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Abstract
Beer is the most popular alcoholic beverage in the world, and its popularity is continuously growing. Currently, global 
beer production is estimated at around 2 billion hectoliters. Nevertheless, the increasing production capacity implicates the 
rising issue of generated by-products—brewers’ spent grain, spent hops, spent yeast, and wastewater. They are generated 
in massive amounts, so having in mind the current pro-ecological trends, it is crucial to look for their utilization methods. 
Among the possibilities, particular attention should be drawn to polymer technology. This sector can efficiently use differ-
ent lignocellulosic materials, which could be applied as fillers for polymer composites or sources of particular chemical 
compounds. Moreover, due to their chemical composition, brewing industry by-products may be used as functional fillers 
and additives. They could be introduced to enhance the materials’ resistance to oxidation, microbes, or fungi. These issues 
should be considered especially important in the case of biodegradable polymers, whose popularity is growing over the 
last years. This paper summarizes the literature reports related to the composition and potential applications of the brewing 
industry by-products in polymer technology. Moreover, potential directions of research based on the possibilities offered by 
the brewing industry by-products are presented.

Keywords Brewing by-products · Beer · Brewers’ spent grain · Spent hops · Spent yeast · Trub · Wood polymer 
composites · Polymer materials

1  Introduction

As a process aimed at beer production, brewing is known for 
thousands of years [1]. Depending on the times and mainly 
the development of humanity and science, the specifics of 
this process were changing [2]. Figure 1 presents the current 
general scheme of beer production. Generally, the brewing 
process consists of the following stages, starting from the 
malt: crushing of malt, mashing, lautering, filtration, boiling, 
and fermentation. At first, malt is crushed to break apart the 
kernel and facilitate the extraction of sugars during mash-
ing [3].

Then, crushed malt is mixed with hot water in a mash 
tun creating the cereal mash. Naturally occurring enzymes 
present in the malt convert the starch extracted from the 
malt into simpler fermentable and non-fermentable sugars 

in the saccharification process [4]. To enhance the yield of 
mashing, in the end, the mas is often heated up to 76–78 °C, 
which is called mashout, and sprinkled with additional 
water during sparging [5]. Such processes are implemented 
to reduce mash viscosity, free up more starch, and extract 
additional sugars [6]. As a result, a sugar-rich liquid called 
wort is obtained after separation from the solid residue of 
mashing called the brewers’ spent grain (BSG) [7].

The wort is moved to the kettle, where it is boiled with 
hops (and sometimes other ingredients). The boiling process 
aims to terminate the enzymatic processes, precipitate pro-
teins, concentrate and sterilize the wort, as well as extract 
compounds from hops to beer and isomerize hop resins to 
add bitterness to beer [8]. Moreover, boiling may induce 
caramelization and Maillard reactions in wort [9]. In the 
end, the hopped wort is cooled down and separated from the 
trub, which includes the hop residues and colloidal proteins 
coagulated during boiling [10].

Cooled and hopped wort is transferred to the fermenta-
tion tanks and pitched with yeast, converting the ferment-
able sugars into alcohol and carbon dioxide. Moreover, 
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depending on the type of yeast, different reactions occur, 
which account for the beer’s final taste and aroma profile 
[11]. After complete fermentation, the beer is separated from 
the surplus yeast, called spent yeast, conditioned in the addi-
tional tank, and packed into bottles, casks, or cans [12].

2  Beer production statistics

Beer is the most popular alcoholic beverage globally and the 
third most popular beverage after water and tea [13]. The 
global beer production size is relatively stable in the last dec-
ade and accounts for 1.91–1.97 billion hectoliters [13]. The 
leading producer is China, whose production in 2019 equaled 
376.5 million hectoliters and accounted for ~ 20% of global 
production [14]. The Americas occupy the following posi-
tions—the United States, Brazil, and Mexico with 210.3, 
144.8, and 124.2 million hectoliters, respectively [15]. Con-
sidering Europe, the size of production exceeds 420 million 
hectoliters annually [16]. The share of particular continents in 
the global beer production is presented in Fig. 2. The biggest 

producer is Germany, the country with great brewing tradi-
tions. In 2019, Germans produced 91.6 million hectoliters of 
beer, mostly pilsener and wheat beer [17]. In Europe, Germany 
is followed by Poland and the UK, whose production is around 
40 million hectoliters [18]. It is also essential to mention Rus-
sia as a critical producer with 77.4 million hectoliters produced 
in 2019 [19]. Russia is one of the few countries where beer is 
not the most popular alcoholic beverage, with a higher vodka 
share [20]. Presented data indicate that global beer production 
is distributed across all the regions of the world. Therefore, 
research activities related to the manufacturing, consumption, 
and health aspects and the utilization of by-products of beer 
production are essential because these aspects may affect an 
enormous number of people worldwide.

3  Beer production by‑products

Conventionally, beer is produced from barley and, to a 
noticeably lesser extent, from wheat [21]. Such a produc-
tion model is commonly applied in Europe. Moreover, in 

Fig. 1  The general scheme of 
beer production with an indica-
tion of generated by-products
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Germany, such issues are regulated by Germany’s Beer 
Purity Law, originating from the medieval Bayreisches 
Reinheitsgebot [22]. Nevertheless, in different regions of the 
world, other starch sources are also applied, such as maize in 
America [23], rice in Asia [24], or sorghum in Africa [25]. 
Considering hops and yeast, their use is associated with the 
desired beer style. The market offers an enormous range of 
hops and yeast varieties [26, 27].

According to the brewing scheme presented in Fig. 1, 
the main by-products of beer manufacturing are the brew-
ers’ spent grain, trub removed after wort boiling, and spent 
yeast. The generation of brewing by-products is very simi-
lar globally, with possible differences in their composition, 
depending on the location. These materials are currently 
often unutilized and present hardly any market value. Gen-
erally, considering the current pro-environmental trends in 
scientific and industrial activities partially stimulated by the 
changing law regulations established worldwide, waste and 
by-products management are essential [28]. Except for the 
environmental motivations, the application of such materials 
in various production processes can generate added value 
for the resulting products (enhanced performance or new 
properties) or reduce their manufacturing costs [29].

One of the industry branches where by-products from 
beer manufacturing could be potentially applied in poly-
mer technology. This sector of the industry is enormously 
dependent on petroleum price and availability [30]. It is 
commonly known that its resources are constantly shrinking, 
and it is essential to seek new raw materials, which could 
substitute petroleum, beneficially from renewable resources 
[31]. In the following sections, the literature reports on the 
applications of brewing by-products in polymer technology 
would be discussed.

3.1  Brewers’ spent grain

3.1.1  Overview

The main and the most abundant by-product generated by 
the brewing industry is brewers’ spent grain. It is generated 
in high amounts and accounts for over 85% of beer manufac-
turing by-products [32]. During the mashing process, around 
69% of the initial malt mass is extracted and converted to 
sugars soluble in wort [33]. Considering that production of 
the one hectoliter of beer uses 20 kg of malt, around 6.2 kg 
of dry BSG is generated. Such values are typical for the 
most popular beer style worldwide—light lager [34]. Other 
beer styles, especially those characterized by higher original 
gravity, require higher malt loadings, even up to 45 kg for 
strong stouts or porters [35]. Keeping in mind the size of the 
global beer production, almost 12 million tonnes of brewers’ 
spent grain is generated worldwide. The biggest producer, 
China, accounts for over 2.3 million tonnes, followed by the 
USA with 1.3 million tonnes, while European production 
generates around 2.6 million tonnes of BSG [34].

3.1.2  Composition

One of the main drawbacks of BSG as a potential raw mate-
rial for other processes is its high moisture content, exceed-
ing 75% [36]. Together with the presence of polysaccharides, 
this factor makes the BSG a perishable material. Drying of 
brewers’ spent grain, which could be easily performed using 
conventional dryers, might noticeably enhance its attractive-
ness for other industry branches, including polymer technol-
ogy [37]. Moreover, BSG is characterized by the relatively 
low activation energy values during drying, comparable to 

Fig. 2  The share of particular 
continents in the global beer 
production
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other food industry by-products such as carrots, beans, or 
general vegetable waste [38]. The drying of BSG requires 
less energy than, e.g., olive processing by-products, probably 
due to their high lipid content [38].

The brewers’ spent grain can be characterized by a simi-
lar composition to various lignocellulose materials except 
for the high moisture content. As presented in Table 1, the 
total content of carbohydrates in BSG is around 50%, which 
is noticeably lower compared to other lignocellulose waste 
materials, e.g., barley straw (56%) [39], rye, or oat straw 
(66–68%) [40], sunflower or cotton stalks (72–73%) [40]. 
Such a phenomenon is attributed to the partial reduction 
of carbohydrate content during mashing when starch is 
removed [41].

Moreover, brewers’ spent grain contains from 10 to even 
28% of lignin, depending on the reports [48] and a significant 
amount of proteins, which is attributed to their high content 
in barley grain [52]. The detailed composition of proteins 
in BSG may differ depending on the determination method, 
source of by-product, and applied malts, mostly crop species 
[33]. According to Robertson et al. [53], the glutamine is the 
primary amino acid of BSG (around 19–20% of total pro-
teins), followed by a proline (~ 9%), asparagine, and leucine 
(both ~ 8%), arginine, phenylalanine, and valine (~ 7%). On 
the other hand, Waters et al. [54] reported that histidine is 
present in the highest amount exceeding 26% of total pro-
teins, followed by glutamine (~ 16%), lysine (~ 14%), and 
leucine (~ 6%), while the content of other amino acids does 
not exceed 5%. Nevertheless, irrespectively of the detailed 
composition of amino acids, BSG should be considered as 
protein-rich material.

Brewers’ spent grain often contains noticeable amounts 
of phenolics, which may provide additional value for vari-
ous applications due to their antioxidant and antimicrobial 
properties [55]. The main phenolic components of BSG are 
hydroxycinnamic acids (HCAs) and hydroxybenzoic acids 
(HBAs), particularly ferulic, p-coumaric, sinapic, syringic, 
and caffeic acids [56–58]. The first two compounds are 
present in the highest amounts, but the literature reports 
indicate that their contents depend strongly on the type of 
malts used for brewing [59]. McCarthy et al. [59] showed 

that the roasting of pale barley malt reduced the total HCAs 
content in BSG by 57%. Also, Moreira et al. [60] pointed 
to the reduction in total phenolic content due to increasing 
malt kilning temperature. For chocolate and black malts, 
kilned at temperatures exceeding 220 °C, the content of 
ferulic and p-coumaric acids was reduced by over 50%. The 
effect was significantly smaller for melanoidin and carared 
malts, which were subjected to a temperature in the range 
of 120–160 °C.

Generally, the structures of the major phenolic acids pre-
sent in brewers’ spent grain are presented in Fig. 3. Their 
detailed composition in particular BSG samples and other 
by-products, may noticeably differ depending on the method 
of their extraction, selection of solvents, and method of the 
quantitative analysis [35]. Nevertheless, despite the differ-
ences in reported contents of HCAs and other phenolics, 
they significantly enhance the antioxidant activity of BSG 
compared to other lignocellulose materials.

These compounds mentioned above present in BSG are 
considered strong antioxidants and may enhance the stability 
of polymeric materials [61–63]. Considering the antioxi-
dant activity of BSG, it may contain noticeable amounts of 
melanoidins, mainly when it originated from the production 
of darker beers. Melanoidins are generated during Maillard 

Table 1  The composition of 
brewers' spent grain according 
to the literature reports

Component Content, %dry matter

Cellulose – – – 25.4 23.0–25.0 16.8 22.2 12.0–25.0 21.9 12.0 21.7
Hemicellulose – – – – 30.0–35.0 28.4 26.8 20.0–25.0 29.6 40.0 19.2
Lignin – – – 11.9 – 27.8 14.1 10.0–28.0 21.7 11.5 19.4
Ash 3.8 3.4 3.3 2.4 4.0–4.5 4.6 – 2.0–5.0 1.2 3.3 4.2
Proteins 26.9 21.8–26.4 26.7 24.0 19.0–23.0 15.3 – 19.0–30.0 24.6 14.2 24.7
Fat – 3.6–5.8 – 10.6 – – – 10.0 – 13.0 –
Phenolics – 1.6–2.0 – – – – – – – 2.0 –
Reference 42 43 44 45 46 47 41 48 49 50 51

Fig. 3  The structures of the major phenolics of BSG: a ferulic, b 
p-coumaric, c sinapic, and d caffeic acid
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reactions occurring between carbonyl groups of reducing 
sugars and amino groups of amino acids present in proteins 
[64]. As a result, the complex mixture of higher molecular 
weight oligomeric and polymeric compounds is obtained 
[65]. They are responsible for the browning reactions of 
various food products after applying temperature, e.g., dur-
ing baking, frying, or cooking [66].

Moreover, the brewers’ spent grain contains multiple 
micro- and macroelements, mostly silicon, phosphorous, 
calcium, and magnesium [32]. Combining their content with 
the presence of vitamins, primarily B3, B4, and B5, the BSG 
is often investigated in food additives [48, 67].

3.1.3  Current applications and potential in polymer 
technology

Animal feed Nowadays, the main application of brewers’ 
spent grain is low-value animal feed with relatively low mar-
ket value. It is often sold to farmers, mainly in a wet state 
[68]. It is associated with the composition of this by-product, 
particularly protein content [45]. As a result, Belibasakis 
and Tsirgogianni [69] and Sawadogo et al. [70] reported 
the enhanced milk production for cows fed with BSG. Also, 
other works reported the beneficial impact on animal nutri-
tion, including fish, pigs, and chickens [71–73]. In the case 
of lack of potential recipients of BSG for animal feed, this 
by-product may be deposited in the fields, where in moderate 
amounts, it can act as natural fertilizer [55].

Human food Considering the nutrition, brewers’ spent grain 
was also investigated as a human food ingredient. Because 
of its composition and origin, it was introduced into bakery 
products as a flour substitute [74]. Ground BSG is charac-
terized by a darker color than the lightest types of flour, so 
it could not be applied in white bread [75]. Nevertheless, 
BSG showed a very beneficial impact on the bread protein 
content due to its composition, increasing it by ~ 50%, when 
only 10% of traditional flour was replaced [76]. Combining 
the protein content with the lack of starch (which is removed 
during mashing—see Fig. 1), the caloric density of bread 
containing 10% of BSG may be even 7% lower compared to 
the conventional bread [77]. Except for the bakery products, 
brewers’ spent grain can be incorporated into other high-
fiber foods [78–81]. In general, the food-sector applications 
of brewers’ spent grain were comprehensively discussed in 
the excellent review works of McCarthy et al. [82], Lynch 
et al. [48], and lately Rachwał et al. [83].

Energy production Like other types of waste biomass, BSG 
was also investigated in energy production, which may be 
implemented within the brewery, leading to reduced pro-
duction costs [84]. It can be directly combusted. However, 
it may cause problems related to the high nitrogen content 

and resulting generation of nitrogen oxides [85]. Such an 
effect can be reduced by the application of pyrolysis [86]. 
Another possibility is converting BSG into charcoal bricks, 
which increases its calorific value from ~ 20 to 27 MJ/kg [87, 
88]. Multiple works also reported microbial fermentation 
of brewers’ spent grain into bioethanol [89–91] or biogas 
[92–95], which can be applied as biofuels.

Fermentation Considering fermentation, BSG was investi-
gated as a growth medium [96], e.g., substitute of sucrose or 
glucose in the lactic fermentation [97–99], medium for pul-
lulan production [100], and introduced into manufacturing 
of xylitol [101–103] or citric acid [104]. The application of 
wastes and residues for fermentation is a very common and 
often investigated approach [105].

Among the mentioned fermentation products, lactic acid 
is an exciting compound for polymer technology. It is com-
monly applied in poly(lactic acid) manufacturing—one of 
the most popular biodegradable, thermoplastic polyesters 
[106]. Over the last years, it attracted much attention due 
to the application in 3D printing [107]. Moreover, due to 
the current law regulations, its popularity in manufactur-
ing packaging materials is increasing, often combined with 
other, less expensive materials like thermoplastic starch 
[108].

Except for lactic acid, other BSG fermentation products, 
which could be applied in polymer technology are citric acid 
[109] and propionic acid [110]. The first one can be applied 
as a co-monomer in manufacturing of polyesters [111–114] 
or as a crosslinking agent [115, 116]. Propionic acid is a 
substrate in the production of polymers based on cellulose 
derivatives, such as cellulose propionate [117]. Their popu-
larity is growing over the last years due to the current pro-
environmental trends related to bio-based polymer materials 
and their potential novel applications, e.g., in 3D printing 
[118–120].

Figure 4 summarizes the potential applications of BSG 
fermentation products in polymer technology. Neverthe-
less, to the best of our knowledge, no works deal with the 
application of BSG fermentation products in polymer tech-
nology. More details related to the recent developments in 
the biotechnological valorization of these by-products were 
presented recently in the comprehensive review work by 
Puligundla and Mok [121].

Extraction of celluloses and lignin Except for the microbial 
conversion, various compounds present in BSG, which may 
find application in polymer technology, can be extracted 
using different techniques [122–124]. Among the most 
noticeable components of BSG in terms of polymer technol-
ogy are celluloses and lignin [125]. They could be applied 
as fillers for composites and intermediates in manufacturing 
other raw materials used in polymer technology.
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Mishra et al. [126] presented the multi-stage process of 
BSG conversion into cellulose nano-fibers consisting of 
alkali treatments and bleaching. They isolated nanosized 
fibers with an average diameter of 4.6 nm, shown by atomic 
force microscopy. Similar fibers are often investigated as 
fillers for polymer nanocomposites [127–129]. The effi-
cient isolation of fibers and removal of other components 
of BSG was confirmed by thermogravimetric analysis (lack 
of decomposition step attributed to the presence of lignin) 
and X-ray diffractometry (gradual increase in crystallinity 
index). Similar observations were made by dos Santos et al. 
[130].

Mussatto et al. [131] investigated the recovery of lignin 
from BSG. The by-product was subjected to the soda pulp-
ing process, comprehensively described in other work [132]. 
The resulting black liquor was treated with sulfuric acid, 
which enabled the separation of lignin by precipitation. 
Except for the lignin, the investigated process enabled the 
removal of ferulic, p-coumaric, p-hydroxybenzoic, vanillic, 
and syringic acids from black liquor. Such an effect points 
to the presence of these compounds in obtained lignin, 
which could be applied, e.g., as a filler for wood-polymer 
composites.

Quite interesting is also the extraction of arabinoxylans 
from brewers’ spent grain. They are hemicelluloses found in 
plants' primary and secondary cell walls, which consist of 
copolymers of arabinose and xylose [133]. They play a struc-
tural role in plants, and interestingly the significant amounts 
of phenolic acids are bound to them, so they show noticeable 
antioxidant activity [134]. Arabinoxylans and their esters 

are applied in polymer technology to develop biodegradable 
and even edible films [135, 136], which could be efficiently 
applied in food packaging applications [137–139]. They 
could be enzymatically extracted from BSG in a multi-step 
procedure [140–142]. The extraction efficiency can be sig-
nificantly enhanced by the proper particle size distribution 
of BSG adjusted by milling and sieving, as proven by Reis 
et al. [143]. Moreirinha et al. [144] used the brewers’ spent 
grain arabinoxylans to prepare composite films with a dif-
ferent share of nanocellulose. Moreover, selected composite 
films were modified with ferulic acid or feruloylated arabi-
noxylo-oligosaccharides obtained from BSG. All prepared 
films were characterized by the onset of thermal decom-
position exceeding typical sterilization or autoclaving tem-
peratures ~ 150 °C. They were characterized by satisfactory 
mechanical performance, with Young’s modulus in the range 
of 4.3–7.5 GPa (the highest for composite containing 50% 
of nanocellulose) and tensile strength of 71–110 MPa (the 
highest for 75% nanocellulose loading). Modifications of 
films unfavorably affected the mechanical performance but 
increased the antioxidant activity determined by DPPH assay 
from the initial 2% to 64–90%. Also, a noticeable reduction 
in bacterial (Staphylococcus aureus) and fungal (Candida 
albicans) growth is beneficial for the potential applications 
in food packaging.

Extraction of phenolics Except for cellulose, hemicellu-
lose, or lignin, also other compounds can be extracted and 
isolated from brewers’ spent grain. Very auspicious are the 
phenolics mentioned above, primarily hydroxycinnamic 
acids, showing antioxidant properties. The BSG should 
be considered an inexpensive source of these compounds, 
which could be efficiently applied not only in the food or 
cosmetic industry [145–147] but also as potential antioxi-
dants for polymer materials [148–150]. Phenolics can be 
recovered from brewers’ spent grain by different variants of 
extraction, e.g., solid–liquid type or assisted by supercritical 
fluids, microwaves or ultrasounds, and enzymatic or alkaline 
reactions [151–153]. As mentioned above, the yield of their 
recovery strongly depends on the extraction method and its 
parameters, e.g., selected solvents [154]. Similar phenom-
ena were reported for other by-products, e.g., from the cof-
fee industry, also characterized by high phenolics content 
[155–157]. The recent advances in the extraction of bioac-
tive compounds, including phenolics, from brewers’ spent 
grain, were comprehensively summarized in the excellent 
work of Bonifácio-Lopes et al. [158]. Nevertheless, to the 
best of our knowledge, there are no literature works report-
ing the application of BSG-originated phenolics in polymer 
materials.

Liquefaction Considering other, more direct uses of brew-
ers’ spent grain in polymer technology, in our previous 

Fig. 4  Potential applications of BSG fermentation products in poly-
mer technology
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work [159], we used the brewers’ spent grain as a biomass 
feedstock for crude glycerol-based microwave liquefaction 
aimed at manufacturing biopolyols for polyurethanes. The 
general scheme of the process is presented in Fig. 5. The 
spectroscopic investigation of obtained polyols revealed that 
biomass was partially decomposed during the process and 
reacted with solvent particles. Nevertheless, the efficiency 
of the process was relatively low, and the hydroxyl values 
were in the range of 900–1050 mg KOH/g. Such values 
are very high and could be suitable only for manufacturing 
very crosslinked and stiff materials. Further studies should 
include the application of catalysts and optimization of pro-
cess conditions to enhance its efficiency.

Filler for polymer composites On the other hand, the rela-
tively high fiber content in brewers’ spent grain makes it 
attractive for the preparation of wood-polymer composites, 
possibly applied in various branches of industry [160]. Other 
fillers, either conventionally applied wood flour or waste-
based, are characterized by a relatively similar composition 
[161, 162]. Moreover, the presence of proteins, which may 
act as plasticizers, may facilitate the melt processing of com-
posites [163].

Revert et al. [164] introduced the BSG as a filler into 
the polypropylene matrix. Nevertheless, due to the polarity 
differences between filler and matrix, the interfacial inter-
actions were fragile, and the significant deterioration of 
mechanical performance was noted. The only positive effect 
of the BSG incorporation was the shift of the oxidation onset 
temperature attributed to the presence of phenolics show-
ing antioxidant activity. The addition of 10–40 wt% of by-
product shifted the oxidation onset by 10–23 °C.

Barbu et al. [165] introduced BSG into particleboards 
as a partial replacement of wood, which is a common trend 
in the case of wood-polymer composites [166–168]. The 
appearance of BSG without additional treatment (pre-
sented in Fig. 6) is quite similar to the wood chips, so this 

by-product can be easily applied as substitute for conven-
tional raw materials. Particleboards bonded with polymeric 
4,4′-methylene diphenyl isocyanate, urea–formaldehyde, or 
melamine urea–formaldehyde resin. Nevertheless, according 
to the presented results, to maintain the satisfactory level of 
the mechanical properties, the content of BSG should be 
kept at low levels (up to 10%). The structural differences 
associated with the reduction in particle–particle bonding 
between wood particles were noted at higher loadings due 
to the high consumption of glue by BSG. Authors suggested 
that at higher contents, brewers’ spent grain should be com-
bined with innovative glues, based on casein or tannins, 
which could improve the particle–particle bonding. Similar 
conclusions about the potential, beneficial share of BSG in 
wood-based particleboards were provided by Klimek et al. 
[169], who also suggested the 10% substitution of wood with 
BSG.

Fig. 5  The general scheme of 
microwave-assisted liquefaction 
of BSG resulting in biopolyol 
for polyurethanes [159]

Fig. 6  The appearance of BSG without additional treatment
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A very interesting application of BSG in polymer technol-
ogy was also presented by Ferreira et al. [170], who used it 
to prepare disposable trays for food packaging. They were 
obtained by compression molding of BSG with potato starch 
applied as a continuous phase. The process was aided with 
the addition of glycerol, water, and in some cases gelatin, 
chitosan, or glyoxal applied as crosslinkers. After compres-
sion, trays were covered with beeswax. Obtained materials 
were characterized by significantly higher flexural strength 
and modulus than commercial trays from expanded poly-
styrene. Independently of the BSG content (from 20 to 80% 
in the whole tray), trays showed strength in the range of 
1.51–2.62 MPa, compared to the 0.64 MPa for commercial 
material. Also, the modulus was noticeably higher (1.1–
2.0 MPa) compared to polystyrene trays (0.28 MPa). Nev-
ertheless, due to their composition and hydrophilic character 
of applied raw materials, trays showed significantly higher 
water absorption than polystyrene, which resulted in a sig-
nificant 80–90% decrease in mechanical parameters. Such 
an effect was attributed to the plasticizing effect of water. 
The application of crosslinkers or beeswax slightly reduced 
the water absorption. However, deterioration was still noted 
after immersion, and polystyrene trays showed noticeably 
superior properties. Nevertheless, presented results indicate 
that such a solution is quite promising, especially for appli-
cations that do not require exceptional resistance to water.

Generally, multiple works dealing with the application of 
brewers’ spent grain in the polymer sector, especially these 
dealing with its use as a filler for composites or substitute of 
wood in particleboards, indicate the necessity for modifying 
this by-product [171, 172]. Modifications should be aimed at 
enhancing the interfacial interactions with polymer matrices 
by the change of their hydrophilic character. Such an effect 
could be achieved by thermo-mechanical treatment resulting 
in non-enzymatic browning in the caramelization process 
and mostly Maillard reactions, as presented in our previous 
works [34, 173]. It is also essential that melanoidins show 
noticeable antioxidant activity, which can be very beneficial 
for the oxidative stability of polymer composites [174].

In previous works, we reported the application of thermo-
mechanically modified BSG as a potential filler for wood-
polymer composites [175, 176].

In the case of poly(ε-caprolactone) composites, their 
mechanical performance was noticeably affected by the 
parameters of thermo-mechanical treatment of BSG [175]. 
The increase of modification temperature noticeably affected 
the interface surface area, resulting in an even 30% increase 
in composites’ toughness. Dynamic mechanical analysis 
indicated over 30% drop in the adhesion factor and increased 
the constrained chain volume exceeding 27%. Such an effect 
points to the significant enhancement of the interfacial 
interactions.

On the other hand, modified BSG could be effectively 
applied to substitute traditional wood flour in polyethylene-
based composites [176]. Nevertheless, due to the differences 
in the chemical composition between fillers (presence of 
proteins, lipids, and melanoidins in BSG, lower content of 
holocellulose compared to wood flour), the composites’ per-
formance was differing. The introduction of BSG resulted in 
significantly higher values of melt flow index. When wood 
flour was completely substituted, it increased from 3.23 to 
10.56 g/10 min, which was attributed to the drop in viscos-
ity from 1.02 to 0.30 Pa s. A similar effect was noted in our 
other work [163]. The density and porosity of materials were 
slightly reduced with the increasing share of BSG due to the 
presence of proteins, which may enable better encapsulation 
of filler particles with polymer macromolecules. However, it 
also caused changes in the composites’ mechanical perfor-
mance. Tensile strength and modulus were reduced by ~ 27% 
and ~ 42%, respectively, but the elongation at break was dou-
bled. Concluding, modified brewers’ spent grain could be 
introduced as partial replacement of conventional wood flour 
to engineer materials with desired properties.

Others Other, less popular methods of BSG utilization 
include the manufacturing of adsorbents [177–179], paper 
[47, 180], bricks [87], or activated carbon [181]. Brewers’ 
spent grain-based adsorbents, and activated carbons were 
found efficient in the removal of dyes [182–185], volatile 
organic compounds from the gas phase [186], but mostly 
metal ions from aqueous media [187–191].

3.2  Trub, spent hops

3.2.1  Overview

Trub is generated during filtration of wort before the 
fermentation. After cooling down, the wort is separated 
from the trub, accounting for around 0.2–0.4% of the 
wort volume [28]. The precipitate contains coagulates of 
high molecular weight proteins [192]. They are generated 
during the heat-induced denaturation of proteins. Except 
for coagulates, the residual hops may be present in trub, 
because according to the literature data, around 85% of the 
initial hops mass introduced into wort is removed as a by-
product [77]. After extracting the compounds that create 
the flavor, aroma, and bitterness of the final beer, the solid 
residues of hops are discarded. However, their content in 
trub depends on the applied technology of beer hopping 
[193]. Therefore, the composition of this by-product may 
be very diverse, depending on the share of coagulates and 
spent hops.
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3.2.2  Composition

Separately, trub contains mostly significant amounts of pro-
teins, even up to 70% of dry matter [83]. Considering spent 
hops, the proteins account for around 22–23% of dry matter, 
with a similar share of fiber [194]. According to Mathias 
et al. [42], around 20% of the residual reducing sugars may 
also be present in trub. Both trub and spent hops contain 
relatively low amounts of ash, ~ 2%, and ~ 6%, respec-
tively. Interestingly, this by-product may contain noticeable 
amounts of essential oils and phenolics due to the hop pres-
ence. Such an effect is attributed to the low solubility of 
various compounds in the wort, e.g., in the case of lupulones 
[195]. On the other hand, phenolics such as hydroxycin-
namic acids, gallic acid, catechins, anthocyanidines, and oth-
ers, are precipitated with proteins and removed as a part of 
hot trub [196]. The essential oils contain noticeable amounts 
of terpenes [67]. Moreover, myrcene, alpha-humulene, or 
beta-ceryophyllene are present. They account for ~ 47% of 
the essential oil [197]. The structures of main components 
of essential oils are presented in Fig. 7.

3.2.3  Current applications and potential in polymer 
technology

Contrary to the brewers’ spent grain, the trub and spent 
hops are significantly less frequently used in animal feed-
ing, despite the beneficial composition, relatively high fiber 
content, and mostly the presence of proteins. Such an effect 
is attributed to the presence of hops, particularly bitterness 
[198]. Another issue is the low energy value of spent hops, 
which is around 50% lower than spent grains, despite the 
relatively high fiber content [77]. On the other hand, some 
research works investigated the combination of spent hops 

with other brewery by-products, which resulted in accept-
able feed, e.g., for pigs [199]. According to the works of 
Huszcza et al. [200, 201], the bitter acids originated from 
spent hops can be removed or degraded by yeast or fungi. 
More recent works dealing with the trub and spent hops 
investigated the reduction of bitterness by the multi-step 
extraction of bitter compounds [202]. During extraction, 
most carbohydrates were removed together with tannins 
and phenolics, which are often bound to the carbohydrates. 
As a result, the share of proteins and fat was increased from 
the initial 26.5% and 5.2% to 70.3% and 9.9%, respectively. 
Due to the significant drop of phenolics content (from ~ 350 
to ~ 125 mg gallic acid equivalents/100 g), the antioxidant 
activity was also noticeably reduced. Nevertheless, changes 
resulting from the extraction allowed the use of modified 
trub in food applications.

Considering the most popular uses of biomass and brew-
ery by-products, except for the animal feed, trub and spent 
hops may be applied as a soil conditioner and fertilizer, 
which is associated with their high nitrogen content [42, 
203].

As mentioned above, the trub and spent hops contain 
noticeable amounts of essential oils and phenolics. These 
compounds can be effectively extracted from this by-product 
and potentially applied in polymer technology. Bedini et al. 
[197] reported that the terpenes present in spent hops could 
be applied as the repellents against the insects, e.g., Rhyzo-
pertha dominica or Sitophilus granarius. Spent hops essen-
tial oils were 2–5 times more effective against R. dominica 
than Laurus nobilis oils [204] and showed similar repel-
lency against S. granaries as Hyptis suaveolens oils [205]. 
Bartmańska et al. [206] also showed antifungal activity 
of spent hops extracts against Botrytis cinerea, Fusarium 
oxysporum, Fusarium culmorum, and Fusarium semitectum. 
Therefore, the application of spent hops or only their essen-
tial oils in manufacturing the packaging materials seems rea-
sonable. The extraction and isolation of essential oils from 
spent hops can be performed by hydrolysis, steam distilla-
tion, but also using supercritical  CO2 or eutectic solvents 
[207–210].

Moreover, this by-product can be applied in fermentation 
processes as a supplement for microbes due to the high nitro-
gen content [83] and the presence of lipids and zinc [211].

3.3  Spent yeast

3.3.1  Overview

During the initial stage of fermentation, the intensive pro-
liferation of yeast is occurring, so after fermentation and 
maturation, the surplus of yeast is present and should be 
removed from beer [212]. Partially, they are recovered by 
natural sedimentation, but for higher efficiency, additional 

Fig. 7  The main components of spent hops essential oil: a myrcene, b 
α-humulene, c β-caryophyllene, and d 2-undecanone [197]
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filtration or centrifugation may be applied [213]. The actual 
amount of this by-product depends on the type of yeast 
used for fermentation, but it can account even for 15% of 
total by-products generated during beer production [214]. 
Around 0.3 kg of spent yeast is generated per hectoliter of 
beer. Depending on the properties of yeast, in particular their 
flocculation, this by-product is characterized by the high 
moisture content in the range of 75–90%. Therefore, portion 
of beer is removed along with yeast, which may generate the 
1.5–3.0% loss of beer [28].

3.4  Composition

Considering the composition, spent yeast contains a notice-
able amount of carbohydrates and proteins. Among the first 
group, the most abundant are non-cellulose compounds 
(25–35%), mainly β-glucans, mannoproteins, and glyco-
gen, followed by cellulose (17–25%) [215]. Proteins may 
account for more than 50% of the spent yeast dry mass 
[195, 216]. Jacob et al. [217] reported even value of 74.3 
wt%. Therefore, the spent yeast is characterized by the low-
est carbon:nitrogen ratio among the brewing by-products, 
around 5 [42]. Literature works report different amino acid 
compositions of spent yeast. According to Vieira et al. [218], 
the most common amino acids in spent yeast are alanine 
(even over 9%), arginine, aspartic acid, and cysteine. At the 
same time, Jaeger et al. [219] indicated that glutamic acid 
is the most abundant one (~ 15%), followed by histidine, 
alanine, arginine, and aspartic acid. Such an effect may be 
associated with the differences between particular Saccha-
romyces cerevisae strains applied worldwide [220].

Brewery spent yeast are also a great source of micro- and 
macroelements, as well as vitamins. Nevertheless, the min-
eral composition of yeast can differ depending on the length 
of fermentation and fermentation cycles [67]. Among the 
most abundant minerals are sodium, potassium, and mag-
nesium, but noticeable amounts of phosphorous may be 
present, which could be associated with yeast nutrients in 
breweries [195]. Considering the vitamins, the B type is the 
most popular, especially niacin, thiamin, pantothenate, and 
riboflavin [218].

3.4.1  Current applications and potential in polymer 
technology

Due to the high content of proteins, vitamins, and miner-
als, the spent yeast is mostly applied as an additive in ani-
mal feeding [221]. It has been repeatedly proven that such 
application of this by-product shows very positive effects 
on the animals’ health. It may result in increased milk 
production, improved microflora, and enhanced resist-
ance to various microorganisms [222–224]. Except for the 
animal feed, spent yeast was also investigated in human 

consumption. However, they show great potential due to 
the high contents of nucleic acids (6–15%), in particular 
ribonucleic acid, their use in an unmodified state is some-
what limited [216]. The ribonucleic acid is metabolized 
to the uric acid in the human body, which can cause gout 
[225]. Generally, the spent yeast application in animal and 
human nutrition was comprehensively discussed in dedi-
cated review works [219, 226–229].

Another broadly investigated application of spent yeast 
is cultivating microorganisms and other biotechnological 
processes [230, 231]. Due to the beneficial composition 
of brewery spent yeast, various microorganisms cultivated 
on this by-product may grow noticeably faster than other 
yeast types, as reported by Ferreira et al. [232]. As a result, 
the spent yeast may be applied as a very efficient source of 
multiple enzymes, including proteinases [233], proteases 
[234, 235], or pectinases [236, 237]. Moreover, brewery 
spent yeast can be applied as nutrients during ethanol or 
lactic acid fermentation [238, 239]. Pietrzak and Kawa-
Rygielska [240] showed that the 5% addition of brewery 
spent yeast might increase the rate of sugar consumption 
and ethanol production resulting in even 11% enhancement 
of ethanol yield. Such an effect was ascribed to the high 
nitrogen content of the medium.

Other, less popular uses of spent yeast from beer pro-
duction include methane production or application as 
biosorbent. Considering the energy production, spent yeast 
can be considered an excellent substrate for co-digestion 
purposes with other materials, including swine manure 
[241], spent grains [242], or crude glycerol [243].

Considering the polymer technology point of view, the 
brewery spent yeast show hardly any applications. The 
most promising and the closest to polymer technology is 
their use in fermentation processes generating lactic or 
succinic acid. The use of lactic acid in polymer technol-
ogy was described in Sect. 3.1.3. The succinic acid can be 
applied in the manufacturing of polyesters or alkyd resins 
[244, 245].

Rakin et al. [246] reported that the application of spent 
yeast might increase the rate and yield of lactic acid fermen-
tation due to the presence of amino acids, vitamins, and min-
erals. Similar observations were made by Champagne et al. 
[247]. According to Radosavljević et al. [248], the brewery 
spent yeast, combined even with other brewery by-products, 
can act as a low-cost fermentation medium for manufactur-
ing of lactic acid.

Considering succinic acid production, the substitution of 
conventional yeast extracts with hydrolysate of spent brew-
ery yeast as a nitrogen source was successfully achieved by 
Jiang et al. [249] and Chen et al. [250].

Nevertheless, to the best of our knowledge, there are no 
literature reports directly connecting the brewery spent yeast 
with the polymer technology.
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4  Conclusions, future trends, 
and developments

The presented review summarized the literature works 
associated with the by-products of beer production. Their 
generation during brewing was discussed, and the beer 
market size, which affects the amount of by-products. 
Reported data about the composition of brewers’ spent 
grain, trub, spent hops, and spent yeast indicate that the 
application in polymer technology should be considered 
an auspicious method of their utilization, viable from the 
ecological and economic point of view. Moreover, their 
chemical composition, particularly the presence of com-
pounds showing antimicrobial, antifungal and antioxidant 
activity, puts the brewing by-products as potential active 
fillers providing additional properties to polymer materials 
and promising intermediates in manufacturing various raw 
materials for polymer technology.

In order to take full advantage of the brewing by-prod-
ucts potential in polymer technology, future works should 
focus on the following issues:

• Partial substitution of conventional lignocellulosic fill-
ers in wood-polymer composites with brewers’ spent 
grain, which could enhance the resistance to thermoox-
idation.

• Investigations related to the mechanisms of the enhance-
ment of thermooxidative stability of various polymer 
materials by antioxidants present in brewing by-products.

• The applications of brewing by-products in packaging 
materials or even edible films for food protection.

• Liquefaction of brewing by-products resulting in raw 
materials for manufacturing of polyurethanes or poly-
ester resins.
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