the results of other authors, the pop-
ular methods implemented and tested for intelli-
gent monitoring involved an RBF type network
(Radial Basis Function, [4]) and an FBNN type
network (Feedforward Back-propagation Neu-
ral Network, [11, 20]). By testing the com-
pared methods using the same test procedure,
the achieved accuracy of the used methods (see
Table 3) can be considered reliable.
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– All the neural network types under considera-
tion (RBF, FBNN and RNNN) performed well
with scenario I, in which the load power changes
were small. The main problem was, as expected,
scenario IV. It corresponded to a situation in
which the system had to well reproduce the op-
eration of the regenerative exchanger not only
in two different steady states, but also in an un-
steady state. In this situation, the feedforward
networks were not able to handle the precise
generation of t f values. Only the RNN achieved
a satisfactory accuracy. This is important be-
cause scenario IV is the most relevant from the
practical point of view as it occurs in practice
most often.

3.3 Simulation conclusions

The conclusions of the simulation can be sum-
marized as follows:

– The considered neural network (RNN) mapped
with a great accuracy the reality of the regener-
ative exchanger operating in a condensing block
(see Table 3 and Figure 2.3). Due to the large set
of samples, Figure 2.3 is purely illustrative. The
final temperature difference values t f generated
by the RNN differ very little from the actual val-
ues. This is demonstrated by the small value of
the MSE error (Table 3). This applies to all the
considered simulation scenarios (Tab. 1).

– During its operation, the RNN used needed only
a few steps to learn how to accurately map the
T relationship to P and T . This applies to each
of the considered simulation scenarios (I-IV, see
Table 1). It is possible due to the dynamic nature
of the neural network-the possibility of account-
ing for the relationships changing over time. Be-
cause of the small number of steps needed to
learn the network and the small value of the
MSE error after learning (it is close to 0), the
idea of including the time-history of this error in
the paper was abandoned.

– A simulation scenario that is difficult to simu-
late was scenario III, in which there were large
fluctuations in load power and hence in t f val-
ues (see Figure 2.3.c). This was reflected in the
MSE value (see Table 3). However, the easiest
scenario to simulate was scenario I, which was
discussed in Section 3.2.

– The RNN handled very well scenario IV, which
corresponded to two steady states of load power
P and an unsteady state. The ability to map this
scenario is a great advantage compared to the so-
lutions offered by other authors, which are un-
able to adequately "switch" between steady op-
erating states of the power plant.

4 Conclusions

The paper refers to an important and intensively
developed current trend of intelligent monitoring of
industrial equipment and processes. In this paper
we propose an intelligent approach to the monitor-
ing of the regenerative exchanger in a steam power
plant, which is the main input of the paper and it is a
good starting point for further research in this area.

In particular, the proposed approach is an al-
ternative to complex calculation and time consum-
ing methods using thermal balance equations. This
approach monitors the final temperature difference
value for the regenerative exchanger, determining
its correct functioning. The Recurrent Neural Net-
work used for monitoring takes into account the dy-
namics of the process changes in the power plant
load power and condenser cooling water tempera-
ture.

By taking this dynamic into account, the net-
work under consideration is able to adjust the result
of its operation to the current situation, e.g. rapid
changes in load power, as soon as after a few steps
only. This distinguishes it from other alternatives
(e.g. feedforward networks) that are not as flexible
as RNNs.

The simulations use real data from a steam
power plant that were not pre-processed. The use
of the proposed approach allows for a practical and
early signaling of abnormal operating conditions of
the regeneration exchanger and for launching an ap-
propriate control procedure (this has not been con-
sidered in the paper). This is important because the
correct operation of the regeneration exchanger de-
termines, among others, the efficiency of the entire
power plant.

Our future plans include building a hybrid diag-
nostic system working online during the operation
of the steam block (e.g. monitoring all exchangers),
using the proposed approach to monitor other in-

10

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


153T. Niksa-Rynkiewicz, N. Szewczuk-Krypa, A. Witkowska, K. Cpałka, M. Zalasiński, A. Cader

– All the neural network types under considera-
tion (RBF, FBNN and RNNN) performed well
with scenario I, in which the load power changes
were small. The main problem was, as expected,
scenario IV. It corresponded to a situation in
which the system had to well reproduce the op-
eration of the regenerative exchanger not only
in two different steady states, but also in an un-
steady state. In this situation, the feedforward
networks were not able to handle the precise
generation of t f values. Only the RNN achieved
a satisfactory accuracy. This is important be-
cause scenario IV is the most relevant from the
practical point of view as it occurs in practice
most often.

3.3 Simulation conclusions

The conclusions of the simulation can be sum-
marized as follows:

– The considered neural network (RNN) mapped
with a great accuracy the reality of the regener-
ative exchanger operating in a condensing block
(see Table 3 and Figure 2.3). Due to the large set
of samples, Figure 2.3 is purely illustrative. The
final temperature difference values t f generated
by the RNN differ very little from the actual val-
ues. This is demonstrated by the small value of
the MSE error (Table 3). This applies to all the
considered simulation scenarios (Tab. 1).

– During its operation, the RNN used needed only
a few steps to learn how to accurately map the
T relationship to P and T . This applies to each
of the considered simulation scenarios (I-IV, see
Table 1). It is possible due to the dynamic nature
of the neural network-the possibility of account-
ing for the relationships changing over time. Be-
cause of the small number of steps needed to
learn the network and the small value of the
MSE error after learning (it is close to 0), the
idea of including the time-history of this error in
the paper was abandoned.

– A simulation scenario that is difficult to simu-
late was scenario III, in which there were large
fluctuations in load power and hence in t f val-
ues (see Figure 2.3.c). This was reflected in the
MSE value (see Table 3). However, the easiest
scenario to simulate was scenario I, which was
discussed in Section 3.2.

– The RNN handled very well scenario IV, which
corresponded to two steady states of load power
P and an unsteady state. The ability to map this
scenario is a great advantage compared to the so-
lutions offered by other authors, which are un-
able to adequately "switch" between steady op-
erating states of the power plant.

4 Conclusions

The paper refers to an important and intensively
developed current trend of intelligent monitoring of
industrial equipment and processes. In this paper
we propose an intelligent approach to the monitor-
ing of the regenerative exchanger in a steam power
plant, which is the main input of the paper and it is a
good starting point for further research in this area.

In particular, the proposed approach is an al-
ternative to complex calculation and time consum-
ing methods using thermal balance equations. This
approach monitors the final temperature difference
value for the regenerative exchanger, determining
its correct functioning. The Recurrent Neural Net-
work used for monitoring takes into account the dy-
namics of the process changes in the power plant
load power and condenser cooling water tempera-
ture.

By taking this dynamic into account, the net-
work under consideration is able to adjust the result
of its operation to the current situation, e.g. rapid
changes in load power, as soon as after a few steps
only. This distinguishes it from other alternatives
(e.g. feedforward networks) that are not as flexible
as RNNs.

The simulations use real data from a steam
power plant that were not pre-processed. The use
of the proposed approach allows for a practical and
early signaling of abnormal operating conditions of
the regeneration exchanger and for launching an ap-
propriate control procedure (this has not been con-
sidered in the paper). This is important because the
correct operation of the regeneration exchanger de-
termines, among others, the efficiency of the entire
power plant.

Our future plans include building a hybrid diag-
nostic system working online during the operation
of the steam block (e.g. monitoring all exchangers),
using the proposed approach to monitor other in-
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dustrial processes, using methods for obtaining in-
terpreted knowledge of the changes taking place in
the regenerative exchanger of a steam power plant
(such knowledge may be complementary to tradi-
tional diagnostic methods), and the construction of
a dedicated system to interpret the deviations be-
tween the monitored quantities.
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