
 The author of the doctoral dissertation: Robert
 Ostrowski
 Scientific discipline: Informatics

 DOCTORAL DISSERTATION

 Title of doctoral dissertation: Multi-agent strategies for selected network

 problems

 Title of doctoral dissertation (in Polish): Wieloagentowe strategie dla

 wybranych problemów sieciowych

 Gdańsk, year 2024

 Supervisor

 signature

 Second supervisor

 signature

 prof. dr hab. inż. Dariusz Dereniowski
 Auxiliary supervisor

 signature

 Cosupervisor

 signature

Multi-agent strategies for
selected network problems

Doctoral dissertation

author: Robert Ostrowski
supervisor: prof. dr hab. inż. Dariusz Dereniowski

Gdańsk University of Technology
Faculty of Electronics, Telecommunications and

Informatics
Department of Algorithms and Systems Modelling

Gdańsk, Poland
2024

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Acknowledgements

The dedication of this work is twofold. First, I wish to distinguish those who kept
hope when mine has faltered. Especially my supervisor, Dariusz Dereniowski.

Second, I wish to commemorate Jurek Czyzowicz, whom I knew too briefly.

3

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Abstrakt

Przed grupą mobilnych jednostek, zwanych agentami, postawiony jest problem
wymagający podróży po sieci modelowanej przez graf. Czy istnieje sekwencja
ruchów, czy też strategia, która rozwiązuje taki problem? Otrzymaliśmy wyniki
dla dwóch specyficznych problemów z szerszych obszarów badań do których pasuje
powyższy, bardzo ogólny, opis. Poza nimi w pracy znajduje się także przegląd lit-
eratury dotyczącej przeszukiwania grafów oraz komunikacji z ograniczoną energią
poprzez przemieszczanie się po grafie. Pomimo tego że autorskie badania zaj-
mują się tylko problemami scentralizowanymi, przegląd obejmuje też rozproszone
aspekty odpowiadających im dziedzin badań.

Pierwszym rozważanym problemem jest heterogeniczne przeszukiwanie grafów,
w którym agenty mają za zadanie odnaleźć uciekiniera w grafie, w którym krawędzie
mogą przebyć jedynie agenty określonego typu. To ograniczenie modelowane jest
poprzez uzupełnienie klasycznego modelu przeszukiwania krawędziowego o nadanie
etykiet krawędziom. Co więcej, algorytm uzyskuje możliwość przypisania agentom
etykiet przed wykonaniem strategii. Agent może przebyć, a tym samym wyczyścić,
tylko krawędź opatrzoną taką samą etykietą jak jego własna. Ponieważ uciekinier
nie jest w żaden sposób ograniczony, jest to uogólnienie klasycznego problemu,
a w konsekwencji problem niemniej trudny. Okazuje się, że granica pomiędzy
obliczeniowo łatwymi i trudnymi przypadkami przebiega w klasie drzew, stając się
interesującym polem badań. Przytaczamy przykład drzewa z trzema etykietami
pokazujący, że problem jest niemonotoniczny. Co więcej, liczba ponownych skażeń
krawędzi jest rzędu O(n2). W przeciwieństwie do klasycznego problemu, hetero-
geniczne przeszukiwanie drzew jest NP-Trudne. Ponadto, pozostaje NP-Zupełne
nawet gdy tylko monotoniczne strategie są brane pod uwagę. Te trudności znikają
gdy wszystkie krawędzie z jednakowymi etykietami tworzą spójne poddrzewo. W
takim przypadku istnieje algorytm wielomianowy, także dla wersji problemu, w
której przeszukany podgraf musi być spójny.

W drugim problemie agenty mają wykonać plotkowanie, czyli rozpropagować
informacje z każdego węzła sieci do wszystkich pozostałych (protokół komunika-
cyjny “każdy z każdym”). Sieć jest drzewem z wagami na krawędziach i dane
mogą być przekazane tylko poprzez podróżujące agenty. Agent zbiera informacje
z odwiedzonych węzłów i zostawia je na każdym węźle, na którym w przyszłości
się znajdzie. Aby przebyć krawędź agent musi zużyć energię proporcjonalną do jej
długości. Energia ta pochodzi z baterii danego agenta. Dodatkowo, agenty mogą

5

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

przekazywać sobie energię przy spotkaniu. Początkowa konfiguracja agentów obej-
muje ich położenia oraz zasoby energii (możliwie różne) przypisane każdemu z nich.
W tym ostatnim sensie, problem jest także heterogeniczny. W naszym algorytmie
istnieje jeden wierzchołek w którym wszystkie dane zostają zgromadzone po raz
pierwszy. Większa część pracy poświęcona jest dowodowi, że optymalna strate-
gia plotkowania składa się z, w pewnym sensie, optymalnej strategii convergcastu
(komunikacja “jeden z każdym”) oraz broadcastu (komunikacja “każdy z jednym”)
z tego wierzchołka. Optymalność wspomnianej wyżej strategii convergcastu za-
pewnić musi minimalne zużycie energii i odpowiednie ustawienie agentów. Nasze
wyniki pokazują, że k agentów w n wierzchołkowej sieci może rozwiązać problem w
czasie O(k2n2). Zaprojektowanie takiego algorytmu było postawione jako pytanie
otwarte w [68].

6

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Abstract

A group of mobile entities, or agents, is presented with a problem that requires
traversing a network, modeled by a graph, to be solved. Is there a sequence of
moves, called a strategy, which solves the problem? We obtain results for two
specific problems in broader fields of research fitting the aforementioned generic
description. Besides them, we include a review of the literature concerning graph
searching and energy-constrained communication by means of traversal of graphs.
Although the original research is concerned only with centralised problems, the
review covers the distributed parts of their respective fields as well.

First, in the heterogeneous graph searching problem, the agents, also called
searchers, are asked to find a fugitive in a graph with edges accessible only to
specific types of agents. In order to model this restriction, the rules of the edge
searching problem are augmented by providing an edge-labeling of the graph and
an ability to assign labels to searchers by an algorithm prior to the execution of a
strategy. A searcher can only slide through, and therefore clean, an edge with a
matching label. Since the fugitive is not handicapped, this problem is a strict gen-
eralisation of the classical problem and, as such, it is no less hard. Since it is shown
that the boundary between computationally easy and hard problems is in the class
of trees, we deem it an interesting object of studies. We provide an example with
3 distinct labels which shows the problem to be non-monotone. Furthermore, the
number of recontamination events can be of the order O(n2). In contrast to the
results for the classical edge searching of trees, the heterogeneous tree searching
problem is proved to be NP-Hard. Moreover, it remains NP-Complete even when
restricted to monotone strategies. These difficulties disappear when for each label
the edges associated with it form a connected subtree. This case admits a poly-
nomial time algorithm, even if a requirement that the searched subgraph needs to
be connected is added.

In the second problem the agents are asked to complete gossiping, an all-to-all
communication, in a tree network, i.e. disseminate information from each node to
every node of the network. The network is an edge-weighted tree and the data can
only spread by being carried by agents themselves. An agent collects information
from every node it visits and deposits in on every node visited afterwards. In order
to traverse an edge, an agent needs to spend energy proportional to the edge’s
weight. Energy is expended from the agent’s battery, and agents can exchange
their supplies with other agents whenever they meet. The initial configuration of

7

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

agents is given as their placement and the, possibly different, amount of energy
assigned to each of them. In this last sense, the problem is also heterogeneous. In
our algorithm, there exists a unique node that receives the complete set of data
first. The bulk of the work consists of a proof that an optimal gossiping strategy
can be composed of an optimal convergcast (all-to-one) strategy followed by a
broadcast (one-to-all) strategy from this node. The aforementioned convergcast
strategy needs to be optimal in regards to the minimum energy used and it is
shown that it provides an appropriate placement of the agents. We show that k
agents in a network of n nodes can solve this problem in O(k2n2) time. Let us
note that designing such an algorithm was the subject of an open question in [68].

8

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Summary

The thesis contains six chapters. We begin with a short introduction, where the
outline of the thesis is drawn. Chapter 1 surveys centralized graph searching
problems, beginning with the classical formulation by Parsons (Section 1.1) and
basic models derived from thereof (Section 1.2.2). This latter section also contains
an explanation of the concept of monotonicity and a, somewhat outmoded, link of
searching to graph pebbling. Section 1.3 explores the connection of search numbers
with other graph parameters, pathwidth and treewidth being the most prominent,
and graph minor theory. Next, in Section 1.4 we consider the optimization of
the time of searching instead of the number of agents. Further, Section 1.5 is
concerned with non-monotone searching problems, connected searching being the
prime example. Some searching problems that did not fit in the aforementioned
sections are relegated to Section 1.6.

Chapter 2 consists of two main parts: a preliminary survey of general, agent
adjacent concepts, followed by their further use, exemplified in the field of graph
searching. It introduces agents and concepts associated with distributed problems
in Section 2.1. We make use of them in Section 2.2 where further, distributed
graph searching models are surveyed. This section is subdivided further to reflect
collections of works we deem similar. We note that a thread from the last group
of self-stabilizing models connects back to Section 1.6.

Chapter 3 opens the survey of energy constrained communication problems
with some background and notation used to talk about them in detail. Section 3.1
introduces the specific problems: data delivery, convergcast, broadcast and gossip-
ing. An overview of related works is relegated to their respective sections, namely
Sections 3.1.1, 3.1.2, 3.1.3 and 3.1.4. Section 3.2 serves as a connection between
the two problems specific to this work by means of providing a very general clas-
sification of problems and a brief survey of relevant examples. We note that this
chapter discusses some problems rather loosely related to the results of this thesis.
However, we included them having as a goal to give a more complete state of the
art regarding the concept of heterogeneity.

Chapter 4 opens the presentation of one of the two subjects of the original
research, namely heterogeneous graph searching. The formal introduction and def-
initions can be found in Section 4.2.1. Our results are divided into four sections.
First, Section 4.3 provides an example of a graph where allowing recontamina-
tion reduces the number of searchers needed to successfully clean the graph. The

9

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

number of recontamination events occurring in our example is shown to be O(n2).
Next two sections are concerned with reductions. We use the well known 3-SAT
problem to prove that monotone and non-monotone variants of the problem for
the class of trees are NP-Complete and NP-Hard, respectively. Lastly, Section 4.6
provides a polynomial-time algorithm that finds an optimal heterogeneous search
strategy in a given special case, i.e. when each label induces a connected sub-
tree. Furthermore, this approach is effective even if a search strategy has to be
connected. The chapter ends with a summary and discussion of open problems.

Chapter 5 is concerned with a specific variant of the gossiping problem outlined
in Section 3.1.4. We are interested in gossiping when energy-constrained agents
are initially scattered across a weighted tree network. Edge weights dictate how
much energy an agent spends to traverse an edge. The initial battery sizes vary
but agents can exchange energy whenever they meet. The problem is formalized in
Section 5.2 and further necessary notation is given. Next, Section 5.3 summarizes
our approach and results. We use the fact that in our problem a gossiping strategy
can be divided into two stages: the first corresponding to a convergcast strategy,
then followed by the second, based on a broadcast strategy.

Section 5.4 contains the proof of correctness of our analysis. Section 5.4.1
provides a convergcast algorithm used in the first stage of gossiping. Next, Sec-
tion 5.4.2 is concerned with a broadcast algorithm we use. Let us note that the
algorithm itself is not novel and appeared in [68]. Hence, we use only its selected
properties. Then, Section 5.4.4 is devoted to proving that joining these two strate-
gies results in an optimal gossiping strategy. In order to do so, we use some of the
previously outlined properties of the aforementioned broadcast algorithm. Just as
in the previous chapter, summary and open problems close this chapter as well.

Chapter 6 concludes the thesis. The first of its three components is a short
list that summarizes the results contained in the two previous chapters. It is then
followed by an aggregate of potential applications of the discussed concepts and
our work (Section 6.1). Before we proceed, introduction of the third component
requires a few sentences of context. The main connections of this thesis to earlier
works are as follows. The results contained in Chapter 4 and Chapter 5 have been
published — the former in [66] and the latter in [90]. Moreover, the results that
eventually appeared as [90] were also presented, by the author of this thesis, at the
11th International Conference on Algorithms and Complexity (CIAC 2019) [19].
Some passages in Chapter 1 originate from [196], the author’s early, and much
smaller in scope, survey. Last but not least, this thesis includes (in the chapter
based on [66]) an answer to the open question of providing a gossiping algorithm
stated in [68]. Moreover, we note that the author was a new addition to the research
team. Contributions of the author to the above works are outlined in Section 6.2.

The thesis of this dissertation is as follows. A generalization of the graph
searching problem where an agent’s access to specific subgraphs is restricted is
computationally difficult and non-monotone in the case of trees. The polynomial
complexity is preserved only in particular cases in the class of trees. Gossiping by
energy constrained agents in tree networks can be solved using joint strategies for
two subproblems: optimal (in a specific sense) convergcast and broadcast.

10

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Contents

Introduction 17

1 Graph searching 19
1.1 Introduction to graph searching . 19
1.2 Basic models . 20

1.2.1 Edge searching . 20
1.2.2 Basic monotone variants . 22

1.3 A wide perspective on graph parameters 24
1.3.1 Pathwidth and treewidth 24
1.3.2 Finding a path . 25
1.3.3 Minor interlude . 25
1.3.4 I see a path among trees 28
1.3.5 Other layout parameters . 29

1.4 Fast and wide . 30
1.4.1 One giant step for searcher-kind 31
1.4.2 A long path . 31
1.4.3 Only once . 32

1.5 Breaking the monotony . 33
1.5.1 Connected graph searching is hard 36
1.5.2 Connected tree searching is easy 37

1.6 In search of oddities . 38

2 Mobile agents 41
2.1 Agents and their environment . 41
2.2 Decontamination . 44

2.2.1 A second look at connectivity 44
2.2.2 Overview of properties . 45
2.2.3 Surveying the landscape . 47
2.2.4 Cleaning the unknown . 53
2.2.5 Black Virus . 55
2.2.6 Immunity . 56
2.2.7 Self-stabilization and its consequences 60

11

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

3 Communication by means of moving information 61
3.1 Communication and energy . 62

3.1.1 Data delivery . 63
3.1.2 Convergcast . 65
3.1.3 Broadcast . 66
3.1.4 Gossiping . 67

3.2 Heterogeneous problems . 68
3.2.1 Delivery . 69
3.2.2 Heterogeneous rendezvous 70
3.2.3 Different speeds . 71

4 Heterogeneous graph searching 73
4.1 Introduction . 73

4.1.1 Our work — a short outline 74
4.2 Preliminaries . 75

4.2.1 Problem formulation . 75
4.2.2 Additional notation and remarks 77

4.3 Lack of monotonicity . 78
4.4 NP-hardness for trees . 83
4.5 NP-hardness of non-monotone searching of trees 96

4.5.1 Preliminaries on non-monotone strategies for T̃SAT 97
4.5.2 Some technical lemmas . 98
4.5.3 Adaptation to non-monotonicity — there is no going back . 101
4.5.4 Conclusion . 103

4.6 Polynomially tractable instances 104
4.7 Conclusions and open problems . 106

5 Gossiping with energy constraints 107
5.1 Outline . 107
5.2 Definitions and Preliminaries . 108

5.2.1 Problem Statement . 108
5.2.2 Notation . 109

5.3 Our Approach to Gossiping . 110
5.4 The Gossiping Algorithm . 113

5.4.1 The Convergecast Stage . 113
5.4.2 The Broadcast Stage . 118
5.4.3 Concatenation of Convergecast and Broadcast 120
5.4.4 Retracing Step 1 . 122

5.5 Summary and Open Problems . 140

6 Conclusions 143
6.1 Applications . 143
6.2 Contributions . 145

12

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

List of Symbols

V (G) set of vertices, or nodes, of graph G. Simply V when
the graph is unambiguous

E(G) set of edges of graph G. Simply E when the graph is
unambiguous

e = {u, v} e ∈ E, u ∈ V, v ∈ V . Edge e between two vertices u
and v

G = (V,E) (undirected) graph G, an ordered pair of two sets: ver-
tices V and edges E

n = |V | number of vertices
m = |E| number of edges
k number of agents
es(G) edge search number of graph G
ns(G) node search number of graph G
ms(G) mixed search number of graph G
ms(G) mixed search number of graph G
sms(G) strong mixed search number of graph G
vns(G) visible search number of graph G
avms(G) mixed search number against an agile and visible fugi-

tive of graph G
ies(G) internal search number of graph G
mes(G) monotone edge search number of graph G
mies(G) monotone internal edge search number of graph G
cs(G) connected edge searching of graph G
ices(G) internal connected edge search number of graph G
mces(G) monotone connected edge search number of graph G
mices(G) monotone internal connected edge search number of

graph G
fsn(G) fast search number of graph G
fesn(G) fast edge search number of graph G
fms(G) fast-mixed search number of graph G
fet(G) fast edge search time of graph G
mpbw(G) minimum progressive black and white pebble demand

of graph G

13

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

mpb(G) minimum progressive black and the white pebble de-
mand of graph G

tb(G) topological bandwidth of graph G
pw(G) pathwidth of graph G
tw(G) treewidth of graph G
vsep(G) vertex separator of graph G
G search cost of graph G
esc(G) minimum edge search cost of graph G
mitG(k) monotone immunity number of graph G for decontam-

ination with k agents
itG(k) immunity number of graph G for decontamination

with k agents
Bi battery size of i-th agent
B battery size of all agents when it is uniform
Ω,Θ, O, o asymptotic notation symbols
Symbols in Chapter 4
z number of colors — different labels that can be as-

signed to agents and edges
c : E(G)→ {1, . . . , z} function that assigns colors to the edges of G
G = (V (G), E(G), c) edge-labeled graph G
c(e), e ∈ E color of an edge e
c(v), v ∈ V set of colors of a node (vertex) v
c̃(s) color of a searcher s
S = (m1, . . . ,mℓ) search strategy
mi i-th move in a strategy, also move i
Di set of contaminated edges after move mi

Ci set of clean edges after move mi

Ri set of recontaminated edges after move mi

hs(G) heterogeneous search number of graph G
hcs(G) heterogeneous connected search number of graph G
mhs(G) monotone heterogeneous search number of graph G
mhcs(G) monotone heterogeneous connected search number of

graph G
β(G) lower bound on a heterogeneous search number num-

ber of G
Symbols in Sections 4.4 and 1.5
T ′ subtree of tree T
3-SAT Boolean Satisfiability Problem where each clause is

limited to at most three literals
n number of variables in an instance of 3-SAT
m number of clauses in an instance of 3-SAT
xp p ∈ {1, . . . , n}, p-th variable p in an instance of 3-SAT
xp negation of xp

li,j j-th literal in the i-th clause in an instance of 3-SAT,
either xp or xp

14

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

l literals
Ci = (li,1 ∨ li,2 ∨ li,3) i ∈ {1, . . . ,m}, i-th clause in an instance of 3-SAT
TSAT, T̃SAT our constructed trees corresponding to an instance of

3-SAT
Q set of colors
Vp color corresponding to xp

Tp color corresponding to xp being true
Fp color corresponding to xp being false
Ci color corresponding Ci

R, Oi,j i ∈ {1, . . . , n}, j ∈ {1, 2} remaining colors
Symbols in Chapter 5
T tree
r root of T
v ≺ u v, u ∈ V (T), v is a descendant of u in T — u lies on

the path between v and r
par(v) = u v, u ∈ V (T), v ≺ u in T and u, v are adjacent
Tv v ∈ V (T), the subtree of T induced by v and all its

descendants
w(e) e ∈ E(T), weight of e
Calg, Cmin, Copt some convergcast strategies
Bmin, Bopt, Balg some broadcast strategies
Gopt, Galg some gossiping strategies
↓e(S) e ∈ E(T), the number of downward traversals of e in

a strategy S
↑e(S) e ∈ E(T), the number of upward traversals of e in a

strategy S
energy(a) energy of an agent a
end-energy(S) sum of energy levels of all agents at the end of a strat-

egy S
cost(S) cost of S

15

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Introduction

First and foremost, the subject of this thesis is deeply rooted in graph theory,
since we use its language to describe the titular networks. We assume the readers
familiarity with the standard graph-theoretic notation and concepts that can be
found in [229] which we employ throughout this work. Likewise, we use the classical
notions regarding discrete mathematics, computational complexity, algorithmic
analysis from [62, 198].

The obtained results concern two specific graph problems, heterogeneous graph
searching and gossiping with energy-constraints, which are posed to a team of
entities. Jointly, we will refer to these entities as mobile agents, in order to put
emphasis on their properties that can make them non-interchangeable and their
ability to change their position in a graph. Each of the two problems belongs
to a different, broader, field of study: the former is a part of investigation of
graph searching and the latter can be construed as a problem of energy-constrained
traversal of a graph. The relevant literature is reviewed in Chapters 1, 2 and 3. We
note that the review of literature about graph searching includes, relatively minor,
passages from the author’s early survey [196]. Despite the fact that both of our
problems are centralised, the domain of agent problems is closely associated with
distributed computing and our review of literature encompasses a handful of such
models. Hence, we make an effort to introduce the relevant terms. Nonetheless,
for standard terms that we have skipped we refer the reader to [210].

The mobility of the agents lends itself to the description of the solution in terms
of a sequence of moves, called a strategy. We note, however, that our problems
share little notation beyond basic definitions. Hence, we deffer the discussion of
other relevant concepts and particular terms to each problem’s respective chapters.
A faint thread connecting the presented original research problems of this thesis is
a high level idea of heterogeneity among entities used to solve the problems. This
concept is elucidated in Section 3.2, which contains an overview of a miscellaneous
collection of problems from disparate fields that fit such a classification.

In the interest of not overloading the reader with unfamiliar terms before any
background is introduced let us stop this chapter short of a preliminary discussion
of our specific models. Nonetheless, we trust that readers well versed in the relevant
fields of research may safely proceed to either Chapter 4 or 5, where the original
results are discussed. Further guidance can be found in the Summary preceding
the main body of this thesis or Sections 5.1 and 4.1.1. Likewise, each of these two

17

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

chapters contains their own concluding section. Thus, Chapter 6 provides only a
short list of main results, a brief discussion of potential applications and an outline
of contributions.

18

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Chapter 1

Graph searching

1.1 Introduction to graph searching

Roots of graph searching as a mathematical problem can be traced to woes of
Richard Breisch [45] — T.D. Parsons’ spelunker friend. The problem, raised in
1967, seeks to find the minimal number of rescuers needed to find, with certainty,
a man lost in a cave. Searchers are familiar with the structure of cave; however,
they have no information about whereabouts or actions of the lost person. This
last point led Parsons to assume the worst case scenario, that “The searchers must
proceed according to a predetermined plan which will capture the lost man even if
he were an arbitrarily fast, invisible evader who, clairvoyant, knows the searcher’s
every move [199].” Thus, the lost man became an evader, a fugitive. Another
assumption made by Parsons was that the cave can be represented as a graph on
which entities move continuously and capturing the fugitive is realized by being
in the same space as him — the only way to capture the fugitive is to bump into
him in the darkness.

Given this model, it is not hard to imagine altering the problem to obtain a
different version, thus ensuring a plethora of open questions following each pub-
lication. Moreover, it is not obvious when given problems are equivalent or how
closely are they related. In fact, as described by Fomin et al. in [128], a problem
studied independently by N. Petrov in 1982 in [202] was proven to be equivalent
to the described model in [141, 140]1, but it is not the only such case we will
investigate.

In the case of Parsons’ problem, thinking about a fugitive with unbounded
speed as an entity with a defined location can be misleading. An alternative
story poses a question whether a system of pipes contaminated by a toxic gas,
which spreads whenever it is not contained, can be cleaned by traversing through
the environment. This formulation was introduced by Parsons himself in [199],
and nowadays it often takes precedence over the traditional cave narrative in the

1Due to the language barrier we were not able to verify this claim directly.

19

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

case of distributed problems, labeled as decontamination. Another example of its
prominence can be found in the used terminology. Edges which are not accessible
to fugitive are often referred to as clean and those which can be occupied by him
as contaminated. Furthermore, when the fugitive can reach a previously clean
edge again, it is said to be recontaminated. Whenever no recontamination occurs
during search, it is called monotone. These formulations imply an omnipresence
of the fugitive; hence, it has no effective agency in its movement. Therefore, graph
searching problems can be considered 1-player games.

Another branch of related problems are cop and robber games, where two
players alternate moves. Together they can be labeled as pursuit-evasion problems;
however, both of these branches differ considerably. As a general rule, all cops and
robber games are beyond the scope of this work, and we refer the interested reader
to the rich body of literature on associated problems, such as [39].

1.2 Basic models

1.2.1 Edge searching
In Parsons’ case the motivation of centering the problem on the number of searchers
is explained by a simple example. Given a circular cave one searcher will not find a
man who matches his speed and direction. However, two searchers can formulate a
plan in which one of them stays in place, preventing the fugitive from passing him,
while the other moves around the cave. The same result can be achieved, likely
faster, when both searchers move in opposite directions. By the time they meet
they are certain to find the fugitive. However, the question of what the plan is or
how fast can it be executed is secondary to the question of whether it exists for a
given cave and a number of searchers at all. That being said, the other questions
were explored and will be summarized later as well.

Parsons [199] started the formal description of the problem by embedding a
graph in a three dimensional space, thereby relating the problem to topology,
which is beyond the scope of this work. We just note that such an embedding
is possible for any graph. Next, he defines a search plan in terms of a family of
continuous functions, one function for each searcher, describing its position in a
given time. For every possible function describing the movement of an evader,
there exists a time when position of one of the searchers and evader are equal.
Thus, Parsons is interested in the minimum cardinality of this family of functions
for a given graph.

Instead of Parsons’ highly formalised description it may be more convenient to
use a game-like approach, which will be easier to relate to other models. Note that
the original version of the game is meant to be continuous; however, a discreet
variant is more popular. Searchers act according to a strategy, which is a sequence
of moves. Each move can be one of the following actions:

1. placing a searcher on a vertex,

2. removing a searcher from a vertex,

20

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

3. sliding a searcher present on a vertex along an edge of the graph, which
results in a searcher ending up on its other endpoint.

This approach was used by Megiddo et al. in [186], and was related to a description
of pebbling problems (see Section 1.2.2). Initially, the fugitive can hide in the
whole graph — the graph is contaminated. During the game a sliding searcher can
traverse an edge, thereby making sure that this edge cannot be occupied by the
fugitive. In this case we say that the edge is clean. However, if there exists a path
from a contaminated to a clean area which is unobstructed by the searchers, then
the fugitive can hide there again (we say that the edge became recontaminated).
If no recontamination occurs, then the search strategy is monotone. Note that
monotone strategies always require at most a polynomial number of moves, and as
such, monotonicity is often a desired property — in fact some works deliberately
restrict considered strategies to only monotone ones. Searchers win if they can
clean the whole graph, and we are interested in the minimal number of searchers
such that there exists a winning strategy. This parameter of a graph was called
the search number by Parsons in [199]; however, to further distinguish it from
other parameters, it will be called the edge search number of graph G, or simply
denoted as es(G), in this work. Let us introduce one more term for the purpose of
simplifying informal descriptions. We say that a searcher guards a clean subgraph
S if their removal would cause recontamination of some edge of S.

The result obtained by Parsons [199] is a characterization of the edge search
number for trees. Parsons research had not exhausted the problem he had outlined,
and a few further breakthroughs were made in the following years, with major
contributions of Megiddo et al. [186]2 and LaPaugh [171]. While it was shown
that a strategy that cleans a tree graph T using es(T) searchers can be constructed
in O(n log n) [186], the preliminary proof that the problem is NP-Complete for
arbitrary graphs was initially incomplete. It was not known whether the problem
belonged to NP. In fact, some of the aforementioned pebbling problems, despite
being described in a language similar to searching problems, turned out not to be in
NP, as was shown in [175] and, much later, in [146]. If recontamination is possible,
then the number of moves required to execute a non-monotone strategy might
not be polynomial in the size of a graph. The conjecture that recontamination
does not help to search a graph, which made for a catchy title [171], was proven
later and was acknowledged in the final version of the former article, thus closing
the question of NP-completeness. In the same work, a characterization of graphs
with search number less or equal to 3 was given. Furthermore, it was followed
by a linear time algorithm recognizing such graphs. We will refer to problems
where allowing recontamination to occur yields no decrease of its respective search
number as monotone; thus, we can say that the (edge) graph searching problem
is monotone.

2See Section 1.3.3 for further information on both Parsons’ and Megiddo’s contribution viewed
from a different angle.

21

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

1.2.2 Basic monotone variants
A node search game and the associated node search number, denoted as ns(G)
for graph G, were introduced in [167]. In this version, only actions of placing
and removing a searcher from a vertex are needed. An edge is considered clean
when both of its endpoints are occupied by searchers at the same time. Thus, the
available moves are simply:

1. placing a searcher on a vertex,

2. removing a searcher from a vertex.

Authors prove that the edge and node searching are closely related. In fact, given
a strategy for the former, one can obtain a strategy for the latter and vice versa by
introducing at most one additional searcher. From this transformation it follows
that the property of monotonicity applies to both node and edge searching.

Another corollary from the possibility of transforming strategies is the fact
that, for a given graph G, both search numbers differ by at most one, i.e.

ns(G)− 1 ≤ es(G) ≤ ns(G) + 1.

The examples that the bounds are tight are very simple. A singular edge requires
one searcher in the edge searching model and two in node searching; however, in
the case of a complete bipartite graph on 6 vertices, the relation is reversed and
edge searching requires one more searcher. Authors note that, in general, edge
searching outperforms the node variant only when a searcher slides through the
last contaminated edge adjacent to a vertex. Unsurprisingly, it follows that finding
node search number is NP-Complete, just like its edge counterpart.

Leaving pebbles behind

The node search number coincides with parameters in particular pebbling games.
While pebbling and searching share a similar language used to describe problems,
drawing parallels between them did not bear many results — the following re-
sults were presented in a single article [167]. Rather than overloading the work
with definitions, we will try to give the reader an intuition why the connection
is so tenuous despite the similarities. While [167] contains basic definitions, for
an overview of pebbling itself see [156, 216]3. Both searching and pebbling gen-
erally ask for the minimum number of used entities. In the case of pebbles this
parameter is called a pebble demand. We are interested in specific versions of black
pebble demand [138, 212] and black and white pebble demand [61]. In order to
find a suitable parameter to equate with the node search number, two problems
had to be solved. In general, pebbling games are played on digraphs and can be
thought of as models of computation. Since reusing resources during computation
can yield benefits, backtracking and pebbling vertices multiple times is expected

3Note that following only literature referred to in the original article misses decades of devel-
opment in the field.

22

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

in pebbling problems. In contrast, node searching is monotone, hence the re-
striction to only consider pebbling strategies, called progressive, that pebble each
vertex only once. The second problem is finding a way to compare parameters
concerning digraphs and undirected graphs. This issue was solved by taking such
a transformation of an undirected graph to a directed one, that the progressive
pebble demand was minimal. In conclusion, the obtained result prove that, for a
graph G, node search number is equal to the minimum progressive black pebble
demand and the minimum progressive black and white pebble demand (denoted
ns(G) = mpbw(G) = mpb(G), respectively). Given the apparent necessity of these
restrictions placed on pebbling problems, further investigation of the link between
searching and pebbling does not seem to be promising to researchers.

A foundation to build upon

A unification of both the node and edge searching models was proposed by Bien-
stock and Seymour [24]. This work introduced mixed searching, where searchers
can clean edges by either sliding or occupying both endpoints. The corresponding
parameter ms(G) was called the mixed search number. Since in the mixed search-
ing pursuers have capabilities from both edge an node searching, ms(G) ≤ es(G)
and ms(G) ≤ ns(G). Furthermore, it can be less than them by at most one. The
three models described above are based on the premise of the same story, and
they are a longstanding inspiration for various extensions and restrictions, thereby
creating a rich field of research.

Let us close this section with an introduction of another generalization of mixed
searching which appeared in this century. [234] defined strong mixed searching and
its parameter sms(G). In this model, searchers are given one more ability to clean
edges, this time of an entire subgraph induced by a vertex v and its neighbours,
provided that they occupy every neighbour of v (note that v itself does not have
to be visited). The authors establish montonicity and a clear relation to the three
aforementioned problems. Furthermore, they propose two further generalizations
of the model, one based on visibility, the other on the conditions of capture. To
the best of my knowledge these threads were not followed thus far.

Searching Overview
Model Complexity Relations

edge searching, es(G)
NP-C in general [186, 171],
polynomial for trees [186]

node searching, ns(G)
NP-C in general [167], |ns(G)− es(G)| ≤ 1polynomial for trees [211]

mixed searching, ms(G)
NP-C in general [224], ms(G) ≤ es(G)− 1polynomial for trees [224]

strong mixed searching, sms(G)
NP-C in general [234] sms(G) = ns(G)− 1polynomial for trees[234]

Table 1.1: Basic models of graph searching.

23

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

1.3 A wide perspective on graph parameters

1.3.1 Pathwidth and treewidth

A great amount of insight into searching problems was gained using the concept of
pathwidth. This parameter was developed in Robertson and Seymour’s series of
articles on graph minors [206]. While the first article in the main series, regarding
pathwidth, does not mention searching explicitly, searching appeared in its fol-
lowup, on the same subject of excluding a forest, but doing so quickly [22]. There
the authors apply their findings to give an alternative proof that node searching
is monotone. This is noteworthy, since the original proof [167] was based on the
monotonicity of edge searching, proven in [171]. Additionally authors claim that
the same technique can be applied to edge searching, and indeed, this result was
published later as [24], thereby unifying the proof of montonicity of these two
models. A dozen years later, Fomin [127] followed the idea and applied it in an
even broader context of games.

This connection with parameters of path and tree decompositions of graphs
is one of the main motivations of studying graph searching, thanks to their nu-
merous applications. While a use of graph searching to guide a rescue operation
may be dismissed as unlikely, its connection with the aforementioned parameters
provides an array of applications, ranging from graph drawing [96], through design
of algorithms [23] and electric circuits [108, 81], to a theory in natural language
processing [170].

Let us introduce these parameters formally. A path decomposition of a graph
G is a sequence of sets X1, . . . , Xr ⊆ V (G) such that for 1 ≤ i < i′ < i′′ ≤ r,
Xi ∩Xi′′ ⊆ Xi′ (i. e. each vertex appears only in a continuous subsequence of the
whole sequence) and for each edge {v, w} ∈ E(G), some Xi contains both v and
w. Finally, each vertex belongs to some Xi. The pathwidth of a graph G, denoted
pw(G), is the minimum integer k ≥ 0 such that there exists a path decomposition
of G which satisfies: |Xi| ≤ k + 1 for each i ∈ {1, . . . , r}. Thus, pathwidth is
the maximum size of a single subset in a decomposition that minimizes this value,
additionally decreased by 1 so that the pathwidth of a path graph is intuitively
equal to 1.

The definition of tree decomposition is no less complex. For a graph G = (V,E)
it is a pair (Z, T), where T = (W,F) is a tree and Z is a family of subsets of V (G)
such that Z1, . . . , Zw, w ∈ W . Note that each index which identifies the subset
corresponds to a vertex of T . Furthermore, for each edge (v, w) ∈ E(G) some Zi

contains both v and w and for each i, j, k ∈ W if j is on the path from i to k in
T , then Zi ∩ Zk ⊆ Zj . Additionally, each vertex belongs to some Zi.Analogically
to the definition of the pathwidth, the treewidth of a graph G, denoted tw(G), is
the minimum integer k ≥ 0 such that there exists a tree decomposition of G which
satisfies: |Zi| ≤ k+1 for each i ∈ {1, . . . , r}. Note that this definition ensures that
for any tree T , tw(T) = 1.

Let us address the complexity of pathwidth before proceeding. The result of
NP-completeness of pathwidth was obtained in [5]; however, it is also known to be

24

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

fixed parameter tractable [36, 35]. In fact, the problem of deciding if pw(G) ≤ k
for a given graph G and a fixed integer k can be solved in time linear in terms of
n but exponential in k (see Section 1.3.3).

While the definitions of the parameters introduced in this section are not trivial
to understand, the intuition behind their connection with searching problems can
be explained rather succinctly, using their interpretations as measures of how much
the graph in question resembles a path or a tree in the cases of pathwidth and
treewidth, respectively. A reader unsatisfied with the brevity of the presented
introduction to the topic, but overwhelmed by the sheer volume of the graph
minor series, may find [33] an appealing middle ground.

1.3.2 Finding a path
When one seeks to find the fugitive on a path, it is sufficient to place a searcher
on one of its ends and move it to the other end. If the path is too wide for a
single searcher to block it, a solution is to increase the number of searchers to
match its width. Due to different variants of the problem the exact details of this
“matching” vary, but almost every graph searching problems can be analysed in a
similar fashion to find an equivalent underlying graph parameter. While we admit
to posses a certain flair for the dramatic, the usage of almost every here is not
a gross exaggeration. Indeed, it is noteworthy to even find a search problem not
related to pathwidth in some fashion [183].

The first connection of these parameters for an arbitrary graph G was estab-
lished using the vertex separator (denoted vsep(G)) as an intermediary parameter.
The relation between these parameters can be expressed as follows:

ns(G)− 1 = vsep(G) = pw(G) = sms(G).

The first result was due to [167], the previously mentioned work investigating
connections between pebbling and searching. The second appeared a few years
later [164], tightening the bounds provided by [103]. We also note that this last
work establishes fixed-parameter tractability of the node searching problem by
providing a polynomial time algorithm deciding whether vsep(G) ≤ k for a fixed
k. The rightmost part of the equality was established in [234]. If we think of
establishing the strong mixed searching as finding a search number matching the
pathwidth exactly, then one can also be interested in the reverse — finding a
“width” problem matching a given searching model. In this regard, [224] matches
mixed searching with the proper pathwidth parameter.

1.3.3 Minor interlude
Let us address another contribution in the field obtained from the Graph Minor
series. Graph searching appears among related topics in its second article [207],
this time on the subject of treewidth. Let us begin with an introduction of an
intuitive approach to searching for a fugitive in a tree graph and build gradually.
Since we will be referring to trees extensively, let a branch be a node with at

25

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

least 2 children. Initially we restrict our analysis to trees with degrees of vertices
at most three and hope to provide the reader with enough intuition to see that
construction of a search strategy in any of the models introduced so far can easily
be generalized to work for arbitrary trees.

Since there are no cycles, a single searcher constitutes an insurmountable ob-
stacle which cuts evader’s access to some subtree. However, an invisible fugitive
can slip away when the searcher enters a wrong subtree when their path branches
out, and since the fugitive is omniscient they can ensure that each choice of the
single searcher is wrong. A clever reader can thus deduce that the number of
required searchers increases as they encounter a vertex connecting more than two
subtrees that require the presence of at least every searcher deployed so far.

And indeed, this analysis leads to the idea used by Parsons [199] in his original
work in 1978. Based on the fact that a tree has a search number at least k + 1
if and only if at least three disjoint subtrees connected to one vertex require at
least k searchers, he obtained a recursively defined set of trees Ti for each i ≥ 1,
where each tree in the set has a search number equal to i. In order for a given
tree T to have es(T) = k, it has to contain a subtree homeomorphic to a tree in
Tk, but no subtree homeomorphic to a tree in Ti (see Figure 1.1) for i ≥ 1. Thus,
search number is logarithmic in terms of the size of the tree. While Parsons’ work
was not constructive in terms of providing a practical solution for the proposed
problem, a linear time algorithms finding search strategies for both node and edge
searching were described in [201].

Figure 1.1: First four sets of Parson’s family of trees Ti, i ∈ {1, . . . , 4}[199]. Note
that the trees in Ti+1 consist of connected trees from Ti.

Note that this very early characterization by a family of graphs is consistent
with the general idea of forbidden minors developed by Robertson and Seymour
and published after 1983. In fact, most graph searching problems are minor closed,

26

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

that is: for a given graph G its search number is at most some fixed value k if
it doesn’t contain any graph from a certain graph family, its forbidden minors,
characterizing it4. An intuitive application of this concept is the property that if
a graph H can be obtained by deleting or contracting some edges and removing
some isolated vertices of a graph G (i.e. H is a minor of G), then es(H) ≤ es(G).
A more general concept, when the forbidden structures are not necessarily minors,
is to define a set of obstructions.

Furthermore, the number of forbidden minors is finite, as a consequence of the
proof of Wagner’s conjecture [208], and thus there exist algorithms which recog-
nize graphs of pathwidth and treewidth equal to k which are polynomial in the
size of G but exponential in the size of k. Note that the above results are non-
constructive; however, [32, 36] provide explicit polynomial algorithms capable of
finding tree and path decompositions of width given by a fixed constant k, if such
exist. Parsons notes that, even in the case of trees, determining the size of the
set of obstructions “would be a hard combinatorial problem”. The optimism of
finding ways to efficiently solve minor closed problems in this fashion is tempered
by Fellows and Langston in [108], where they show that it is impossible to con-
struct an algorithm finding the set of forbidden minors for a given minor closed
family. For more information we refer a curious reader to their further work on
this subject [107, 109]. Since many of the theoretical works on exact algorithms
have to contend with exponential complexity or huge constants, a more practically
minded reader might be interested in a recently developed positive-instance driven
dynamic programming approach [225, 9].

In the case of edge searching, there was comparatively little success in finding
forbidden minors since Parson’s characterization in terms of families of trees in
1978. The complete characterization of graphs G and G′ such that es(G) ≤ 1,
es(G′) ≤ 2 appeared in the article by Meggido at al. in 1988 [186] (recall that it
is the same work that established the early results on the subject of complexity of
graph searching, moreover, see Figure 1.2). Additionally, their characterization of
bicconnected graphs B (i.e. such that removing any single vertex cannot make the
graph disconnected) such that es(B) ≤ 3 was expanded by describing biconnected
outerplanar graphs B′ such that es(B′) ≤ 4 in 2022 [95]. In contrast, there are
more results concerning pathwidth and treewidth [165, 209]. Nonetheless, they are
not optimistic, as even in the case of trees the size of the set of forbidden minors
for graphs of pathwidth k has a lower bound of k!2 [223].

This line of research is continued in the form of an investigation of properties
of graphs that guarantee that their search number is small. To this end one can
use the concept of linear-width [226, 38, 223], which ties edge, node and mixed
searching models. In fact, the algorithm for determining whether for a given
graph there exists an edge ordering with linear width of at most some fixed value
k [38] can be used to obtain a search strategy in any of these models in linear time.
These results are closely related to the fixed parameter traceability of pathwidth,
proven in [36] and [32] (note that the latter is also concerned with treewidth).

4For a brief summary of the general concept see the following lecture notes [228].

27

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Due to the exponential in k nature of these algorithms, a practical approach to
determining linear-width presented in [226] is based on a complete characterization
of the obstruction set of graphs with linear-width lesser or equal to 2. This set
consist of 57 graphs, where the one with the most vertices is a tree (22 nodes).
The authors conjecture that a tree being the biggest obstruction in terms of nodes
is the case for any k. A recent description of the state of the art on the topic of
obstructions can be found in the PhD thesis of Dimitris Zoros published in 2017
[239], which contains a chapter dedicated to graph searching.

Figure 1.2: The full set of forbidden minors for 2-searchable graphs [186].

1.3.4 I see a path among trees
By now we have hopefully provided the reader with some intuition on optimal
strategies of graph searching, despite the fact that the effort needed to prove
their correctness is often in contrast with their apparent simplicity. Consider a
case when the fugitive is visible in the node search model — this is the premise
introduced in [213] and then significantly expanded in [80]. Even two searchers can
now clean an arbitrary tree, by checking the position of the evader and choosing
the correct branch to pursue them. Generalization of this approach to arbitrary
graph G suggests that in order to capture a visible fugitive in G we should find
out of how similar to a tree it is, and consequently measure how “wide” this tree
is, to find the corresponding visible search number (denoted vns(G)). This allows
us to expect a result analogous to the relation between the node search number
and pathwidth for the case of invisible evader, and indeed, it was formally proved
in [213] that vns(G)− 1 = tw(G).

Let us call a fugitive able to move only whenever searchers do so, agile. Note
that as long as we assume the speed of the fugitive to be unbounded, it is not
meaningfully distinct from one being able to move at will. Recently, it was proved
that the mixed search game against an agile and visible fugitive is monotone in
the paper of this title [187]. The corresponding mixed search number against an
agile and visible fugitive of a graph G, denoted avms(G), has been found equal to
Cartesian tree product number [144, 79]. Furthermore, a search strategy can be
derived from a newly introduced loose tree decomposition.

An intuitive approach is also proven correct in the case when the fugitive is
invisible but lazy (or inert), that is, it does not move unless its capture is threat-
ened [80]. Since the evader will not try to slip by pursuers while they are occupied

28

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

with searching another branch, they will eventually choose the correct branch, as
is the case when the evader was visible. This result of equivalency of search num-
bers between an inert and visible fugitive was formally proven for the extension
of node search model in [80]. Furthermore, the authors introduce a class of these
problems by quantifying the speed of the fugitive in the amount of edges it can
traverse when forced to move. When the speed is equal to 1, then the problem
is monotone and the search number is equal to the width (linkage) of the graph.
This parameter is interesting on its own [168], and thanks to this result the authors
were able to approach it from a game-theoretic angle consistent with tree and path
decompositions. For an arbitrary speed s ∈ {1, . . . , n− 1} the authors notice that
as long as the largest chordless cycle is at most s+ 2, the search number remains
equal to the treewidth plus 1. In other words, restricting the speed of the fugitive
does not help search such a graph.

In this paragraph we will outline the fruitful efforts to unify results for games
with visible and invisible fugitive contained in [125]. Once again, we invoke the
reader’s intuition to imagine searchers prepared with a plan based on a tree de-
composition. Additionally, they have an ability to query an oracle for information
about whereabouts of the fugitive. Whenever they encounter a branch in their
plan, the oracle’s answer allows them to choose correctly. Their strategy is there-
fore not unlike the one in the case of a visible fugitive, despite their abilities being
more restricted. The model, named nondeterministic graph searching, is related
to a q-branched tree decompositions (and its treewidth), where, informally speak-
ing, the parameter q refers to the maximum number of branches, and thus queries
available to searchers, on the way from the root to a leaf in the tree underlying
the decomposition. Note that 0-branched treewidth is equivalent to pathwidth,
while for unbounded q it is equivalent to treewidth. As such, it offers a tool en-
abling a unified approach to both parameters. One example of a constructive use
of this tool is the provided exact algorithm for computing q-branched treewidth
for all q ≥ 0, and thus also standard pathwidth and treewidth. It is exponential,
but matched the performance of other developed algorithms for pathwidth (recall
the NP-completeness of the standard problems). Furthermore, for any graph G of
treewidth tw(G) = k, the smallest number of queries such that G can be searched
by the minimal amount of k+1 of searchers is at least log2 (⌈pw(G)/tw(G)⌉). This
work was followed up in [184], which established that the problem is monotone,
thus proving that the aforementioned algorithm computes not only decompositions
but optimal non-deterministic search strategies.

1.3.5 Other layout parameters

In this short section we briefly mention a few results establishing connections of
search numbers with other graph layout parameters that did not find their place
in the above sections. Intuitively, a (monotone) search strategy can be thought of
as a (linear) ordering of edges to be cleaned. Hence, it is not uncommon for these
fields of research to intersect. [34] surveys relations between pathwidth, treewidth
and parameters connected with linear orderings of vertices, such as: bandwidth,

29

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

cutwidth, modified cutwidth, vertex separation number, which naturally makes
the analysis relevant to searching problems.

First, a simple remark that interval thickness coincides with the node search
number was proven in [166]. Less straightforward connection exists with topological
bandwidth, summarized in the article of the same name [181], and denoted tb(G).
For any graph G, ns(G) ≤ tb(G), and its corollary es(G) ≤ tb(G)+1. Next, for any
G with the maximum vertex degree 3, its modified cutwidth, denoted mcw(G), is
not greater than node search number minus 1 (mcw(G) ≤ ns(G)−1). Furthermore,
the authors claim that for graphs of arbitrary degree this result can be generalized
to mcw(G) ≤ ⌊∆(G)/2⌋ · ns(G) − 1 and mention a similar analysis for cutwidth
and edge search number in [182]5.

Let us finish with an introduction of an idea which considers alternative mea-
sures of efficiency of graph searching. [126] introduced the search cost in node
graph searching. Rather than taking a maximum number of searchers used at once
(more formally, in their defined instance of a “step”), the authors propose taking a
sum of numbers of searchers in each step. The search cost, denoted sc(G), is the
minimum over such sums in strategies that search the graph. Computing sc(G)
is related to finding the profile [25] of the graph and solving the vertex separation
sum problem. Recall that the connection with pathwidth was established by its
relation to the vertex separator (see Section 1.3.2).

Adaptation of the search cost parameter to the edge searching model was made
in [87]; however, finding its respective layout parameter was left as an open prob-
lem. Nonetheless, a transformation from the problem of finding minimum cost
edge search strategies to the problem of minimizing the cost in the node search
model was provided. Moreover, efforts towards finding the minimum edge search
cost, denoted esc(G), may lead towards using a greater number of searchers. In
essence, it is not possible to optimize for both es(G) and esc(G) for arbitrary
graphs. Two ways to reconcile such pairs of problems are: seeking specific classes
of graphs where the relevant parameters coincide and two-criteria optimization.
This latter concept was explored in [92], concerned with, as the title suggests,
trade-offs between width-like (pathwidth, treewidth) and their respective fill-like
(profile, fill-in) graph parameters6.

1.4 Fast and wide

The above sections were concerned with the classical approach to searching, focus-
ing mostly on feasibility of formulating a search strategy with given resources and
conditions. Nonetheless, once conditions for feasibility are established, it gives way
for new questions to arise, among which one of the most natural ones is to deter-
mine a “time” required to execute a search strategy. However, the formal definition

5The authors of [181] use the phrase “graph of degree x” and notation deg(G), which we believe
refers to the maximum vertex of graph G.

6The authors note that they are not the first to notice the existence of the trade-offs, citing
[31, 169].

30

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

of time required to search a graph is not immediately obvious. The approaches in
literature differ in expressing it as a graph parameter and bounding the number
of moves executed by a strategy.

This branch of research received comparatively little attention early, until the
introduction of fast searching in [98]. A tongue in cheek explanation of this indif-
ference might be the pervasive insistence that polynomial solutions are efficient.
In this view, if a model is monotone, it is usually easy to establish a satisfactory
upper bound on the number of moves.

1.4.1 One giant step for searcher-kind

We open this section with a general motivation: if the goal is to minimize the time
of a search, there is a good chance that we are ready to spare no expense to achieve
this goal. This is the premise of the work of Chang in 1991 [53], who investigated
the possibility of searching graphs in Parsons’ edge searching model in a single
step. In a step each searcher is allowed to execute a single action. Thus, searchers
which slide along their edges simultaneously count as moving in a single step. The
difficulty comes from the fact that the fugitive can hide between searchers while
one is moving towards and the other away from a vertex. Note that this problem
is trivial in the node and mixed searching models — one can simply put a searcher
on every node.

The lower bound on the number of searchers necessary to perform such a feat
in the edge searching model is m, and a graph can be searched in a single step
with m searchers if and only if it does not contain an odd cycle as its subgraph.
Nonetheless, determining what number of additional searchers is necessary is NP-
Hard [53]. Later it was proven to be equivalent to the maximum two independent
set problem [152]. The research was continued on a generalized model [154, 153],
where a few weighted versions were investigated, although it did not garner sig-
nificant attention. An open question that, to the best of my knowledge, was not
tackled in the edge searching model is the generalization for a given number of
steps s: what is the minimum number of searchers needed to search a given graph
in s steps.

1.4.2 A long path

The task of defining general node searching time parameters formally was under-
taken in the new millennium [44] and resulted in characterizations of the length
of a strategy in terms of path decomposition, interval graphs, and vertex separa-
tion. The problem of finding both of these parameters was proved to be in NP
thanks to the monotonicity of the underlying node searching problem (keep this
specific variant in mind for the purpose of a comparison with the next section).
The authors identify examples of classes of graphs such that even a single addi-
tional searcher yields time improved twofold. Moreover, they provide an example
such that at least a specific amount of extra searchers is required to achieve any
improved result at all.

31

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Let us build upon the intuition developed in the previous section and the
definition of pathwidth. Recall the sequence of subsets of vertices X1, . . . , Xr in the
definition. While the size of the biggest subset, henceforth denoted k, corresponds
to the width of the path, let its length be expressed in terms of the number of these
subsets, i.e. r. Thus the pathwidth problem can be generalized to include r as the
second criterion. Minimization of this parameter was considered in [89], which was
concerned with minimum-length path decompositions. This generalized problem
is NP-Complete for general graphs for any fixed k ≥ 4, and also for any fixed
r ≥ 2 [89]. Note that the original single criterion pathwidth problem was fixed
parameter tractable in regards to k. When k < 4, a polynomial time algorithm
is provided. Furthermore, the problem for connected graphs is NP-Complete for
any fixed k ≥ 5, and polynomial for any k ≤ 3. To the best of my knowledge, the
open question of the remaining case k = 4 remains unresolved.

Similar results were obtained for the generalized treewidth problem [173]. It
was proven that the problem is NP-complete for any fixed k ≥ 4 and polynomial
for k ≤ 2. In the missing case of k = 3 the problem was found to be polynomial
for trees and 2-connected outerplanar graphs. We note that an effort was put into
optimization of algorithms for these problems, resulting in subexponential time
algorithms for k ≥ 4 in both cases [37].

1.4.3 Only once

In contrast to the previous approach, which stressed the ability of searcher to
work in parallel, [98] defined fast searching by modifying Parson’s edge search
model by forbidding the type of move which removes a searcher from a graph and
introducing the condition of traversing each edge only once during the execution
of the entire strategy. Thus, the problem trivially has number of moves linear in
the number of edges and is monotone. Let fsn(G) denote the fast search number,
i.e. the number of searchers required to execute such a strategy in a graph G. The
initial exploration of the problem showed that the problem differed substantially
from not only the basic edge searching, from which it was derived, but most other
searching problems as well. Unlike them, it is not minor closed, which can be
illustrated simply by providing an example of a graph G and its subgraph7 G′

such that fsn(G) < fsn(G′) (see Figure 1.3).

Figure 1.3: The graph G on the left and its subgraph G′ on the right such that
fsn(G) = 3 and fsn(G′) = 5 [98].

7To be precise it is also a proof of a stronger property of the problem not being closed under
subgraphs.

32

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

The first results were a linear time algorithm for trees [98] and the character-
ization of bipartite graphs in terms of their fast search numbers. Further results
for specific classes of graphs include: grids, cubic and Halin graphs [217], complete
k-partite graphs [232], Cartesian products of certain classes of graphs [231]. Fur-
thermore, as conjectured by the parameter’s creators, the problem of determining
the fast search number fsn(G) for an arbitrary graph G turned out to be NP-hard,
as was shown in [86] and [235] using different techniques. The former of the two
articles containing the aforementioned proof of NP-completeness is concerned with
the characterization of graphs F such that fsn(F) ≤ 3.

The latter article investigated connection of fast searching to the established
models in more detail. Due to the restrictions placed on fast searching, finding
fsn(G) for a graph G is different than minimizing the number of moves8 in the edge
searching model, and this distinction is considered in [235] with the introduction
of the fast edge search time, denote fet(G), and the corresponding fast edge search
number, denoted fesn(G). The former parameter denotes this minimal number
of moves and the latter is equal to the number of searchers needed to clean the
graph in fet(G) moves. The author also draws connections of their model to not
only fast but also node searching and pathwidth. Finally, the author provides
an approximation algorithm which computes a fast search strategy. Note that,
while fesn(G) and fsn(G) are different, every fast search strategy is also an edge
search strategy, thus an approximation can be derived for both from the proposed
algorithm.

One more model obtained by introduction of an additional requirement to an
already established model is fast-mixed searching proposed in [236] with its cor-
responding fast-mixed search number, denoted fms(G) for a graph G. The author
has proved the NP-completness of the problem, its relation with the induced-path
cover problem (see [172]) and investigated a few special classes of graphs. Every
fast-mixed search strategy is also a mixed search strategy, where the searchers
obey an additional rule — they can be placed and move only on occupied vertices
and edges, respectively.

As a closing remark of this section we refer a reader who is interested in ex-
ploring a few further examples concerned with time of search in pursuit evasion
models to [2].

1.5 Breaking the monotony

Consider an application of an edge search strategy by a team of entities in prac-
tice. There is a hidden cost associated with its execution since the actions allow
for removing and placing an entity on an arbitrary vertex, which we have to cir-
cumvent by traveling along additional edges. To our dismay and horror, many
models discussed so far share this property, which makes the stated purpose of
searching problems secondary to their value as a tool for exploring, undoubtedly

8While the article uses the term “step”, we decided to replace it with “move” to keep consistency
and avoid confusion with the single step searching discussed earlier.

33

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

very useful, graph properties. Although this distinction was noticed as early as
1980s by Megiddo at al. [186] in their discussion of length of a search strategy, this
problem was first addressed in [11] and shortly followed in [12]9 in 2003. The latter
work opens with a vivid story, narrated in an irreverent tone, set in a library where
jumping over the bookshelves is frowned upon. The authors introduced two, seem-
ingly innocuous, properties that can be required of search strategies, summarized
as follows:

• a search strategy is internal if searchers cannot be removed from a graph
(e.g. in internal edge searching model they can be placed and henceforth
perform only sliding actions). This ensures that searchers cannot “jump”;

• a search strategy is connected if the set of clean edges is always connected.

These two properties together form the basis of contiguous searching, although
different authors may choose to highlight only one of them.

Recall that a search strategy is monotone if no recontamination (a previously
clean edge becomes contaminated) occurs during its execution. If it is unknown
whether there exists an optimal monotone strategy for all instances of a researched
problem, then it may be beneficial to restrict the scope of the problem to only
allow such strategies, which are easier to analyze. Note that these properties need
not be explicit. For example, the conditions imposed on searchers in the fast
searching model imply that any strategy obtained in this model is both internal
and monotone. Conversely, edge searching required a non-trivial proof that the
problem is monotone. Furthermore, these requirements can be combined in order
to create new search problems. Recall that for a graph G, es(G) denotes its edge
search number. Listed below are problems obtained by modifying it and their
respective search numbers:

• internal edge searching, ies(G),

• monotone edge searching, mes(G),

• monotone internal edge searching, mies(G),

• connected edge searching, cs(G),

• internal connected edge searching, ices(G),

• monotone connected edge searching, mces(G),

• monotone internal connected edge searching, mices(G).

The following chain of relations was established in [12]:

es(G) = ies(G) = mes(G) ≤ mies(G) ≤ cs(G) = ices(G) ≤ mces(G) = mices(G),

where G is an arbitrary graph. Furthermore, a similar analysis was conducted for
trees. See Tables 1.2 and 1.3 for a brief summary.

34

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

(a) The graph T such that mies(T) = 4
and ies(T) = 3 (compare with Figure
1.1) [12]

(b) The graph G such that ies(G) = 3
and mies(G) = 4 [237].

Figure 1.4: Examples of graphs that show that internal searching is not monotone

Overview for general graphs G
Relation Proof

es(G) = ies(G) Trivial1.
es(G) = mes(G) Edge searching is monotone [171, 24].
ies(G) ≤ mies(G) Internal searching is not monotone; see Figure 1.4 [12, 237]3.
mies(G) ≤ cs(G) [12]3
cs(G) = ices(G) Trivial2.

mces(G) = mices(G) Trivial2.
cs(G) ≤ mces(G) Connected searching is not monotone [237]

mces(G)/es(G) = O(log n) [10]
cs(G)/es(G) ≤ log n+ 1 Using connected treewidth in 2006 [130].

cs(G) ≤ 2es(G) + 3 Using connected pathwidth in 2012 [85].

Table 1.2: 1. An internal strategy requires additional moves to manually slide
searchers that would be removed and placed again in a non-internal strategy.
2. Searchers move freely in the connected component.
3. The difference might be arbitrarily large [237].

Specifically, ies(G) ≤ mies(G) has simple examples of graphs where the in-
equality is strict, which reveals that monotonicity of edge searching is the product
of searchers being able to jump around the environment. It is not surprising that
this fact was emphasised by the researchers who were looking at the problem from
the perspective of mobile agents earlier [11]. Since this is the first time agents
are mentioned and the topic requires an introduction of a considerable size, let
us postpone the discussion of this aspect of their work until Chapter 2. The sta-
tus of the last inequality, namely cs(G) ≤ mces(G), has proven to be much more
interesting, as we will see in the next section.

9Note that [13] is cited more frequently, but one of the proofs omitted there appears in [12].

35

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Overview for trees T
Relation Proof

es(T) ≤ cs(T) By example, see Figure 1.41 [12].
es(T) = mes(T) = ies(T) ≤ mies(T) Same as for general graphs.

mies(T) = cs(T) [12].10
cs(T) = ices(T) = mces(T) = mices(T) Connected searching is monotone for trees [11, 10].

cs(T) < 2es(T)− 2 [12, 10]

Table 1.3: 1. Note that an alternative proof can be obtained by combining the
second and third row.

1.5.1 Connected graph searching is hard

Note that if cs(G) ≤ mces(G) can be strict, then it implies that connected graph
searching is not monotone. While in [13] it was left as an open question, the
proof of that claim appeared independently in 2009 [237] by different authors.
The results from [13] on both internal and connected searching were expanded,
although we will focus on the latter. The authors construct graphs using cliques
in such a way that their search numbers can be easily determined and end up with
an example of a family of graphs Wk, k ≥ 1, such that cs(Wk) = 280k + 1 and
mces(Wk) = 290k. While they do not claim that it is the smallest example, as
they remark that the construction can be also scaled down, it is in a stark contrast
with the simple examples of graphs provided for internal searching.

Furthermore, it is shown that connected and monotone internal searching prob-
lems are not minor closed, that is, there exists graphs G, H such that H is a
minor of G and cs(G) < cs(H), echoing the conclusions of [13]. In fact, a sub-
graph may require arbitrarily many more searchers to clean it than its supergraph.
This property, in conjunction with the fact that non-monotone strategies do not
have a natural polynomial bound on the number of moves, has proven to be an
obstacle that prevents application of many techniques developed for analysis of
other searching problems. Nonetheless, a specific case of graphs searchable with
2 searchers in the connected, both monotone and non-monotone, mixed model
were characterized using the same set of 177 obstructions [20]. Note that in the
connected variant there is no guarantee that such a set of finite size exists for
each number of searchers, so extending this line of research into a general result
is not very promising. Despite all the efforts, to this day it is not know whether
determining cs(G) is in NP11.

The efforts were then focused on the “price of connectivity” defined as a ratio
of connected search number cs(G) to es(G) for a graph G, which was known not
to exceed a factor of 2 for trees [12]. Progress was made thanks to the concept
of connected treewidth [130], further applied to chordal graphs [193]. Ultimately,
the conjecture that cs(G)/es(G) ≤ 2+o(1) for arbitrary graphs was proven true in
[85], while [10] was in review, using the notion of connected pathwidth. Moreover,

11There exists an example of a searching problem that is both non-monotone and in NP, namely
the internal strong searching of directed graphs [234]. Since the topic of searching digraphs is
outside of the scope of this dissertation, we refer an interested reader to the third chapter of [40].

36

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

the factor 2 is tight, thereby closing the posed open question. Additionally, a
method of converting a given search strategy using k searchers into a monotone
and connected one using 2k + 3 searchers was provided.

Given the extensive literature on the topic of fixed-parameter tractability of
the pathwidth problem, it was reasonable to ask whether the same holds for its
connected sibling. Due to the fact that this parameter is not closed under minors,
the techniques used for the regular pathwidth do not apply in a straightforward
fashion. It is, however, closed under contractions. For a summary of these and
further observations on the difficulties associated with the problem, see the intro-
duction of [160]. As a start of interest in this investigation one can point to the
GRASTA 2017 workshop, where among open questions [124], the following was
raised: is it possible to verify in polynomial time, whether, for a fixed constant k,
the connected pathwidth of a given graph is at most k. This was the stated moti-
vation behind [91], where an algorithm solving this problem in time f(k) · nO(k2)

was provided. The question of fixed-parameter tractability was settled in [160],
with the introduction of the algorithm of complexity n · 2O(k2). Note that these
results do not resolve the open question of whether the connected graph searching
problem is NP-Complete because connected pathwidth is, by definition, concerned
with monotone strategies.

Connected searching with a visible fugitive was considered in [131], where it
was shown to be non-monotone. Furthermore, the logarithmic Θ(logn) bound on
the price of connectivity of visible searching was proven to be tight.

1.5.2 Connected tree searching is easy

In this section we will consider connected searching of classes of graphs such that
the problem becomes polynomial, with trees serving as the primary example. De-
spite the upbeat title, let us start with a cautionary tale. A generalized version
of the problem of connected searching of trees, in which an edge or a node of
a tree can require more than one searcher was claimed to be solvable using the
modified, but still linear, algorithm for the unweighted case [11]. This assertion
was proven wrong in [83], as the weighted version of problem turned out to be
NP-Complete. The continuation of this line of research resulted in a polynomial
time 3-approximation algorithm for connected searching of weighted trees [84].
For those especially inquisitive we included Tables 1.2 and 1.3 where one can find
references to the proofs of the other presented claims. Thus, for a reader wishing
to familiarize themselves further with connected searching, perhaps because of a
piqued interest in the open question of NP membership, we discourage following
the chronological order and recommend starting with [10] instead. This work con-
tains republished results from [11, 12] supplemented with a commentary on the
works that appeared in the decade between publications.

As expected in a searching problem, restricting the environment to tree graphs
has proven to reduce its difficulty tremendously, in computation as well as analysis.

37

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

The following results are provided in [12]:

es(T) = ies(T) = mes(T) ≤ mies(T) = cs(T) = ices(T) = mces(T) = mices(T);

where T is an arbitrary tree (see Table 1.3 for a brief summary). Thus, despite
the apparent plethora of possibilities only two values of considered search numbers
do not coincide for trees. While many of these results follow from the ones for
general graphs, a notable distinction is cs(T) = mces(T) — connected searching is
monotone for trees [10]. Furthermore, it is minor closed and, unlike the classical
edge searching of trees, for each k obstruction set T ′

k that characterizes trees such
that their connected search number does not exceed k consists of one element. It
is easy to check that es(D) = cs(D), for each D ∈ T1 ∪ T2 ∪ T3 in Figure 1.1. And
indeed T ′

k = Tk, k ∈ {1, 2, 3}. For k ≥ 4, T ′
k contains the star with 3 edges, each

endpoint of valency 1 connected to the root of a copy of a full binary tree of height
k − 2. See Figure 1.4a for the single tree in T ′

4 . Alternatively, one can describe
trees such that k + 1 searchers suffice as k-caterpillars. A succinct corollary to
this result is mces(T) = log n for binary trees. This very simple characterizations
lead to an algorithm that computes a connected search strategy for arbitrary T
in linear time (given a starting vertex, thus even an exhaustive search over all
possible starting positions guarantees the complexity of O(n2)).

We will revisit the topic of connected searching during the discussion of decon-
tamination problems in the next chapter.

1.6 In search of oddities
While many results in the field of graph searching are highly connected, some
search problems are not easily classified. The author realizes that the concept
of heterogeneous graph searching, one of the main subjects of this dissertation, is
likely to belong to this category as well. However, due to the idea being related with
problems in other fields of research its discussion is postponed until Section 3.2.

A seemingly arbitrary, although we will see that not to be the case in Sec-
tion 2.2.7, condition that two searchers can never occupy the same node gave rise
to the exclusive searching model [29]. This model differs considerably from inter-
nal, mixed searching, on which it is based. Not only it is non-monotone but also
it is not closed under a subgraph. A simple analysis of a star graph shows that
exclusive search number is related to the degrees of graph’s vertices. Furthermore,
[183] shows that its computational complexity is not related to that of pathwidth,
which was not proved for any other searching problem before. This was achieved by
comparison of monotone exclusive searching, which is NP-complete in split graphs
and polynomial in starlike graphs, with the complexity of the pathwidth problem,
which is polynomial and NP-hard for these classes, respectively. In general, exclu-
sive searching is NP-hard in planar graphs with bounded maximum degree and it
is not known whether it is NP-complete for arbitrary graphs.

LIFO-search, as defined in [137], is a variant of the node graph searching prob-
lem where only the most recently placed, or last in, searcher can be taken off the

38

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

graph, i.e. it is first to be out. Thus, since the rules of the node searching variant
forbid performing sliding moves, it is not possible to move other searchers while it
is on the graph. This variant is monotone and the minimum number of required
searchers does not vary whether the fugitive is visible or invisible. The minimum
number of searchers required is equal to treedepth, a parameter that can be con-
ceptualized as a measure of how much a given graph resembles a star. While the
problem may seem niche from the perspective of graph searching, the authors note
that finding the treedepth of a graph is related to solving the vertex ranking prob-
lem, the ordered colouring problem, finding the minimum-height of an elimination
tree of a graph, and it appears in theory of graph classes of bounded expansion
[191]. The same work also investigates LIFO-search on digraphs and its relation
to cycle-rank.

Let us close this overview of less known models with a mention of a work
[82] describing a non-monotone problem which does not use the concept of search
number but focuses on minimizing the maximum number of steps in which a vertex
is occupied by a searcher. This property, named a maximum vertex occupation
time, was studied in a model with an inert fugitive and may differ arbitrarily when
only monotone strategies are considered.

39

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Chapter 2

Mobile agents

We have only mentioned agents and distributed environments in the previous chap-
ter when discussing the origin of the internal and connected searching models [11],
leaving the reader with a promise of expanding on the topic later. This is the
chapter where we fulfill this promise.

2.1 Agents and their environment

With the introduction of connected and internal searching, a lot more attention
was paid to the possibility of implementing an algorithm in an existing network.
For example, in an internal search problem searchers are prohibited from jumping,
thus ensuring that the actions specified by a search strategy could be executed by
an entity moving in an environment which the given graph models. This approach
of giving some individuality to entities, further called agents, is not uncommon in
modelling pursuit-evasion, rendezvous and exploration problems1. Furthermore,
when we wish to emphasise agents’ ability to change position, we will refer to them
as mobile.

If while constructing a solution for a given problem each agent has access to
the complete information, then we will call the algorithm (or problem) centralized.
Note that all of the search problems discussed so far assumed the possibility of
executing a centralized algorithm. On the contrary, if we assume a presence of some
local knowledge specific to each agent which is not trivially shared, then we will call
the problem distributed. we refer to such agents, acting on their local information
in a distributed environment, as autonomous. Note that the requirement that
sharing knowledge is not trivial ensures that agents cannot coordinate to compute
a solution identical to a one created by a centralized algorithm without incurring a
meaningful cost. When discussing instructions that govern an agent’s behaviour,

1The term “agent” can also be found in other disciplines and software development. Our
use refers broadly to entities encountered in graph problems. Hence, it encompasses cops in
helicopters [21], not employees of MI5.

41

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

we will refer to its protocol. While protocols need not be distinct between agents,
nonetheless their execution depends on local information. In fact, by specifying a
role of an agent as an input, all agents can be made to follow the same protocol
[210].

Depending on the specific model, agents may have different methods of com-
munication available to them. A very restrictive model could allow for an exchange
of information only when two agents share position at the same time. Relaxing
the latter requirement gives us a model with whiteboards, where agents can write
information locally for others to read later. Note that a limit of available mem-
ory, either on whiteboards, or available to agents themselves, is another field of
optimization.

When some of the knowledge of agents is local, the execution of an algorithm
could appear random due to their choices being based on arbitrary description of
their environments. In the case of problems where the goal is optimizing for the
worst case scenario, a useful concept for analysis of such problems is an adversary.
When an agent obtains new information, e.g. a label of a visited node or even its
own label during an initialization, then it is decided by the adversary. Moreover,
in such a way that it hinders reaching the goal to the greatest extent. Note that
as long as the adversary follows the restrictions given by the problem and all of
its decisions are consistent with the data made available to agents so far, there
is no need for a predefined underlying world to exist, only bits unveiled by the
adversary ad hoc2.

In literature one can also find the distinction between centralized and dis-
tributed problems where the adversary is given such power under the names off-
line and on-line, respectively. Since the research of distributed problems is very
broad, the exact line between on-line and off-line problems may vary. To give a
concrete, relevant example, the case of searching an unknown graph would be an
on-line problem for [197], while [43] uses the terms online and distributed inter-
changeably. Naturally, it is expected that when a problem is transformed into a
distributed model the efficiency of algorithms drops. The difference in the perfor-
mance or use of resources between the respective on-line and off-line versions of
the problem is referred to as competitive ratio (the concept is similar to the price
of connectivity outlined in the previous chapter). Due to these inconsistencies in
the used terminology, we defer the introduction of the formal definitions of the
concepts used in our results to their specific chapters.

When the graph is a priori unknown to agents, they are usually granted some
local, i.e. available to an agent visiting a node, information that allows them to
navigate their environment. To discuss the works in further sections, we introduce
here a notion of a port. It is, intuitively, an entry or exit point of an edge from
the point of view of an agent. Let us assume that an agent on a node u can
distinguish, at least, labels of each port, denoted by distinct integers from 1 to
the degree of u. An agent knows the port by which it arrived to a node and
can choose which port it will use to leave the node. Note that, in the absence

2See [192] for an old, radical application of this idea in a distant field.

42

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

of additional information, numbering of ports alone is insufficient to determine
whether a particular node has been visited by an agent. One needs only a simple
a example of a ring network, where every node has two ports, namely 1 and 2,
to verify this observation. A further distinction is concerned with whether the
numbering of ports is consistent for all agents, or the adversary can label the ports
differently for each agent. To further elucidate this point, in the aforementioned
example of a ring network a common labeling can be used to distinguish common
‘clockwise’ and ’anti-clockwise’ directions for all agents.

Furthermore, the adversary has a particular trick that frequently has to be
considered when crafting a model to research. If two or more agents follow the
same protocol and find themselves in an environment that they perceive in the same
fashion, then they can be made to perform actions that mirror each other. This
can lead to a lack of guaranteed solution, as is commonly remarked in descriptions
of rendezvous problems. For example rendezvous on a node is impossible in a
graph consisting of a single edge in the absence of distinct labels on both agents
and elements of their environment — the adversary can ensure that they always
swap nodes, e.g. as remarked in [94]. If a property of a given problem allows the
agents to differentiate their actions, then we say that it breaks the symmetry.

Another property that can be used to distinguish distributed environments is
the perception of time by agents. A model is called (fully) asynchronous if the
agents can rely only on the knowledge that their actions will take a finite amount
of time3. If an agent is provided a local clock, its units of time are unknown.
Again, the adversary can be used to govern the time of performance of each of
agent’s actions and each of their clocks. On the contrary a (fully) synchronous
model is characterized by two properties: every local clock ticks simultaneously
and the upper bound for the time of actions is known. These restrictions are
sufficient to establish an external view of the system, where each action is known
to be completed after one unit of time (a unitary delay) [210].

Models may impose additional restrictions, such as in the following Look-
Compute-Move model, also known as CORDA. In this model each agent performs
actions in asynchronous cycles of three consecutive phases:

1. Look - the agent takes a still snapshot of the environment and relevant
information.

2. Compute - the agent decides its behaviour in the next phase.

3. Move - the agent executes an action of moving to an adjacent node or staying
idle. Note the the information obtained in the first phase might be outdated
at a discretion of the adversary.

As we will see in Section 2.2.7, it was featured in the context of perpetual graph
searching [28]; however, it is also used more broadly, for example in rendezvous

3This definition is commonly amended by a remark that this assurance excludes the case of
failures. In our review, it applies only to Section 2.2.5, and the absence of failures is assumed in
all the other cases.

43

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

[123]. The complexity of computation involved in the second phase may be con-
sidered irrelevant. This is not an unusual occurrence when discussing distributed
models, where it is often preferred to express the efficiency of a solution in terms of
the number of actions or, in the case of synchronous models, rounds which consist
of synchronized actions of all agents in a unit of time. A diligent reader might
recall that similar measures were considered in Section 1.4 where the speed of
searching was considered. In particular the concepts of a step and a round, where
entities are allowed to execute actions simultaneously, would be analogous.

In the following sections, we will discuss some distributed problems before ad-
dressing the centralized algorithms that were described as part of the original
research that constitute this thesis. Finally, as a closing remark for this intro-
duction, we would be remiss not to acknowledge the two big branches of graph
research using agents — exploration and rendezvous. Although we will not be
covering these in detail, we refer the unsatisfied reader to the following surveys:
[75] for the former, and [200] for the latter.

2.2 Decontamination

Let our first example to breach the gap between centralized and multi-agent prob-
lems be a distributed version of graph searching. A searcher is thus modeled as
an agent (in this section the terms ‘agent’ and ‘searcher’ will be used interchange-
ably) with some, dependent on the specific model, degree of independence from its
peers. Actions of the fugitive can be said to be controlled by the aforementioned
adversary, which ensures that the proposed strategy needs to be able to handle
the worst case scenario. Fortunately for our introductory problem, a description
of the fugitive as an autonomous entity outside of an algorithm’s control does not
yield additional insight in our formulation of the problem. We recall that it is suf-
ficient to distinguish between elements of a graph which the fugitive can possibly
occupy, i.e. contaminated ones, and those that are sure to be free of its presence,
i.e. clean. The title of this section adheres to the naming convention that dis-
tinguishes the distributed branch of graph searching research as decontamination
problems, although this is certainly not a strict rule and the name is sometimes
used in a broader context.

2.2.1 A second look at connectivity

Recall the connected internal variant of searching developed in [11] from Chap-
ter 1.5. After its introduction it was followed with a discussion of connectivity
and monotonicity of centralized searching algorithms. In this section we focus on
the practical and distributed aspects of the model. The former is reflected by the
strategy being internal, since mobile agents are rarely equipped with an ability to
arbitrarily relocate at will. Additionally, all agents enter the environment at once
and at a single node. In general, a node distinguished as a point of entry for all
agents will be called their homebase. Furthermore, a distributed network environ-

44

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

ment gives rise to a concern of safety of searchers. In this regard, the connectivity
ensures that communication between agents can follow clean edges, and thus can-
not be tampered with. Note that the term contiguous can be encountered to mean
internal connected searching (e.g. in [117]). And lastly, some of the edges might
require more than one searcher to clean (represented by weights on edges). Un-
fortunately, as mentioned in the beginning of Section 1.5.2, the authors’ algorithm
for decontaminating weighted trees does not succeed in this regard.

Nonetheless, the algorithm for non-weighted trees provided in [11] has further
practical advantages. It has time complexity O(n) and the computed sequences of
moves can be stored in O(n) space. The authors further note that this is despite
the fact that some trees may require at least n log n moves. Finally, if each node
is a processor, a strategy can be computed in a distributed fashion using O(n)
messages, thanks to a possibility of assigning a certain common labeling of nodes.

2.2.2 Overview of properties

Let us now consider further adaptations of the baseline internal connected model
outlined above and its studied variations. We begin with with a very brief and
general overview of the works that share many assumptions in their models. It
is followed by description of properties encountered in decontamination problems,
which conclude with the assignment of works to the outlined properties. Sec-
tion 2.2.3 readdresses the works used in the introduction below and discusses the
obtained results. Further below one can find sections on more specific variants of
the problems. An ever inquisitive reader can find tables with the detailed results
in [194] and [197].

Landscape

The following graph topologies were considered by Flocchini et al.: hypercubes
[112] (a preliminary version of [114]), meshes [117, 215], chordal rings and tori
[113] ([111])4. This line of research was continued in the form of a refinement of
an experimental approach in [119, 120]. PhD thesis of one of the coauthors [155]
contains results for hypercubes, chordal rings and, additionally, butterflies. The
leap towards purely theoretical results concerning the problem of decontamination
of arbitrary graphs was made in [30] by a different team of researchers. Further-
more, pyramids were investigated in [214], star graphs in [159], Sierpiński graphs
in [178], product networks in [158] and (unknown) partial grids were considered in
[93], which later became a part of Osula’s PhD thesis [197].

Properties

Let us investigate properties that may be encountered in decontamination models.
As our point of departure let us assume the monotone internal connected searching

4A table summarizing results for these classes of graphs can be found in [194].

45

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

introduced in [11]. A property of the model [11] that has proven exceptionally un-
popular almost to the point of uniqueness, at least in the world of graph searching,
is providing an ability to communicate between nodes. Note that in this model
the nodes themselves are treated as computational units which then can provide
agents information sufficient to execute a strategy.

In the more popular decontamination models, in order to communicate agents
relay on either meeting on the same node, where they can engage in a face-to-face
communication, or leave messages on nodes. This latter method is facilitated by
whiteboards, which represent some amount of local memory on each node common
to all agents that visit it. Hence, any agent can read, erase, and write information
visible to other agents, provided that they visit the same whiteboard. It is a
standard practice to assume that agents can access a whiteboard on the rules of fair
mutual exclusion. Furthermore, it may be assumed that the fugitive can corrupt
any whiteboard it can reach. Conveniently, a search strategy being connected is
sufficient to protect vital information under the properties introduced thus far.

Thus, let us jointly consider the following local knowledge available to any
agent: the state of a node they are visiting at a given time, the presence of any
other agents there and information available on the node’s whiteboard (if they
are included in the model). This basic set of assumptions about the knowledge
accessible to an agent can be extended (or reduced to make the model stronger).

One such extension is the notion of visibility. For the sake of consistency
between the discussed models, the property of d-visibility is defined as granting
each agent an ability to obtain local knowledge of any node within distance at
most d as if it was present on that node. Hence, 1-visibility allows agents to
see the local knowledge of the currently occupied node and its neighbours. As it
is the most commonly investigated variant of this property, further mentions of
visibility without the prefix number refer to 1-visibility (0-visibility allows an agent
to obtain only local knowledge). Its implementation can be achieved by sending
single bit messages whenever a node is decontaminated to be stored on the node’s
neighbours [113, 214]. Besides the two aforementioned works, visibility is featured
in [114, 155, 117, 178] and in the two experimental works [119, 120]. Moreover, a
version of visibility with reduced local knowledge (only the status of neighbouring
nodes is visible) is considered in [159, 158].

Recall that, since our baseline model is one of connected searching, it is natural
to assume that every agent starts at a single position, their homebase. Note that
when all agents start on a single node it is easy to ensure coordination of the whole
team of agents by designating one agent (called a leader, coordinator, synchronizer)
to facilitate communication between them. Thus, an algorithm can proceed as if
agents operated with information shared globally, albeit at a cost of significant
increase in the number of required moves. Observe that this approach works
regardless of whether the environment is synchronous or asynchronous (a more
precise remark on this property can be found in [93]). Nonetheless, the impact of
allowing multiple homebases was studied using experimental approach in [119] and
[120]. Naturally, the assumption of connectivity was dropped and, less intuitively,
synchronicity was enforced.

46

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Let us consider the measures of efficiency given the parameters discussed above:
the number of moves, the number of rounds and, traditionally, the number of
searchers. The order of this last parameter turns out to be largely independent
of the specific choice of method of communication and synchronicity. As we have
seen above, one additional searcher can transform an asynchronous strategy into
a synchronous one and turn a model with long distance messages into one with
a face-to-face communication. Conversely, a choice of a more restricted model
in these respects might significantly inflate the number of moves or rounds. Let
us note that the notion of time is not applicable to asynchronous models; hence,
it is assumed that a traversal of a link takes one unit of time. This measure of
idealized time will be used in place of number of rounds (steps) when synchronous
and asynchronous models are compared in the next section.

An additional ability that may be given to agents in order to relieve this burden
is cloning. In a model which admits it, an agent can create a fully functional copy
of itself. The authors of specific works decide whether the cloned agent appears on
the same node or is injected to one of the node’s neighbours. This distinction often
corresponds to whether the action counts towards the number of moves. Since this
new agent counts as an additionally deployed searcher and minimizing the number
of searchers is traditionally the primary goal, cloning is commonly paired with an
ability to terminate an agent’s existence. Cloning, or its unnamed equivalent, is
featured in [114, 155, 158, 159, 158, 214] and, like visibility, the two experimental
works [119, 120].

Other measures include space limitations such as the number of bits written
on whiteboards or memory available to each agent. Further criteria are mostly
model specific, such as the amount of additional information in [195] or spread of
a virus in Section 2.2.5. Let us conclude with only a mention of a PhD thesis on
best effort decontamination [204], where the goal is to decontaminate the greatest
possible number of nodes when the number of searchers is insufficient to clean the
whole graph.

2.2.3 Surveying the landscape

All works in this section share a similar set of considered properties in their mod-
els. We will use the term local or basic to mean the strongest model, i.e. asyn-
chronicity, face-to-face and whiteboard communication, no cloning and no visi-
bility (0-visibility). Moreover, a distinction between node and edge variants of
the monotone internal connected searching is made5. Results will be discussed in
terms of improvements achieved by relaxing these conditions through introduction
of 1-visibility (shortened simply to visibility), cloning and synchronicity.

5In this section node and edge variant will always refer to monotone internal connected search-
ing unless stated otherwise.

47

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Hypercubes

Let us begin with the results regarding hypercubes [114, 155]. In all protocols
agents use O(log n) bits of memory. The amount of the same order is used on
whiteboards. The results for the local asynchronous edge and node connected
variants of the model coincide. Θ(n/

√
log n) searchers are required, which make

O(n log n) moves in the time of the same order. First, let us consider node variant
where using cloning alone the researchers were unable to obtain a significant im-
provement, even in the latest iteration of the results [114]. Further introduction of
synchronicity allowed to reduce the number of moves to the optimal n−1 executed
in log n time at the cost of increasing the number of searchers to n/2. One can
replace both of these properties with 1-visibility in order to obtain a strategy that
uses the same number of searchers, Θ(log n) time, yet asymptotically the same
number of moves as the local strategy, i.e. O(n log n). Further introduction of
cloning reduces this last value to Θ(n) moves. It is noted that further introduction
of synchronicity does not appear to improve these results.

In the edge searching variant introduction of cloning alone reduces the number
of moves and time to their optimal values of (n log n)/2 and log n, respectively.
Thew new strategy uses O(n) agents, and it is not known if synchronicity allows
to reduce this number further.

Meshes

Next, we consider 2-dimensional meshes, described unambiguously in terms of the
sizes of the 2 dimensions: n1 × n2, n1 ≤ n2, investigated in [117]. Observe that
N = |V | = n1n2 and m = |E| = 2N − n1 − n2. The four directions are assumed
to be common to all agents and the agents start in a corner.

The universal lower bound on the parameters is established in the basic, as
defined above, model, to be n1 agents, n1 + n2 − 2 time and N moves. To ob-
tain constructive upper bound results, either an agent enforcing an order of moves
(synchronizer) or 1-visibility was assumed, leading to 4 models once the divide
between edge and node searching is included. Note that the presence of the syn-
chronizer does not imply synchronicity. The two bounds match only in the case
of node searching with assumed visibility for time and number of agents. The
number of moves is significantly higher and expressed as (n2

1 + 2N − 3n1)/2. The
protocols designed for the 3 remaining cases use one additional agent. Since the
times and number of moves differ slightly in each case, let us only summarize them.
In the remaining 3 cases the time is of order O(N), and the number of moves in
all cases is O(n2

1 + N) = O(N). Therefore, the bounds on the number of agents
and moves are asymptotically tight. Moreover, both agents and whiteboards use
at most O(log n1) bits of memory.

We further mention a case of hexagonal meshes, i.e. such that each cell contains
an additional diagonal, investigated in [122]. All diagonals are slanted in the same
direction and are common to all agents. The considered cases in this frequently
omitted work correspond to these of the node searching variant in [117]. Moreover,

48

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

the results for the number of agents are the same and these for the number of moves
and time are asymptotically the same as in the aforementioned work.

Tori

From meshes let us proceed to their toroidal siblings, researched only in the node
variant in [113]. Using the same notation as in the paragraphs above, we obtain
N = |V | = n1n2 and m = |E| = 2N in a 2-dimensional torus. Moreover, this
notation is extended to d dimensional toroidal meshes in the form of n1 × n2 ×
. . .× nd such that 2 ≤ n1 ≤ n2 ≤ . . . ≤ nd.

The results for a 2-dimensional torus with added visibility are optimal: 2n1

agents,
⌈
(n2−2)

2

⌉
time and N−2n1 moves are necessary and sufficient. In the local

model, one more agent is shown to be necessary. Therefore, it is indeed shown
that the 1-visibility model is more powerful than the local model. Recall that in
the previous research the gaps between lower and upper bounds for comparable
parameters was not closed. Further note that the authors were unable to establish
the optimality of their upper bounds on the time and number moves in this case.
The latter is 2N − 4n1 − 1, while the former matches the number of moves with
visibility (N − 2n1). Note that this reflects the approach of an enforcement of an
order of moves among agents by a designated coordinator which enforces "syn-
chronicity". Intuitively, the cleaning strategy makes the 2 sets of agents move in
the opposite directions along the dimension of lesser size (as stated in [113], it is
a generalization of a strategy for a 1-dimensional torus, i.e. a ring).

Moreover, this strategy can be generalized for d dimensions, although no def-
inite claims about its optimality are made, only a conjecture of such. After the
generalization, the number of agents become 2N/nd and 2N/nd + 1 for the case
with and without visibility, respectively. When comparing the tables with results
for 2 and d dimensions in [113], note that in the expressions of complexities the
size of the lesser of the 2 dimensions (here denoted n1) is replaced with N/nd

(note that when d = 2, then N/n2 = n1). Similarly, the size of the greater of the
two (n2) is generalized to become the size of the greatest among d dimensions (or
simply n2 = nd for d = 2).

Chordal rings

Results for chordal rings are split between the familiar [155] and [113].
Note that the research concerns fully symmetrical chordal rings, described as
C(⟨d1 = 1, d2, . . . , dl⟩). An instance of such a class of graphs is a ring with ad-
ditional l − 1 edges, shortcuts, between every pair of nodes in distances given by
dj , j ∈ {2, . . . l−1}. Hence, each node has the same number of chords, is of a degree
of 2l to be precise. Without loss of generality assume that all di, i ∈ {1, . . . l} are
given in an increasing order (for the sake of consistency dl will always refer to the
longest link) and dl < ⌊n/2⌋. Furthermore, the agents have a sense of direction.

Let us address [155] first. We begin with a general statement that a constructive
upper bound of at least 2dl + 1 agents has been established for all the considered

49

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

variants (the only exception can be found in [113]). The edge searching variant
was considered in the basic model and with synchronicity. Interestingly, this is
the only variant where the efficiency of the algorithm depends on the number of
chords — 2ln+2d2l −2dl+2 = O(ln+d2l) = O(n2) moves and 2ln−dl+2 = O(n2)
units of time are needed. It is noted that synchronicity does not alleviate the issue
of the sequential nature of the strategy and its synchronous adaptation would still
take no less than twice the number of edges units of time.

A special case when C(⟨1, 2, . . . , p, dl⟩) (lengths of chords are given by con-
secutive numbers from 1 to p and an additional, greatest, dl) is called a chorded
ring. The protocol for decontaminating a given chorded ring is considered in the
synchronous edge variant. It works in n units of time and uses 2dl + (p2 + p)/2 =
O(dl+p2) agents and O(pn+d2l +p3) moves. Let us assure a scrupulous reader that,
even when only the big O notation is used in this section, the exact polynomials
can be found in [155].

In the basic node variant adaptation of the edge search strategy can be per-
formed in O(n+2d2l) moves and takes 4n− 4dl time. Adding synchronicity in this
case does not change the asymptotic complexities, although it indeed reduces the
needed time (n + dl − 1). Asymptotic improvement in the number of moves can
be achieved by adding the cloning ability which reduces their number to merely
2dl − 1 = O(dl).

Next, recall that [113] is concerned only with the node variant. It places further
limitation on dl, namely it assumes that 4 ≤ dl ≤

√
n. The provided protocols

use 2dl + 1 agents in the local variant and 2dl when visibility is granted and, in
contrast to [155], these values are proven to be optimal. The numbers of moves in
their respective cases are 4n− 6dl − 1 and n− 2dl, and the latter is also optimal.
The protocol in the local model takes 3n − 4dl − 1 time units. When visibility is
allowed the time becomes dependent on the length of two longest cords. Instead
of providing the exact expression, let us focus on the intuition that increasing
this distance allows to reduce the needed time through a greater parallelization of
moves. Let us conclude with a remark on the asymptotic similarity between the
expressions of time and number of moves, which take the form of O(n−dl) = O(n).
Hence, the focus on constants appears justified, especially when exact optimal
values are reached.

Butterflies

Before we leave Huang’s PhD thesis [155] let us introduce their results for d-
dimensional butterflies. The d-dimensional butterfly has n = 2d(d+ 1) nodes and
m = 2dd+1 edges. Let us further remark, without much explication, that it is
stated that one can fold a hypercube into it and the structure of the d-dimensional
butterfly is recursive. This last property is exploited in the design of the algorithms.

In the local variant, using n/(d+ 1) searchers admits a protocol that executes
O(n log n) moves in 3d− 1 time. Cloning alone reduces the total number of moves
to m while the time and number of agents remain the same. These results hold for
both node and edge variants, with a small note that, trivially, m total moves is the

50

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

optimal number of moves for edge searching. Further introduction of synchronicity
in addition to cloning has no effect on the devised protocols.

Sierpiński graphs

The research within the established node searching variant of the basic model is
continued in [178], a work of a lone coauthor of some the previous research, which
investigates Sierpiński graps. This class can be though of as a graph representation
of Sierpiński triangle fractal (the names Sierpiński gasket or sieve are also used),
where d denotes how many iterations are used in construction. Thus, d-th iteration
Sierpiński graph has m = 3d edges and n = (3d + 3)/2 vertices6.

The basic node variant is considered, then it is augmented with the visibility
property. In both variants the provided protocols are optimal in the sense of the
number of used agents — d+ 1 agents are necessary and sufficient. Visibility has
an impact on the time and number of moves and it allows to make the algorithm
distributed without a reliance on a coordinator. However, the differences are not
significant asymptotically. Both versions require O(d3d) = O(n log n) moves and
O(3d) = O(n) time7. It is noted that it is a difference of a logarithmic factor from
the provided lower bounds.

Agents use O(log n) bits of memory and have distinct identifiers. A detail
associated with the protocol for visibility is that a directed subgraph is constructed
where each node requires a small constant number of bits.

Pyramids

Let us begin to close this section with works unaffiliated with Flocchini et al. First,
[214] is concerned with cleaning pyramid networks. This specific class of graphs can
be unambiguously defined with a single parameter d, which refers to the number
of the pyramid’s levels. A j-th level is the 2j × 2j mesh, where 0 ≤ j ≤ d. To
preserve the intuition of the visual representation of a pyramid, let 0-th level be
the highest, single apex node and d-th mesh be the lowest. Thus, the number
of nodes in such a graphs is n = (4d+1 − 1)/3. Intuitively, additional edges are
drawn between meshes of levels differing by one in such a way that each vertex on
a higher level corresponds to four vertices below.

The researchers manage to avoid the need for designation of a coordinating
agent thanks to the visibility property. Furthermore, the agents are able to clone
themselves and start in one of the corners of the lowest level mesh.

Two algorithms are given, one which prioritizes the number of searcher over
the time and the other which behaves in a reverse manner. The first one uses
2d+1 − 1 = O(

√
n) searchers and 3 · 2d − 1 = O(

√
n) steps. The second one 22d =

O(n) searchers and 4d = O(log n) steps. While in the latter solution the linear

6Note that the number of iterations is distinct from the notion of either fractal dimension or
an analogous fractal embedded in a higher dimensional space, e.g. Sierpiński tetrahedron. In the
relevant context, decontamination of the given example is left as an open question in [178].

7It appears that the entry in the survey [194] is incomplete and the discrepancy between the
result reported in [178] is left without a commentary.

51

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

number of agents is rather unsatisfying, the time of searching is asymptotically
optimal.

Stars

Let us dispel the notion that this section is a less interesting investigation of
trees by clarifying that [159] researches d-dimensional star graphs. In fact, for
this class of graphs n = |V | = d! and m = |E| = n(d − 1)/2. As with many
high dimensional structures, our imagination is prone to failure and recursion is
a great help in the design of strategies. The provided algorithm works under
the assumption of the node variant augmented by cloning, synchronicity and a
sense of whether a neighbouring nodes are clean (i.e. 1-visibility with a reduced
set of local knowledge), since no whiteboards and no detection of other agents is
used). Note that the authors themselves do not use these terms and define them
independently8.

This work appeared after [158], which will be discussed in the next section,
and uses the same concept of a search spanning tree. Based on the properties of
searching of trees, the authors estimate that the required number of agents is no
more than 1+log3 (n− 1). The number of steps is at most 3 ⌊3(d− 1)/2⌋−2. The
floor corresponds to the height of the search spanning tree or the diameter of the
star. Note that since n = d!, the researchers are able to claim sublogarithmic time
of execution, which compensates for the very generic upper bound on the number
of used agents.

Product networks

Given the results for particular classes of graphs one might be interested in find-
ing out an efficient way of decontaminating a graph obtained by combining other
graphs for which search strategies are known. To this end, [158] provides algo-
rithms for calculating a strategy for a Cartesian product of graphs, henceforth
simplified as product. Let G1□G2 be the the product of graphs G1 and G2. Let us
call the final result of applying this operation to a set of graphs a product network.
Authors point out that this operation is known to preserve, among other proper-
ties, regularity, vertex-transitivity and Hamiltonicity. Furthermore, the structures
of the graphs given to the operation are preserved as subgraphs of the product
network. In a product of G1□ . . .□Gd, let component Gi, i ∈ {1, . . . d} refer to the
subgraph isomorphic to Gi. The model is the same as in the researchers’ previously
discussed work [159] from the section above9.

The high level nature of the algorithms assumes knowledge of sub-procedures
that clean each component Gi that use a known number of agents (here denoted
A(Gi)) and moves or parallel steps they perform (here denoted M(Gi)). Both
algorithms utilize the newly introduced concept of a search spanning tree. The
first one results in A(G1)

∏d
i=2 |V (Gi)| agents cleaning the product network in

8The proposed classification is consistent with the one deployed in [197].
9[197] does not classify this model as featuring visibility, which appears as an inconsistency.

52

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

∑d
i=1 M(Gi) moves. In essence, the time used is the sum of the times of the

sub-procedures. The second one uses
∏d

i=1 |V (Gi)| − 1 moves, which is simply
the number of edges in the search spanning tree. The number of used agents
is asymptotically the same, although the given equation is much more complex.
Naturally, a proper choice of a homebase and component G1 gives an upper bound
on the monotone connected search number.

Observe that the product operation allows to create some classes of graphs
discussed in previous parts of this section. For example, when P1 and P2 are paths,
then P1□P2 is a mesh (this example is explicitly used in the work itself). Similarly,
two cycles produce a torus. Thus, [158] supplements results from [117, 113] with
a case including cloning.

2.2.4 Cleaning the unknown

Stumbling in the darkness - experimental approach

Let us consider the case when the graph is a priori unknown to searchers. We
begin the investigation with the experimental approach in [119] and [120]. The
authors considered models with combinations of the properties discussed so far:
either locality or 1-visibility or 2-visibility, with or without cloning. Moreover,
breaking with the standard approach of the authors in their works on decontami-
nation of specific topologies of graphs, searchers operate in a synchronous fashion
and multiple homebases are considered. Hence, the strategy is necessarily not con-
nected, albeit it remains monotone and internal. Since the choice of homebases
can significantly alter the performance of their approach, a genetic algorithm is
responsible for choosing them. The results, evaluated in terms of the number
of agents and the number of synchronous rounds, show an improvement when a
greater number of homebases is used.

Surely but slowly

Fully theoretical results on searching graphs of unknown topology were obtained
by [30]. In this model, the nodes of the graph are unlabeled and an agent on a
node u can distinguish only labels of the ports, denoted by distinct integers from
1 to the degree of u. Distinct identifiers are also assigned to agents. Furthermore,
the model is asynchronous and each node is equipped with a whiteboard. At
most O(m log n) bits are stored at every whiteboard, while searchers use at most
O(log k) bits. The provided protocol uses only one searcher more than the optimal
monotone connected strategy without knowing the needed number of agents in
advance. Instead, a single agent appears at a predestined homebase and is able to
call for assistance, or clean the graph by itself if possible.

Note that the authors use monotone connected search number with respect to
both the given graph and its single distinguished homebase v0 (denoted mcs(G, v0))
node as their baseline of efficiency. However, while the agents are able to compute
and ultimately execute the moves based on a monotone connected strategy, their

53

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

overall strategy is not monotone, merely connected. As a consequence the number
of moves is not restricted and might be exponential.

This, rather disheartening, restrictions are supplemented by the results from
[157], where a competitive ratio of Θ(n/ log n) was established between centralized
and distributed monotone connected searching. The results are constructive, the
existence of graphs such that no protocol can do better than c n

lognmcs(G, v0),
for a certain constant c and a sufficiently large n, is matched by a protocol that
achieves this lower bound within a constant factor. Interestingly, the difficult
graph in question is a tree with a degree at most 3.

The model is the same as in [30], the assumption of synchronicity is used only
to strengthen the lower bound. Searchers use O(log n) bits of private memory and
O(n) bits on whiteboards. The agents make at most O(k ·n ·m) moves, where k is
the number of used agents. Although the original concern of avoiding the exponen-
tial number of moves is already addressed by the assumption of monotonicity, it is
noted that establishing a competitive ratio for non-monotone connected searching
with a polynomial number of moves is an open question.

A recent development was made in [233], where many commonly held properties
of the discussed models, including connectivity, were dropped. The motivation
refers to Parsons’ idea of a dark cave, further denying the searchers any information
about its structure. The model is distributed and asynchronous. The authors show
that, as long as uniquely labeled agents are able to meet (i.e. solve the rendezvous
problem) and coordinate face-to-face, no homebase, whiteboards, node or even port
identifiers are necessary to search the graph with the same number of searchers
as in the centralised edge search model. No bounds on the time complexity are
provided.

Oracles and senses

A measure of difficulty in terms of the size of additional information — oracle size
or number of bits of advice, needed by independent entities to solve the problem
efficiently was investigated in [129], in the context of communication tasks by
nodes, namely broadcast and wakeup. This measure was applied to distributed
graph searching of unknown graphs in [195], not long before [157]. Monotone
connected searching model was considered, moreover, using the optimal number of
searchers needed in the centralized problem (i.e. mces(G)). It was shown that the
desired search can be performed in O(n3) time given, or provided by an oracle, a
labeling of nodes using O(n log n) bits. Furthermore, this number of bits of advice
is optimal, as Ω(n log n) bits of advice are shown to necessary for some classes of
graphs. The agents themselves are equipped with O(log n) bits of memory and
whiteboards of size O(log n) are used by the presented protocol only to facilitate
face to face communication.

Unknown graphs in a modified edge searching model were considered in [43].
Here the nodes are weighted, and the fugitive may pass through a node guarded
by the number of searchers less than its weight. The agents start on an arbitrary
node; however, the are equipped with a sense of direction. Informally speaking,

54

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

it can model formulating a plan where each searcher is equipped with a compass
and an ability to measure distance, which allow them to a priori agree on the
division of the space where the cave is embedded into sectors. Formally speaking,
vertices of the graph to be searched are partitioned into t sets (V1, . . . , Vt). An
edge can only exist between vertices belonging to the same set or two consecutively
numbered ones. An agent can recognize whether a port on a currently occupied
node v ∈ Vi, i ∈ 1, . . . , t leads to a node in Vi, Vi+1 or Vi−1. Note that this ability
can be conceptualized as an oracle that for each ordered pair of vertices (or a port)
consistently outputs one of the values from the following set: {−1, 0, 1}. Thus, the
number of bits of advice would be O(m). In this model, the researchers provide
an algorithm which uses 3w(G) + 1 searchers, where w(G) is the maximum over
the sums of weights in each Vi. The obtained search strategy is monotone and
connected; hence, mces(G) ≤ 3w(G)+1. While it is not claimed to be the optimal
amount, it is within an additive constant of 2.

Last but not least, [93] describes an algorithm for decontamination of un-
known partial grids. Graphs in this class can be imagined as embedded in a
two-dimensional Cartesian coordinate system, where nodes are placed on points
with integer coordinates and an edge can only exist between nodes within dis-
tance one of each other. Thus, with a sufficient density of nodes, such a mesh
can approximate any two-dimensional shape. While the agents do not know the
graph in advance, they are equipped with a sense of direction in the form of an
ability to recognize the four directions on the grid. This is noted to be done thanks
to a consistent labeling of ports, although an oracle similar to the one described
in the paragraph above can be easily substituted. Some results for the standard
model of node searching in known topologies of grid-like graphs were presented in
[102]. As authors note, they establish “unobvious proofs that some fairly obvious
upper bounds on the pathwidth of some standard grid-like graphs are indeed also
lower bounds.” Among these, a lower bound on the number of searchers required
in a full grid with dimension of equal size equal to Ω(

√
n). In this sense, the

algorithm for connected monotone searching presented in [93] is asymptotically
optimal. Furthermore, there exist partial grids such that the competitive ratio
between searching in known and unknown graphs (when the homebase is assumed
to be chosen by the adversary) is Ω(

√
n/ log n).

2.2.5 Black Virus

In this section we consider a decontamination problem of a different nature. Let us
consider a much more dangerous fugitive, namely a black virus — a harmful agent
capable of destroying any searcher which enters a node it occupies. In turn it can
be destroyed if it moves to an occupied node. The inspiration is the extension of
the concept of harmful environments, commonly referred to as black holes. For
an overview see [121]. In the case of a black virus the threat is expounded by its
ability to clone itself to neighbouring nodes when it destroys an agent, although
the original node it occupied becomes clean in the process. Therefore, the agents’
strategy consists of surrounding the virus, followed by a suicide attack which in

55

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

turn prompts the virus to spread into nodes occupied by agents where the clones
perish. Thus, an additional optimization criterion is concerned with minimizing
the spread of the virus, i.e. the number of nodes infected in such a way. Since an
agent needs to sacrifice itself in order to prompt an instance of the virus to move
and give another searcher a chance to destroy it, the parameter is also equal to the
number of destroyed agents once all the instances of the virus are removed. Note
that once the virus is triggered its location becomes known. Hence, the problem
differs considerably from decontamination problems discussed previously, where
the fugitive can be conceptualized as always hiding in the last place the agents
reach.

The problem was studied first for specific classes of graphs: grids, tori and
hypercubes [47]. The scope was later expanded to arbitrary graphs [48]. State of
the art knowledge on this topic can also be found in the PhD theses: [46], written
by one of the authors of the above works, and [174]. In the latter, agents are
allowed to move in parallel, which results in more efficient protocols.

2.2.6 Immunity

This section is concerned with granting the network increased resistance to attacks,
namely some conditional immunity. Let us distinguish three concepts of granting
nodes this grace: two spatial and one temporal.

Local majority

The first spatial concept, researched in [177], is based on a local majority rule.
In essence, a node is recontaminated only if more than half of its neighbours
are contaminated. This model, while weaker than the standard assumption that
any contaminated node is capable of spreading its malignant influence, reflects a
measure of a fault tolerance in the system, e.g. a requirement of a majority vote
to approve of a change. Tight lower and upper bounds on the number of searchers
were obtained for the following classes of graphs: d-dimensional toroidal meshes
(2d searchers), trees, and graphs with the maximum vertex degree of three. In this
last case, a single agent suffices when there exists a vertex of degree one, or a pair
of searchers is necessary otherwise. A more general case of decontaminating b-ary
trees of height h can be solved with immunization using h+ 1 agents when b ≥ 4
and h agents when b ≥ 3. Note that, in particular, binary trees were proven to
require Ω(log n) searchers [11] without immunization. Furthermore, the authors
provide protocols achieving these upper bounds and analyze the bounds on the
total number of moves made while the agents execute them. Let us remark that
toroidal meshes are searched in a different model, one with local communication
and synchronicity, in contrast with global communication and asynchronicity for
other topologies. Nonetheless, the usual conversion into an asynchronous setting
using an additional coordinator agent applies to problems presented in this section.

56

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Threshold

Soon after, a general approach to decontamination with immunity [176] was devised
where the immunity is granted upon reaching a threshold of m clean neighbours.
This notation was revised in the later works [115, 116], which treat m as a number
of adjacent, contaminated edges needed to break the immunity. We follow the
latter convention. Thus, when m = 1 (or m = 0 in the former article), then the
problem is equivalent to the commonly studied decontamination variants discussed
in the sections above. The three works are jointly concerned with decontamination
of meshes, toroidal meshes, hypercubes and trees, although it may be sufficient to
familiarize oneself with only the latest work [116], which retraces the old results
with the consistent notation. These three works constitute the state of the art of
the second branch of decontamination with immunity, namely threshold immunity
or m-immunity. Note that m is assumed to be the same throughout the graph
and the open question of introduction of heterogeneity to the parameter was not
followed so far.

Meshes and hypercubes are searched in a quasi-synchronous fashion, i.e. all
agents are guaranteed to communicate locally and execute their moves in syn-
chronous rounds. As in the section above, a single additional coordinator agent
can facilitate execution of the proposed strategies in asynchronous environments.
It is noted that the choice of homebase is trivial in the case of toroidal meshes,
due to the symmetry of the environment. However, in ordinary meshes the agents
are assumed to start in a corner.

A d-dimensional mesh, denoted D (Z for a toroidal mesh), is unambiguously
given in terms of sizes of each dimension, i.e. its number of nodes is N = ×n1 ×
n2× . . .×nd such that 2 ≤ n1 ≤ n2 ≤ . . . ≤ nd. The number of required searchers
are given as a function A(G,m) of a graph G and m, the immunity threshold.

For d-dimensional meshes a protocol requiring n1 × n2 × . . .× nd−m agents is
given, where 1 ≤ m < d. A single agent suffices when m ≥ d. On the contrary, for
toroidal d-dimensional mesh Z the provided algorithm requires 2m×n1×n2× . . .×
nd−m agents, where 1 ≤ m < d. Furthermore, this number is reduced to 22d−m

when d ≤ m ≤ 2d. Note that while the case of hypercubes is explicitly considered
in [115], the last result applies. See [180] for the relation between hypercube and
torus. In both cases a linear number of moves (in the terms of N , the size of the
mesh) is needed.

Although the intuitive interpretation of these constructive results is that in-
creasing m allows to optimize their guarding positions with respect to the largest
dimensions, it is not known whether this is the best that can be done. Indeed,
the algorithm given for meshes when 1 ≤ m ≤ d− 1 is known to be optimal with
regards to the number of searchers only when m = d− 1, while the obtained lower
bound is A(D,m) ≥ n1+n2 . . .+nd−m−(d−m−1). Similarly, for toroidal meshes
A(Z,m) ≥ 2(n1+n2 . . .+nd−m− (d−m−1)) is reached by the algorithm only for
m ≥ 2d−3 ≥ 2d. Note that the gaps are large since the obtained lower bounds are
additive in terms of sizes of dimensions, as opposed to multiplicative expressions of
numbers of agents needed by the algorithms. Furthermore, the bounds hold even

57

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

in a fully synchronous setting. Nonetheless, the bounds on the number of moves
are asymptotically tight.

Furthermore, trees admit an asynchronous protocol, optimal with regard to
both number of agents and moves, that accomplishes the task of decontamination.
Furthermore, under the assumption of a round taking one unit of time it performs
in at most 2n − 3 rounds. Note that, unlike in the case of meshes, the homebase
is given as part of the input.

Temporal

Third, we consider the temporal formulation of immunity introduced in [118]. In
this model each node cannot be recontaminated after being left unoccupied for t
units of time, a given immunity time. Note that so far it was always assumed that
t = 0. No differentiation between immunity times for specific nodes was considered.
Naturally, given a sufficient amount of immunity time, any number of agents,
even a single one, can decontaminate the whole graph. Thus, given a number of
searchers k, a graph’s (monotone) immunity number, denoted (mitG(k)) itG(k),
is the minimum amount of immunity time t required to decontaminate it. Let
us further distinguish mitG(k) and itG(k) by referring them specifically to models
from [238] and [74] (the original source of this formulation), respectively. While
[118] uses a slightly different notion of temporal immunity, they are nonetheless
easily reducible to each other.

Comprehensive results for monotone connected searching of trees are given in
[118]. For a tree T , the number of agents required to decontaminate it can be
computed in Θ(n) time in a centralized model, for all possible homebases. The
movement of agents is synchronous and, since the strategies are times sensitive,
they do not admit a simple conversion into asynchronicity by the familiar introduc-
tion of a coordinator. To compute a strategy the authors consider the asynchronous
message passing model as described in Santoro’s book [210], which, despite being
distinguished with a title of “classical”, turned out to be a rarity among decontam-
ination problems. Recall, that the model with messages was also used in [11], the
introductory work of Section 2.2. Θ(n) messages are needed between the nodes to
mirror the results obtained for the centralized model.

Furthermore, a characterization of a class of forbidden family of subtrees F (k, t),
for given t and k, is described. As a consequence, it is shown that there exist trees
that require Ω(log3(n/(t + 1))) searchers. Interestingly, F (k, 0) supplements the
results in [11] and matches the characterisation of connected graph searching of
trees that appeared later in [10], although the connection is not made explicitly
in the latter work. Intuitively, as t increases the edges of the trees in the family
become subdivided proportionally. Therefore, as the movement along them be-
comes more time consuming, the agents find themselves unable to omit guarding
any vertex present in the family of the same k but lower t.

When the agents’ knowledge of the tree is restricted to its height (denoted h)
, a protocol that cleans any such tree with k =

⌊
2h
t+2

⌋
searchers is provided. Here

a more familiar face-to-face communication has to suffice, as the nodes cannot ex-

58

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

change messages to compute the strategy in advance. The number of agents might
not be optimal in the sense of matching the one obtained by the algorithms in the
paragraph above. The algorithm exploits the fact that, even though no recontam-
ination is allowed to occur, the agents can repeatedly leave a vertex adjacent to
an unoccupied, contaminated edge as long as they return in time to guard it. The
assumption of monotonicity was discarded to achieve better results in [74].

The results for 2 dimensional meshes (m × n, m ≥ n) and toroidal meshes
can be found in Daadaa’s PhD thesis [238]10.The environment is synchronous, the
nodes contain whiteboards and the four directions are consistent for all agents,
thanks to a common labeling of ports. Furthermore, the agents are given distinct
identifiers and start from a single homebase. Two algorithms that decontaminate
a mesh for a given immunity time t are provided. One using k = ⌈m/(⌈t/2⌉)⌉
agents, and the other k = ⌈(2m− 1)/t⌉ agents. In the case of toroidal meshes,
these numbers are multiplied by 2. Note that no claims of the optimality of these
numbers are made. Hence, they can be treated as lower bounds. On the contrary,
the results for decontamination with a single agents are tight. Thus, for a mesh
M and a torus Z, mitM (1) = 2m − 1 and mitZ(1) = 2(m − 1) + 2(n − 1) − 1,
respectively.

The exploration of parameter itG(1) for other classes of graphs was continued,
with a small alteration, in [74]. In this work, t refers to the uninterrupted time
an unoccupied node can have a contaminated neighbour without succumbing to
recontamination itself. Observe that if P is a path, a single agents suffices even in
a model without immunity, therefore itP (1) = 0. An instructive example is a cycle
of length greater than 4, which can be decontaminated with a single agent when
t = 2. A simple strategy which makes it possible is to make the agent move in a
consistent direction. Since t = 2, the agent leaves a growing trail of clean nodes
and the cycle is clean when the agent catches up to it. This occurs after at most
2n moves. However, the strategy is not monotone.

Upper bounds are also given for: cliques, complete bipartite graphs, meshes,
planar, general graphs, spider graphs and trees. Lower bounds are provided for all
but the last two classes. Furthermore, lower bounds for monotone strategies are
given. Here let us just note that there are cases where non-monotone strategies
are asymptotically better and refer a reader interested in details to the table in
[74].

We finish with a few non-trivial observations gathered from this work. In some
of the cases, e.g. cycles, the time to decontaminate a graph with a single agent
can be decreased given a higher t. However, the gain in terms of the asymptotic
time is shown to be present only in the case of general trees. Moreover, it can be
observed that adding new edges to a graph may decrease its immunity number,
i.e. the property is not closed under subgraphs.

10As an offhand remark we mention that the bulk of this work is concerned with an approach
to decontamination based on cellular automata [73, 72]. A more recent general overview can be
also found in [205].

59

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

2.2.7 Self-stabilization and its consequences
To the best of my knowledge, there exist only two works on self-stabilizing graph
searching, [189] and [27], both concerned with only trees. Despite this fact there is
an interesting line of research the leaves the realm of distributed graph searching
back into its centralized roots.

Although the proofs are concerned with the node searching model, the authors
show that their algorithms can also be adapted to edge and mixed searching. The
latter work is an improvement on the result of the former, reducing the number
of required searchers from being equal to the height of the tree to 1 + ⌊log n⌋, in
line with Θ(log n) searchers required by centralized algorithms. A self-stabilizing
model’s distinguishing premise is that every node of the graph can communicate
only with its neighbours and change its state according to some set of rules. Which
nodes get to execute their protocols is decided by an adversary, or in the presented
case, strictly speaking, a distributed unfair daemon. When the rules followed by
the nodes do not permit any changes the global system is said the be in a stable
configuration. Naturally, in the case of graph searching, the tree should be clean
when such a state occurs. In order not to introduce yet another measurement
of efficiency, specific to self stabilizing algorithms, let us only remark that the
algorithm in [27] executes O(n log n) moves.

Furthermore, introducing a recontamination from the outside results in re-
sumption of the stabilization process (the algorithm is non-silent), thus ensuring
that the graph can be cleaned in perpetuity. Under this condition, contamination
may be approached as a constant threat, and continuous application of a perpetual
strategy ensures that all outbreaks will be handled, eventually. In advance of the
discussion of the next work, let us call such a strategy perpetual11.

Perpetual graph searching was considered in another distributed model, namely
Look-Compute-Move model, in [28]. The mixed searching model was adapted into
explicitly perpetual graph searching, where the next move of a searcher is computed
using the position of all searchers (recall the description of the Look-Compute-
Move model). This imposes an additional requirement that no two searchers may
ever occupy the same node, as the adversary can then make them act in unison.
Since the model does not provide any way to break symmetry in such cases, it
effectively reduces the agents’ capability to reenact the strategy and clean the
graph in the future. This particular model also did not get a lot of attention and,
to the best of my knowledge, the only obtained results describe solutions for paths
and trees [28], and cycles [101, 100]. Nonetheless, the condition that two searchers
can never occupy the same node proved to be interesting enough to study the
centralized searching without collision model. It appeared in an article of its own,
by the same authors as [28], under the name of exclusive searching [29], which an
attentive reader may recall from Section 1.6.

11A reader intrigued by the concept of perpetual strategies might be interested in the following
PhD thesis: [188]. The author explores continual process of cleaning a graph with brushes, in a
model conceptually related to the edge searching problem and the chip firing game.

60

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Chapter 3

Communication by means of
moving information

One of the problems that might arise in a distributed environment is that of sharing
information between agents. Since an efficient algorithm solving it could be used
as a component of solutions of larger problems, it warrants a closer investigation.
The presented approach is based on delivery problems, where the task is to move
objects, in our case a data packets, from their sources to their destination. In order
to move, the information needs to be handled by an agent which can traverse the
environment, in our case a network represented by a (weighted) graph.

Bärtschi in his PhD Thesis [15] distinguishes between three optimization cri-
terion for delivery problems:

• energy consumption — the total amount of energy used by all agents;

• delivery time — either of the last package or the sum of the times of delivery;

• resource constraints — no agent can exceed its initially assigned budget.

Despite the assumption of centrality present in many models, the obtained algo-
rithms can be used to schedule movement of mobile agents a priori. Furthermore,
since the goal of the protocols is the delivery of data, it is natural to assume that
agents cannot communicate at a distance. Thus, we return to the world of mostly
centralised problems. Nonetheless, some examples of distributed problems will
also be discussed. We are going to use the framework of data delivery notation to
talk about problems introduced in the subsequent section; hence, some preliminary
concepts are presented below.

The problems this work is most concerned with ask whether a delivery is pos-
sible under the constraint of a limited available energy. Hence, they fall under the
category of resource constraints. Each mobile agent has a limited battery (Bi for
the i-th agent) which restricts the distance it can traverse (its range). We will call
such agents energy-constrained (or power aware). Note that the amount of energy

61

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

given to each agent can be distinct and is given as a part of the input. Nonetheless,
when all agents are given the same amount of energy they are said to have uniform
batteries, or uniform ranges. Hence, in a decision version of the problem we ask if
there exists a feasible schedule of agents’ movements that fulfils a given task such
that no agent runs out of energy (i.e. for every agent the used energy does not
exceed their given Bi). Since many discussed problems do not have polynomial
algorithms when the energy values are exactly sufficient, the notion of a γ-resource-
augmented algorithm, which relaxes the energy requirements, is introduced. To
give a more precise definition, an algorithm is said to be γ-resource-augmented if
it finds (in polynomial time) a schedule such that agents use at most Bi ·γ energy,
or recognizes that no such schedule exists.

The environment is represented by a weighted graph, where weights on the
edges represent the amount of energy required to traverse them. For the sake
of simplicity, we will refer to such an environment as a network, with the weights
being implicit. Note that there is an easy to overlook detail that might differentiate
the discussed models — whether an agent is allowed to finish movement and drop
a package on the edge it traverses. If the answer is affirmative, the network is
continuous, otherwise discrete.

3.1 Communication and energy
Let us consider a few problems concerning transfer of data that can be posed
to a set of agents in a network environment. The following formulation of three
communication problems was stated in [64, 67].

1. Data delivery problem: Given two nodes s (source), t (target) of a network
G, is it possible to transfer the initial packet of information placed at node
s to node t?

2. Convergecast problem: Is it possible to transfer the initial information pos-
sessed by each agent to a fixed agent?

3. Broadcast problem: Is it possible to transfer the initial information of some
agent to all other agents?

We devote a separate section to each of these problems in models where agents relay
on batteries. A summary of results in works discussed in the following sections
can be found in Tables 3.1, 3.2 and 3.3.

Since the package to be delivered is considered to be information, it can be
freely copied and shared between the agents. In fact, these operations are assumed
to be trivial, and in the algorithms agents implicitly exchange all available data
whenever they meet or simply leave it on every visited node.

The study of the above problems in models with power aware agents was ini-
tialized by the research on convergcast in 2012 [3]. The authors note a breadth
of inspiration, ranging from the problem of pattern formation by simple, mobile
agents [221], the increasing demand for energy efficiency [1], load balancing [7],

62

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

graph exploration algorithms where the mobile agent has to resupply its fuel [6]
(piecemeal exploration), to studies of the energy efficiency of convergcast when
only the messages are sent [162]. Out of these examples we offer further remarks
on the last two kinds of works.

First, note that the model where agents are mobile makes these problems dis-
tinct from communication in distributed computing environments, where an edge
represents a possibility of sending a message between entities. A reader interested
in the latter can pick up Santoro’s book [210]. Thus, the discussed versions of the
problems cannot boast a rich history, despite being based on objectives of well
known communication protocols. Nevertheless, vehicle routing better expresses
the mobile aspect of the problems and a book on this subject [227] can be found
among references in the recent works.

Second, looking at the limited size of battery as a constraint on the range of
each agent’s movement yields connection with more exploration problems (e.g.
[97], where agents are leashed on a rope of limited size) that is more likely to
be emphasised in the recent works. A brief mention of further works on tree
exploration can be found in Section 3.1.3, concerned with broadcast. Recently, the
concept of energy-constraint was applied to near-gathering of agents with limited
battery size [16].

3.1.1 Data delivery

Let us begin our investigation with the first of the three problems outlined above.
The authors of [50], following he footsteps of [3], consider a model where agents’
need to cooperate is forced by their limited energy supplies. Each agent is able
to traverse only a limited distance, pick up a package and move it to a different
node (keep this assumption in mind). The goal is to deliver data from a given set
of source nodes to some terminating node. Note that, according to the classifica-
tion outlined in the previous chapter, we are interested in the resource constrained
version of the data delivery problem, not minimizing the total energy consump-
tion. For an overview of results where total power consumption is considered see
Section 3.2.1.

There are several useful observations that simplify this problem. The authors
begin with an argument that, without the loss of generality, agents can move
sequentially. Moreover, each agent in the sequence moves only once. Hence, they
distinguish a variant of the problem where the path from the sink to the source
is assumed to be given and fixed. For the case of a single source the problem
is NP-Complete in arbitrary graphs [50], even when the batteries are uniform.
However, there exist a 2-approximation, in terms of the minimum uniform power
(or a distance an agent can travel) available to each agent, and a 3-resource-
augmented algorithm. The authors note that combining these two ideas gives a
min{3, (1+r)}-resource-augmented algorithm, where r is the largest ratio between
agent’s batteries. For the case of graphs with a fixed path of delivery the problem
is also NP-Complete. The result of NP-Completeness of the problem with multiple
sources and uniform batteries is shown to follow from [3]. When the graph is a

63

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

line and the initial size of batteries can differ, the problem is weakly NP-Hard,
which holds even if all input values are integers. In this case, there exists a “quasi-,
pseudo-polynomial” time algorithm provided in a separate work [51]. The problem
becomes polynomial when the batteries are uniform.

Bärtschi [15] (see also [17]) provides further insight on the problem of data
delivery, thanks to the considered version of the returning data delivery problem,
where agents are required to return to their starting locations after the task is
completed. In contrast with the versions discussed above, the returning data
delivery problem has a polynomial time algorithm on trees, and a 2-resource-
augmented algorithm on general graphs. On the contrary, both versions are NP-
Hard on planar graphs, a class that was not investigated before. Furthermore,
the thesis provides tight bounds on the existence of gamma-resource-augmented
algorithms. There exist no (3 − ϵ)-resource-augmented algorithm and (2 − ϵ)-
resource-augmented algorithm for the non-returning and the returning version,
respectively. An interesting result that harks back to the preliminary analysis in
[50] is that, for a constant number of agents, data delivery can be solved in time
O(n4) by trying out all possible orders in which the agents move. A dynamic
programming technique used in this proof allows Bärtschi to drop the assumption
of discrete network.

A recent development has been concerned with the fixed path, uniform battery
version of the problem. Note that agents without the package can move freely.
Hence, it might be advantageous to hand over the package to a single agent mul-
tiple times. In turn, the problem can be made easier by explicitly forbidding
this behaviour and restricting an agent’s ability to carry the package to a sin-
gle pick-up and drop-off. That is, each agent can carry the package once. [136]
provided a 3-approximation (with respect to the batter size) algorithm for this
simplified, single hand-over version in discrete networks. On the contrary, [49]
describes a (2− 1/2k)-approximation algorithm, albeit in continuous networks (2-
approximation on directed graphs). In the case of discrete networks, when multiple
package hand-overs are allowed and a fixed number of agents is given, the authors
prove that the problem is weakly NP-Hard and provide a fully polynomial-time
approximation scheme (FPTAS).

A different approach was considered in [67], where agents were given an ad-
ditional ability to exchange energy when they meet. Thanks to this newfound
ability, agents are able to solve data delivery of a single packet in continuous tree
and line networks in linear time; however, in the case of arbitrary networks, both
directed and undirected, the problem remains NP-Complete. The same work is
also concerned with the convergcast problem; hence, it will appear once again in
the section below.

Energy exchange was also considered in [8], where the size of agents’ batteries,
denoted B, was restricted to at most 2 and each edge takes one unit of energy to
traverse. Two versions of decision problems which ask for a feasibility of delivery
are considered: fixed placement and chosen placement. In the former, agents’
initial positions are given as part of the input. In the latter, a subset of nodes
(homebases) is given and an agent can be deployed on any such a node of their

64

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

choice. Observe that if B = 1, then the problem is trivial. Likewise, when the
choice of deployment is completely arbitrary (i.e. every node is a homebase), then
the agents can simply start on every other other vertex of the path from s to t.
Interestingly, when B = 2, the problem is NP-Complete in the fixed placement
version, while the choice of placement admits a polynomial time solution. The
authors note that when generalizing for cases B ≥ 3 they expect an adaptation
of their NP-Completeness proof to suffice. Nonetheless, the status of the choice
placement version when B ≥ 3 is left unclear.

Data delivery models with batteries
Type Batteries Topology Results

single source arbitrary NP-Complete,
min{3, (1 + r)}-resource-augmented1 [50]

uniform arbitrary NP-Complete, 2-approximation [50]
uniform line polynomial [50]

line NP-Complete [50]
line weakly NP-Hard,

O(∆2 · n1+4 log∆) time algorithm2 [51]
fixed path arbitrary NP-Complete [50]

fixed path, 1h-o uniform discrete arb. 3-approximation [136]
fixed path, 1h-o uniform arbitrary (2− 1/2k)-approximation [49]
fixed path, 1h-o uniform directed arb. 2-approximation [49]

fixed path uniform arbitrary weakly NP-Hard, FPTAS for fixed k [49]
returning trees O(n+ k log k) [15, 17]
returning arbitrary NP-Complete, 2-resource-augmented3 [15, 17]
returning planar NP-Hard,

(2− 2/k)-resource-augmented [15, 17]
single source energy exch. tree linear time [67]

energy exch. arbitrary NP-Complete [67]
fixed placement low energy discrete arb. strongly NP-Hard [8]

chosen placement low energy discrete arb. polynomial [8]
multiple source uniform trees NP-Complete4 [50]

Table 3.1: Unless stated otherwise, the networks are continuous and there is a
single source. Low energy includes energy exchange. 1h-o is a shorthand for a
single hand-over.
1. 3-resource-augmented bound is proven tight in [15].
2. When all input values are integers. ∆ is the distance between s and t.
3. Tight.
4. Follows from [3].

3.1.2 Convergcast

We begin our exploration of the convergcast problem with the aforementioned [3].
The work considers both centralized and distributed versions of the problem with
uniform batteries in continuous networks. In the centralized model, the problem
is proved to be strongly NP-Complete in trees, and therefore also in arbitrary
networks for which a 2-approximation algorithm is given. Furthermore, the authors
mention that their technique proving the NP-Hardness of the problem for trees

65

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

extends to the broadcast problem.The work provides linear time algorithms in the
case of line networks, for broadcast and convergcast alike. This is the reason why
some researchers expressed surprise when the NP-Completness of data delivery on
lines [51] was established.

The following assumptions are made in the distributed model: the agents are
identical and do not know the network, however they can recognize which ports
they use to enter and exit nodes and see each other when they arrive on the same
node. An assumption that is not immediately obvious, which however follows
from the shape of an optimal strategy in a centralized model, is that the network
is truncated in such a way that only the connected part containing all agents is
left. Under these conditions, the competitive ratio of 2 of the battery sizes is
established for trees. Moreover, this is the best possible result, even for lines. No
other optimization criterion is considered.

Recall the energy exchange model [67] mentioned in the section above. Let us
stress that the model is concerned with continuous networks, in contrast with the
one used in the original research of this thesis in Chapter 5 (based on [66]). The
results for convergcast presented there mirror those of the data delivery problem:
NP-Completeness in the case of arbitrary networks and a linear algorithm for
trees. Observe that, since s, t and positions of agents are given and the problem
is centralized, any edge outside of a path leading an agent to either s, t or one of
its peers does not need to be visited in an optimal solution. Thus, we can also
assume assume the tree to be truncated a priori. Furthermore, the authors prove
that in any optimal solution each point of the tree is traversed either one time or
once in each direction.

Convergcast with batteries
Type Batteries Topology Results

distributed uniform tree 2-competitive algorithm1 [3]
uniform line linear time [3]
uniform tree strongly NP-Complete [3]
uniform arbitrary 2-approximation, NP-Complete [3]

energy exchange arbitrary NP-Complete[67]
energy exchange trees linear time [67]
energy exchange discrete trees linear time [66]

Table 3.2: Networks are continuous and problems are centralised unless stated
otherwise.
1. Tight — there is no (2-ϵ)-competitive algorithm on lines, for any ϵ > 0.

3.1.3 Broadcast

We begin this section with an observation that results for broadcast and con-
vergcast are largely the same in [3]. Both problems can be solved in linear time
on lines, become NP-Hard even in the case of trees and, in the case of distributed
algorithms, do not admit a (2−ϵ) competitive ratio for any ϵ > 0. However, for the

66

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

broadcast problem, the presented algorithms are 4-approximate in the centralized
model for arbitrary graphs and 4-competitive in the distributed model for trees.
It is not known whether this last result can be improved.

Investigation of the broadcast problem expressed in terms of data delivery in
trees was also considered in [65]. The work is concerned with minimizing total
energy consumption when all agents start in a single homebase and, in contrast
with the NP-Hardness in the model where agents are distributed across the network
and have uniform batteries [3], an O(n log n) time algorithm is provided. The
complexity is of the same order regardless whether the homebase and s are distinct
or coincide. Furthermore, if the number of agents is unlimited, a linear time is
sufficient. Note that the choice of the optimization goal makes using more agents
than necessary incur an additional cost. Hence, the number of agents at least
equal to the number of leaves suffices to achieve this improvement.

Note that in the case when the source node s coincides with the homebase,
the provided algorithm also solves a problem of graph exploration. This immedi-
ately results in the problem being NP-Hard for general graphs by reduction to the
hamiltonian path problem. Nonetheless, we mention [76, 99, 77] as examples of
works where energy-constrained agents are tasked with exploring a tree.

An attempt to work around the NP-Hardness (recall that data delivery on a
line was weakly NP-Hard [51]) of the case when the agents are distributed across
a discrete tree network was made in [68], thanks to the ability of energy exchange.
Note that the assumption of centralization and the possibility of energy exchange
in conjunction with a single homebase, as was the case in the previously described
work [65], results in uniform and different batteries models being reducible to
each other. In this version, the decision problem admits different positions and
energy levels of agents while the optimization problem asks the agents to deposit
any surplus energy at the source node, therefore maximizing this amount. The
presented dynamic programming algorithm solves the problem in O(n · k2) time,
where k is the number of agents. This last work is also a vital prelude to the
original research presented in Chapter 5; hence, we delay discussion of some of the
algorithm’s properties until then.

3.1.4 Gossiping

While the convergcast problem can be thought of as a form of communication from
all to one, and the broadcast problem from one to all, their combination, called
gossiping, asks us to deliver messages from all to all such that in the end all agents
possess all available data. The following formulation, attributed to A. Boyd, can
be found in [143] (from 1972) and repeated in [145]: “There are n ladies, and each
one of them knows an item of scandal which is not known to any of the others.
They communicate by telephone, and whenever two ladies make a call, they pass
on to each other, as much scandal as they know at that time. How many calls are
needed before all the ladies know all the scandal?”

This problem was studied in diverse models and contexts: construction of rout-
ing tables (chapter 4.2 of [210]), a non-constructive algorithm for radio commu-

67

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Broadcast with batteries
Type Batteries Topology Results

distributed uniform tree 4-competitive algorithm1 [3]
uniform line linear time [3]
uniform tree strongly NP-Complete [3]
uniform arbitrary 4-approximation, NP-Complete [3]

single homebase unlimited2 tree O(n log n) time algorithm3[65]
energy exchange discrete tree O(n · k2) time algorithm[68]

Table 3.3: Networks are continuous and problems are centralised unless stated
otherwise.
1. There is no (2-ϵ)-competitive algorithm on lines for any ϵ > 0.
2. Minimizes total energy. Equivalent to energy exchange since all agents start on
the same node.
3. O(n) when the number of agents is at least the same as the number of leaves
of the tree.

nication [54], an approximate algorithms for a telephone model [132] and an au-
tonomous approach for wireless mobile ad-hoc networks [78]. A reader interested
in the mathematical and graph theory approach to the problem might find the fol-
lowing insightful: old and well established survey [145] and a book from the first
decade of this millennium [151]. However, the gossiping problem was not studied
in the context of energy aware, mobile agents. This is despite being well known
and being a subject of the open questions in [3] and [68], the latter specifically con-
cerned with an energy exchange model. Thus, we state a fourth kind of problems
for agents in a network:

4. Gossiping problem: Is it possible to transfer the initial information possessed
by each agent to all other agents?

Novel results concerning this problem when agents are allowed to exchange
energy will be presented in Chapter 5.

3.2 Heterogeneous problems
Let us begin this outlier section with an unremarkable observation that introduc-
tion of a variety in a previously uniform property is a common way of creating a
different version of a problem. This section is concerned with such modifications to
popular problems; however, not alterations confined exclusively to an environment
but rather the entities involved.

Let us classify agent problems as seen through this lens. A problem is said to
have a heterogeneous environment if a part of its input is a function assigning some
different, not necessarily unique, values to a subset of elements of its environment.
While the applied name is novel, the concept itself is well established. For example,
when the environment is a graph G = (V,E) a function f : E 7→ N describes its
edge-weighted version. A reader moderately familiar with graph theory is bound

68

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

to easily recall their favourite example. Furthermore, an attentive reader will
recall that one such problem was mentioned during the discussion of the connected
searching of trees [11, 83].

While it is tempting to describe problems as using heterogeneous agents in an
analogous fashion, it risks being too broad to capture a meaningful distinction.
For example, [94] uses distinct labels in order to ensure a rendezvous of two agents
when they don’t share a common description of their environment. In the above
problem, distinct labels merely allow us to break the symmetry. Hence, we say that
the term heterogeneous agents applies when agents differ in their abilities. Thus,
in our view, only a handful of problems are classified as using heterogeneous agents
and will be considered further in this section. Note that heterogeneity of agents
is not exclusive with the heterogeneity of their environment, although not every
(agent) problem has an immediately obvious way of crafting either modification.
Because the breadth of the problems considered in this section we will provide only
brief, informal descriptions.

3.2.1 Delivery

Let us begin with a continuation of the previously discussed branch of research
in this chapter that could be considered as concerned with heterogeneous agents,
namely studying agents operating with limited energy. In Section 3.1, only resource
constrained problems were described. However, heterogeneous agents were also
explicitly mentioned in Bärtschi’s thesis [15] (see also [14, 18]), under the headline
of energy-efficient delivery. Hence, in this section the goal is to minimize the sum
of spent energy. Note that, unlike in the previous section, networks are always
discrete. Since there are multiple reasons why the problem is NP-Hard, mainly
algorithms that approximate the energy expenditure are considered.

The agents in this version are weighted, which reflects their rate of energy
consumption. Three aspects of the problem are considered. When multiple agents
are allowed to handle a packet (collaboration) the problem has a polynomial time
solution only when a single data packet has to be delivered. Otherwise, when
collaboration is forbidden, a 2-approximate algorithm exist. This result made
further research significantly easier, as it allows to consider only non-collaborative
schedules at a cost of a twofold worse approximation. Even for a single agent,
deciding on a route (planning) alone is NP-Hard to approximate within a factor
less than 367/366. A 1.8-approximation algorithm is provided when agents have
unit capacity, that is, can carry at most one packet a time. The last aspect,
assigning the nodes to packages (coordination), is NP-Hard even for unit capacities
and when the previously outlined aspects are given and fixed. An exact polynomial
solution exists when the agents have the same weights. In essence, when they are
not heterogeneous. Given the above results, a general 4r-approximate algorithm
is constructed for delivery with unit capacities, where r is the ratio between the
maximum and minimum weights among the agents. Note that r can be arbitrarily
large. Finally, we mention a 2-approximate FPT algorithm and a 3.6-approximate
algorithm depending exponentially on the number of packets, denoted as m, and

69

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

the number of agents, denoted as k, respectively.
The open question whether a polynomial approximation algorithm independent

of weights exists, since the algorithms provided by Bärtschi [15] only had this prop-
erty under the assumption of constant either m or k, was answered affirmatively
in [26]. The researchers constructed an 8-approximation FPT algorithm with the
running time still exponentially depending on k; however, its complexity allows for
a polynomial running time whenever k = O(log n). Furthermore, its modification
achieves a 4k-approximation in polynomial time. Additionally, when the weights
are restricted to only 2 distinct possible values there exists a 36-approximation al-
gorithm. Another obtained result is a general O(log2 n · logmin{m,n}· log log n)−,
or simply Õ(log3 n)-approximate algorithm.

The two remaining sections of this chapter are concerned with examples of
problems from different fields of research.

3.2.2 Heterogeneous rendezvous
We proceed with examples concerning rendezvous in order to better elucidate
the distinction from problems relaying on unique labels, such as [222] and the
aforementioned [94]. In [88], rendezvous of two agents with different travel times is
considered. In this model, the time of traversal of each edge is defined separately
for each agent. Hence, one can think of each agent having their own function
assigning weights to edges. In the centralized version of the problem, both agents
know the graph, their initial locations and both of these functions. On the contrary,
in the distributed version agents share the information about the graph and their
positions, but each agent can access only its own weight function and private
memory. The authors measure the efficiency of their proposed solutions in terms
of their relation to the time taken to meet in the optimal solution in the centralized
model, denoted Topt, and the number of bits exchanged in communication between
the agents prior to the execution of any moves (communication complexity). It is
shown that without communication the time required by a distributed solution can
be within O(nTopt), where n is the number of nodes. Furthermore, a restriction
that “one of the agents is always at least as fast as the other one” can ensure that
Θ(Topt) time suffices. Additionally, communication complexity O(n(log log(M ·
n))), where M is the greatest weight in both agent’s functions, is sufficient to
achieve the time of Θ(Topt) even in the case of arbitrary weight functions.

Another example of interplay between heterogeneity and symmetry breaking
can be found in [106]. The agents use the information that their speeds are fixed
and distinct to achieve rendezvous on a continuous cycle. The authors derive lower
bounds and optimize for the speed of rendezvous under different conditions, e.g.
allowing agents to communicate through pebbles.

The third example, [56], is concerned with rendezvous of two agents when each
one can access only a subgraph, here called map, of the whole graph constituting
their environment. A similarly formulated problem was also studied earlier in
[105] (see also [104]) , where it was shown that in order for rendezvous to be
always feasible in the absence of explicit node and agent labels (IDs) one of the

70

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

maps must be a subgraph of the other. Furthermore, the model has two more
properties, which we describe only informally. First, that the nodes of the full
graph can be ordered. Agents do not need to perceive the same order. Second,
that the edges have a weight limit that must not be exceeded by the agents. These
values are known to agents from their knowledge of their maps. [56] assumes the
first result as a given and investigates the four possibilities following from the
absence or presence of each of the two subsequent properties, albeit it focuses on
asynchronous agents. Let the number of nodes of both maps be denoted as N . In
the case when both assumptions hold, the authors contribution is going beyond the
adaptation of the algorithm where agents traverse at most O(N) edges provided
in [105], which they note would result in a quadratic slowdown. Their technique
allows for a solution using O(N logN) traversals. In both articles, the researchers
were unable to provide a general, polynomial in N algorithm when either of the
two properties was not given, presenting variety of results of impossibility, analysis
restricted only to some classes of graphs or an exponential algorithm [105]. A
restriction of access of specific agents to some parts of the graph was considered
earlier in the problem of modeling evacuation [42]. While it was not the main
feature of the work, the authors claim that the problem restricted to only two
types of agents becomes NP-hard.

A very practical approach to rendezvous, this time of more than two heteroge-
neous agents, was considered in [163]. The entities model closely machines moving
on a 2-dimensional plane and a graph models merely a communication network
between them. The author allowed for different power levels (with a possibility of
energy transfer between agents), sensing range, communication range and moving
speed. Furthermore, it mentions collisions as a problem that may be encountered.
The provided algorithm’s analysis is based on simulations. Hence, it is not strictly
a graph problem of the kind analysed in this dissertation; however, it shows some
further, sensible directions for choosing properties that could be adapted to theo-
retical graph environments.

3.2.3 Different speeds

An example of such an adaptation of a model from the realm of heuristic and ex-
periments to the domain of theoretical optimally is boundary, or fence, patrolling.
The problem of boundary patrolling, where agents perpetually guard a continuous
boundary of a given shape or a line in such a way to minimize the maximum time
interval any point can remain unvisited (called idle time), was shown to change
considerably when agents have distinct maximal speeds [70]. The authors argue
that types of algorithms that are sufficient to optimally solve the problem when
the speed is the same may no longer be optimal when this is not the case. Their
focus is on the number of agents, k, being equal to either 2, 3 or 4, leaving con-
jectures for the general case of arbitrary k. In particular, the conjecture that a
strategy proven to be optimal for k = 2 is optimal for any k when the fence is a
line was falsified, by counterexample, in [161], despite holding also for k = 3. The
problem is made more complex in [71], where the agents’ ranges of visibility might

71

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

also vary.
Next, we briefly mention a very different approach to searching where speeds

of agents matter. In [69], the environment is a line and agents are provided with
two types of speeds: walking and searching, the latter slower than the former in
order to reflect the nature of the arduous but noble task of beachcombing.

A recent work in a field adjacent to data delivery problems discussed in Chap-
ter 3 is [60], concerned with delivery modeled after pony express. This time the
speed of agents is subject to differentiation and the goal is optimized delivery time
on a line. The authors consider three variants, in a centralized and distributed
model. In the case of delivery from one endpoint to the other, both off-line and
on-line versions of the problem can be solved in O(n log n) running time. Half
broadcast, i.e. delivery from the center to either endpoint, can be solved off-line
in O(n2 log n) time, with a competitive ratio 3/2. For the last variant, broadcast
from the center to both endpoints, FPTAS in the off-line case is provided and an
on-line algorithm with a competitive ratio 9/5. The runtime of the approxima-
tion schema is O(n2 log n log 1/ϵ), and this result is obtained using a binary search
estimation.

72

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Chapter 4

Heterogeneous graph searching

4.1 Introduction

In view of the fact that our literature review in Chapters 1 and 2 touched many
models and subproblems, let us skip the introduction of graph searching as a
whole in favour of an informal introduction to the problem of heterogeneous graph
searching. Nonetheless, we intentionally may recall certain previously introduced
concepts in this chapter. At a price of having potential, small repetitions regarding
a few formal terms, we achieve the goal of having full formal context here, in one
place, preceding the presentation of results. In particular, in Section 4.2.1, we
define agents’ available moves and expand the usual definition of recontamination
to include the concept of a unit decontamination. We note that this chapter is
based on [90].

Our basic motivation is based on the idea of decontamination in the field of
robotics. To be specific, we seek to completely clear a system of pipes of different
shapes contaminated with poisonous gas. In order to do so, we deploy a team
of mobile robots such that a specific unit is designed to fit only in a single type
of pipe. In short, the searchers are different1 — each searcher has access only to
some part of the graph. This premise is in line with the notion of heterogeneity
outlined in 3.2.

Beyond the examples given in the previous section, let us also bring up interdis-
ciplinary uses of graph searching, agents and heterogeneity. For example, Hollinger
et al. use graph searching models in their works to guide robots [148, 147]. We
refer a practically minded reader to the following survey on the topic [55]. Self-
stabilization and Look-Compute-Move models are used to model movement on
agents in a polygon environment by [179]. Including heterogeneity to better model
real-world scenarios is investigated in [203]. This last work is concerned with traffic
flow and models different vehicles as heterogeneous classes.

1Let us also mention a few examples of pursuit-evasion games that did not find their way
into the review in which some additional device (like a sensor or a trap) is used by the searchers
[57, 58, 59, 220].

73

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Our second motivation is an attempt to understand the concept of monotonicity
in graph searching. The variant of searching that we introduce has an interesting
property: it is possible to construct relatively simple examples of graphs in which
multiple recontaminations are required to search the graph with the minimum
number of searchers. Moreover, it is interesting that this property holds even for
trees. An attentive reader might recall that NP-membership of connected graph
searching is an open question [10, 29]. Conversely, the problem is well understood
in the class of trees [10], and studying this relatively simple class of graphs seems to
offer little help. In this view, exclusive graph searching [29], being non-monotone
even for trees, offers an easier case to study (non-)monotonicity in general. Our
model shares these benefits.

Last and least, following the footsteps of researchers who provided creative
examples of applications of graph searching, we put forward an alternative use of
the model of heterogeneous graph searching with a tale. We are given a map that
contains rivers and sea routes. Our goal is to hunt an infinitely fast and omniscient,
possibly wish granting2, golden salmon. In order to accomplish this task we are
allowed to employ bears to patrol the rivers and sharks to scour the seas. Due to
restricted funding, we seek to hire as few animals as possible. One could easily
formulate generalizations of such a problem, such as: different wages for each type
of entity or an entity that can operate in multiple environments, e.g. a bull shark.

4.1.1 Our work — a short outline

We focus on studying monotonicity and computational complexity of our hetero-
geneous graph searching problem that we formally define in Section 4.2.1. We
start by proving that the problem is not monotone in the class of trees (Sec-
tion 4.3). Then in Section 4.4 we show that, also in trees, monotone search with
heterogeneous searchers is NP-complete. In Section 4.5 we prove that the general,
non-monotone, searching problem is NP-hard for trees.

Our investigations suggest that the essence of the problem difficulty is hidden in
the properties of the availability areas of the searchers. For example, the problem
becomes hard for trees if such areas are allowed to be disconnected. To formally
argue that this is the case we give, in Section 4.6, a polynomial-time algorithm
that finds an optimal search strategy for heterogeneous searchers in case when each
color class induces a connected subtree. This result holds also for the connected
version of the heterogeneous graph search problem.

Section 4.2 is concluded with Table 4.1 that points out the complexity and
monotonicity differences between the classical and connected edge search with
respect to our problem.

2[185] does not seem to confirm the last claim.

74

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

4.2 Preliminaries
In this work we consider simple edge-labeled graphs G = (V (G), E(G), c), i.e.,
without loops or multiple edges, where c : E(G) → {1, . . . , z} is a function that
assigns labels, called colors, to the edges of G. Then, if c({u, v}) = i, {u, v} ∈
E(G), then we also say that vertices u and v have color i. Note that vertices may
have multiple colors, so by c(v) := {c({u, v}) : {u, v} ∈ E(G)} we will refer to the
set of colors of a vertex v ∈ V (G).

4.2.1 Problem formulation
We will start by recalling the classical edge search problem [199] and then we will
formally introduce our adaptation of this problem to the case of heterogeneous
searchers.

An (edge) search strategy S for a simple graph G = (V (G), E(G)) is a sequence
of moves S = (m1, . . . ,mℓ). Each move mi is one of the following actions:

(M1) placing a searcher on a vertex,

(M2) removing a searcher from a vertex,

(M3) sliding a searcher present on a vertex u along an edge {u, v} of G, which
results in a searcher ending up on v.

We often write for brevity ‘move i’ in place of ‘move mi’.
Furthermore, we recursively define for each i ∈ {0, . . . , ℓ} a set Ci such that Ci,

i > 0, is the set of edges that are clean after the move mi and C0 is the set of edges
that are clean prior to the first move of S. Initially, we set C0 = ∅. For i > 0 we
compute Ci in two steps. In the first step, let C′i = Ci−1 for moves (M1) and (M2),
and let C′i = Ci−1 ∪ {{u, v}} for a move (M3). In the second step compute Ri to
consists of all edges e in C′i such that there exists a path P in G such that no vertex
of P is occupied by a searcher at the end of move mi, one endpoint of P belongs to
e and the other endpoint of P belong to an edge not in Ci−1.3 We stress out that it
is enough that only one such path exists, and in particular, if a contaminated edge
is adjacent to a clean edge e, then e becomes contaminated when their common
vertex v is not occupied by a searcher. In such case, P consists of the vertex v
only. Then, set Ci = C′i \ Ri. If Ri ̸= ∅, then we say that the edges in Ri become
recontaminated (or that recontamination occurs in S if it is not important which
edges are involved). If le is the number of times the edge e becomes recontaminated
during a search strategy, then the value

∑
e∈E(G) le is referred to as the number

of unit recontaminations. Finally, we define Di = E(G) \ Ci to be the set of edges
that are contaminated at the end of move mi, i > 0, where again D0 refers to the

3We point out that another way of computing the set Ci is possible. Namely, start again with
the same set C′

i. Then, check if the following condition holds: there exists an edge e in C′
i that

is adjacent to an edge not in C′
i and their common vertex is not occupied by a searcher. In such

case, remove e from C′
i. Keep repeating such an edge removal from C′

i until there is no such edge
e. Then, set Ci = C′

i and Ri = E(G) \ C′
i.

75

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

state prior to the first move. Note that D0 = E(G). We require from a search
strategy that Cℓ = E(G).

Denote by V (mi) the vertices occupied by searchers at the end of move mi. We
write |S| to denote the number of searchers used by S understood as the minimum
number k such that at most k searchers are present on the graph in each move.
Then, the search number of G is

es(G) = min
{
|S|

∣∣ S is a search strategy for G
}
.

If the graph induced by edges in Ci is connected for each i ∈ {1, . . . , ℓ}, then
we say that S is connected. We then recall the connected search number of G:

cs(G) = min
{
|S|

∣∣ S is a connected search strategy for G
}
.

We now adopt the above classical graph searching definitions to the searching
problem we study in this work. For an edge-labeled graph G = (V (G), E(G), c),
a search strategy assigns to each of the k searchers used by a search strategy a
color: the color of searcher j is denoted by c̃(j). This is done prior to any move,
and the assignment remains fixed for the rest of the strategy. Then again, a search
strategy S is a sequence of moves with the following constraints: in move (M1) that
places a searcher j on a vertex v it holds c̃(j) ∈ c(v); move (M2) has no additional
constraints; in move (M3) that uses a searcher j for sliding along an edge {u, v}
it holds c̃(j) = c({u, v}). Note that, in other words, the above constraints enforce
the strategy to obey the requirement that at any given time a searcher may be
present on a vertex of the same color and a searcher may only slide along an edge
of the same color. To stress out that a search strategy uses searchers with color
assignment c̃, we refer to as a search c̃-strategy. We write c̃S(j) to refer to the
number of searchers with color j in a search strategy S.

Then we introduce the corresponding graph parameters hs(G) and hcs(G)
called the heterogeneous search number and heterogeneous connected search number
of G, where hs(G) (respectively hcs(G)) is the minimum integer k such that there
exists a (connected) search c̃-strategy for G that uses k searchers.

Whenever we write es(G) or cs(G) for an edge-labeled graph G = (V,E, c) we
refer to es(G′) and cs(G′), respectively, where G′ = (V,E) is isomorphic to G.

We say that a search strategy S is monotone if no recontamination occurs in S.
Analogously, for the search numbers given above, we define monotone, connected
monotone, heterogeneous monotone and connected heterogeneous monotone search
numbers denoted by mes(G), mces(G), mhs(G) and mhcs(G), respectively, to be
the minimum number of searchers required by an appropriate monotone search
strategy.

The decision versions of the combinatorial problems we study in this work are
as follows:

Heterogeneous Graph Searching Problem (HGS)
Given an edge-labeled graph G = (V (G), E(G), c) and an integer k, does it
hold hs(G) ≤ k?

76

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Heterogeneous Connected Graph Searching Problem (HCGS)
Given an edge-labeled graph G = (V (G), E(G), c) and an integer k, does it
hold hcs(G) ≤ k?

In the optimization versions of both problems an edge-labeled graph G is given as
an input and the goal is to find the minimum integer k, a labeling c̃ of k searchers
and a (connected) search c̃-strategy for G.

Monotone Non-monotone Complexity
ES arbitrary graphs

[199, 202, 190,
186]

P for trees [186], NPC for
weighted trees [190], NPC
for arbitrary graphs [186]

CES trees [10, 11] arbitrary graphs
[237]

P for trees [10], NPC for
weighted trees [83], NPH for
arbitrary graphs [10]

HGS trees [Theorem 1] NPH for trees [Theorem 4]

Table 4.1: Monotonicity and complexity summary of our problems in comparison
with the classical and connected edge search problems for trees and arbitrary
graphs. ES and CES denote edge search and connected edge search, respectively.

4.2.2 Additional notation and remarks

For some nodes v in V (G) we have |c(v)| > 1, such connecting nodes we will call
junctions. Thus a node v is a junction if there exist two edges with different colors
incident to v.

We define an area in G to be a maximal subgraph H of G such that for every
two edges e, f of H, there exists a path P in H connecting an endpoint of e with
and endpoint of f such that P contains no junctions. We further extend our
notation to denote by c(H) the color of all edges in area H. Note that two areas
of the same color may share a junction. Let Areas(G) denote all areas of G. Two
areas are said to be adjacent if they include the same junction.

Fact 4.2.1. If T is a tree and v is a junction that belongs to some area H in T ,
then v is a leaf (its degree is one) in H.

Fact 4.2.2. If T is a tree, then any two different areas in T have at most one
common node which is a junction.

Lemma 4.2.1. Given a tree T = (V (T), E(T), c) and any area H in T , any search
c̃-strategy for T uses at least es(H) searchers of color c(H).

Proof. If there are less than es(H) searchers of color c(H), then the area H can
not be cleaned, as searchers of other colors can only be placed on leafs of H.

77

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

We now use the above lemma to obtain a lower bound for the heterogeneous
search number of a graph G = (V (G), E(G), c : E(G)→ {1, . . . , z}). Define

β(G) =

z∑
i=1

max
{
es(H)

∣∣ H ∈ Areas(G), c(H) = i
}
.

Using Lemma 4.2.1 for each area we obtain the following:

Lemma 4.2.2. For each tree T it holds hs(T) ≥ β(T).

4.3 Lack of monotonicity

Restricting available strategies to monotone ones can lead to increase of heteroge-
neous search number, even in case of trees. We express this statement in form of
the following main theorem of this section:

Theorem 1. There exists a tree T such that mhs(T) > hs(T).

In order to prove this theorem we provide an example of a tree Tl = (V,E, c),
where l ≥ 3 is an integer, which cannot be cleaned with β(Tl) searchers using
a monotone search strategy, but there exists a non-monotone strategy, provided
below, which achieves this goal. Our construction is shown in Figure 4.1.

We first define three building blocks needed to obtain Tl, namely subtrees T ′
1, T ′

2

and T ′′
l . We use three colors, i.e., k ≥ 3. The construction of the tree T ′

i , i ∈ {1, 2},
starts with a root vertex qi, which has 3 further children connected by edges of
color 1. Each child of qi has 3 children connected by edges of color 2.

For the tree T ′′
l , l ≥ 3, take vertices v0, . . . , vl+1 that form a path with edges

ex = {vx, vx+1}, x ∈ {0, . . . , l}. We set c(ex) = x mod 3 + 1. We attach one
pendant edge with color x mod 3 + 1 and one with color (x − 1) mod 3 + 1 to
each vertex vx, x ∈ {1, . . . , l}. Next, we take a path P with four edges in which
two internal edges are of color 2 and two remaining edges are of color 3. To finish
the construction of T ′′

l , identify the middle vertex of P , incident to the two edges
of color 2, with the vertex v0 of the previously constructed subgraph.

We link two copies of T ′
i , i ∈ {1, 2}, by identifying two endpoints of the path

P with the roots q1 and q2 of T ′
1 and T ′

2, respectively, obtaining the final tree Tl

shown in Fig. 4.1.
Now, we are going to analyze a potential monotone search c̃-strategy S using

β(Tl) = 3 searchers. Thus, by Lemma 4.2.1, S uses one searcher of each color. We
define a notion of a step for S = (m1, . . . ,ml) to refer to some particular moves of
this strategy. We distinguish the following steps that will be used in the lemmas
below:

1. step ti, i ∈ {1, 2}, equals the minimum index j such that at the end of move
mj all searchers are placed on the vertices of T ′

i (informally, this is the first
move in which all searchers are present in T ′

i);

78

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

q2q1

v0

v1

v2

v3

v4

e0,1

e1,2

e2,3

e3,1

T ′1 T ′2

path P2 2

2
2

2

2
2

2

2
2 2

2 2 2
2 2 2 2 2

2
2

2
2

3

3
3

3

3

1

1

1
1 1 1

1

11

1

Figure 4.1: The construction of T3 (l = 3) from the trees T ′
1, T ′

2 and T ′′
3 . Regular,

heavy and dashed edges have labels 1, 2 and 3, respectively.

2. step t′i, i ∈ {1, 2}, is the maximum index j such that at the end of move mj

all searchers are placed on the vertices of T ′
i (informally, this is the last move

in which all searchers are present in T ′
i);

3. steps t3, t′3 are, respectively, the minimum and maximum indices j such that
at the end of move mj all searchers are placed on the vertices in V (P)∪V (T ′′

l).

We skip a simple proof that all above steps are well defined, i.e., for any search
strategy using 3 searchers for T each of the steps ti, t

′
i, i ∈ {1, 2, 3}, must occur

(for trees T ′
1 and T ′

2 this immediately follows from es(T ′
i) = 3 for i ∈ {1, 2}).

Lemma 4.3.1. For each monotone c̃-search strategy S for T3 it holds: t1 ≤ t′1 <
t3 ≤ t′3 < t2 ≤ t′2 or t2 ≤ t′2 < t3 ≤ t′3 < t1 ≤ t′1.

Proof. Intuitively, we prove the lemma using the following argument: in the process
of cleaning T ′

i , i ∈ {1, 2}, all three searchers are required for some steps, and
therefore a monotone strategy could not have partially cleaned T ′

3−i or T ′′
3 prior

to this point.
The arguments used to prove this lemma do not use colors, so atomic statements

about search strategies for subgraphs can be analyzed using simple and well known
results for edge search model. Furthermore, due to the symmetry of T , it is enough
to analyze only the case when t1 < t2. Note that ti ≤ t′i, i ∈ {1, 2, 3}, follows

79

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

directly from the definition. The vertices qi, i ∈ {1, 2}, have to be guarded at
some point between move ti and move t′i because es(T ′

i) = 3. Because each step
tj , j ∈ {1, 2, 3}, uses all searchers, it cannot be performed if a searcher preventing
recontamination is required to stay outside of subtree related to the respective
step. The subtrees T ′

1 and T ′
2 contain no common vertices, so t1 < t2 implies

t2 > t′1, as stated in the lemma.
Suppose for a contradiction that t3 < ti for each i ∈ {1, 2}. In move t3, since

neither of moves t′i has occurred, both subtrees T ′
1, T

′
2 contain contaminated edges.

Moreover, some of the contaminated edges are incident to vertices qi. Thus, any
edge of T ′′

l that is clean becomes recontaminated in the step min{t1, t2}. Therefore,
t1 < t3 as required.

Now we prove that t′1 < t3. Suppose for a contradiction that t1 < t3 < t′1.
Consider the move of index t′1. By t3 < t′1, T ′′

l contains clean edges. By t′1 < t2,
q2 is incident to contaminated edges in T ′

2. Thus, there is a searcher outside of
T ′
1 which prevents recontamination of clean edges in T ′′

l . Contradiction with the
definition of t′1.

In move t2 there are no spare searchers left to guard any contaminated area
outside T ′

2 which bypasses q2 and could threaten recontamination of T ′
1, so all

edges, including the ones in T ′′
l , between those two trees should have been clean

already. Therefore step t′3 has to have already occurred, which allows us to conclude
t′3 < t2.

Due to the symmetry of Tl, we consider further only the case t1 ≤ t′1 < t3 ≤
t′3 < t2 ≤ t′2.

Lemma 4.3.2. During each move of index t ∈ [t′1, t2] there is a searcher on a
vertex of P .

Proof. By t ≥ t′1, q1 is incident to some clean edges of T ′
1. By t ≤ t2, q2 is incident

to some contaminated edges from T ′
2. Hence there has to be a searcher on q1, q2

or a vertex of the path P between them to prevent recontamination.

Let fi, i ∈ {1, . . . , l − 1}, be the index of a move such that one of the edges
incident to vi is clean, one of the edges incident to vi is being cleaned and and all
other edges incident to vi are contaminated.

Notice that es(T ′′
l) = 2, and therefore an arbitrary search strategy S ′ using two

searchers to clean a subtree without colors that is isomorphic to T ′′
l follows one of

these patterns: either the first searcher is placed, in some move of S ′, on v1 and
throughout the search strategy it moves from v1 to vl−1 or the first searcher starts
at vl−1 and moves from vl−1 to v1 while S ′ proceeds. If for each i ∈ {1, . . . , l− 1}
the edge {vi−1, vi} becomes clean prior to the edge {vi, vi+1}— we say that such S ′
cleans T ′′

l from v1 to vl−1 and if the edge {vi−1, vi} becomes clean after {vi, vi+1}
— we say that such S cleans T ′′

l from vl−1 to v1.

Lemma 4.3.3. Each move of index fi, i ∈ {1, . . . , l − 1}, is well defined. Either
f1 < f2 < . . . < fl−2 < fl−1 or fl−1 < fl−2 < . . . < f2 < f1.

80

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Proof. Consider a move of index f which belongs to [t3, t
′
3] in a search strategy

S. By Lemma 4.3.1 and Lemma 4.3.2, a searcher is present on a vertex of P in
the move of index f . Hence, only two searchers can be in T ′′

l in the move f , so
S cleans T ′′

l from v1 to vl−1 or cleans T ′′
l from vl−1 to v1. Note that during an

execution of such a strategy there occur moves which satisfy the definition of fi,
and therefore there exists well defined fi. When S cleans T ′′

l from v0 to vl, then
f1 < f2 < . . . < fl−2 < fl−1 is satisfied and when S cleans T ′′

l from vl to v0, then
fl−1 < fl−2 < . . . < f2 < f1 is satisfied.

Lemma 4.3.4. There exists no monotone search c̃-strategy that uses 3 searchers
to clean Tl when l ≥ 7.

Proof. We use the following intuition in the proof: whenever a search strategy
tries to clean the path composed of the vertices v0, . . . , vl+1, together with the
corresponding incident edges, then it periodically needs searchers of all three colors
on this path. While doing this, different vertices of the path P need to be guarded.
More precisely, when the search moves along the former path, it needs to move
along P as well. Due to the fact that l is large enough, the path P is not long
enough to avoid recontamination.

The vertex vi, i ∈ {1, . . . , l − 1}, is incident to edges of colors i mod 3 + 1
and (i− 1) mod 3 + 1, and therefore each move fi uses both searchers of colors i
mod 3 + 1 and (i − 1) mod 3 + 1. By Lemma 4.3.2, the third searcher, which is
of color (i− 2) mod 3 + 1, stays on P .

Consider a sequence f6 < f5 < . . . < f2 < f1. Note that it implies that T ′′
3 is

cleaned from vl−1 to v1. Let us show that it is impossible to place a searcher on
the vertices of P such that no recontamination occurs in each fi, i ∈ {1, . . . , 6}.

Consider the move of index f6, where searchers of colors 1 and 3 are in T ′′
l

and 2 is on P . Before move f6 an edge incident to v6 is clean (by definition of
f6). No edge incident to v1 is clean and, by Lemma 4.3.1, T ′

j has a clean edge,
j ∈ {1, 2}. In order to prevent recontamination of T ′

j , the searcher is present on
P , particularly on a vertex of the path from qj to v0. It cannot be the vertex qj ,
because 2 /∈ c(qj), so the edge of color 3 incident to qj is clean, and the searcher
is on one of the remaining two vertices. Consider the move of index f5, in which
the searcher of color 1 is on a vertex v of P . The vertex between qj and v0 cannot
be occupied, due to its colors, and occupying qj would cause recontamination —
only the vertex v0 is available, v = v0. Consider the move of index f4. The vertex
v0 cannot be occupied, due to its colors. The edge e0 cannot be clean before e4 is
clean, because T ′′

l is cleaned from vl−1 to v1. Therefore, the searcher on v0 cannot
be moved towards q2. Monotone strategy fails.

The argument is analogical for a sequence f1 < f2 < . . . < f5 < f6. By
Lemma 4.3.3, T ′′

l is cleaned either from v1 to vl−1 or the other way, which implies
that considering the two above cases completes the proof.

Lemma 4.3.5. There exists a non-monotone c̃-strategy S that cleans Tl using
three searchers for each l ≥ 3.

81

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Proof. The strategy we describe will use one searcher for each of the three colors.
The strategy first cleans the subtree T ′

1 (we skip an easy description how this can
be done) and finishes by cleaning the path connecting q0 with v0. Denote the
vertex on the path from v0 to q2 as v.

Now we describe how the strategy cleans T ′′
l from v1 to vl−1. For each i ∈

{1, . . . , l}, the vertex vi is incident to edges of colors i mod 3 + 1 and (i − 1)
mod 3 + 1 therefore each move fi uses both searchers of colors i mod 3 + 1 and
(i − 1) mod 3 + 1. By Lemma 4.3.2, the third searcher which is of color (i − 2)
mod 3+1, stays on P . Informally, while progressing along T ′′

l , the strategy makes
recontaminations within the path P .

We will define j-progress, j ∈ {1, . . . , l − 1}, as a sequence of consecutive
moves which clean edges of colors in c(vj) in T ′′

l and contains the move of index
fj . Similarly, we introduce i-reconfig(u), i ∈ {1, 2, 3}, as a minimal sequence
of consecutive moves, such that there is a searcher on some vertex u of P in the
first move of i-reconfig(u) and the searcher of color i is present on P in the last
move of i-reconfig(u). Let ub be the occupied vertex of P after the last move
of b-th i-reconfig(u) in S. Additionally let u0 = v0. Clean T ′′

l by iterating for
each j ∈ {1, . . . , l− 1} (in this order) the following: a-reconfig(uj−1), followed by
j-progress, where a = (j − 2) mod 3 + 1.

Because determining moves in j-progress is straightforward, as they correspond
to those in monotone c̃-strategy when f1 < f2 < . . . < fl−2 < fl−1, we focus
on describing i-reconfig(u) for each i ∈ {1, 2, 3}. 1-reconfig(u0) consists of a
sliding move from v0 to v and a move which places the searcher of color 3 on
u1 = v. 2-reconfig(u1) consists of a sliding move from v to v0, which causes
recontamination, and a move which places the searcher of color 1 on u2 = v0.
3-reconfig(u2) does not contain any sliding moves and places the searcher of color
2 on u3 = v0. Because a = (j − 2) mod 3 + 1 and uj−1 = uj+2 a-reconfig(uj)
is identical to a+ 3-reconfig(uj+3), thus we can describe a strategy which cleans
T ′′
l for any given l.

When T ′′
l is clean, the vertex v0 is connected to a clean edge and the remaining

edges of path P can be searched without further recontaminations. The strategy
cleans subtree T ′

2 in the same way as a monotone one.
Note that the proposed strategy requires new recontamination whenever a se-

quence of fi of length 3 repeats itself. Thus, this c̃-strategy cleaning Tl has Ω(l)
unit recontaminations. Note that the size of the tree Tl is Θ(l).

Lemma 4.3.5 provides a non-monotone search c̃-strategy which succeeds with
fewer searcher than it is possible for a monotone one, as shown in lemma 4.3.4,
which proves Theorem 1.

Theorem 2. There exist trees such that each search c̃-strategy that uses the
minimum number of searchers has Ω(n2) unit recontaminations.

Proof. As a proof we use a tree Hl obtained through a modification of the tree
Tl. In order to construct Hl, we replace each edge on the path P with a path
Pm containing m vertices, where each edge between them is in the same color as

82

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

the replaced edge in Tl. Clearly hs(Hl) = hs(Tl). Note that we can adjust the
number of vertices in T ′′

l and Pm of Hl independently of each other. While the
total number of vertices is n = Θ(m+ l), we take m = Θ(n), l = Θ(n) in Hl.

In order to clean Hl, we employ the strategy provided in theorem 4.3.5 adjusted
in such a way, that any sliding moves performed on edges of P are replaced by
O(m) sliding moves on the corresponding paths of Pm. As shown previously, the
number of times an edge of P in Tl, or path Pm in Hl, which contains Θ(m)
elements, has to be recontaminated depends linearly on size of T ′′

l . In the later
case the c̃-strategy cleaning Hl has Ω(ml) = Ω(n2) unit recontaminations .

4.4 NP-hardness for trees
We show that the decision problem HGS is NP-complete for trees if we restrict
available strategies to monotone ones. Formally, we prove that the following prob-
lem is NP-complete:

Monotone Heterogeneous Graph Searching Problem (MHGS)
Given an edge-labeled graph G = (V (G), E(G), c) and an integer k, does it
hold mhs(G) ≤ k?

Thus, the rest of this section is devoted to a proof of the following theorem.

Theorem 3. The problem MHGS is NP-complete in the class of trees.

In order to prove the theorem, we conduct a polynomial-time reduction from
Boolean Satisfiability Problem where each clause is limited to at most three literals
(3-SAT). The input to 3-SAT consists of n variables x1, . . . , xn and a Boolean
formula C = C1∧C2∧· · ·∧Cm, with each clause of the form Ci = (li,1∨ li,2∨ li,3),
where the literal li,j is a variable xp or its negation, xp, p ∈ {1, . . . , n}. The answer
to decision problem is YES if and only if there exist an assignment of Boolean values
to the variables x1, . . . , xn such that the formula C is satisfied.

Given an input to 3-SAT, we construct a tree TSAT which can be searched
monotonously by the specified number of searchers if and only if the answer to
3-SAT is YES. We start by introducing the colors and, informally speaking, we
associate them with respective parts of the input:

• color Vp, p ∈ {1, . . . , n}, represents the variable xp,

• color Fp (respectively Tp), p ∈ {1, . . . , n}, is used to express the fact that to
xp may be assigned the Boolean value false (true, respectively),

• color Cd, d ∈ {1, . . . ,m}, is associated with the clause Cd.

We will also use an additional color to which we refer as R.
We denote the set of all above colors by Q. Note that |Q| = 3n +m + 1. In

our reduction we set k = |Q|+ 1 +m to be the number of searchers.
The construction of the tree starts with a path P of color R consisting of

l = 4n + 3m + 4 + 1 vertices vi, i ∈ {1, 2, . . . , l}. We add 2 pendant edges of

83

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

color R to both v1 and vl. Define a subgraph Hz (see Figure 4.2(a)) for each color
z ∈ Q\{R}: take a star of color R with three edges, attach an edge e of color z to a
leaf of the star and then attach an edge e′ of color R to e, so that the degree of each
endpoint of e is two. For each z ∈ Q\({R}∪{C1, . . . , Cm}) take a subgraph Hz and

e

e′

color z

vi

Ai

(a)

color Vi

vi(b) (c)

e

vi

x ∈ {Ti, Fi}
color

e
color
x′ = Ci

color R

color R

color R

color R color R

color R

e

e′

color z

vi

Ai

(a)

color Vi

vi(b) (c)

e

vi

x ∈ {Ti, Fi}
color

e
color
x′ = Ci

color R

color R

color R

color R color R

color R

Figure 4.2: Construction of T : (a) the subgraph Hz; (b) the subgraph Lx; (c) the
subgraph L′

x′

join it with P in such a way that the endpoint of e′ of degree one in Hz is identified
with a different vertex in {v2, . . . , va}, a = 3n+2m+1. For each z ∈ {C1, . . . , Cm}
take two copies of Hz and identify each endpoint of e′ of degree one in Hz with
a different vertex in {v2, . . . , va}, which has no endpoint of e′ attached to it yet.
The above attachments of the subgraphs Hz are performed in such a way that the

84

degree of vi is three for each i ∈ {2, . . . , a} (see Figure 4.3). We note that, except
for the requirement that no two subgraphs Hz are attached to the same vi, there
is no restriction as to which Hz is attached to which vi. The star of color R in the
subgraph Hz attached to the vertex vi is denoted by Ai.

For each color x in X = {Ti, Fi
∣∣ i ∈ {1, . . . , n}} we define a subtree Lx (see

Figure 4.2(b)). We start with a root having a single child and an edge of color R
between them. Then we add an edge e of color Vi to this child, where i is selected
so that it matches x which is either Ti or Fi. The leaf of e has three further children
attached by edges of color x. We finish by attaching 2 edges of color R to each
of the three previous children. For each color x′ ∈ X ′ = {C1, . . . , Cm} construct a
subtree L′

x′ (see Figure 4.2(c)) in the same shape but colored in a different way.
The edges of color different than R in the construction of Lx are replaced by edges
of color x′. We draw attention to the fact that L′

x′ contains an area of color x′

that is a star with four edges. We attach to the path P five copies of subtree Lx

for each x ∈ X and five copies of L′
x′ for each x′ ∈ X ′ by unifying their roots with

the vertex va+1 of P (see Figure 4.3).
We attach five further copies of L′

x′ for each x′ ∈ X ′ by unifying their roots
with the vertex vl−1 of P .

. . .v1 v2 v3
v4

va−1
va

va+1

all subgraphs

Lx and L′
x′

all subgraphs Hz

Figure 4.3: Construction of T : attachment of subgraphs Hz and the subgraphs Lx

and L′
x′ to the path P

For each variable xp we construct two subtrees, Sp and S−p, in the following
fashion (see Figure 4.4(a)): take a star of color R with three edges and attach an
endpoint of a path with four edges to a leaf in this star of color R; the consecutive
colors of the path, starting from the endpoint at the star of color R are: Vp, R,
Fp, R in S−p and Vp, R, Tp, R in Sp. For each subtree Sp and S−p, p ∈ {1, . . . , n}
attach the endpoint of its path of degree one to va+1+p . The star of color R in Sp

attached to vi is denoted by Ai and the one in S−p by A−i.
For each clause Cd, d ∈ {1, . . . ,m} we attach three subtrees Ld,j , j ∈ {1, 2, 3},

to the vertex vb+d, where b = 4n+2m+3, one for each literal ld,j (see Figure 4.4(b)).
Note that the maximal value of b+d is l− 2. We construct Ld,j by taking an edge
e of color R and adding three edges to its endpoint: two of color Ci, and one either
of color Tp if ld,j = xp or of color Fp if ld,j = xp. Add two children by the edge of

85

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

vb+d
(a) (b)

colors from {Ti, Fi | ∈ {1, . . . , n}}

color
Tp

va+1+p

S−p Sp

color
Fp

color
Vp

color
Vp

color Cp

col
or

Cp

co
lo
r
C p

R

R

R R

R

R

RR

RR

R

R R
R

R

R

R

R
R R

R
R

A−(a+1+p) Aa+1+p

vb+d
(a) (b)

colors from {Ti, Fi | ∈ {1, . . . , n}}

color
Tp

va+1+p

S−p Sp

color
Fp

color
Vp

color
Vp

color Cp

col
or

Cp

co
lo
r
C p

R

R

R R

R

R

RR

RR

R

R R
R

R

R

R

R
R R

R
R

A−(a+1+p) Aa+1+p

Figure 4.4: Construction of T : (a) the variable component constructed from S−p

and Sp; (b) the clause component that corresponds to Cd.

86

color R to each of these three edges. Then attach the endpoint of degree one of the
edge e in Ld,j to vb+d. We attach a single edge of color R to vb. The tree obtained
through this construction will be denoted by TSAT.

The area of color R which contains the path P is denoted by A0. Notice that
all areas Ai of color R have search number two, es(Ai) = 2. For a search strategy
for TSAT, we denote the index of the first move in which all searchers of color
R are in the area Ai as step ti and the index of the last such move as step t′i,
i ∈ I = {2, . . . , a} ∪ {a + 2, . . . , b − 1} ∪ {−(b − 1), . . . ,−(a + 2)} ∪ {0}. Let
R = {a+2, . . . , b−1}∪{−(b−1), . . . ,−(a+2)} and L = I \{R∪{0}} = {2, . . . , a}
be the two sets which cover all indices of areas Aa : a ∈ I \ {0}. Note that by
definition a + 1 ̸∈ L and a + 1 ̸∈ R, and the path from v1 to va+1 contains no
vertex vj , j ∈ R. Similarly, the path from va+1 to vl contains no vertex vi, i ∈ L.
Informally, we divide the indices in I \ {0} into two sets: L to the left of va+1 and
R to the right.

Lemma 4.4.1 (Color assignment). A search c̃-strategy using k = 3n + 2m + 2
searchers has to color them in the following fashion: one searcher for each color in
{Tp, Fp, Vp

∣∣ p ∈ {1, . . . , n}} and two searchers for each color in {R}∪{C1, . . . , Cm}.
Proof. We first compute the lower bound β(TSAT). By Lemma 4.2.1, at least 3n
searchers take colors Fp, Tp and Vp, p ∈ {1, . . . , n}. Recall that L′

x′ contains as a
subgraph an area T ′ of color x′ ∈ {C1, . . . , Cm} that is a star with three edges and
hence es(T ′) = 2. Since there are m such subtrees L′

x′ , 2m searchers receive colors
C1, . . . , Cm. The last two searchers have to be of color R in order to clean areas
Ai, i ∈ I. Thus, we have shown that β(TSAT) ≥ 3n+2m+2 and this lower bound
is met by the assignment of colors to searchers, as indicated in the lemma. Using
Lemma 4.2.2 we complete the proof.

Lemma 4.4.2. Let x1, . . . , xn and a Boolean formula C = C1 ∧C2 . . .∧Cm be an
input to 3-SAT. If the answer to 3-SAT is YES, then there exists a search c̃-strategy
using 2 + 3n+ 2m searchers for TSAT.

Proof. We first note the main point as to how a Boolean assignment provides the
corresponding search strategy. Whether a variable is true or false, this dictates
which searcher, either of color Fp or Tp, is placed in the corresponding variable
component. The vertices occupied by these searchers form a separator that dis-
connects A0 from areas Ai, i ∈ R. The strategy cleans first the latter areas that
are protected from recontamination. As a result, all Ai, i ∈ R, become clean.
Then, A0 is cleaned with the clause components along the way: here the fact that
the initial Boolean assignment was satisfied ensures that searchers of appropriate
colors are available to clean the subsequent clause components.

Suppose that a Boolean assignment to the variables satisfies C. The strategy
is described as a sequence of instructions.

1. We start by placing a searcher of color dictated by the Boolean assignment
in each variable component. For each Sp (respectively S−p), place a searcher
of color Tp (respectively Fp) on the vertex that is incident to the edge of color
Tp and does not belong to A0 if xp is false (respectively true).

87

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

2. Then, clean Aa+1+p (respectively A−(a+1+p)) and then the edges in Sp (re-
spectively S−p) that connect this star of color R to the vertex guarded by
the searcher of color Tp (respectively Fp). Note that this cleaning uses two
searchers of color R and the searcher of color Vp. Then, place the searcher
of color Vp on the vertex that belongs to the edge of color Vp in S−p (re-
spectively Sp) and area A−(a+1+p) (respectively Aa+1+p). Clean A−(a+1+p)

(respectively Aa+1+p).

By repeating the above for each index p, we in particular obtain that all
areas Ai, i ∈ R are clean. Note that if xp = false (respectively xp = true),
then the searcher of color Tp (respectively Fp) stays in Sp (respectively S−p)
and the searcher of color Fp (respectively Tp) is available. Let X denote the
colors of available searchers among those in colors Fp and Tp.

3. Then we start cleaning A0 from the vertex vl and move towards vb. Clean
copies of L′′

Cd , d ∈ {1, . . . ,m} attached to vl−1. Consider each approached ver-
tex vh, h ∈ {b+1, b+2, . . . , l−2}, and its three subtrees Ld,i, i ∈ {1, 2, 3}, d ∈
{1, . . . ,m} separately. We denote the color different than R and Cd in Ld,i

as xd,i. Because C is satisfied, at least one of the literals in each clause
is true and for each d ∈ {1, . . . ,m} there always exists Ld,i such that xd,i

matches the color of the searcher not assigned to neither Sp nor S−p, i.e.,
xd,i ∈ X. Clean each such Ld,i by using searchers of color Cd, R and xd,i.
Hence, at this point each Ld,i for which the literal ld,i is satisfied in C is
clean. Place the two searchers of color Cd in each remaining contaminated
Ld,i on vertex belonging to A0. Because at least one subtree Ld,i is clean for
each d ∈ {1, . . . ,m}, two searchers of color Cd are sufficient. Then, continue
cleaning A0 towards the next vh.

4. We now describe the moves of the search strategy performed once a vertex
vj , j ∈ R, is reached while cleaning A0.

Clean all remaining contaminated edges of Sp and S−p rooted in vj . Remove
the searchers of colors Tp, Fp, Vp when they are no longer necessary.

5. Once va+1 has been reached, clean all remaining contaminated subtrees Ld,i

(it follows directly from previous steps that searchers of appropriate colors
are available) and perform moves as in colorless strategy with the addition of
necessary switching of searchers on vertices with multiple colors. Repeat this
strategy for each Lx, x ∈ {Ti, Fi

∣∣ i ∈ {1, . . . , n}}, and L′
x′ , x′ ∈ {C1, . . . , Cm}.

6. For each color z ∈ Q \ {R} set a searcher of color z on the common vertex
of the subtree Hz and A0. Then clean all edges incident to each vertex
vi, i ∈ L, which finishes cleaning A0. The finishing touches of our strategy
are simple. Once A0 is clean, the remaining contaminated parts of subtrees
Hz, containing Ai, i ∈ L, can be searched in an arbitrary sequence.

88

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Now we will give a series of lemmas that allow us to prove the other implication,
namely that a successful monotone strategy implies a valid solution to 3-SAT. The
next lemma says that between the first and last moves when all searchers of color
R are in an area Ai, no move having all searchers of color R in a different area Aj

is possible. The proof is due to a counting argument.

Lemma 4.4.3. No step tj can occur between any two steps ti, t
′
i:

[ti, t
′
i] ∩

[
tj , t

′
j

]
= ∅, i ̸= j.

Proof. The proof is by contradiction. First note that if t′i = tj for any i ̸= j, that
would imply that four searchers of color R are present in a graph at once: two in Ai

and two in Aj . Hence, we suppose for a contradiction that there exists j ̸= i such
that ti < tj < t′i or ti < t′j < t′i. Consider a step t ∈ [ti, t

′
i]. At least one searcher of

color R is in Ai because it is partially clean. If t ∈ {tj , t′j}, then there are two red
searchers in Aj , which contradicts color composition imposed by Lemma 4.4.1.

We say that a subtree T ′ is guarded by a searcher q on a vertex v if removal of
q leads to recontamination of an edge in T ′. Note that v does not have to belong
to T ′, or in other words, T ′ is any subtree of the entire subgraph that becomes
recontaminated once the searcher q is removed. We extend our notation to say
that T ′ is guarded from T ′′ if T ′′ is contaminated and removal of q produces a path
that is free of searchers and connects a node of T ′ with a node of T ′′.

Informally, the next lemma states the following. Prior and after the moves
that have all searchers of color R on A0, there must be moves having all searchers
of color R on some Ai, i ̸= 0. The argument is due to the fact that we do not
have sufficiently many searchers, in total, to guard A0 from all other Ai’s (or,
conversely, all other Ai’s from A0).

Lemma 4.4.4. The step t0 cannot be the first one and t′0 cannot be the last one
in a sequence of steps containing each ti, i ∈ I, i.e., min{ti

∣∣ i ∈ I} < t0 ≤ t′0 <

max{ti
∣∣ i ∈ I}.

Proof. Suppose for a contradiction that t0 is the first step, i.e., t0 < ti, for each
i ∈ I \ {0}. By Lemma 4.4.3, ti > t′0 for each i ∈ I \ {0}. Thus, each area Ai

contains contaminated edges in step t0. In step t′0 all edges of the path P are
clean. Hence, P is guarded by at least one searcher from Ai for each i ∈ I \ {0}.
A simple counting argument implies that two searchers of color Vp, p ∈ {1, . . . , n},
are used — a contradiction. The second case, when t′0 is the last step, can be
argued analogously.

We draw attention to the two ways of searching A0 (to which we refer as a
folklore). Since A0 is a caterpillar, one can assume without loss of generality that
it is cleaned by S by the two searchers of color R in the following way. Either, the
first searcher of color R is placed, in some move of S, on v1 and throughout the
search strategy it moves along P from v1 to vl — we say that such S cleans P from
v1 to vl, or the first searcher starts at vl and moves along P from vl to v1 while S

89

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

proceeds — we say that such S cleans P from vl to v1. In both cases, the second
searcher of color R is responsible for cleaning edges incident to vi, i ∈ {1, . . . , l},
when the first searcher is on vi.

We say that an edge search strategy S ′ is a reversal of a search strategy S
that consists of l moves if it is constructed as follows: if the move i of S places
(respectively removes) a searcher on a node v, then the move (l − i + 1) of S ′
removes (respectively places) the searcher on v, and if the move i of S slides a
searcher from u to v, then the move (l − i+ 1) of S ′ slides the searcher from v to
u. It has been proved in [230] that if S is a (monotone) edge search strategy, then
S ′ indeed is a (monotone) edge search strategy. We skip a proof (it is analogous
to the one in [230]) that if S is a monotone search c̃-strategy, then its reversal is
also a monotone search c̃-strategy. This allows us to assume the following for the
search strategy S for TSAT we consider in this section:

(*) S cleans P from vl to v1.

Let R-pr(vi), i ∈ {1, . . . , l}, be the index of the first move such that two
searchers of color R are in vi (either at the start or end of the move). Such moves
are well defined because the degree of vi is greater than two. Note that without
loss of generality due to (*), R-pr(vl) = t0.

Observe that the removal of edges {va, va+1} and {va+1, va+2} from TSAT gives
three connected components and let Ta+1 be the subtree of TSAT that equals the
connected component that contains va+1. For each subtree T ′, let Clean(T ′, t)
(Cont(T ′, t), respectively) denote the set of clean (contaminated, respectively)
edges in T ′ immediately prior to the move t.

Intuitively, Lemma 4.4.5 says that when we reach the vertices va, va+1, va+2

while moving along A0, then the tree Ta+1 is constructed in such a way that while
cleaning it there exists a move in which no searcher is used to guard any Ai with
i ∈ R or any clause component. The configurations of the colors of searchers for
the guarding of Ai’s and the clause components are those in the family K below.

Lemma 4.4.5. Let

K = {{R, C1}, . . . , {R, Cm}, {R, V1, T1}, . . . , {R, Vn, Tn}, {R, V1, F1}, . . . , {R, Vn, Fn}}

For each K ∈ K, between moves R-pr(va+2) and R-pr(va), there exists a move tK
which requires all searchers of colors from the set K to be in Ta+1.

Proof. An intuition explaining the proof is as follows. Recall that Ta+1 consists
of multiple copies of subtrees Lx and L′

x′ . Arguments are the same for both Lx

and L′
x′ . We consider which edges of Ta+1 are clean in the move R-pr(va+2): Lx

it is either contaminated or contains a guarding searcher. Then we consider which
edges of Ta+1 are clean in the move R-pr(va): in this case Lx it is either clean or
contains a guarding searcher. We count how many guarded Lx’s can exist in the
move R-pr(va). A counting argument reveals that at least three Lx’s are clean in
the move R-pr(va). From all of the above, these 3 subtrees Lx must have been
cleaned after R-pr(va+2). Among the moves of cleaning 3 subtrees Lx, a move tK
exists.

90

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Consider what can be deduced about Clean(Ta+1, R-pr(va+2)) and
Cont(Ta+1, R-pr(va+2)) from (*) and the definition of R-pr(va+2). Recall that
by (*), the strategy we consider cleans P from vl to v1. Hence, the edge {va, va+1}
is contaminated before move R-pr(va+2). Furthermore, the vertex va+1 cannot
be occupied by a searcher during move R-pr(va+2), because both searchers of
color R are on the vertex va+2, by the definition of R-pr(va+2). Therefore, no
subtree Lx, x ∈ X = {Ti, Fi

∣∣ i ∈ {1, . . . , n}}, or L′
x′ , x′ ∈ X ′ = {C1, . . . , Cm},

can be fully clean and unguarded in the move R-pr(va+2), because these sub-
trees are incident to va+1. For each subtree Lx, there are two possibilities: either
Clean(Lx, R-pr(va+2)) = ∅ or Clean(Lx, R-pr(va+2)) ̸= ∅ in which case Lx con-
tains at least one guarded vertex. The same holds for any L′

x′ .
Next consider what is known about Clean(Ta+1, R-pr(va)) and

Cont(Ta+1, R-pr(va)). Because va+1 is not guarded in the move R-pr(va)
as both searchers of color R are in vertex va, the vertex va+1 is not incident to
contaminated edges at this point. Otherwise all edges of P connecting va+1 and
vl would be contaminated which contradicts (*). The spread of contamination
at move R-pr(va) from each Lx and L′

x′ through va+1 can be prevented only in
the following way: Clean(P,R-pr(va)) is guarded from the contaminated edges
in subtrees Lx and L′

x′ and their copies, and all remaining subtrees in Ta+1 are
clean. Again there are two possibilities: either Clean(Lx, R-pr(va)) = E(Lx) or if
Clean(Lx, R-pr(va)) ̸= E(Lx), then Lx contains at least one guarded vertex. The
same holds for any L′

x′ .
By the above paragraphs, each subtree Lx and L′

x′ at some point between
R-pr(va+2) and R-pr(va) is either being guarded from or is fully searched. Suppose
for a contradiction, that three out of five copies of a subtree Lx or L′

x′ contain a
guarding searcher in the move R-pr(va). A simple counting argument suffices to
show that they have to be guarded on a common vertex: for Lx, there are two
searchers of color R, and they are placed on the vertex va, and one in each of the
colors x and Vi where i is selected so that x ∈ {Ti, Fi}. Similarly for any L′

x′ there
are only two searchers of color x′ which can be placed in it. The only common
vertex is va+1 — contradiction with the definition of R-pr(va).

Because we eliminated the option of guarding three subtrees Lx and L′
x′ at the

move R-pr(va), the only remaining possibility is that at least three of the subtrees
Lx and L′

x′ are clean before the move R-pr(va). Consider a move after which the
first subtree has been cleaned. This subtree is guarded on va+1 until all edges
connected to va+1 are clean, so in subsequent moves at least one of the copies of
each Lx and L′

x′ is cleaned while va+1 is guarded by a searcher of color R. By con-
struction, for each of the following sets: B ∈ B = {{R, V1, T1}, . . . , {R, Vn, Tn}} and
F ∈ F = {{R, V1, F1}, . . . , {R, Vn, Fn}} there exist a subtree Lx requiring searchers
in these colors. Note that es(Lx) = 3, so all of those searchers will be required
simultaneously in at least one move, whose number is denoted by tB or tF respec-
tively, when Lx is being searched. Similarly L′

x′ will require all searchers of colors
G ∈ G = {{R, C1}, . . . , {R, Cm}} to be present in T ′ in a single move, whose number
is denoted by tG. B ∪ F ∪ G = K, so tK exists for each K ∈ K.

91

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Lemma 4.4.6. Let
K′′ = {{R, C1}, . . . , {R, Cm}}

For each K ′′ ∈ K′′, between moves R-pr(vl) and R-pr(vl−2), there exists a move t′′K
which requires all searchers of colors from the set K ′′ to be in one of the subtrees
L′′
Cd , d ∈ {1, . . . ,m}.

We skip the proof because it is analogous to the one of Lemma 4.4.5.

Let T be the set of subtrees Hz, z ∈ Q \ {R}, and Sp, S−p, p ∈ {1, . . . , n}. For
G ∈ T let τ(G) be the index i such that G contains the vertex vi.

We say in Lemma 4.4.7, informally, that we need to entirely clean all areas Ai

with i ∈ R prior to the part of the search strategy that uses all searchers of color
R on A0. The latter part is the one that cleans A0 entirely.

Lemma 4.4.7. The step t0 is placed in the search sequence in the following way:

tj ≤ t′j < t0 ≤ t′0

for each j ∈ R.

Proof. We first summarize the intuitions used in the proof. We start by using
Lemma 4.4.3 and 4.4.4, which give us that A0 is not the first nor the last area
Ai cleaned. We define two sets of numbers (U− and U+ below) corresponding
to indices of Ai’s whose cleaning happens before and after cleaning A0. During
the moves t0, . . . , t

′
0 (i.e., those that clean A0) the clean subgraph of A0 has to

be guarded from the contaminated Ai’s, and the cleaned Ai’s have to be guarded
from the contaminated part of A0 Intuitively, once cleaning of A0 extends past a
vertex vi to which a subtree containing Ai is attached, this Ai needs to be guarded
if it’s ‘status’ (being clean or contaminated) is different than that of the area A0.
Consider a move, which we denote by la+1 below in the proof, in which the vertex
va+1 divides the clean and contaminated parts of P . We analyze which Aj ’s, j ∈ R,
could have been left contaminated and which ones are guarded in the move la+1.
We obtain that there exists a move tK ,K ∈ K, described in the Lemma 4.4.5,
which can be identified with la+1. There is not enough searchers to perform tK
while Aj is guarded — a contradiction.

Now we start the formal proof. Define

U− = {i ∈ I
∣∣ ti ≤ t′i < t0}

and
U+ = {i ∈ I

∣∣ t′0 < ti ≤ t′i}.
By Lemmas 4.4.3 and 4.4.4, U− ̸= ∅, U+ ̸= ∅ and U− ∪ U+ = I \ {0}. Note that
U− ∩ U+ = ∅ because the strategy is monotone. Given this notation we restate
the lemma as U− contains all indices of steps tj , j ∈ R, i.e., R ⊆ U−.

Let u− ∈ U− and u+ ∈ U+ be selected arbitrarily. Let g|i|, i ∈ I be the index
of the first move in [t0, t

′
0] such that v|i| is incident to a clean edge. There exists

G ∈ T such that τ(G) = |u+| and G has a contaminated edge between moves

92

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

of numbers g|u+| and t′0 because t′0 < tu+ . Thus, Clean(A0, t), t ∈
[
g|u−|, t

′
0

]
, is

guarded from contaminated edges of G.
Let g′|i|, i ∈ I, be the index of the last move in [t0, t

′
0] such that v|i| is incident

to a contaminated edge on P . There exists G′ ∈ T such that τ(G′) = |u−|
and G′ has a clean edge between steps t0 and g|u−| because tu− < t0. Thus,

Clean(G′, t), t ∈
[
t0, g

′
|u−|

]
, is guarded from contaminated edges of P .

Let la+1 be an arbitrary move number such that the edge {va, va+1} is con-
taminated and the edge {va+1, va+2} is clean. By (∗) such a move exists.

Suppose for a contradiction that R ⊈ U−, which is equivalent to R ∩ U+ ̸= ∅.
During the move la+1 the following subtrees are guarded:

Clean(A0, la+1) from Aj , j ∈ R ∩ U+, because ∀j∈R∩U+ g|j| < la+1

and

Clean(Ai, la+1) from Cont(A0, la+1), i ∈ L ∩ U− ,

because ∀i∈U−∩L la+1 < g′|i|

By Lemma 4.4.5, there exists a move tK ,K ∈ K, which requires all searchers of
colors belonging to K to be present in Ta+1. Every edge incident to va cannot be
clean before the last move which places two searchers of color R in va has occurred,
therefore R-pr(va) ≤ g′a. Two searchers of color R cannot be placed in va+2 before
at least one edge incident to it is clean, therefore ga+2 ≤ R-pr(va+2). This gives
us ga+2 ≤ R-pr(va+2) < tK < R-pr(va) ≤ g′a , and with the fact that in the moves
tK and la+1 the vertex va+1 is occupied, allows us to conclude that for each tK
there exists la+1 such that tK = la+1.

Let G ∈ T be such that τ(G) > a+1. Recall that if j ∈ R and τ(G) = |j|, then
G is isomorphic to some Sp or S−p. Due to construction of Sp and S−p, searcher
used to guard Clean(A0, la+1) from Cont(G, la+1) is in one of the following colors:
R, Vp, Tp if j > 0 or R, Vp, Fp if j < 0. Let DG denote a set of colors in G for
each G ∈ T . Note that for each DG there exists K ∈ K such that DG ⊆ K, and
therefore there exists a move tDG

such that all searchers in colors DG are in T ′.
Consider a move tDG

= la+1, which requires a searcher of one of the colors in DG

to be present in G, such that it contains an area Aw, w ∈ R∩U+. Because T ′ and
G ∈ T contain no common vertices, such a move cannot exist — a contradiction
with the Lemma 4.4.5.

The statement of the following lemma is more specific with respect to the
previous one: in Lemma 4.4.8 we examine those moves in which each area Aj ,
j ∈ R, is clean and guarded from A0. Additionally we are concerned with the
colors of searchers guarding these areas. More precisely, between the time when
cleaning of A0 starts and reaches vb, all subgraphs Ai, i ∈ R, contain clean edges
which are guarded from the contaminated edges of A0. Only searchers of colors R
and either Tp or Fp can be used for the guarding.

93

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Lemma 4.4.8. In an arbitrary move t ∈ [t0, R-pr(vb)], each subgraph Clean(Aj , t)
for each j ∈ R is guarded from Cont(A0, t) by searchers on at least one of these
two vertices: a vertex with colors {Tp, R} in Sp or {Fp, R} in S−p

Proof. Informally, we analyze the state of the strategy when A0 is being cleaned
but vb has not been reached, i.e., in a move t from the lemma. In the moves t0
and R-pr(vb) each of Sp and S−p has some clean edges that need to be guarded.
In the proof, we consider several cases as to which vertices can be guarded to
protect those clean edges in moves t0 and R-pr(vb). Then, we observe that, due
to monotonicity, the set of clean edges when the two searchers of color R are on
vb could not be smaller than in any move prior to it. Thus, if both a vertex
with colors {Tp, R} and a vertex with colors {Fp, R} need not be guarded between
these moves, then a recontamination occurs in the move R-pr(vb) which leads to
a contradiction.

From Lemma 4.4.7 we have tj ≤ t′j < t0 ≤ t′0 for each j ∈ R. All stars of
color R in subtrees Sp and S−p attached to vertices v|j|, j ∈ R, contain clean edges
before the move t0, so at the move t0 each such star is guarded from contaminated
edges in A0.

Consider the moves number t0 and R-pr(vb). In these moves both searchers
of color R are in A0, and v|j| are not attached to any clean edges, so guarding
searchers are still necessary at move R-pr(vb). Recall that by the definition of
R, b ≥ |j|. Because searchers of color R are in A0, the vertices with the following
colors are occupied by searchers: Fp or Vp in S−p and Vp or Tp in Sp, p ∈ {1, . . . , n}.
Because only one searcher of color Vp is available, at least one other searcher is
placed on vertex with either Fp or Tp color, denoted by c. In each Sp and S−p there
are only two such vertices separated by an edge of color c. It remains to be proven
that at least one of them has to be guarded in an arbitrary move t ∈ [t0, R-pr(vb)].

Assume for a contradiction that both vertices with color Fp and Tp are no longer
guarded in a move t ∈ [t0, R-pr(vb)], thus all edges incident to vertices with color c
are clean. By monotonicity, all these edges are clean in the move R-pr(vb). Edges
of color R incident to the vertex vi such that τ(G) = i are contaminated. Since the
two searchers of color R are in vb in the move R-pr(vb), they are not in G. Thus, the
searcher of color c is the only one that can be used for guarding Clean(G,R-pr(vb))
from Cont(A0, R-pr(vb)). Since all edges incident to the vertex occupied by this
searcher are clean, some recontamination occurs.

Lemma 4.4.9. Let x1, . . . , xn and a Boolean formula C = C1 ∧C2 . . .∧Cm be an
input to 3-SAT. If there exists a search strategy using 2 + 3n + 2m searchers for
TSAT, then the answer to 3-SAT is YES.

Proof. The proof revolves around the configuration of searchers in the move R-pr(vb).
We start by recalling the construction of subtrees based on clauses that must have
been cleaned up to this point and the colors of searchers required to clean them.
Then, we will use Lemma 4.4.8 to address the availability of these colors. We
define a Boolean assignment as follows: xp is true if and only if a searcher of color
Tp does not guard the area Aa+1+p in the move R-pr(vb), otherwise xp is false.

94

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Let X ⊂ {Ti, Fi
∣∣ i ∈ {1, . . . , n}} denote the colors of those searchers. By Lemma

4.4.8, a valid assignment will occur during execution of arbitrary successful search
strategy using 2 + 3n + 2m searchers. We argue that some literal in each clause
Cd, d ∈ {1, . . . ,m}, is true under the above assignment.

By construction of TSAT, vh, h ∈ {b+1, b+2, . . . , l−1}, is the root of a subtree
Ld,i, i ∈ {1, 2, 3}. Ld,i contains an edge of color Tp if and only if the clause Cd

contains a variable xp, and it contains an edge of color Fp if and only if Cd contains
a variable’s negation, xp. Let us denote this color as xd,i.

Consider the step t0. It is impossible for any Ld,i to be completely clean because
all edges incident to vh, h ∈ {b + 1, b + 2, . . . , l − 1}, are contaminated (there are
not enough searchers of color R). Consider the move R-pr(vb) > t0. Each Ld,i is
completely clean or Clean(A0, R-pr(vb)) is guarded by searchers of colors xd,i and
Cd because vh is connected to clean edges and unguarded (there are not enough
searchers of color R). There are only two searchers of color Cd, so for each d one
of the subtrees Ld,i has a searcher of other color or is clean. Because es(Ld,i) = 3,
three out of five searchers in the following colors can be used: R, xd,i, Cd. The only
searcher which is present in Ld,i at move R-pr(vb) has color xd,i. Without loss of
generality we assume that the strategy cleans a subtree if possible before guarding
other subtrees rooted in the same vertex. Consider a move md,i such that es(Ld,i)
searchers are used in Ld,i. Due to the way the subtree is colored, a searcher in
each color R, xd,i, Cd has to be used in order to clean it. After t0 a searcher of color
R guards clean part of A0, so only one searcher out of those five, namely the one of
color Cd, can be present outside of Ld,i. Ld,i can be fully cleaned only if searcher
of color xd,i is available at this point during [t0, R-pr(vb)], or all edges of color
xd,i were clean in the move t0 . Due to its color this searcher can not be used to
replace any searcher of color xd,i outside of Ld,i.

Let us address what follows if an edge of color xd,i was clean in the move t0.
By construction, it can be guarded from contaminated edges of P by a searcher of
one of the following colors: xd,i, Cd, R in the moves of numbers from the interval
[R-pr(vl), R-pr(vl−2)]. By Lemma 4.4.6, there exists a move of number in this
interval such that all searchers of colors Cd and R are not in Ld,i. Thus, in order to
avoid recontamination, clean edges of color xd,i can be guarded only by a searcher
of the same color.

Suppose for contradiction that no literal in a clause Ci, i ∈ {1, . . . , n} is true
and a search strategy for TSAT exists. By Lemma 4.4.8, one of the searchers of color
x ∈ {Tp, Fp}, or a searcher of color R is placed outside of Ld,i during [t0, R-pr(vb)].
By the definition of a Boolean assignment x ∈ X. Additionally Lemma 4.4.8
guarantees that no searcher of color x is used during cleaning any Ld,i. If x = xd,i

then md,i can not be performed and Ld,i is guarded in the move R-pr(vb). Because
there are only two searchers of color Cd, in order for a strategy to exist at least
one subtree Ld,1, Ld,2, Ld,3 for each d is cleaned before R-pr(vb), or all three have
to be guarded, and for that to happen they have to contain edges in at least one
color xd,i ̸= x corresponding to a true ld,i in the clause Cd.

95

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

4.5 NP-hardness of non-monotone searching of trees

This section is devoted to proving the problem remains NP-hard when non-monotone
search strategies are allowed:

Theorem 4. The problem HGS is NP-hard in the class of trees.

For the proof, we adapt the tree TSAT described in the previous section. The
modified tree is denoted by T̃SAT and it is obtained by performing the following
operations on the tree TSAT. In order to preserve the familiar notation we denote
each component of T̃SAT analogous to its counterpart in TSAT with an additional
sign ∼ above its designation.

We add 4n vertices to the path P in the following fashion. Replace the edges
{va+1, va+2} and {va+1, va} with paths of color R of length 2n each, denoted by P̃R

and P̃L respectively. Enumerate the vertices of P̃ in T̃SAT as ṽi in such a way that
ṽ1 = v1, ṽã+1 = va+1+2n, ṽb̃ = vb+1+4n, ṽl̃ = vl+4n. Note that this enumeration
preserves the informal division of vertices into sets on the left and right of ṽa+1,
and R̃ = {ã+ 2, . . . , b̃− 1} ∪ {−(b̃− 1), . . . ,−(ã+ 2)} is defined accordingly.

We use 2n additional colors O = {O1,1, . . . , On,1, O1,2, . . . , On,2}. For each o ∈ O
create a tree Ho following the construction defined in the previous section and
attach one to a unique vertex of the path P̃L. We do the same for the path P̃R so
that 4n subtrees are created in total. Let H̃o(R̃) denote a subtree containing an
edge of color o ∈ O attached to the vertex ṽi, i ∈ R̃.

Next we modify the construction of each subtree Lx, x ∈ {Ti, Fi | i ∈ {1, . . . , n}}
rooted in va+1 in the following way. Remove 2 leaves of color R and attach 3 children
by the edges of color Oi,1 to each leaf. Then attach 3 children by the edges of color
Oi,2 to each of the new leaves. Finally attach 2 children by the edges of color
R to each of the lastly added leaves. Denote the modified Lx as L̃x. Note that
es(L̃x) = 5 and L̃x requires searchers of colors x, R, Vi, Oi,1, Oi,2 to be simultaneously
present in some move in L̃x in order to search it. In T̃SAT, eleven copies of L̃x are
rooted in ṽa+1 in place of five copies of Lx rooted in va+1 in the original TSAT.
Whenever an arbitrary copy can be chosen the notation of L̃x is used, when the
argument requires copies to be distinct they are denoted by L̃x,i, i ∈ {1, . . . , 11}.

Define a star Op, p ∈ {1, . . . , n} with 3 leaves incident to edges of colors: Op,1,
Op,1 and Op,2. We modify each subtree S̃p in T̃SAT corresponding to Sp constructed
according to the definition in the previous section. Recall that each Sp and S̃p

(respectively S−p and S̃−p) contains an edge of color Tp (Fp respectively). Define
a plugin(v, u) operation for vertices u and v of a tree as replacement of maximal
subtree such that u and v are its leaves with a copy of Op in such a way that u is
identified with a leaf of color Op,1 and v is identified with a leaf of color Op,2. For
each T̃ ∈ {S̃p, S̃−p

∣∣ p ∈ {1, . . . , n}} denote the endpoint which belongs to Ã0 of
the edge of color Tp or Fp in T̃ as u1, and the other endpoint of this edge as u2.
Denote the endpoint which belongs to Ãj , j ∈ R̃, of edge of color Vp as u3, and
the other endpoint of this edge as u4. Perform plugin(u1, u1), plugin(u2, u3) and
plugin(u4, u4).

96

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Informally speaking, the described modification prevents using recontamination
to switch the searchers used as a basis for Boolean assignment without undoing
all the progress made while cleaning subtrees corresponding to the clauses.

The following lemma follows directly from the lower bound β(T̃SAT) and the
proof is analogous to Lemma 4.4.1

Lemma 4.5.1 (Color assignment). A c̃-strategy using k = 5n+ 2m+ 2 searchers
has to color them in the following fashion: one searcher for each color in

{Tp, Fp, Vp, Op,1, Op,2
∣∣ p ∈ {1, . . . , n}}

and two searchers for each color in {R} ∪ {C1, . . . , Cm}.
Lemma 4.5.2. Let x1, . . . , xn and a Boolean formula C = C1 ∧ C2 . . . ∧ Cm be
an input to the 3-SAT. If the answer to 3-SAT is YES, then there exists a search
strategy using 5n+ 2m+ 2 searchers for T̃SAT.

Proof. We propose a modification to the monotone strategy described in Lemma
4.4.2. Note that the modified strategy is still monotone (we aim to show that
recontamination does not help to search T̃SAT). In the instruction 2 we clean
Ã−(ã+2n+1+p) instead of A−(a+1+p) and stars Op instead of singular edges of color
R replaced by these stars during construction of T̃SAT. No searcher of color either
Op,1 or Op,2 has already been placed on T̃SAT so it is always possible. We introduce
an additional instruction 2’ executed after the instruction number 2.

2’. For each H̃o(R̃) place a searcher of color o on the vertex of color o and belongs
to an Ãi in H̃o(R̃). Then, clean each Ai, where ṽi ∈ P̃R, and then the edge
of color o. The searcher of color o stays in H̃o(R̃).

In instruction 4 a searcher of color o is removed from H̃o(R̃) when the entire
H̃o(R̃) becomes clean during cleaning of Ã0 in order to ensure that L̃x can be
searched.

4.5.1 Preliminaries on non-monotone strategies for T̃SAT

Let G′ be a subgraph of G. We define a successful attempt S-Attempt(G′, i) =
[t, t′] as a maximal interval of numbers of moves such that for each j ∈ [t, t′],
Cont(G′, j) ̸= G′, Cont(G′, j) ̸= ∅ and Clean(G′, t′) = G′, and i is the ordeal
number of this attempt among other successful attempts on G′. Analogously define
an unsuccessful attempt U -Attempt(G′, i) = [t, t′] as a maximal interval of numbers
of moves such that for each j ∈ [t, t′], Cont(G′, j) ̸= G′, Clean(G′, j) ̸= G′ and i
is the ordeal number of this attempt among other unsuccessful attempts on G′.

By definition, at least one edge of G′ is clean during an attempt on G′. We
remove the prefix U or S whenever the success of the attempt is not important at
the point of speaking.

Note that any search strategy which cleans a graph G contains the S-Attempt(G′, 1)
for any subgraph G′, thus in order to show that cleaning a graph is impossible it
suffices to prove that there exists a subgraph for which there can be no successful
attempt. By strengthening the previous statement we obtain the following:

97

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Observation 4.5.1. If G′ is a subgraph of G, then for each S-Attempt(G, i) there
exists S-Attempt(G′, j) such that S-Attempt(G′, j) ⊆ S-Attempt(G, i).

We skip the proof of the following lemma as it follows from the folklore of the
way to clean a caterpillar graph.

Lemma 4.5.3. If in any move of Attempt(P̃ , i) = [t, t′] both edges {ṽ1, ṽ2} and
{ṽl̃, ṽl̃−1} are contaminated, then the attempt is unsuccessful.

As a consequence we can be sure that a S-Attempt(P̃ , i) starts cleaning at either
ṽ1 or ṽl̃ and ends at ṽl̃ or ṽ1 respectively. If it starts at ṽl and if the edge {ṽj+1, ṽj}
is clean, then the next clean edge of P̃ can be only {ṽj , ṽj−1} or the next contam-
inated set of edges of P̃ has to include all edges {ṽj+1, ṽj}, . . . , {ṽj+1+x, ṽj+x} for
some j + x < l, j − 1 > 0 and no other edges of P̃ . We say that in such attempt a
strategy cleans P̃ from ṽl̃ to ṽ1. Thanks to the result concerning reversal of strate-
gies established in [230] a symmetrical case does not need to be considered. Thus,
we establish an assumption about non-monotone strategies analogous to (*):

(**) S cleans P̃ in S-Attempt(P̃ , 1) from ṽl̃ to ṽ1.

Denote the number of a move when two searchers of color R arrive on the
vertex ṽi of the path P̃ in S-Attempt(P̃ , 1) as R-pr(ṽi, j) where j is the ordi-
nal number of the move R-pr(ṽi, j) among other moves R-pr(ṽi, j) of index i.
Specifically R-pr(ṽi, j + 1) is the number of the first such move after the move
R-pr(ṽi, j). Informally speaking, the j in the expression R-pr(ṽi, j) indicates how
many times the vertex ṽi was reached in the first successful attempt to clean P̃ .
Let P̃i, i ∈ {1, . . . , l̃}, denote T̃SAT[{ṽl̃, . . . , ṽĩ}]. Let i(j) = k+ j denote the ordeal
number of the S-Attempt(G, i(j)) such that i(0) is the ordeal number of the first
S-Attempt(G, k) such that S-Attempt(G, k) ⊆ S-Attempt(P̃ , 1). Whenever we
speak of S-Attempt(G, i(0)), we are concerned with the first attempt to clean G
within the first attempt which successfully cleaned P̃ .

4.5.2 Some technical lemmas

In the next lemma we show that before the vertex ṽã is reached in the first suc-
cessful attempt to clean P̃ , for each of the listed sets of colors there exists a move
which requires searchers of those color to be present in T̃ã+1. Analogously to
Lemma 4.4.5, these sets correspond to sets of colors of subtrees attached to the
vertices of P̃ã.

Lemma 4.5.4. Let

K = {{R, Ci}
∣∣ i ∈ {1, . . . ,m}}∪{{R, Vn, On,1, On,2, x} ∣∣ x ∈ {T1, . . . , Tn, F1, . . . , Fn}}.

For each K ∈ K, in S-Attempt(P̃ã, i(0)), there exists a move tK ≤ R-pr(ṽã, 1)
which requires all searchers of colors from the set K to be in T̃ã+1.

98

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Proof. The proof is divided into three parts. First we argue that T̃ã+1 could not
have been left clean before the move R-pr(ṽã+2, j). Then we argue that T̃ã+1 has
to be clean before move R-pr(ṽã, 1). Finally we analyze the construction of T̃ã+1

to show that cleaning the subtrees of T̃ã+1 requires certain sets of searchers. These
sets of searchers are listed as a family X and Y.

Let us consider moves performed only in the attempt S-Attempt(P̃ , 1) which
by (**) cleans P̃ from ṽl̃ to ṽ1. Choose the minimal j such that R-pr(ṽã+2, j) ∈
S-Attempt(P̃ã, i(0)). Hence, the edge {ṽã, ṽã+1} is not clean at move R-pr(ṽã+2, j)
move. The subtree T̃ã+1 cannot be completely clean in the move R-pr(ṽã+2, j),
because it contains the vertex ṽã+1, which is unoccupied (by the definition of
R-pr(ṽã+2, 1)) and incident to the contaminated edge {ṽã+1, ṽã} (by (**)).

On the other hand each copy of L̃x has to be either completely clean or guarded
in the move R-pr(ṽã, 1). Suppose otherwise for a contradiction, then the con-
tamination spreads unobstructed through ṽã+1, which cannot be occupied by a
searcher during move R-pr(ṽã, 1), to ṽl̃ and, by the Lemma 4.5.3, the attempt
S-Attempt(P̃ , 1) fails contrary to its definition.

Because the two searchers of color R are not in a non-leaf vertex of L̃x in neither
of the moves number R-pr(ṽã, 1) and R-pr(ṽã+2, j) at most four copies of L̃x can
be guarded at each of these moves. In total at most eight out of eleven copies of
L̃x can be cleaned only partially between these two moves. Which means that in
the attempt S-Attempt(P̃ã, i(0)) there exists a S-Attempt(L̃x,1 ∪ L̃x,2 ∪ L̃x,3, k).

By construction, for each of set:

X ∈ X = {{R, V1, O1,1, O1,2, x}
∣∣ x ∈ {T1, . . . , Tn} ∪ {F1, . . . , Fn}}

there exists a subtree L̃x requiring searchers of these colors. Note that es(L̃x) = 5
and es(L̃x,1 ∪ L̃x,2 ∪ L̃x,3) = 6, thus all searchers of colors contained in X will
be present on some vertices of L̃x,1 ∪ L̃x,2 ∪ L̃x,3 simultaneously, in at least one
move, whose number is contained in S-Attempt(L̃x,1 ∪ L̃x,2 ∪ L̃x,3, k). Denote the
number of the first such move in this attempt as tX . Because we consider only
moves whose numbers belong to S-Attempt(P̃ , 1), one searcher of color R is present
on P̃ . In the move tX this searcher occupies ṽã, therefore tK ≤ R-pr(ṽã, 1).

The same argument can be repeated for any L̃′
y and the respective set from

Y ∈ Y = {{R, Ci}
∣∣ i ∈ {1, . . . ,m}} to prove existence of analogously defined tY .

K = X ∪ Y finishes the proof.

We skip the proof of the following lemma because it is analogous to the one of
Lemma 4.5.4.

Lemma 4.5.5. Let
K′′ = {{R, Ci}

∣∣ i ∈ {1, . . . ,m}}.
For each K ′′ ∈ K′′, in S-Attempt(P̃l̃−2, i(0)), there exists a move tK′′ which

requires all searchers of colors from the set K ′′ to be to be in one of the subtrees
L̃′′

Cd , d ∈ {1, . . . ,m}.

99

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Let T̃ be the set of all subtrees S̃p, S̃−p, H̃Op,1(R̃), H̃Op,2(R̃), p ∈ {1, . . . , n}.
Recall that these subtrees are attached to the vertices ṽj for j ∈ R̃.

Lemma 4.5.6. In the move R-pr(ṽã, 1) all subtrees in T̃ are clean.

Proof. Each move tK introduced in Lemma 4.5.4, where K ∈ K, happens before
the vertex va is reached in the first successful attempt to clean P̃ . Each subtree
in T̃ contains only vertices of colors found in some K ∈ K. Every subtree in T̃
is connected to vertices which were cleaned before va. Because in the move tK
all searchers of colors present in some subtree of T̃ are in Ta+1 if this subtree
of T̃ contains a contaminated edge, then the attempt to clean P̃ fails — since
we analyze a successful attempt, a contradiction occurs. Finally we show that a
recontamination of this subtree of T̃ cannot happen prior to the move R-pr(ṽã, 1).

By Lemma 4.5.4, R-pr(ṽa, 1) ≥ tK for each K ∈ K. By construction, for each
subtree G̃ ∈ T̃ there exists K ∈ K such that the set of colors in vertices of G̃,
denoted by Q(G̃), is a subset of K. Note that any subtree in T̃ is connected to the
vertex ṽã+1 only by a subpath of P̃ , which may contain a subset of the following
vertices {ṽã+1, . . . , ṽb̃}, and all these vertices are of color R.

Suppose for a contradiction that G̃ contains a contaminated edge in the move
tK such that Q(G̃) ⊆ K. Because all searchers in colors Q(G̃) are in T̃ã+1 (one of
color R is explicitly on the vertex ṽã+1) and G̃∩ T̃ã+1 = ∅, G̃ contains no searchers
in the move tK . If it were to contain a contaminated edge at this point, then the
contamination would have spread unobstructed along the path P̃ from a vertex by
which G̃ is attached (which may be one of the following {ṽã+2, . . . , ṽb̃}) to the edge
{ṽl̃, ṽl̃−1}. By Lemma 4.5.3, the attempt S-Attempt(P̃ , 1) fails, which contradicts
its definition.

If G̃ contained no contaminated edge nor searchers and was adjacent to the
Clean(P̃ , tK)), then in the move tK it was completely clean. By construction,
recontamination may be introduced to G̃ only through the vertex of P̃ by which
it is attached. Because tK ≥ R-pr(ṽã+2, j) there is always a searcher of color R
guarding it from Cont(P̃ , t), t ∈ [tK , R-pr(ṽã, 1)], so it stays clean.

Lemma 4.5.7. There is at least one clean edge in each Ãr, r ∈ R̃, in each move
of S-Attempt(P̃ , 1).

Proof. Assume for the sake of a contradiction, that an area Ãr is fully contaminated
in the move R-pr(ṽl̃, 1). es(Ãr) = 2 so it cannot be cleaned in S-Attempt(P̃ , 1),
because at least one searcher of color R is in P̃ . This contradicts Lemma 4.5.6,
because the move R-pr(ṽã, 1), in which all of the subtrees in T̃ are clean, belongs
to S-Attempt(P̃ , 1).

Let P̃+

b̃
denote T̃SAT[{ṽl̃, . . . , ṽb̃, v}] where v is a leaf incident ṽb̃ which does not

belong to P̃ . Consider the attempt S-Attempt(P̃+

b̃
, i(0)). Note that R-pr(ṽl̃, 1) ∈

S-Attempt(P̃+

b̃
, i(0)), R-pr(ṽb̃, 1) ∈ S-Attempt(P̃+

b̃
, i(0)). Informally speaking, we

define the first successful attempt to clean the subtree containing clause compo-
nents, which are by construction connected to the vertices of the path P̃b̃.

100

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Lemma 4.5.8. There is at least one searcher in each G̃ ∈ T̃ guarding each
Clean(Ãr, t) where r ∈ R̃, t ∈ S-Attempt(P̃+

b̃
, i(0)).

Proof. Because the move t belongs to S-Attempt(P̃ , 1), by Lemma 4.5.7 there is
at least one clean edge in Ãr which has to be separated from Cont(P̃ , t). By
the definition of t, at least one searcher of color R is on ṽc, c > b̃ and edges
{{ṽb̃, ṽb̃+1}, . . . , {ṽl̃, ṽl̃−1}} are contaminated. Therefore there is at least one con-
taminated edge incident to each G, and a searcher guarding Clean(Ãr, R-pr(ṽb̃, k))
can only be placed in the subtree G̃ ∈ T̃ containing Ãr.

Note that in T̃SAT the areas Ãr, r ∈ R̃, are subgraphs of H̃op(R̃), S̃p and S̃−p

(while only Sp and S−p were included in TSAT), hence the two separate lemmas
below. The lemmas state that in the moves in which two searchers of color R are
on the path P within the attempt to clean the clause components, only searchers
of colors different than R can be used to guard clean edges of the subtrees H̃op(R̃),
S̃p and S̃−p.

Lemma 4.5.9. For any i and j, such that R-pr(ṽi, j) ∈ S-Attempt(P̃+

b̃
, i(0)), in

a move R-pr(ṽi, j) there is a searcher of color op ∈ {Op,1, Op,2}, p ∈ {1, . . . , n}, in
H̃op(R̃).

Proof. By the definition of R-pr(ṽi, j), there can be no searcher of color R on any
vertex of H̃op(R̃). By Lemma 4.5.8, each of them contains a searcher, and by colors
of vertices in H̃op(R̃), it is of color op.

Note that Lemmas 4.5.9 and 4.5.10 speak of the same moves, therefore the pool
of available searchers is shared between them.

Lemma 4.5.10. For any i and j, such that R-pr(ṽi, j) ∈ S-Attempt(P̃+

b̃
, i(0)), in

a move R-pr(ṽi, j) there is a searcher of color Tp (respectively Fp) or Vp in S̃p (S̃−p

respectively).

Proof. By the definition of R-pr(ṽi, j), there can be no searcher of color R on
any vertex of S̃p. By Lemma 4.5.8, each of them contains a searcher, and by
colors of vertices in S̃p and Lemma 4.5.9, it is of color Tp or Vp. Proof for S̃−p is
analogical.

4.5.3 Adaptation to non-monotonicity — there is no going
back

Because of a possibility of recontamination, the previous lemmas are insufficient
to obtain a result analogous to that given by Lemma 4.4.8. In this section we find
a configuration of searchers that cannot be used in P̃+

b̃
in a successful attempt to

clean P̃+

b̃
, cf. Lemma 4.5.13.

101

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Lemma 4.5.11. At least one of searchers of color from the following set: Q =
{Op,1, Op,2, xp}, xp ∈ {Tp, Fp}, has to remain in each S̃p ∪ S̃−p in each move t ∈
[R-pr(ṽl̃, 1), R-pr(ṽb̃, 1)] ⊆ S-Attempt(P̃+

b̃
, i(0)).

Proof. The proof revolves around analyzing colors of vertices in S̃p and S̃−p which
can be used by guarding searchers in Lemma 4.5.8. A switch is a change in the
guarding searchers of colors different than Op,1 or Op,2 in S̃p. In order to make such
a switch, we either have to clean Op or recontaminate it. We exclude the possibility
to clean any star Op in the moves t listed in the lemma (see Observation 4.5.2).
Thus, we have to consider recontamination of Op. Then, we use Lemma 4.5.10 to
establish that such a switch can occur once in S̃p (or S̃−p analogically). Finally
we look at guarding searchers in both S̃p and S̃−p in the moves R-pr(ṽl̃, 1) and
R-pr(ṽb̃, 1) and show that a switch can occur in either S̃p or S̃−p, but not both,
between these moves.

Pick a vertex, denoted by up,t, such that up,t ∈ V (S̃p) (u−p,t ∈ V (S̃−p) re-
spectively) and it is incident to a contaminated and a clean edge in the move
t ∈ S-Attempt(P̃+

b̃
, i(0)). Let us focus only on up,t as the approach is analogous

for u−p,t. By Lemma 4.5.8, this vertex exists.
Denote the set of colors other than Op,1, Op,2 in the set of colors of up,t as cp,t,

i.e., cp,t = c(up,t) \ {Op,1, Op,2}. Recall that S̃p and S̃−p contain copies of the
star Op. Note that if cp,t = ∅ then up,t is a central vertex of such a copy of Op.
Otherwise |cp,t| = 1. Let f+(t) denote the number of the first move such that
f+(t) ≥ t and cp,f+(t) ̸= ∅. Let f−(t) denote the number of the first move such
that f−(t) ≤ t and cp,f−(t) ̸= ∅.
Observation 4.5.2. By Lemma 4.5.8, no

S-Attempt(Op, i) ⊆ [R-pr(ṽl̃, 1), R-pr(ṽb̃, 1)]

exists.

By construction, any maximal subtree T̃ , such that T̃ is a subgraph of S̃p where
up,f−(t) and up,f+(t′), t < t′, are leaves and cp,f−(t) ̸= cp,f+(t′), contains a copy of
Op, to which we refer further as O′

p. If cp,h = ∅, then h ∈ Attempt(Op, i) and
f−(h) corresponds to the beginning of this attempt (f+(h) corresponds to its end,
respectively). Note that both cp,R-pr(ṽl̃,1) ̸= ∅ and cp,R-pr(ṽb̃,k) ̸= ∅. By Observa-
tion 4.5.2, a pair up,f−(t) and up,f+(t′), such that t, t′ ∈ [R-pr(ṽl̃, 1), R-pr(ṽb̃, k)],
which satisfies cp,f−(t) ̸= cp,f+(t′), exists only if O′

p ⊆ T̃ has already been clean
in the move f−(t). Similar argument can be repeated for a pair up,t and u−p,t′

(i.e. vertices in S̃−p and S̃−p) with the conclusion that a pair which satisfies the
above constraints does not exist — there are no clean copies of Op between them.
Informally, we can switch a searcher of color in cp,t ̸= ∅ to a searcher of color
in cp,t′ ̸= cp,t ̸= ∅ only by causing recontamination, and we cannot use the first
searcher again. Thus, there is a finite number of switches in S-Attempt(P̃+

b̃
, i(0)).

Note that by Lemma 4.5.10, cp,R-pr(ṽl,1) (c−p,R-pr(ṽl,1) respectively) contains
either Tp (respectively Fp) or Vp. If cp,t′ = {R} we contradict Lemma 4.5.10 in

102

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

the next move R-pr(ṽi, j) after t′. Therefore, a set cp,t or cp,t′ can contain only
a one out of these two colors: Tp, Vp, or be empty. By the previous paragraph
and the number of different colors, there exists at most one interval of numbers of
moves J = [f−(j), f+(j′)] such that cp,f−(j) = Tp and cp,f+(j′) = Vp or vice versa.
Informally, we can switch the color of required searcher once. The same argument
holds for S̃−p and colors Fp, Vp Denote the corresponding interval as L.

Because there is only one Vp searcher at least one of the following is true:
cp,R-pr(ṽl,1) = {Tp} or c−p,R-pr(ṽl,1) = {Fp}, thus at most one edge of color Vp
in S̃−p ∪ S̃p is clean. For the same reason at most one the following is true:
cp,R-pr(ṽb,k) = {Vp} or c−p,R-pr(ṽb,k) = {Vp}. Thus, in a single strategy at most
one of the two intervals J and L exists. If J (L respectively) does not exist,
then cp,t ∈ {cp,R-pr(ṽl,1), ∅} (c−p,t ∈ {c−p,R-pr(ṽl,1), ∅} respectively) for each move
t ∈ S-Attempt(P̃+

b̃
, i(0)). By definition of up,t, only searchers of colors Op,1, Op,2

and those in cp,t can stay in S̃p in each move of [R-pr(ṽl̃, 1), R-pr(ṽb̃, 1)].

Lemma 4.5.12. If the searcher of color Op,z, z ∈ {1, 2} is not in in H̃Op,z (R̃) in a
move t ∈ S-Attempt(P̃+

b̃
, i(0)), then a searcher of color R is in H̃Op,z (R̃).

Proof. Because t ∈ S-Attempt(P̃ , 1) and by Lemma 4.5.7 at least one searcher has
to remain in H̃Op,z (R̃). It can be of color R or H̃Op,z (R̃).

Lemma 4.5.13. There exists a set of searchers of colors {R, Op,1, Op,2, xp

∣∣ p ∈
{1, . . . , n}}, xp ∈ {Tp, Fp} such that all but one have to remain outside of P̃+

b̃
in

each move t ∈ [R-pr(ṽl̃, 1), R-pr(ṽb̃, 1)] ⊆ S-Attempt(P̃+

b̃
, i(0)).

Proof. By Lemma 4.5.11, for each p ∈ {1, . . . , n} at least one of searchers of color
from the following set: Q = {Op,1, Op,2, xp}, xp ∈ {Tp, Fp}, has to remain in S̃p∪S̃−p

in each move t ∈ [R-pr(ṽl̃, 1), R-pr(ṽb̃, 1)]. Let s denote such a searcher of color
other than xp. If s exists then by Lemma 4.5.12 a searcher of color R is in H̃Op,z (R̃).
In a move t ∈ [R-pr(ṽl̃, 1), R-pr(ṽb̃, 1)] at least one searcher of color R is on the
path P̃b̃ so s is unique. Then, (S̃p ∪ S̃−p) ∩ P̃+

b̃
= ∅ and H̃Op,z (R̃) ∩ P̃+

b̃
= ∅ finish

the proof.

To informally summarize, we show that there exists a set of searchers of colors
{R, Op,1, Op,2, xp

∣∣ p ∈ {1, . . . , n}}, xp ∈ {Tp, Fp} of which at most one at a time can
take part in cleaning of P̃+

b̃
.

4.5.4 Conclusion

Lemma 4.5.14. Let x1, . . . , xn and Boolean formula C = C1 ∧C2 . . .∧Cm be an
input to the 3-SAT problem. If there exists a search strategy using 2 + 5n + 2m
searchers for T̃SAT, then the answer to 3-SAT problem is YES.

Proof. The proof revolves around the configuration of searchers in the move
R-pr(ṽb̃, i(0)). We define a Boolean assignment as follows: xp is true if and only if

103

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

a searcher of color Tp does not guard the area Aã+1+p in the move R-pr(ṽb̃, i(0)),
otherwise xp is false. Let X ⊂ {Ti, Fi

∣∣ i ∈ {1, . . . , n} denote the colors of those
searchers. By Lemma 4.5.13, a valid assignment will occur during execution of
c̃-search strategy using 2+5n+2m searchers. We omit the detailed proof in favor
of an analogy to the proof of Lemma 4.4.9.

Let T̃ denote the maximal subtree containing ṽl̃ such that ṽb̃ is this subtree’s
leaf. Note that T̃ is isomorphic to its equivalent in TSAT, and monotone strategies
are a subset of strategies available in this version of the problem. We focus on
proving that the configuration of searchers in the move R-pr(ṽb̃, 1) has properties
analogous to those of the configuration in the move R-pr(vb) of a strategy for
TSAT. Regardless of the moves performed by searchers in a c̃-strategy if a color
x /∈ X, then an edge of color x in E(T̃) which was contaminated before the
move R-pr(ṽl̃, 1) remains contaminated in the moves of numbers from the interval
[R-pr(ṽl̃, 1), R-pr(ṽb̃, 1)]. Thus, configurations which do not correspond to a valid
assignment cannot use the searchers of appropriate colors required to guard them
and continue cleaning the tree.

All that remains to be addressed is the possibility of these edges being clean
before the move R-pr(ṽl̃, 1) (recall that in the proof of Lemma 4.4.9 we used
the notion of monotonicity to resolve this issue, here the argument has to be
continued). If this was the case they would have to be guarded by at least one
searcher in the moves of numbers from the interval [R-pr(ṽl̃, 1), R-pr(ṽh̃, 1)]. By
Lemma 4.5.5, there exists a move whose number is in this interval such that all
searchers of color R and Cd are not in L̃d,1, L̃d,2, L̃d,3. Thus, by the colors of
vertices of L̃d,i only the searcher of color x can prevent recontamination of an edge
of color x and it cannot be used, by the definition of X. Furthermore, these edges
stay contaminated in the move R-pr(ṽb̃, i(0)).

We use only the positions of searchers in a move of a specific number, so we
are interested in a result, not the process, of a partial cleaning of TSAT and T̃SAT.
Therefore, most arguments from Lemma 4.4.9 can be applied to T̃SAT. Recall
the conclusion of the proof of Lemma 4.4.9. In order for a c̃-strategy for TSAT
to exist at least one subtree Ld,1, Ld,2, Ld,3 for each d ∈ {1, . . . ,m} is cleaned
before the clean part of A0 reaches vb, or all three have to be guarded, and for
that to happen they have to contain edges in at least one color corresponding to
ld,i in clause Cd. The same is true for a c̃-strategy for T̃SAT and its respective
counterparts of TSAT.

4.6 Polynomially tractable instances
If G is a tree then Lemma 4.2.2 gives us a lower bound of β(G) on the number
of searchers. In this section we will look for an upper bound assuming that there
is exactly one connected component per color. With this assumption we show a
constructive, polynomial-time algorithm both for HGS and HCGS.

Let (E1, . . . , Ek) be the partition of edges of T so that Ei induces the area of
color i in T . Observe that this partition induces a tree structure. More formally,

104

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

consider a graph in which the set of vertices is PE = {E1, E2, . . . Ek} and {Ei, Ej}
is an edge if and only if an edge in Ei and and edge in Ej share a common junction
in T . Then, let T̃ be the BFS spanning tree with the root E1 in this graph. We
write Vi to denote all vertices of the area with edge set Ei, i ∈ {1, . . . , z}.

Our strategy for cleaning T is recursive, starting with the root. The following
procedure requires that when it is called, the area that corresponds to the parent
of Ei in T̃ has been cleaned, and if i ̸= 1 (i.e., Ei is not the root of T̃), then
assuming that Ej is the parent of Ei in T̃ , a searcher of color j is present on the
junction in Vi ∩ Vj . With this assumption, the procedure recursively cleans the
subtree of T̃ rooted in Ei.

procedure Clean(labeled tree T , Ei) ▷ Clean the subtree of T that
▷ corresponds to the subtree of T̃ rooted in Ei

1. For each Ej such that Ej is a child of Ei in T̃ place a searcher of color j
on the junction v ∈ Vj ∩ Vi.

2. Clean the area of color i using es(T [Vi]) searchers. Remove all searchers of
color i from vertices in Vi.

3. For each child Ej of Ei in T̃ :
(a) place a searcher of color i on the junction v ∈ Vj ∩ Vi,
(b) remove the searcher of color j from the vertex v,
(c) call Clean recursively with input T and Ej ,
(d) remove the searcher of color i from the vertex v.

end procedure

Lemma 4.6.1. For a given tree G = (V (G), E(G), c), procedure Clean(G, E1)
cleans G using β(G) searchers.

Proof. First, observe that the number of searchers used during the execution of
procedure Clean is exactly as specified. Indeed, to clean each of the T [Vi] we use
es(T [Vi]) searchers of color i and at most one searcher of other colors.

Note that moves (M2) do not cause recontamination. Indeed, the move defined
in step 3b of procedure Clean removes a searcher from the node on which another
searcher is present, while the move 3d is performed on node v when both subtree
and the parent subtree of v are cleaned. This gives the correctness of search
strategy produced by procedure Clean.

We also immediately obtain.

Lemma 4.6.2. If all the strategies used in step 2 of procedure Clean to clean a
subtree T [Vi] are monotone, then the resulting c̃-strategy for G is also monotone.

It is known that there exists an optimal monotone search strategy for any
graph [171] and it can be computed in linear time for a tree [186]. An optimal
connected search strategy can be also computed in linear time for a tree [10].

Using Lemmas 4.2.2 and 4.6.1 we conclude with the following theorem:

105

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Theorem 5. Let G = (V (G), E(G), c) be a tree such that the subgraph Gj com-
posed by the edges in Ej is connected for each j ∈ {1, 2, . . . , z}. Then, there exists
a polynomial-time algorithm for solving problems HGS and HCGS.

4.7 Conclusions and open problems
Recalling our main motivation standing behind introducing this graph searching
model, we note that its properties allow for much easier construction of graphs
in which recontaminations need to occur in optimal strategies. Our main open
question, following the same unresolved one for connected searching, is whether
problems HGS and HCGS belong to NP?

Our more practical motivation for studying the problems is derived from mod-
eling physical environments to whose parts different robots have different access.
More complex scenarios than the one considered in this work are those in which ei-
ther an edge can have multiple colors (allowing it to be traversed by all searchers of
those colors), and/or a searcher can have multiple colors, which in turns extends its
range of accessible parts of the graph. As a way of modeling mobile entities of dif-
ferent types cooperating to solve various computational tasks (of which searching
is just one example), heterogeneous mobile agent computing is receiving a grow-
ing interest, including fields like distributed computing. Hence, one may ask for
different ways of modeling differences between searchers, which may fit potential
practical applications.

106

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Chapter 5

Gossiping with energy
constraints

Since the problem was informally introduced in Section 3.1.4, let us keep the in-
troduction brief. Just as in Chapter 4, we replace previous, general definitions
with formal ones, specific to the central problem of this chapter. Recall that we
are interested in an all-to-all communication using mobile agents. In our formu-
lation, such agents act like postmen transporting copies of data packets between
the network nodes. Moreover, each agent has some initial energy which it can
use for edge traversals and/or exchange with any other agent sharing its position.
Finally, the results are obtained for tree networks. Thereby, without further ado,
we present gossiping by energy-constrained mobile agents in tree networks, based
on the original work of this title [66].

5.1 Outline

Section 5.2 states the problem formally and introduces some notation we use
throughout. Then, Section 5.3 gives a technical summary of our algorithmic ap-
proach to solving the gossiping problem. It also provides an intuitive sketch of
our high-level ideas, with the main one being that gossiping in this particular set-
ting can be partitioned into executing first a carefully constructed convergecast
and then executing a broadcast strategy. Section 5.3 finishes with a statement
of our main results. Section 5.4 contains a proof of these results. In particular,
Section 5.4.1 deals with an analysis of the above-mentioned convergecast. Sec-
tion 5.4.2 recalls an existing broadcast algorithm that we can use in our gossiping,
and gives some properties of broadcast strategies. These properties, both of con-
vergecast and broadcast are then used in Section 5.4.3 to justify that we may start
a gossiping strategy by executing the convergecast from Section 5.4.1 followed by a
minimum-cost broadcast. We finish, in Section 5.5, with some remarks regarding
the complexity for general graphs and open problems.

107

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

5.2 Definitions and Preliminaries

5.2.1 Problem Statement

We are given an edge-weighted tree T , with positive weights. Each node of the
tree initially contains a unique piece of information that we call a data packet. We
are also given a set of mobile agents that are placed at some of the nodes of T .
Each agent initially possesses some amount of energy. Both the initial locations
of the agents and their energy levels are possibly distinct for different agents. We
use the term configuration to refer to the positions of agents, their energy levels
and the locations of data packets. In order to move along the tree, the agents use
energy proportionally to the distance traveled, i.e., traversing an edge of weight x
decreases the energy level of an agent by x. Moreover, traversing an edge is treated
as a single event, that is, an agent cannot stop or turn around in the middle of an
edge. Since an agent needs to have a non-negative energy level at any point, this
in particular means that edge traversal is possible only if the energy level of an
agent is not smaller that the weight of the edge to be traversed. We refer to such
agents that use energy for performing movements as energy-constrained agents.

Whenever two agents are occupying the same node they may exchange any
amount of energy. When an agent visits a node, it deposits there copies of all
currently possessed data packets and acquires copies of all data packets currently
present at this node. The model is synchronous, i.e., the time is divided into
rounds. In each round a single action takes place — an action is either edge
traversal or energy exchange. Consequently, every agent is present at a node at
the end and at the beginning of each round. A sequence of actions is called a
strategy.

The decision problem that we solve in this work is stated as follows:

Problem 1 (Gossiping). Suppose that we are given an n-node tree T , and a set of
k energy-constrained agents placed at nodes arbitrarily, each having some (possibly
different) initial amount of energy. Does there exist a strategy that results in each
node having a copy of data packet of every other node?

In our algorithmic approach we will show that gossiping can be essentially
decomposed into solving two easier problems, namely convergecast and broadcast.

Problem 2 (Convergecast). Suppose that we are given an n-node tree T with
a selected node r, and an initial configuration of k energy-constrained agents,
each having some (possibly different) initial amount of energy. Does there exist a
strategy that results in the node r having a copy of the data packet of every other
node?

Problem 3 (Broadcast). Suppose that we are given an n-node tree T with a
selected node r, and a configuration of k energy-constrained agents, each having
some (possibly different) initial amount of energy. Does there exist a strategy that
results in each node having a copy of the data packet of r?

108

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

A gossiping strategy is a strategy that solves the gossiping problem. Likewise, a
convergecast (respectively broadcast) strategy is a strategy that solves the converge-
cast (broadcast, respectively) problem. If, for a given input instance, there exists
a strategy solving a particular problem, then for short we say that the problem is
feasible.

5.2.2 Notation

All strategies that we consider and analyze in this work will be executed on a
rooted tree. Thus, we assume from now on that T and its root r are fixed. The
choice and meaning of r will be explained later, here we remark that the algorithm
is based on an exhaustive search over all possible roots r. Accordingly, we define
a relation between nodes v ≺ u if v is a descendant of u in T , that is, u lies on
the path between v and r. If, additionally, u and v are adjacent, then we write
par(v) = u. For any node v of T , we write Tv to denote the subtree of T induced
by v and all its descendants. For each edge e of T , w(e) denotes its weight.

Suppose that an agent traverses an edge from u to v. If u = par(v), then we
say that the action is a downward traversal. If par(v) = u, then we say that the
action is an upward traversal. An edge e = {u,par(u)} is said to be below an edge
e′ (or vertex v) if the path from r to par(u) contains e′ (or v). In an analogous
fashion, a subtree Tpar(u) is said to be below an edge e′ (or vertex v) if the path
from r to par(u) contains e′ (or v).

Definition 5.2.1. If m1, . . . ,mt are all rounds in which an agent moves along an
edge and ei is the edge traversed in round mi, i ∈ {1, . . . , t}, in a strategy S, then
the cost of the strategy is cost(S) = ∑t

i=1 w(ei).

We say that a strategy S solving a particular problem has minimum cost if
cost(S) ≤ cost(S ′) for each strategy S ′ solving this problem (where the problem
may be convergecast, broadcast or gossiping). Equivalently, a minimum cost strat-
egy has the property that at the end of the last round the total amount of energy
of all agents is maximized.

Definition 5.2.2. A convergecast strategy which results in all data packets being
at a vertex v at the end of the strategy is referred to as v-convergecast.

We finish this section with a remark that simplifies further analysis. If, in a
configuration of agents, only agents present at r have positive energy levels, then
we say for short that all energy is at r.

Claim 5.2.1. Any r-convergecast strategy for T can be transformed into one of
the same cost and such that upon completion all energy is at the root of T .

Proof. This follows from the fact that agents can communicate globally. In order
to solve the convergecast problem, the data packets from all vertices are transferred
to r. Thus, there is at least one upward traversal of each edge. The energy not
used by an agent that is present at v ̸= r when the strategy ends can be transferred

109

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

earlier to an agent that ends at a node u such that v ≺ u. The required action
of energy exchange between these agents can be scheduled when a data packet
is shared between them and no additional moves need to be introduced. Thus,
inductively, the claim follows.

5.3 Our Approach to Gossiping
For any gossiping strategy G, there exists a first round in which all data packets
are present at some node. Let this be the aforementioned node r of the input tree.
As mentioned earlier, throughout the paper we work with an assumption that r is
known and we deal with this assumption by considering all possible choices. Hence,
we provide the following definition which ties this vertex with the structure of a
gossiping strategy.

Definition 5.3.1. A mid-point of a strategy is the first round at the end of which
all data packets are present at r. (By the fact that this is the first such round, r
is the first such node.)

For a gossiping strategy, all rounds till the mid-point (inclusively) are referred
to as the convergecast stage and all remaining rounds are the broadcast stage.
These terms are well defined. Let ⊕ be an operator of concatenation of strategies.
We will be interested in representing a gossiping strategy G as a concatenation of
its convergecast stage C and its broadcast stage B, i.e., G = C⊕B. In such case the
initial configuration in C is the same as the one in G and the initial configuration in
B is the final configuration in C. Note that by definition, the mid-point is the last
round of the convergecast stage. We now argue that the mid-point indeed splits
a gossiping strategy into the two stages, in other words, the actions following the
mid-point form a broadcast strategy.

Claim 5.3.1. Any broadcast stage is a broadcast strategy from the root r.

Proof. Recall, that we consider only tree networks, hence, there exists only one
path between any two nodes. Assume for the sake of contradiction that the actions
following the mid-point do not form a broadcast strategy. Thus, there exists a child
u of r such that some data packet that is originally at v /∈ V (Tu) arrives at u prior
to the mid-point, and does not arrive at u after the mid-point. Since there exists
only one path between any two nodes and initially each node contains a unique
data packet, all packets initially not present in Tu have traversed the edge {u, r},
in particular the above-mentioned packet from v. Because the mid-point has not
happened yet when the data packet from v arrives at u through the edge {u, r}, r is
missing at least one packet, in particular from Tu. The latter is due to the fact that
if r is missing a packet from another subtree Tu′ , u′ ̸= u, then this packet needs to
be delivered to u through the edge {u, r} after the mid-point and that would also
deliver the data packet from v to u after the mid-point, which we have already
excluded. In order to deliver the data packet from Tu to r, the edge {u, r} has to
be traversed. Thus, u contains all data packets before r does — a contradiction
with the definition of the mid-point.

110

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Definition 5.3.2. If, in a gossiping strategy G, at the mid-point all energy is at the
root and the r-convergecast stage of G has minimum cost over all r-convergecast
strategies, then we say that G is structured. The above-mentioned r-convergecast
stage of such a structured gossiping strategy is in the following denoted by Cmin.

Our first main result of this work is the following structural property of the
gossiping problem. Informally, it says that in order to find a gossiping strategy,
provided that one exists, one should start by computing the r-convergecast strategy
Cmin.

Theorem 6. If there exists a gossiping strategy G for a given tree T , then there
exists a structured gossiping for T . Moreover, the strategy Cmin can be computed
in linear time.

Theorem 6 follows directly from Lemma 5.4.3 and Corollary 5.4.1 obtained in
Section 5.4.1 and Lemma 5.4.10 in Section 5.4.4.

It will be convenient to be able to compare two strategies, in particular two
r-convergecast strategies. We will treat two such strategies as identical if two
conditions hold:

• for each edge e, both strategies perform the same number of upward edge
traversals and the same number of downward edge traversals,

• the final configurations are identical in both strategies (neglecting a possible
permutation of agents).

Note that identical r-convergecast strategies have the same cost and the number
of upward and downward edge traversals determines the position of the agents
(up to a possible permutation). Two such strategies may differ with the order of
performing some actions and may differ in the amounts of energy exchanged in
particular rounds. For two identical strategies S and S ′ we write S ≃ S ′. For two
strategies S and S ′ which make the same edge traversals we write S ≈ S ′ and call
them similar. Note that this is a weaker notion with respect to the operator ‘≃’,
since in the latter we do not insist on having the same final configurations, i.e.,
different energy levels of agents may occur in addition to their different permuta-
tions. Furthermore if any two strategies make the same traversals, that implies
that the final positions of agents are the same in both strategies.

Using this notation we adopt the following approach to the gossiping problem.
First, we determine the node r, the root. After selecting the root, we compute the
r-convergecast strategy Cmin that makes up the convergecast stage of our desired
gossiping strategy. Finally, we compute a broadcast from the root. See Figure 5.1
for an example.

To implement the above algorithm, we need to work out certain details. First,
we do not know what is the right choice of the root. Note that some choices of r
may possibly make the convergecast stage to have smaller cost but may potentially
make the broadcast stage that follows more expensive. Since we do not know how
to balance that, we will just consecutively try all possible candidates for the root.

111

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

a b

c d

e

9 7 9 8

10

1 1

2 1

11

11

a
b
c
d
e

energy
21
16
42
41
20

a b

e

9 7 9 8

10

1 1

2 1

11

11

a
b
c
d
e

energy
0

57

0
0
0

c

dinitial energy
used
21
15

24

9
14

convergecast stage:
initial energy

used

broadcast stage:

12
8

14
9

14

r r

a b

c d

e

9 7 9 8

10

1 1

2 1

11

11

a
b
c
d
e

energy
21
16
42
41
20

a b

e

9 7 9 8

10

1 1

2 1

11

11

a
b
c
d
e

energy
0

57

0
0
0

c

dinitial energy
used
21
15

24

9
14

convergecast stage:
initial energy

used

broadcast stage:

12
8

14
9

14

r r

Figure 5.1: A gossiping strategy that starts with an r-convergecast (on the left)
and finishes with a broadcast stage (on the right) for a given choice of the root.
The illustration of the convergecast stage gives the initial configuration of agents
(their initial energy levels are given in the table), their movements (as dotted
lines). Some edges are traversed once (we will call them green in Section 5.4.1 and
they are shown as heavy edges), and some edges are traversed twice (they will be
red and are depicted as regular ones). Denoting (x1, . . . , x5) = (a, b, c, d, e), the
agent xi is performing all its movements prior to the agent xi+1, i ∈ {1, . . . , 4} in
the convergecast stage. The broadcast stage is illustrated on the right by showing
the configuration of agents and their energy levels (in the table) at the mid-point,
which is the final configuration of the r-convergecast, and by giving the walks of
the agents. In the broadcast stage, the agent xi performs its walk prior to the
agent xi−1 for each i ∈ {2, . . . , 5}.

112

Second, we need to prove that Cmin is indeed a good candidate to be a prefix of
a successful gossiping, provided that the correct root has been chosen. At some
point, see Corollary 5.4.1, we will prove that Cmin is unique, with respect to the
operator ‘≃’ and all energy being at the root at the end of the strategy, and that we
can compute it in linear time, see Lemma 5.4.3. We finally obtain (see Theorem 6)
that if gossiping is feasible, then there exists a structured gossiping strategy solving
it. Thus, the above tells us how to efficiently compute a convergecast stage for
which there exists some broadcast stage. The latter one is obtained, as a black-box,
on the basis of [68].

This leads to the following theorem, our second main result of the work, whose
proof that follows the above sketch is provided in Section 5.4.

Theorem 7. Suppose that an edge-weighted n-node tree T and k arbitrarily
placed energy-constrained agents are the input to the gossiping problem. There
exists a O(k2n2)-time algorithm that finds a minimum-cost gossiping strategy
whenever gossiping is feasible for this input.

5.4 The Gossiping Algorithm
Convergecast as a separate problem has been solved in [67] but for a different
model. The difference in the models is that in our case the agents can finish
movements and exchange energy only at nodes, while in [67] they can stop in the
middle of edges and thus also exchange energy there. Note that our model is
stronger in the sense that the agents are more restricted in their possible actions.
For this reason, we may not use the convergecast algorithm given in [67] as a black-
box. Moreover, as a second reason, we cannot use an arbitrary r-convergecast to
be a prefix of a structured gossiping but instead we need a specific strategy Cmin
that, as we conclude in Corollary 5.4.1, is unique. Taking into account the above,
we develop a required convergecast algorithm in Section 5.4.1.

5.4.1 The Convergecast Stage

Our convergecast algorithm, called CONVERGECAST and described below, takes
an edge-weighted rooted tree with a configuration of energy-constrained agents as
an input. The algorithm iteratively removes nodes and edges from the tree using
two rules. The first rule triggers a depth-first search (DFS) traversal of a subtree
Tv rooted at v (note that this is not the entire subtree rooted at v in the initial
input tree but possibly a smaller subtree due to the fact that some edges have
been possibly previously removed); the edges removed by this rule are red. The
second rule corresponds to the situation when an edge that is removed is traversed
only upwards in the corresponding convergecast strategy and so this edge will be
colored green for further reference. See Figure 5.1 for an illustration of red and
green edges. If, upon completion of the algorithm, some edges are not removed,
then this implies that convergecast is not feasible for the given input. (Note that
it may be feasible for another choice of the root.)

113

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

In the statement of the pseudo-code we use the following notation. We write
energy(a) to denote the energy of an agent a at a given point of strategy construc-
tion. In other words, energy(a) refers to the current energy level. We extend this
notation by writing energy(T ′) for any subtree T ′ of T and this refers to the sum
of the current energy levels of all agents located at the nodes of T ′.

Algorithm CONVERGECAST: An algorithm for computing a
minimum-cost r-convergecast strategy for a given tree T rooted at r.
1 for each v ∈ V (T) in postorder do
2 a← any agent at v ▷ if there is no agent at v then continue

to the next iteration
3 let a collect all energy from agents present at v
4 if energy(Tv) is at least twice the weight of all edges in Tv and

E(Tv) ̸= ∅ then
5 let a perform a DFS traversal of Tv ▷ these edges will be red
6 for each agent a′ met by a during the DFS traversal do
7 all energy of a′ is passed to a
8 remove all edges and nodes below v from the tree
9 if energy(a) is at least the weight of {v,par(v)} and E(Tv) = ∅ then

10 move a from v to par(v) ▷ this edge will be green
11 remove v and the edge {v,par(v)} from the tree
12 return the corresponding r-convergecast strategy or failure if the tree is

non-empty

For an analysis of Algorithm CONVERGECAST we introduce some additional
notation. Any r-convergecast strategy C induces the following coloring of the edges
of the input rooted tree T :

• if during the execution of C an edge e is traversed only once, then the color
of e is green (note that in such case this is an upward traversal),

• otherwise the color of the edge e is red.

Note that this coloring is consistent with the colors assigned by Algorithm CON-
VERGECAST.

Whenever for any tree T and an initial configuration of agents, convergecast
is not feasible, then we define a deficit of T to be minimum amount of energy x
such that, adding at the root of T an agent with x units of energy results in an
instance for which convergecast is feasible. For convenience we refer to the two
segments of code within the ‘if’ instructions of Algorithm CONVERGECAST as
follows: the code executed in the ‘if’ statement in lines 4-8 is the red case and the
code in the ‘if’ statement in lines 9-11 is the green case. Both cases may occur in a
single iteration due to the following observation: although at the beginning of an
iteration we exclusively have either E(Tv) = ∅ or E(Tv) ̸= ∅, the red case triggered

114

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

when E(Tv) ̸= ∅ may remove all edges and nodes below v resulting in E(Tv) = ∅
and thus triggering the green case in the same iteration. Also note that it might
happen that only one case occurs or none of them occurs in a single iteration of
the main loop of the algorithm. We say that the node v of T that we refer to in an
iteration of Algorithm CONVERGECAST is the processed node in the iteration.

Observation 5.4.1. If, in a coloring induced by a strategy returned by Algo-
rithm CONVERGECAST, an edge is red, then this edge is traversed exactly twice
in the strategy: one upward and one downward traversal.

We now state a technical lemma that will be used twice in the following proofs.

Lemma 5.4.1. Consider an iteration of Algorithm CONVERGECAST in which
a red case occurs for a processed node v. For any u ∈ V (Tv) \ {v},

energy(Tu) < w({u,par(u)}) + 2 ·
∑

e∈E(Tu)

w(e). (5.1)

Proof. If there is no agent in the subtree Tu, then Inequality (5.1) immediately
holds. We prove (5.1) by contradiction assuming that there is an agent at some
node of Tu. If there is no agent on any node in V (Tu) \ {u}, then there is an agent
on u and by assumption this agent has at least energy(Tu) units of energy. But
then according to lines 9-11 of Algorithm CONVERGECAST, the edge {u,par(u)}
has been removed in an earlier iteration — a contradiction. Thus, there exists
u′ ∈ V (Tu)\{u} occupied by an agent. Since (5.1) is violated for u, it is violated for
at least one subtree Tx, where x is a child of u. Thus, by repeating this argument,
we arrive at a node u′ with an agent a′ such that (5.1) is violated for u′. Since
u′ has been processed prior to v, in this earlier iteration, the agent a′ performed
a DFS traversal of Tu′ . Second, once the DFS performed by a′ is completed, the
energy level of a′ that is present at the node u′ is at least w({u′, par(u′)}), which
means that the green case occurs in the iteration that processes u′. This however
contradicts the fact that the edge {u′, par(u′)} still belongs to Tv. Thus, (5.1)
holds.

In the next lemma we prove that the actions performed in the red case are
correct, i.e., the DFS can be indeed performed by an agent a. Thus, the lemma
implies that each node ordering providing a DFS traversal is feasible, that is, the
agent performing the traversal has sufficient energy level to make each particular
move.

Lemma 5.4.2. If, in an iteration of Algorithm CONVERGECAST, energy(Tv) is
at least twice the weight of all edges in Tv, then any DFS traversal performed by
an agent a selected in the iteration is feasible.

Proof. Consider an arbitrary iteration of the main ‘for’ loop in Algorithm CON-
VERGECAST in which a node v is processed. We may assume without loss of
generality that in all preceding iterations the red case has been executed success-
fully, i.e., the corresponding DFS traversal is feasible. In particular, what needs

115

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

to be shown is that any DFS traversal is feasible because the algorithm does not
impose any restrictions on the order of selecting edges by the DFS.

Suppose that the agent a enters a subtree Tu of Tv, u ≺ v, by traversing
the edge {u, v} (downward traversal). We will argue that any DFS traversal of
Tu together with the traversals along the edge {v, u} results in the agent having
strictly less energy (this value is denoted by y below) than prior to the traversal.
Let x be the energy level of a just before the traversal of this edge. Suppose that
a completes any DFS traversal of Tu and returns to v = par(u) having y units of
energy. Lemma 5.4.1 implies that

y = x−

2w({u, v}) + 2 ·
∑

e∈E(Tu)

w(e)

+ energy(Tu) < x.

Note that the above choice of u is arbitrary. Thus, in a red case triggered when
processing v, if a arrives at any node u during the DFS traversal, then the traversal
of the subtree Tu indeed decreases the initial energy level of a, since we also take
into account the energy necessary to go back to par(u). This decrease of energy is
the same regardless of the DFS order of visiting the nodes of Tu. Hence, whether
the DFS is feasible or not depends only on the overall energy level of a and all
agents in the subtree.

To finish the argument, note that the red case is triggered when energy(Tv) is
at least twice the weight of all edges in Tv (see line 4 of Algorithm CONVERGE-
CAST). As we proved, going from v to any child u, doing the DFS traversal of
Tu and then returning back to v, which is a part of the DFS selected in line 5,
only decreases the energy level of the agent performing the DFS. Since this holds
for an arbitrary u, the condition on the energy level from line 4 ensures that the
agent has the missing amount of energy when it arrives at v (prior to the down-
ward traversal of {v, u}). By the missing energy we refer to the energy needed to
traverse the edge {v, u} twice (first downward and then upwards) and to perform
the DFS traversal of Tu.

Lemma 5.4.3. Algorithm CONVERGECAST correctly determines in linear time
whether r-convergecast is feasible. Moreover, if it returns an r-convergecast strat-
egy then its cost is minimum over all r-convergecast strategies for T rooted at
r.

Proof. We prove, by induction on the tree size, the following invariant regarding
the strategy C computed by Algorithm CONVERGECAST. For each subtree Tv:
if, while processing v, a green or red case occurs (or both), then it holds:

(a) If r-convergecast is feasible for the subtree Tv (with the initial configuration for
T restricted to Tv), then C restricted to Tv is a minimum cost v-convergecast
for Tv.

(b) If v-convergecast is not feasible for the subtree Tv (with the initial configura-
tion for T restricted to Tv), then C has an action in which an agent a moves

116

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

from par(v) to v having, at the end of this action, at least x+w(v,par(v)) units
of energy, where x is the deficit of Tv. Note that the arrival of a with the pro-
vided energy makes the instance restricted to Tv feasible for v-convergecast.

We prove the claim by following the cases in the pseudo-code of CONVERGE-
CAST. For the base case, if v is a leaf in T , then the claim trivially follows. Thus,
suppose that v is not a leaf. By assumption, we consider only nodes at which red
or green case occurs.

Consider any child u of v. The removal of the edge {u, v} may occur either in
a red case or in a green case.

Suppose first that it occurs in a green case. Note that we are analyzing the
green case in the iteration when u is processed. Note that a green case only occurs
if E(Tu) = ∅, i.e., all edges below u have been previously removed. The removal
of all edges of Tu prior to this iteration implies that u-convergecast in the subtree
restricted to Tu is feasible. Thus, by the inductive assumption ((a)), the algorithm
performs a minimum-cost convergecast in Tu. Note that if there are more agents
at u with non-zero energy at the beginning of the iteration for u that we consider,
then due to line 3 of the algorithm, the agent a receives all their energy. Then, the
green case dictates the following: the agent a moves from u to v and all remaining
agents in Tu have no energy left. This, and the fact that the edge {u, v} is traversed
only once in C, imply that C restricted to a tree obtained by attaching the edge
{u, v} to Tu has minimum cost.

Now suppose that the edge {u, v} has been removed in a red case. Since a red
case occurs while processing v, that means that an agent is present at v at the
beginning of the iteration when v is processed. While analyzing this red case, we
write Tv to refer to the subtree at the beginning of the iteration. By the condition
of the red case, E(Tv) ̸= ∅. Note that if an agent a′ is present at any node u′

in V (Tu) \ {u} then its energy level is not sufficient to traverse the subtree at
u′, if E(Tu′) ̸= ∅. Otherwise, the red case condition would be satisfied when u′

was processed. This in particular implies, by the inductive assumption ((b)), that
each edge of Tv requires a downward traversal in any r-convergecast strategy. By
Lemma 5.4.2, any DFS does the job. This proves the minimality of C restricted to
the tree induced by v and nodes u such that u ≺ v in the original tree T .

In the rest of the work we use the symbol Calg to denote the r-convergecast
strategy computed by Algorithm CONVERGECAST.

Lemma 5.4.4. If, in the coloring induced by an r-convergecast strategy Calg
computed by Algorithm CONVERGECAST, an edge is red, then the edge is red
in any r-convergecast strategy for T .

Proof. Assume for a contradiction that there exists an edge e = {u, v}, v = par(u),
that is red in the coloring induced by Calg but is green in the coloring induced by
a different r-convergecast strategy C′. Furthermore, we can assume that e is the
lowest edge with such properties.

Let s be the total energy of all agents initially placed in Tu. For the edge e to
be green in the coloring induced by C′, the cost c of C′ restricted to the subtree Tu

117

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

is at most s−w(e). By Lemma 5.4.3, for edge {u′, par(u′)} ∈ E(Tu) that is green
in the coloring induced by C′, we have that the cost of C′ in Tu′ is not smaller
than the cost of Calg in Tu′ . Obtain a subtree T ′ by taking Tu and removing the
edge {u′, par(u′)} and all nodes and edges of Tu′ for all edges {u′, par(u′)} that are
green in the coloring induced by C′. Thus, all edges of T ′ are red in the coloring
induced by C′. The strategy C′ hence needs to traverse each edge of T ′ twice. Note
that we can apply Lemma 5.4.1 for C′ because since it traverses each edge of T ′

twice, it is the same as Calg for the subtree T ′. Hence by Lemma 5.4.1, the total
energy in T ′ is insufficient for a double traversal of each edge of T ′ and an upwards
traversal of e — a contradiction.

Observation 5.4.2. At the end of Algorithm CONVERGECAST all energy is at
the root.

Proof. By line 3 of Algorithm CONVERGECAST, an agent performing the traver-
sals of edges collects all energy from agents on the vertex from which it departs
and, by line 7, from those agents it meets during its DFS traversal. Clearly all
vertices are visited in a convergecast strategy and all energy can be accessed in
such manner. Since the energy is transferred by the same agents which carries the
data packets, all energy ultimately ends up at r.

By Observations 5.4.1 and 5.4.2 and Lemmas 5.4.3 and 5.4.4 we obtain.

Corollary 5.4.1. If r-convergecast is feasible then the r-convergecast of minimum
cost such that all energy is at the root at the end is unique and Cmin ≃ Calg.

5.4.2 The Broadcast Stage
In order to make our main claim regarding the structure of gossiping strategies,
namely that we indeed can start a feasible gossiping by executing Cmin, we recall in
this section a claim regarding the broadcast stages. The claim is a lemma from [68]
that gives a structural characterization of the broadcast stages we need to consider:
with respect to each edge, any broadcast strategy is partitioned into three steps
(formally listed below). This gives a foundation for comparing a gossiping strategy
that our algorithm computes with an arbitrary gossiping strategy of minimum cost
in Section 5.4.3.

We extend our earlier notation of r-convergecast to gossiping strategies. An
r-gossiping strategy is one with the property that all data packets are present
at the root at the end of the mid-point. Note that the convergecast stage of
an r-gossiping strategy is by definition an r-convergecast. We denote by Galg a
gossiping strategy that we are able to compute in the following way. The Galg is
an r-gossiping strategy of minimum cost such that Galg = Cmin ⊕ Balg for some
broadcast stage Balg. (Recall that by Corollary 5.4.1, Cmin ≃ Calg.) Note that this
concatenation and cost-minimality of Galg imply that the cost of Balg is minimal
among all possible broadcast stages that follow the r-convergecast Cmin.

To compute the broadcast stage Balg we use, as a black-box, the following
result. Although the algorithm we refer to is slightly more general, i.e., it finds all

118

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

nodes from which a broadcast is feasible, we will use it to determine whether the
broadcast is feasible from one particular node r.

Theorem 8 ([68]). Given an n-node tree rooted at r and an arbitrary initial
configuration of k agents, there exists a O(k2n)-time algorithm that computes a
broadcast strategy of minimum cost or determines that no such strategy exists.

Now we analyze the structural properties of the broadcast stages. It is shown in
[68] that with respect to any edge e = {v,par(v)}, a broadcast strategy of minimal
cost might consist of three steps (that occur in this order), defined as sequences of
the following actions.

1. If the total energy available inside Tv is sufficiently large, an agent will first
traverse the edge e upwards bringing some energy to the node par(v). Such
energy may be subsequently transferred to the root r. Depending on the
distribution of energy inside Tv this step may or may not exist.

2. An agent a will traverse the edge e downwards in order to transport the data
packets into Tv.

3. Then, the third step is one of the following.

(↓) Either a number of other agents traverse the edge e downward in con-
secutive rounds. Then all these agents, together with the agent a and
the agents initially present inside Tv will transport the data packets to
all nodes of Tv.

(↑) Or, a number of other agents traverse the edge e upward in consecutive
rounds. Before exiting from Tv these agents together with the agent a
and the agents initially present inside Tv will transport the data packets
to all nodes of Tv.

(−) Or, no other agent traverses e. In this case the agent a together with
the agents initially present inside Tv will transport the data packets to
all nodes of Tv, eventually terminating their walks inside Tv.

From now on we assume that each optimal broadcast we consider follows the above
scheme of Steps 1-3. Note that in case of broadcast stages that do not have Step 1
the only upward traversal of an edge is present in the description of Step 3(↑).

Observation 5.4.3. The order of actions in any optimal broadcast strategy can
be modified in such a way that all moves of Step 1 can be made before any move
of Step 2 (and consequently Step 3).

Proof. Assume for a contradiction that Step 2 on some e′ is required to make Step 1
on an edge e. This requirement can be only due to lack of resources, either agents
or energy, in the subtree Tv, where e = {v,par(v)}. To deliver these resources a
downward traversal of e is required before Step 1 on e. Contradiction with the
definition of Step 1.

119

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

5.4.3 Concatenation of Convergecast and Broadcast

In this section we prove that, provided that r-gossiping is feasible in a given
tree, there is an r-gossiping strategy that starts with Cmin, i.e., has Cmin as its
r-convergecast stage. To that end we compare two r-gossiping strategies, one of
which is Galg = Cmin ⊕ Balg. The other strategy for our comparison, denoted in
the remaining part of the paper by Gopt, is an r-gossiping strategy of minimum
cost. Let Copt be its convergecast stage. Thus, the choice of Gopt does not put any
configuration restrictions on the midpoint, ensuring that we have a strategy that
minimizes the cost over all r-gossiping strategies.

We extend our previous notation by denoting by end-energy(S) the sum of
energy levels of all agents at the end of a strategy S. The next lemma essentially
says that for r-gossiping strategies that use the same amount of energy for their
r-convergecast stages and satisfy some technical properties, it is always advisable
to start with an r-convergecast after which all energy is at the root. Formally, we
have the following.

Lemma 5.4.5. Consider two r-gossiping strategies G = C ⊕ B and G′ = C′ ⊕ B′
such that:

(a) cost(B) and cost(B′) are minimized, and

(b) neither in B nor in B′ Step 1 occurs, and

(c) the positions of agents at the mid-points of G and G′ are the same, and

(d) in the final configuration of C all energy is at the root.

If end-energy(C′) = end-energy(C), then cost(G) ≤ cost(G′).

Proof. Take an arbitrary edge e = {v,par(v)}. By assumption (b), no agent at v
changes its position in the strategy B until an agent a arrives at v through the edge
e in Step 2. So, a can distribute the amounts of its energy among the agents at
v. Thus, the broadcast stage B following C can make the same edge traversals as
the broadcast stage B′ following C′. The latter is ensured by our assumptions (b)
(applied to B′) and (c) that the agents have the same positions at the end of C and
C′. This implies that cost(B) ≤ cost(B′). Since end-energy(C′) = end-energy(C),
it holds cost(C′) = cost(C). Thus, we obtain

cost(G) = cost(C) + cost(B) ≤ cost(C′) + cost(B′) = cost(G′).

In the remainder of this section we prove that cost(Galg) ≤ cost(Gopt). We
prove this fact by using Lemma 5.4.5 and thus in this proof we argue that all
assumptions of Lemma 5.4.5 hold. Denote Gopt = Copt ⊕ Bopt.

We use Lemma 5.4.4 to argue that, informally speaking, if an agent is at differ-
ent nodes in the final configurations of Copt and Cmin, then the agents performed
in Copt some additional edge traversals with respect to Cmin. Consider the coloring
induced by the strategy Cmin. (Recall that Cmin ≃ Calg by Corollary 5.4.1.) If an

120

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

edge e is green, then by definition Cmin performs only an upward traversal of e and
such an upward traversal must occur in each feasible r-convergecast, in particular
in Copt. If an edge e is red, then by the statement of Algorithm CONVERGE-
CAST, e is traversed once in each direction in Cmin. By the same argument as
for a green edge, e must be clearly traversed upwards in Copt. It also must be
traversed downwards because by Lemma 5.4.4 there is no convergecast strategy
that makes e green. In other words, within the subtree Tv, where e = {v,par(v)},
the initial configuration does not allow for delivering all data packets from Tv to
par(v) using only the energy of agents initially present in Tv. Thus, a downward
traversal of e needs to occur in Copt.

Let M denote the set of the edge traversals that do occur in Copt but do not
occur in Cmin. We now argue that these additional moves can be ruled out from the
convergecast stage of Gopt. In particular, we modify Copt into an r-convergecast
denoted by C′opt and consequently Bopt into a broadcast B′opt in such a way that the
cost of a new gossiping strategy G′opt = C′opt⊕B′opt satisfies cost(G′opt) = cost(Gopt).
Because M are made in addition to the traversals of Cmin we can reschedule them
in such a way that each of them happens after all data packets have been gathered
at r, i.e., at the end of the mid-point of G′opt. Thus, M are now a part of B′opt.

Using our notation, we obtain C′opt ≈ Cmin (i.e. are similar) and B′opt executes
first the actions in M (whose order is kept) and then the strategy Bopt. This
in particular ensures that Condition (c) of Lemma 5.4.5 holds for B := Balg and
B′ = B′opt.

Observation 5.4.4. For each edge e, the move in Step 2 on e occurs after the
move in Step 2 on each edge e′ such that e is below e′.

Observation 5.4.5. The order of actions in B′opt can be modified in such a way
that for each edge e, all moves of Step 1 below an edge e can be made before any
move on and above e. Furthermore, the order of the moves of Step 1 on the same
depth of the tree is arbitrary.

Proof. Recall that, by definition, no energy or agents move downwards in any move
of Step 1. By Observation 5.4.3, no agents move downwards before all moves of
Step 1 are complete. So, the resources necessary to make a move on any edge e
are potentially provided only by moves of Step 1 from a subtree below e.

Because Observation 5.4.5 relays on Observation 5.4.3, and Observation 5.4.5
modifies the order of moves in such a way that it keeps the property that no
move in Step 1 happens after Step 2, both of these observations can be applied
simultaneously.

Intuitively, the following observation says that, in the presence of Step 3(↑)
and Step 3(−), it is possible to conduct the same actions on and below an edge e
provided that Step 2 along e gives in S ′ not less energy than in S for the subtree
below e.

Observation 5.4.6. Consider two broadcast strategies S and S ′ such that:

121

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

• the initial configuration of agents below an edge e = {u,par(u)} is the same
in S and S ′, and

• in S the following moves are done along e: Steps 1, 2, 3(↑) or 3(−), and

• Step 2 on e in S ′ delivers no less energy to Tu than Step 2 in S.

Then, the same actions following Step 2 below and on e can be made in both
strategies regardless whether Step 1 on e exists in S ′.

Proof. This is due to the fact that Step 1 only takes away resources from a subtree.

The next claim is a counterpart of Observation 5.4.6 that considers the remain-
ing case of Step 3(↓) occurring in S ′.

Observation 5.4.7. Consider two broadcast strategies S and S ′ such that:

• the initial configuration of agents below an edge e = {u,par(u)} is the same
in S and in S ′, and

• in S the following moves are done on e: Steps 1, 2, 3(↓), and

• the agents deliver no less energy to Tu through e in S ′, and

• there are no less agents at u after Step 3 in S ′ than in S.

Then, the same actions following Step 2 below and on e can be made in both
strategies regardless whether Step 1 on e exists in S ′.

Proof. This is due to the fact that Step 1 only takes away resources from a subtree.

5.4.4 Retracing Step 1

We now argue that Step 1 does not need to occur in an optimal broadcast strat-
egy, i.e., we show that given B′opt we can construct a broadcast strategy without
Step 1. To this end we describe an algorithm that uses B′opt as input and use
Observations 5.4.6 and 5.4.7 to verify that the obtained strategy is correct.

The algorithm relies on the observation that, since Step 1 is a single upward
traversal, it can have two functions in a broadcast: (i) bringing energy to nodes
higher up, (ii) bringing an agent to another subtree. It is shown that (i) can be
delegated to another agent in the preceding convergecast stage and (ii) can be
incorporated into Step 3 by moving the agent’s upwards edge traversal to Step 3.
If an agent would have to replace the agent which departed from the subtree in
Step 1, e.g. only (i) was the original purpose, then this upward traversal is canceled
with another agent’s downwards edge traversal in Step 3.

We do this inductively for all edges e1, . . . , en−1 in a specific order. In order to
obtain this ordering we use Breadth First Search on the tree T starting from the

122

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

root and for each vertex we take edges connecting its children with the following
priority, depending on actions on these edges in B′opt (we say that an edge is one
of the following Cases):

• Case 1: Steps 1, 2, 3(↑)

• Case 2: Steps 1, 2, 3(−)

• Case 3: Steps 2, 3(↑)

• Case 4: Steps 1, 2, 3(↓)

• Case 5: Steps 2, 3(↓)

• Case 6: Step 2, 3(−)

The goal of the given order is to ensure that in a constructed strategy the resources
are delivered to vertices before they are used. In particular it is important that
the Cases which do not decrease the number of agents in a subtree (i.e. Cases 1, 2
and 3) precede the Cases which do (i.e. Cases 4, 5 and 6). This property is used
to support the argument leading to Equations (5.9) and (5.10). Furthermore we
note that the order of Cases 1 and 2 could be swapped and the order of Cases 4,
5 and 6 could be arbitrary.

As a preliminary, we modify B′opt and the convergecast stage C′opt preceding
it in order to obtain C0opt and B0opt, which will serve as basis for our inductive
changes eventually leading to elimination of Step 1 from G′opt. Specifically, the
final configuration of C0opt defines the initial configuration of B0opt, which will also
be altered in the process. Without considering these changes to C′opt the removal of
Step 1 in B′opt may cause energy deficits in the latter. We note that in the process
of starting with G0opt and obtaining the intermediate strategies, their corresponding
convergecast strategies are not necessarily the strategy Cmin but the convergecast
stage of the final gossiping will be the required Cmin.

Lemma 5.4.6. Consider the r-gossiping strategy G′opt = C′opt⊕B′
opt. There exists

an r-gossiping G0opt = C0opt ⊕ B0opt such that:

1. G0opt ≈ G′opt,

2. C0opt ≈ C′opt,

3. in B0opt, the moves of Step 1 make the same traversals as in B′opt and are
taken on edges in the following order: en−1, . . . , e1,

4. in the mid point of G0opt at most one agent on each vertex v ̸= r has energy.
This energy is equal to the amount needed to make the moves of Step 1 by
this agent in B′opt (and consequently in B0opt).

Proof. By Claim 5.2.1 and the fact that C′opt is a convergecast strategy, C′opt can
be modified in such a way that an arbitrary amount of unused energy is delivered
to the root with no additional edge traversals. Therefore, a strategy C0opt can be

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

constructed, such that C′opt and C0opt are similar, but less energy than in C′opt is left
to agents remaining at vertices other than r. We are concerned specifically with
the agents which make moves of Step 1 in B′opt.

The strategy C0opt is obtained as follows. Consider an arbitrary edge e =
{v,par(v)} such that Step 1 exists on e in G′opt. Let av be the agent which traverses
e in Step 1. Recall that for each edge there exists only one such agent. By the
order of steps, av does not meet any agent coming from r prior to arrival at v in
the strategy C′opt. The feasibility of these traversals depends solely on energy left
in Tv in the convergecast stage. Hence, we build C0opt by taking the same moves
on e as C′opt but reducing the amount of energy possessed by av. At the end of
C0opt the agent av has only the amount of energy required to traverse e, so that it
can make Step 1 on e in B0opt, and the energy it transfers to apar(v) for the Step 1
traversals of the edges above e. Note that apar(v) and av might be the same agent.
The remaining energy is collected by an agent which makes an upward move on
e and ultimately transferred to r. We stress the fact that the described moves of
Step 1 are not made in C0opt, in fact no additional moves are. This ensures that
points 2 and 4 of the lemma are true and can be used in an argument about any
strategy which makes the same traversals in Step 1 as B′opt.

Consider a sequence of actions following C0opt and denoted by B. Next, we show
that B′opt and B are similar despite their different initial energy distribution. Since
each agent av has enough energy to traverse the corresponding edge in Step 1, B
can make the same traversals in Step 1 as B′opt. Furthermore, their order in B is
altered with respect to B′opt in such a way that they are made before any move of
Step 2.

The argument for Steps 2 and 3 is more complex. We say that agents meet
when they are at the same vertex at the same time. Let R0 be the set of agents at
r in the final configuration of C0opt. R0 ̸= ∅ because C0opt is a convergecast strategy.
Rt is defined recursively as follows: in any given round t let Rt = Rt−1 ∪P , where
P is the set of agents which meet an agent a ∈ Rt−1 in round t. Informally, Rt is
the set of all agents which met up to round t an agent that was at r in the final
configuration of C0opt. We argue that we can order the traversals in B, in such a
way that in any given round t only agents in Rt or agents making moves of Step 1
traverse edges. Hence, energy distributed as described in point 4 can be exchanged
among agents in Rt in order to make each edge traversal of B possible, making it
a broadcast strategy.

Consider agents on the vertex u of an edge e = {u,par(u)}. By Observa-
tion 5.4.4, the move of Step 2 in B′opt on an arbitrary edge e′ = {v,par(v)} occurs
after the move of Step 2 on every edge of the path from r to v. Consequently, if
e′ is below e, then only moves of Step 1 can be made in Tpar(v) up to this point.
Thus, no agent on u can move downwards before Step 2 on e. Furthermore, only
one agent on v can move upwards in Step 1 before the move of Step 2 on e. There-
fore, all but one agent remain stationary and meet the agent making the move of
Step 2 on e. Hence, every agent with all data packets which moves at round t has
met either an agent in Rt, or is in Rt itself, or an agent which made some moves
of Step 1, collected all data packets from a vertex, and then made at least one

124

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

move of Step 2 without meeting an agent in Rt. Since in B all moves of Step 1
have been done before any move of Step 2, the agents which made the moves of
Step 1 are stationary until they meet an agent from Rt. Thus, the last possibility
is eliminated from B.

Finally, in order to obtain B0opt we modify B in such a way that moves of Step 1
in B0opt are taken on edges in the following order: en−1, . . . , e1. This in particular
ensures that point 3 is true. By Observation 5.4.5, such a modification can be
made by altering only the order of moves. Furthermore, the property that in B all
moves of Step 1 has been done before any move of Step 2 is preserved in B0opt.

To summarize, for both pairs of strategies: C0opt ≈ C′opt and B0opt ≈ B′opt, which
ensures that G0opt ≈ G′opt.

We now define a strategy Biopt for each i ∈ {1, . . . , n− 1}. Consider the set of
edges {e1, ..., ei}, i ≤ n − 1. Let a vertex u ∈ ek = {u,par(u)}, k ≤ i, such that
there is no ej , j ≤ i, below u be called a terminal vertex of Biopt. Let the subtree
Tu attached to a terminal vertex u be called an auxiliary subtree of Biopt. We hope
that this abuse of notation will make the arguments easier to follow.

Recall that B0opt and its initial configuration, i.e., the one at the end of C0opt,
were outlined in Lemma 5.4.6. Let Biopt for i > 0 be a sequence of actions in a
subtree, denoted as T̃i, consisting of e1, ..., ei (called the core subtree of Biopt) and
all auxiliary subtrees of Biopt. Let the edge-induced subtree by E(T) \ E(T̃i) be
called the leftover subtree of Biopt. We will omit the index whenever the subtree
being referred is unambiguous. In the core subtree of Biopt the actions performed
by Biopt will be a subset of actions in the core subtree of Bi−1

opt and modified actions
from B0opt on ei. In the auxiliary subtrees there will be either no actions, or the
actions will be the same as in B0opt (up to their placement in the whole strategy).
An edge ea = {u,par(u)} is said to be the younger (older) than eb = {v,par(v)}
if a > b (respectively a < b) and par(u) = par(v). If no such edge eb exists, then
ea is the youngest (oldest). See Figure 5.2 for an overview of these terms.

Before we dive into the description of Biopt’s, we define the strategy Ciopt for
each i ∈ {1, . . . , n − 1} announced earlier that gives the initial configuration for
Biopt. Let Ciopt, such that Ciopt ≈ C0opt , be a convergecast strategy such that in
its final configuration at most one agent on each vertex v ̸= r has energy. This
energy is equal to the amount needed to make the moves of Step 1 by this agent in
Biopt. Note that Ciopt does not make these moves (recall that these are the moves
in M defined at the beginning of this section that constitute the moves of Step 1
that we intend to eliminate). We also remark that once we claim that the final
strategy Bn−1

opt has no moves of Step 1, we obtain that all energy is at the root in
Cn−1
opt and hence Cn−1

opt equals Calg (recall that C0opt ≈ C′opt, by Lemma 5.4.6). This
fact is important because we need to keep the property that Calg can always lead
to an optimal gossiping.

Let ↓e(S) be the number of downward traversals of an edge e in a strategy
S. Let ↑e(S) be the number of upward traversals of an edge e in a strategy S.
If S is defined for a subtree of T and e does not belong to the subtree, then

125

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

oldest edge

youngest edge

subtrees

the auxiliary

par(ui)

the core

subtree of Bi+1
opt

ui

ui+1

ui+2

ui+3

subtrees of Bi+1
opt

the leftover subtree

ei+3 is the

ei is the

ei+3

ei+2ei+1
ei

Figure 5.2: An illustration of the notation used in this section: ui and ui+1 belong
to the set of terminal vertices of Biopt.

↑e(S) = ↓e(S) = 0. Let ei = {ui, par(ui)}, that is, we identify the index of an
edge with the index of its vertex further from the root. For each edge ei, we define
Cpar(ui) to be the set of indices k of the edges ek directly below par(ui).

Denote by Rj , j ∈ {1, . . . , i}, a broadcast strategy for ej and the auxiliary
subtree of uj . The construction of Rj depends on which one of the six Cases
defined at the beginning of this subsection is ej .

Consider the construction of Rj when ej is of Case 3. Step 2 on ej is followed
in Rj by all actions in the auxiliary subtree of uj . These actions are the same as
those performed by B0opt in Tuj

. Then, the same number of upwards traversals on
ej as in B0opt is made in Step 3 in Rj .

Consider the construction of Rj when ej is of either Case 1 or 2. In these Cases,
Step 1 on ei occurs in B0opt and this first upward traversal of ei is omitted in Ri.
Recall that the surplus energy is moved to r in the convergecast stage preceding
Biopt, namely Ciopt. This is done with no additional cost, by Claim 5.2.1. Then,
Step 2 on ei is made as the first action in Ri. It is followed by Step 1 that occurs
in B0opt on all edges in the subtree of Tui . The agent, denoted as a, which makes
the move of Step 1 on ei in B0opt initially possesses no energy and is at ui after
Ri executes its moves of Step 1 below ui. An additional energy exchange action
between a and the agent making the move of Step 2 on ei transfers w(ei) units
of energy to a. These actions are then followed by the remaining actions in the
subtree Tui , which are the same as those performed by B0opt in Tui . Afterwards,
the same number of upward moves as in Step 3 in B0opt is made on ei in Ri. Finally

126

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

one more upward traversal of ei is added, called the exit move. This traversal is
done by a. Note that at most one agent traverses ei in Step 1. Informally speaking,
in these two Cases the move of Step 1 on ei is shifted to Step 3 in Ri.

Consider the construction of Rj when ej is of Case 5 or 6: the same traversals
as in B0opt are made on uj followed by the same actions as those performed by B0opt
in Tuj

. Note that the assigned order of actions is different than in Case 3.
Consider the construction of Rj when ej is of Case 4. Step 1 on ej occurs in

B0opt and this upward traversal of ei is omitted in Ri. Hence, there is one missing
agent which traversed ej downwards in B0opt, but is not present in Ri. In Rj

the agents making Steps 2 and 3 meet on par(uj) before any of these moves are
made and make energy exchange actions necessary for all of them to traverse ej
downward. Then, one less downward traversal of ej than in B0opt is made in Ri.
Then, these agents wait at uj for the arrival of the agent, called the substitute
agent, which would make Step 1 on ej . Note that the substitute agent is in Tuj in
the initial configuration and it arrives to uj thanks to the same upward traversals
of edges of Tuj

as those made in Step 1 in Tuj
in B0opt. From the point of meeting

the other agents on uj , the substitute agent receives the same amount of energy
as would be possessed by the missing agent. Then, the agents make the same
actions (excluding those aforementioned actions of Step 1 already made) as those
performed by B0opt in Tui , with the substitute agent performing the role of the
missing agent.

In order to simplify further references to the constructed Rj their relevant
properties are expressed in Lemma 5.4.7. We refer to the i-th property outlined
in Lemma 5.4.7 as Lemma 5.4.7.i, e.g. Lemma 5.4.7.1 is the first property.

Lemma 5.4.7. Each Rj has the following properties:

1. ↓ej (B0opt)− ↑ej (B0opt) = ↓ej (B
j
opt)− ↑ej (B

j
opt),

2. the actions on ej and the subtree directly below ej can be performed if the
amount of energy delivered in Step 2 on ej in Rj is not lesser than the amount
of energy delivered to this subgraph in Bj−1

opt plus w(ej) if Step 1 occurs on
ej in B0opt,

3. the actions in Rj require at least one and at most max{1, ↓ej (B0opt)−↑ej (B0opt)}
agents to traverse ej downwards,

4. cost(Rj) is not greater than that required by the actions on ej and the subtree
directly below ej in B0opt,

5. there is no Step 1 on ej in Rj ,

6. if ej is of Case 1, 2 or 3 (Case 4, 5 or 6), then if there are moves in Step 3
on ej in Rj , all of them are upwards (downwards, respectively)

7. if ej is of Case 1, 2 or 3, then all actions in the subtree below ej happen
consecutively after Step 2 on ej and before the first move of Step 3 on ej .
Furthermore, the actions in the subtree directly below ej are the same as in
B0opt,

127

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

8. if ej is of Case 4, 5 or 6, then all actions in the subtree below ej happen
consecutively after the last move of Step 3 on ej . Furthermore, the actions
in the subtree directly below ej are the same as in B0opt.

Proof. First, we consider properties which share simple proofs in all Cases. Proofs
of Lemma 5.4.7.5, Lemma 5.4.7.6, Lemma 5.4.7.7 and Lemma 5.4.7.8 follow natu-
rally from the construction of Rj . Recall that in Cases 1, 2 and 3 (4, 5, and 6) if
there are moves of Step 3 on ej in B0opt, then they are made upwards (downwards
respectively). This is because the direction of moves of Step 3 is copied to Rj from
B0opt and the exit move, if it exists, is an upward traversal. Thus, Lemma 5.4.7.6 is
satisfied. Because the condition of Lemma 5.4.7.8 (Lemma 5.4.7.7) refers only to
Cases 1, 2 and 3 (4, 5, and 6 respectively) it is trivially satisfied in the remaining
Cases.

A simple counting argument is sufficient to prove Lemma 5.4.7.1. In Cases
3, 5 and 6 the undertaken actions on ej are the same in B0opt and Rj , therefore
Lemma 5.4.7.1 is trivially satisfied. In Cases 1 and 2 we remove one upward traver-
sal in Step 1 but add one upward traversal in Step 3 (namely the exit move). Thus,
↑ej (B0opt) = ↓ej (Rj) and there is only one downward traversal in both strategies.
In Case 4, we remove one upward and add one downward traversal. Thus:

↓ej (B
j
opt)− ↑ej (B

j
opt) = ↓ej (B0opt) + 1− ↑ej (B0opt)− 1.

As a corollary to this counting argument, the number of traversals of ej in Rj is
not greater than in B0opt. Furthermore, because in each Case the traversals below
ej are the same in both B0opt and Rj , their cost is the same. Thus, Lemma 5.4.7.4
is satisfied.

Next, consider Lemma 5.4.7.3 divided into two parts: Cases 1, 2 and 3 and
Cases 4, 5 and 6. By construction, the order of actions in the subtree below
ej is the same relative to each other, but they differ in their placement in Bjopt
and B0opt. Thus, the conditions regarding the initial configuration of agents in
Observation 5.4.6 and Observation 5.4.7 are fulfilled. In this section of the proof
we assume that the energy is not a concern (i.e. energy requirements in our
observations are assumed to be fulfilled), as it will be considered in the proof of
Lemma 5.4.7.2. Note that in Cases 1, 2 and 3 ↓ej (B0opt) − ↑ej (B0opt) ≤ 1, because
only one agent traverses ej downward in B0opt. Therefore, only one case, such that
actions in Rj can be done with one additional agent present on par(uj), needs to be
considered. First, this agent traverses ej downwards with all data packets making
Step 2. Then, the moves copied from B0opt are made in the auxiliary subtree of uj .
By Observation 5.4.6, the ability to perform these moves does not depend on the
existence of Step 1 on ej (recall that energy is not considered in this argument).
Since the moves in Tuj

are the same, the same number of agents from Tuj
ends

up in Rj on uj after these moves, as in B′opt. Thus, these agents can continue to
make the same number of moves in Step 3 on ej in Rj as in B0opt. Finally, if there
was Step 1 on ej , then there is one more agent on uj and one less on par(uj) than
in B0opt, because there is no Step 1 in Rj . As mentioned in the construction, the

128

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

additional exit move is done by this agent. Thus, we have completed all moves in
Rj .

In Cases 5 and 6 the actions on ej and the subtree Tuj are the same in both B0opt
and Rj . Since in both strategies there are no upward moves ↓ej (Rj) = ↓ej (B0opt).
Furthermore, in Rj these moves are made before any move in the subtree Tuj

.
By Observation 5.4.7, this amount of agents is sufficient to make the same moves
on Tuj

as in B0opt. In Case 4, since there is Step 1 on ej in B0opt, Lemma 5.4.7.3
requires that all traversals of ej are done in Rj by ↓ej (Rj) = ↓ej (B0opt)− 1 agents.
Hence, there is a risk of there being one less agent on uj than in B0opt. This is
addressed by the replacement of the missing agent by the substitute agent, which
in turn is done by altering the order of actions in Tuj

. By Observation 5.4.5, the
substitute agent can arrive at uj before the arriving agents make further moves of
Step 2 on the edges below uj . Thus, at the end of Step 3 on ej and Step 1 below
ej in Rj the number of agents on uj is the same the number of agents which enter
Tuj in B0opt. This amount of agents is sufficient to make the same moves on Tuj as
in B0opt.

Finally, consider Lemma 5.4.7.2. We have already considered the amount of
agents needed to make the actions in Rj in the proof of Lemma 5.4.7.3, now we
focus on the amount of energy required. If ej is either of Case 3, 5 or 6, then the
actions of energy exchange by agents on vertices of ej are the same in B0opt and
Rj , thus Observation 5.4.6 (in Case 3) or Observation 5.4.7 (in Cases 5 and 6)
applies. In Case 4 the general argument is analogous, with an additional technical
detail. We remark that there is no possibility that the substitute agent held energy
needed to make moves of Step 3 on ej . This is due to the fact that Bjopt, which Rj

is a part of, is preceded by Cjopt. In Cjopt the energy that would be used to make
the move of Step 1 on ej is moved to r. In Ciopt, i ∈ {0, . . . , j − 1} any energy that
would be held by the agent after making the move of Step 1 on ej in B0opt could
be used only to make further upward moves of Step 1. Since an energy exchange
action on par(ej) ̸= r between the agents making Step 1 and Steps 2 and 3 on ej
did not happen in Biopt, it also is not needed in Bjopt.

Consider the remaining Cases 1 and 2. In Rj the agent making the exit move
initially has no energy. We compensate for this by supplying the agent making the
move of Step 2 on ej with the additional w(ej) units of energy, which are exchanged
with the agent making the exit move. Note that Lemma 5.4.7.2 accounts for this
increase. The remaining energy is distributed as in B0opt.

Thus, in each Case the amount of energy delivered to the subtree of Tuj is the
same as in B0opt. The actions in the subtree Tuj are the same in both B0opt and Rj .
Hence, by Observation 5.4.6, these actions and the following actions of Step 3 on
ej can be made and Lemma 5.4.7.2 holds.

We now move towards constructing the broadcast strategy Biopt for each i ∈
{1, . . . , n − 1}, which is done in the form of a pseudo-code in Algorithm CORE
EXPANSION. This strategy uses Rj as one of its building blocks. Our key claim
(Lemma 5.4.8) says that some of the Bjopt’s are valid broadcast strategies. We

129

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

remark that in particular Lemma 5.4.8 will imply that Bn−1
opt is a valid broad-

cast in which Step 1 does not occur, and thus this is our final desired strat-
egy. We use Lemma 5.4.7 to prove Lemma 5.4.8 by induction. In the proof
we use Lemma 5.4.7.8, Lemma 5.4.7.7 and Lemma 5.4.7.5 to describe the struc-
ture of the constructed strategy. Then we verify that agents can make these
moves, first by counting traversals of edges using Lemma 5.4.7.1, Lemma 5.4.7.6
and Lemma 5.4.7.3 in addition to the aforementioned properties. Finally we ad-
dress the amount of energy needed to make these moves using Lemma 5.4.7.8,
Lemma 5.4.7.7 and Lemma 5.4.7.2.

Algorithm CORE EXPANSION: An algorithm that constructs Biopt

for which it takes B0opt, . . . ,Bi−1
opt as an input.

1 Use the final configuration of Ciopt as the initial configuration of Biopt
2 if ei is the oldest then
3 Ai = the maximal sequence of actions before the first move in Tpar(ui)

in Bi−1
opt .

4 else
5 Ai = Bi−1

opt
6 Compute Ri ▷ the actions on ei and below ei depending on Cases

1-6
7 if ei is the youngest then
8 Let ej be the oldest edge directly below par(ei)
9 Mi = the maximal sequence of actions outside of Tpar(ui) after the

last move in Tpar(ui) in Bj−1
opt

10 else
11 Let Mi be the empty sequence
12 return Biopt = Ai ⊕Ri ⊕Mi

We provide some informal comments regarding selected steps of Algorithm CORE
EXPANSION and Figure 5.3 to aid in forming intuitions. Note that, in line 3, ui

is a child of a terminal vertex of Bi−1
opt in T̃i−1, and hence Tpar(ui) is an auxiliary

subtree in Bi−1
opt . This is because ei is the oldest. Let T ′

par(ui)
denote the subtree

induced by E(T) \ E(Tpar(ui)). In such case, we claim that Bi−1
opt is a broadcast

strategy and we thus trim it by taking Ai, called the prefix strategy of Biopt, on
the edges of T ′

par(ui)
as the beginning of the sequence of actions in Biopt. The re-

maining actions on T ′
par(ui)

, called the suffix strategy of Biopt, are discarded. See
Figure 5.3(a) and (b). If ei is not the oldest (see line 5), then it follows from the
construction of Bi−1

opt that it does not perform any actions on ek and Tuk
, such that

ek is a younger ‘sibling’ of ei. Thus, in both cases we have the property that the
prefix strategy Ai does not make any actions on ei and below it. Then, in line
6, we take Ri having the properties listed in Lemma 5.4.7. Recall that Ri is a

130

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

strategy that ‘works’ on ei and the subtree below this edge. Note that the edge
ej in line 8 is the oldest ‘sibling’ of ei. The strategy Mi is then either borrowed
from an earlier strategy Bj−1

opt in line 9 or is omitted (Mi being empty) in case
when ei is not the youngest (line 11). As a consequence, in the latter case Biopt is
a sequence of actions that can be executed, however it is not a broadcast strategy.
See Figure 5.3(c). Intuitively, in the former case we claim that Bj−1

opt is a broadcast
strategy and performs some actions in the subtree T ′

par(ui)
(note that Tpar(ui) is an

auxiliary subtree of Bj−1
opt). We thus take as the Mi a part of Bj−1

opt on T ′
par(ui)

, more
precisely the aforementioned discarded suffix strategy of Bjopt, with the exclusion
of Tpar(ui). See Figure 5.3(d). A formal analysis of these intuitions is in the proof
of Lemma 5.4.8.

Lemma 5.4.8. If there is no leftover subtree in Bzopt (E(T) \ E(T̃z) = ∅) then
Bzopt is a broadcast strategy.

Proof. The proof is by induction. For the base case, take z = 0 and B0opt. There is
no leftover subtree of B0opt and B0opt is a broadcast strategy, thus trivially satisfying
the basis.

For the induction step, the leftover subtree of Bzopt does not exist if ez is a
youngest edge. Thus, choose Ipar(uz) = {a, . . . , z}, where ea is the oldest edge and
ez is the youngest edge directly below par(uz). We only analyze the case when
a ̸= z, as the argument is simplified for a = z (this is the case when i = j in line 8,
i.e., ej has no siblings). Note that it is not necessarily true that par(uz) = ua−1.
If par(uz) ̸= r, let e′ = {par(uz), par(par(uz))} (see Figure 5.4 for an example of
such case).

By definition, ea is the oldest, therefore due to the chosen BFS order we can
make the following statements about Ba−1

opt . Firstly, ea−1 is the youngest edge
and par(ua−1) ̸= par(ua). Next, there is no leftover subtree of Ba−1

opt (see Fig-
ure 5.4(a)). This allows us to conclude that, by induction assumption, Ba−1

opt is a
broadcast strategy. Finally, par(ua) = par(uz) is a terminal vertex and Tpar(uz) is
the auxiliary subtree of par(uz) in Ba−1

opt , but they are no longer a terminal vertex
and an auxiliary subtree, respectively, of Baopt (see Figure 5.4(b)).

We divide Ba−1
opt into 3 consecutive sequences of actions: the sequence of ac-

tions before the first move in Tpar(uz), the sequence of actions in Tpar(uz) (an
auxiliary subtree) and the sequence of actions after the last move in Tpar(uz). This
can be done because of the following. Consider e′ being of Case 1, 2 or 3, thus
Lemma 5.4.7.7 is relevant. By Lemma 5.4.7.5, the first action on each edge of the
core subtree is in Step 2. All actions up to and including Step 2 on e′, if present,
are done before any action in Tpar(uz). These actions are finished before Step 3 on
e′, by the order specified in Lemma 5.4.7.7. Furthermore, by the same lemma, the
actions in these sequences happen consecutively. If ea−1 is of Case 4, 5 or 6, then
Lemma 5.4.7.8 is relevant and an analogous argument can be made. These are
the only possibilities. Denote the sequence of actions in Ba−1

opt before (after) the
actions in Tpar(uz) as A′ (M ′, respectively) for a future reference. Let R′ denote

131

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Bi−1
opt

ei+3

ei+2ei+1
ei ei

Bi+3
opt = B

i+2
opt ⊕Ri+3 ⊕Mi+3

ei+3

Ai
Ai

Mi+3

Ri

Ri Ri+1

Ri+2

Ri+3

Bi+1
opt = B

i
opt ⊕Ri+1

ei+1

Ri Ri+1

Bi+2
opt = Ai ⊕Ri ⊕Ri+1 ⊕Ri+2

(a)

(c) (d)

(b)

same actions as in B0
opt

Biopt

Biopt = Ai ⊕Ri
Mi+3

Bi−1
opt

ei+3

ei+2ei+1
ei ei

Bi+3
opt = B

i+2
opt ⊕Ri+3 ⊕Mi+3

ei+3

Ai
Ai

Mi+3

Ri

Ri Ri+1

Ri+2

Ri+3

Bi+1
opt = B

i
opt ⊕Ri+1

ei+1

Ri Ri+1

Bi+2
opt = Ai ⊕Ri ⊕Ri+1 ⊕Ri+2

(a)

(c) (d)

(b)

same actions as in B0
opt

Biopt

Biopt = Ai ⊕Ri
Mi+3

Figure 5.3: An example of execution of Algorithm CORE EXPANSION where we
illustrate four subsequent calls producing strategies Bi−1

opt , . . . ,Bi+3
opt : (a) a subset of

actions of Bi−1
opt will be chosen as Ai in Biopt (note that the illustration represents

this choice, not the building of Bi−1
opt , and Ai does not represent every action on

T ′
par(ui)

) , followed by processing edges such that (b) ei is the oldest, (c) ei+1 is
neither the oldest nor the youngest, and (d) ei+1 is the youngest.

132

Bi−1
opt

ei+3

ei+2ei+1
ei ei

Bi+3
opt = B

i+2
opt ⊕Ri+3 ⊕Mi+3

ei+3

Ai
Ai

Mi+3

Ri

Ri Ri+1

Ri+2

Ri+3

Bi+1
opt = B

i
opt ⊕Ri+1

ei+1

Ri Ri+1

Bi+2
opt = Ai ⊕Ri ⊕Ri+1 ⊕Ri+2

(a)

(c) (d)

(b)

same actions as in B0
opt

Biopt

Biopt = Ai ⊕Ri
Mi+3

Bi−1
opt

ei+3

ei+2ei+1
ei ei

Bi+3
opt = B

i+2
opt ⊕Ri+3 ⊕Mi+3

ei+3

Ai
Ai

Mi+3

Ri

Ri Ri+1

Ri+2

Ri+3

Bi+1
opt = B

i
opt ⊕Ri+1

ei+1

Ri Ri+1

Bi+2
opt = Ai ⊕Ri ⊕Ri+1 ⊕Ri+2

(a)

(c) (d)

(b)

same actions as in B0
opt

Biopt

Biopt = Ai ⊕Ri
Mi+3

Figure 5.3: An example of execution of Algorithm CORE EXPANSION where we
illustrate four subsequent calls producing strategies Bi−1

opt , . . . ,Bi+3
opt : (a) a subset of

actions of Bi−1
opt will be chosen as Ai in Biopt (note that the illustration represents

this choice, not the building of Bi−1
opt , and Ai does not represent every action on

T ′
par(ui)

) , followed by processing edges such that (b) ei is the oldest, (c) ei+1 is
neither the oldest nor the youngest, and (d) ei+1 is the youngest.

133

e1 e2 e3

... ea
ez

ea−1
ea−2

...

...

e′

...
uz

par(uz)

subtrees of Ba−1
opt

the core
subtree

an auxiliary

the remaining auxiliary
subtrees

subtree

(a) (b)
e1 e2 e3

... ea
ez

ea−1
ea−2

...

...

e′

...
uz

par(uz)

subtrees of Bz
opt

the core
subtree

the auxiliary
subtrees

ua
ua

e1 e2 e3

... ea
ez

ea−1
ea−2

...

...

e′

...
uz

par(uz)

subtrees of Ba−1
opt

the core
subtree

an auxiliary

the remaining auxiliary
subtrees

subtree

(a) (b)
e1 e2 e3

... ea
ez

ea−1
ea−2

...

...

e′

...
uz

par(uz)

subtrees of Bz
opt

the core
subtree

the auxiliary
subtrees

ua
ua

Figure 5.4: An illustration of the notation used in the proof of Lemma 5.4.8: (a)
the subtrees of Ba−1

opt and (b) Bzopt

134

the actions in Tpar(uz) for completeness sake. Given this notation Ba−1
opt can be

expressed as:
Ba−1

opt = A′ ⊕R′ ⊕M ′. (5.2)

The edge ea is the oldest, so the condition of line 2 of Algorithm CORE EX-
PANSION is fulfilled during the construction of Baopt. We assign to Aa (see line 3)
the sequence of actions before the first move in Tpar(uz) in Ba−1

opt , i.e.

Aa = A′. (5.3)

By definition of Aa, the actions in Aa can be executed regardless of the actions in
Ra. On the other hand we abandon a sequential proof of the capability of execution
of Ra in favour of a uniform argument that actions in each Rk, k ∈ Ipar(uz),
(including Ra, because a ∈ Ipar(uz)) can be made. In order to do so we analyze the
result of calling the algorithm for each Bkopt, k ∈ Ipar(uz). Thus, Baopt = A′⊕Ra⊕Ma

(see line 12), where Ma is an empty sequence because ea is not the youngest.
Consider ej , j ∈ C, such that ej is not the oldest nor the youngest, and thus

line 5 applies. In this case Mj is an empty sequence and, by lines 12 and 5:

Aj = Bj−1
opt = Aj−1 ⊕Rj−1. (5.4)

Thus, by applying (5.4) multiple times,

Bjopt = Bj−1
opt ⊕Rj = Aa ⊕Ra ⊕ · · · ⊕Rj−1 ⊕Rj . (5.5)

Since ez is the youngest, by lines 5, 7 and 12, and by (5.5) used for j = z− 1:

Bzopt = Az⊕Rz⊕Mz = Bz−1
opt ⊕Rz⊕Mz = Aa⊕Ra⊕ . . .⊕Rz−1⊕Rz⊕Mz. (5.6)

Because ez is the youngest, therefore there is no leftover subtree of Bzopt. Thus,
in order to complete the proof we have to demonstrate that Bzopt in (5.6) is a
broadcast strategy.

Notice that, by lines 7-9 of the algorithm, Mz is the maximal sequence of actions
outside of Tpar(uz) after the last move in Tpar(uz) in Ba−1

opt . Thus, we substitute M ′

for Mz and apply (5.3) to the rightmost side of (5.6), in order to obtain:

Bzopt = A′ ⊕Ra ⊕ . . .⊕Rz−1 ⊕Rz ⊕M ′. (5.7)

We have shown that if actions in each Rk, k ∈ Ipar(uz), and M ′ can be made, then
Bzopt is a broadcast strategy.

Let us address a corollary implication of Equation (5.7) before we continue.
Note that, since Ra ⊕ . . .⊕ Rz−1 ⊕ Rz does not make actions in the core subtree
of Ba−1

opt , the same traversals are performed on each edge of this subtree in Ba−1
opt

and Bzopt. Since an equation analogous to (5.7) can be written for any broadcast
strategy among the strategies {B0opt, . . . ,Ba−1

opt }, we obtain that the actions in the
core subtree of an arbitrary Biopt, i ∈ {0, . . . , a−1} are the same in any Blopt, l ≥ i,

135

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

provided that in Blopt Ri is not an empty sequence. Furthermore, by the chosen
BFS order, the actions on the edge ei were introduced in Ri. By Lemma 5.4.7.1,

↓ei(Ba−1
opt)− ↑ei(Ba−1

opt) = ↓ei(Biopt)− ↑ei(Biopt) = ↓ei(B0opt)− ↑ei(B0opt) (5.8)

for an arbitrary edge ei of the core subtree of Ba−1
opt . We will recall this fact later.

Now we verify that actions in each Rk, k ∈ Ipar(uz), can be made, first by check-
ing that number of agents required by Lemma 5.4.7.3 is available, then whether
the amount of energy required in Lemma 5.4.7.2 is delivered to all agents making
moves in Rk. Furthermore we make sure that after completion of the actions in
Rk, k ∈ Ipar(uz), enough agents remain to perform the actions in M ′.

We will show that actions in each Rk, k ∈ Ipar(uz), can be made assuming that
energy is not a concern, i.e. we argue that for each edge traversal the corresponding
agent is available to make the traversal. Note that line 1 of Algorithm CORE
EXPANSION changes the initial configuration of each Biopt, i ∈ Ipar(uz), however
the positions of the agents remain the same because, by definition of Ciopt, Ciopt ≈
C0opt for each i. By the fact that each ek, k ∈ Ipar(uz), is directly below the vertex
par(uz), which belongs to the core subtree of both Ba−1

opt and Bzopt, we can keep
track of the number of agents available in Tpar(uz) to verify that the actions in
every Rk can be made.

First, consider how actions on the subtree induced by E(T) \ E(Tpar(uz)) in-
fluence the number of agents at par(uz). If par(uz) = r, then Ba−1

opt = B0opt and
trivially there are no actions on Tr = T . Hence, in the following analysis we assume
that par(uz) ̸= r. Note that, by Lemma 5.4.7.5, there are no upward traversals of
e′ = {par(uz), par(par(uz))} before the move of Step 2 on e′. Consider e′ of Case
either 1, 2 or 3. There are no downward traversals of e′ in Step 3 by Lemma 5.4.7.6.
Lemma 5.4.7.7 implies that no upward traversal of e′ happens before any action
in Tpar(uz). Furthermore, all downward traversals of e′ (namely those in Step 2)
happen before any action in Tpar(uz). Consider e′ of Case either 4, 5 or 6. There
are no upward traversals of e′ in Step 3 by Lemma 5.4.7.6. Lemma 5.4.7.8 implies
that all downward traversals of e′ were done before any action in Tpar(uz). Note
that in this case there are no upward traversals of e′. The conclusion unifying all
of the considered cases is expressed as follows. In every case all actions in Tpar(uz)

happen after all resources have been delivered to par(uz) via e′ in A′ and before
any have left par(uz) in M ′. As a corollary, no upward traversals of e′ happen in
A′ and no downward traversals of e′ happen in M ′. Note that by definitions of
the prefix and auxiliary subtrees combined with the chosen BFS order, Rj does
not change the number nor order of traversals in any core subtree of Biopt such
that i < j. Because Aa = A′ due to (5.3), the number of agents which arrived at
par(uz) via e′ in Bzopt is:

↓e′(Bzopt) = ↓e′(Ba−1
opt). (5.9)

Because Mz = M ′, the number of agents which departed from par(uz) via e′ is:

↑e′(Bzopt) = ↑e′(Ba−1
opt). (5.10)

136

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Note that if par(uz) = r, then e′ does not belong to T , and therefore ↑e′(S) =
↓e′(S) = 0, which is consistent with the opening remarks about this case.

Next, we consider the influence of Rk, k ∈ Ipar(uz), on the number of agents
at par(uz). Consider only edges in Ipar(uz). Let X be the set of indices of these
edges of Cases 1, 2 and 3. Let Y be the set of indices of these edges of Cases 4,
5 and 6. Naturally Ipar(uz) = X ∪ Y . By Lemma 5.4.7.8 and Lemma 5.4.7.7, the
actions on ek, k ∈ Ipar(uz), are done sequentially. By the chosen BFS order, the
actions on edges of Cases 1, 2 or 3 are done before any action on edge of Case 4, 5
or 6, i.e., x < y for each x ∈ X and y ∈ Y . By Lemma 5.4.7.7 and Lemma 5.4.7.6,
the actions on the edges of Cases 1, 2 or 3 do not reduce the number of agents on
par(uz). These actions contain one downward traversal, namely the one in Step 2,
and at least one upward traversal, thus, by Lemma 5.4.7.3, they require one agent
on par(uz). At least one agent arrived at par(uz) in Step 2 of e′ or, if par(uz) = r,
it was present on r by the completion of convergecast beforehand. Therefore, the
actions in all Rx, where x ∈ X, are possible.

Consider an arbitrary edge ey, y ∈ Y . By Lemma 5.4.7.6, in Cases 4, 5 and
6 all traversals are downward, thus with each action on ey performed in Ry the
number of agents on par(uz) is reduced. By x < y for each x ∈ X, all actions which
deliver agents to par(uz) have already happened. Recall that because Mz = M ′,
the agents only depart from par(uz) via e′ in Mz. Thus, the number of agents
on par(uz) will not increase with any action following the last action in any Rx,
such that x ∈ X. In order to see whether the actions in each Ry, y ∈ Y, and M ′

can be made, a counting argument is sufficient. Namely we have to disprove the
possibility that the number of agents on par(uz) at the end of Bzopt is negative,
which would imply that an impossible action was made. This is because, if for an
arbitrary Ry, y ∈ Y , the number of agents on par(uz) would be insufficient (i.e.
negative, after actions in Ry were made), then this number stays negative until
the end of Bzopt. We do this by comparison with the number of agents in par(uz)
in B0opt, which we know is a broadcast strategy.

Let spar(uz)(S) be the initial number of agents on par(uz) in a strategy S. Note
that spar(uz)(B0opt) = spar(uz)(Bzopt). Let apar(uz)(S) be the final number of agents
on par(uz) in a strategy S. From now on we assume that enough energy and agents
were delivered to each Rk, k ∈ Ipar(uz), and see whether performed actions lead to
apar(uz)(Bzopt) < 0. For any strategy S the number of agents on a vertex v is the
initial number of agents on v plus the difference between the number of traversals
to v and from v. In particular for par(uz) the formula is:

apar(uz)(S) = spar(uz)(S) + ↓e′(S) +
∑

k∈Ipar(uz)

(
↑ek(S)− ↓ek(S)

)
− ↑e′(S).

Therefore:

apar(uz)(Bzopt) = spar(uz)(Bzopt) + ↓e′(Bzopt)+∑
k∈Ipar(uz)

(
↑ek(Bzopt)− ↓ek(Bzopt)

)
− ↑e′(Bzopt).

137

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

By Equations (5.9) and (5.10):

apar(uz)(Bzopt) = spar(uz)(Bzopt) + ↓e′(Ba−1
opt)+∑

k∈Ipar(uz)

(
↑ek(Bzopt)− ↓ek(Bzopt)

)
− ↑e′(Ba−1

opt).

Consider the traversals of ek for k ∈ Ipar(uz) in Bzopt. Note that every uk, k ∈
Ipar(uz), is a terminal vertex in Bzopt and, by assumption, the actions in each
Rk are made. Since these strategies perform actions in disjoint subtrees, by
Equation (5.6), we obtain ↑ek(Bkopt) − ↓ek(Bkopt) = ↑ek(Bzopt) − ↓ek(Bzopt) for each
k ∈ Ipar(uz). Furthermore, by Lemma 5.4.7.1, ↑ek(Bkopt)− ↓ek(Bkopt) = ↑ek(B0opt)−
↓ek(B0opt). Thus:

apar(uz)(Bzopt) = spar(uz)(Bzopt) + ↓e′(Ba−1
opt)+∑

k∈Ipar(uz)

(
↑ek(B0opt)− ↓ek(B0opt)

)
− ↑e′(Ba−1

opt).

Consider the traversals of e′ in Ba−1
opt . By (5.8) we obtain:

↓e′(Ba−1
opt)− ↑e′(Ba−1

opt) = ↓e′(B0opt)− ↑e′(B0opt). (5.11)

Therefore:

apar(uz)(Bzopt) =

spar(uz)(B0opt) + ↓e′(B0opt) +
∑

k∈Ipar(uz)

(
↑ek(B0opt)− ↓ek(B0opt)

)
− ↑e′(B0opt) =

apar(uz)(B0opt).

The number of agents at par(uz) is the same in B0opt and Bzopt, thus it cannot
be negative in Bzopt. We have proven that all actions in each Rk, k ∈ Ipar(uz), can
be made provided that the amount of energy delivered to Tpar(uz) and each Rk,
k ∈ Ipar(uz), is sufficient.

Let us compare the amount of energy available and needed to make actions
in Tpar(uz) in Ba−1

opt and Bzopt. Because Tpar(uz) is one of the auxiliary subtrees
of Ba−1

opt , both Lemma 5.4.7.8 and Lemma 5.4.7.7 state that it contains the same
actions as B0opt regardless of Case of e′. Therefore, the cost of these actions is the
same in both B0opt and Ba−1

opt . Thus, by Lemma 5.4.7.4, the amount of energy on
par(uz) after the actions in Aa = A′ is sufficient to perform the actions in Tpar(uz)

and follow them up with M ′ in Ba−1
opt .

Now consider Bzopt. By Equation (5.7), A′ (respectively M ′) is the sequence
of actions before (after, respectively) any move in Rk, k ∈ Ipar(uz), and these
actions cost the same amount of energy both in Ba−1

opt and Bzopt. Let T [ek], k ∈
Ipar(uz), denote the edge ek and the auxiliary subtree below uk. By its definition,

138

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Rk, k ∈ Ipar(uz), is a sequence of actions on E(T [ek]). By Lemma 5.4.7.4 and⋃
k∈Ipar(uz)

E(T [ek]) = E(Tpar(uz)), the cost of actions in Tpar(uz) is not greater
in Bzopt than in Ba−1

opt . If the amount of energy on par(uz) after the actions in
A′ ⊕Ra ⊕ . . .⊕Rz is sufficient to perform all following actions in Ba−1

opt , then it is
also sufficient in Bzopt, because M ′ = Mz. Furthermore, the overall cost of Bzopt is
not greater than that of Ba−1

opt .
What remains to be show is that the energy can be distributed properly to

make each Rj , a ≤ j ≤ z. Consider line 1 and an arbitrary index j, a ≤ j ≤ z.
Recall the definitions of C0opt, given in Lemma 5.4.6, and Cjopt. It follows, that
in the final configuration of either of them the amount of energy at r is equal to
energy(T) minus the cost of actions in Step 1 in Bjopt. The final configuration of
Cjopt is the same as the initial configuration of Bjopt for each j ≤ z. For the sake of
consistency we use the latter denomination. By Lemma 5.4.7.5, there is no Step 1
in the core subtree of Bj−1

opt . The difference between the amount of energy at r in
the initial configuration of Bjopt and Bj−1

opt is always non-negative, let it be x. More
specifically x is equal to 0 if there is no Step 1 on ej in Bj−1

opt , or w(ej) if there
is Step 1 on ej in Bj−1

opt . Thus, if x = 0, then the same amount of energy to ej

is delivered in Bjopt as in Bj−1
opt , thereby satisfying Lemma 5.4.7.2. On the other

hand, if x = w(ej), then deliver the same amount of energy to ej plus w(ej), again
satisfying Lemma 5.4.7.2. Thus, by induction, the actions in each Rj , a ≤ j ≤ z,
can be made. This finishes the proof.

Consider the r-gossiping strategy Gn−1
opt = Cn−1

opt ⊕ Bn−1
opt . We are ready to use

Lemma 5.4.5 in order to argue that cost(Gn−1
opt) ≤ cost(Gopt). Since the whole T is

the core subtree of Bn−1
opt , Bn−1

opt has no moves of Step 1. Hence (b) of Lemma 5.4.5
is satisfied. Furthermore, all energy is at the root in Cn−1

opt and Cn−1
opt ≈ Cmin, hence

Cn−1
opt equals Calg (by Corollary 5.4.1). This trivially satisfies conditions (d) and (c)

of Lemma 5.4.5. Recall that G′opt = C′opt ⊕ B′opt such that cost(G′opt) = cost(Gopt)

and C′opt ≈ Cmin. Finally, the broadcast stage satisfies cost(B′opt) ≥ cost(Bn−1
opt).

Since cost(B′opt) is assumed to be minimized, then (a) also holds. Recall that, by
its definition, Galg is an r-gossiping strategy of minimum cost such that Galg =
Cmin ⊕ Balg for some broadcast stage Balg.

Thus all conditions of Lemma 5.4.5 hold and we have proved the following
lemma:

Lemma 5.4.9. It holds cost(Galg) = cost(Gn−1
opt) ≤ cost(Gopt).

Lemma 5.4.9 implies the following.

Lemma 5.4.10. For a given tree T rooted at r, if there exists an r-gossiping
strategy, then there exists a structured r-gossiping strategy of minimum cost such
that its convergecast stage is Cmin.

Having this lemma, we are ready to finish the proof of our main result.

139

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Proof of Theorem 7. For each r ∈ V (T), compute the following structured r-
gossiping strategy. First, run Algorithm CONVERGECAST to obtain Cmin in
time O(n); see Lemma 5.4.3. Then, use the algorithm from Theorem 8 to find a
minimum-cost broadcast for the configuration of agents at the end of Cmin. This
can be done in time O(k2n). Thus, the n runs take O(k2n2) time in total. The
definition of structured gossiping strategy and Lemma 5.4.10 imply that one choice
of r provides a solution to the gossiping problem for the input tree T .

5.5 Summary and Open Problems

We have proved that gossiping can be solved in polynomial time for trees, several
natural open problems remain. The first one refers to the complexity: our algo-
rithm takes O(k2n2) time which is determined by the necessity of n executions of
the most expensive subroutine — the broadcast algorithm from [68]. Can this be
avoided by e.g. narrowing down the number of potential nodes r or by develop-
ing an algorithm that does not decompose gossiping into the two stages treated
independently?

One may consider some generalizations of gossiping for trees, where a natural
one is when initially the data packets are placed only at selected nodes of the tree,
and need to be delivered to all nodes. This problem has properties which shows
some similarities to ours, i.e., it can still be partitioned into a convergecast stage
and a broadcast stage. However, the difference lies in a potential behaviour of
an agent that is initially located at a node v such that there is no data packet
initially in Tv. This is because this agent does not necessarily need to move in the
convergecast stage and thus it may remain idle to be used in the broadcast stage.
In other words, we lose the property that at the mid-point all energy is at the root.
We leave the analysis of this problem variation as an open research question.

Other open problems refer to general graphs. We note that the problems are
NP-complete in general graphs. For broadcast this follows from a straightforward
reduction from a Hamiltonian path problem (here we consider the version of the
Hamiltonian path with a constraint that the path needs to start at a given node
v of the input simple graph G). The corresponding input to broadcast is then the
graph G (with unit edge-weights) and one agent placed at v with the initial energy
level n − 1, where n is the number of nodes in G. In such setting, any successful
broadcast from v requires visiting each node exactly once during the n − 1 edge
traversals, which precisely dictates a Hamilton path.

A similar reduction follows for convergecast: add an universal node u to G and
an additional pending node u′ to u. Again, an agent starting at v and having the
initial energy level equal to n+ 1 and performing convergecast needs to visit each
node exactly once and moreover, the two lastly visited nodes are u and u′ in this
order. The latter allows us again to conclude, that this agent’s route that delivers
all data packets to u′, when restricted to G is the required path.

Finally, NP-completeness for gossiping follows similarly (we skip the details)
by considering the above extended graph and adding an edge {v, u′}. Knowing

140

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

this complexity status, it is interesting to consider some approximate solution.
Typically, for energy-constraint agents two approaches are adopted depending on
which parameter of the input instance is relaxed when finding approximations.
One is adding more agents, see e.g. [99], and another is scaling the initial energy
levels of agents, see e.g. [76].

In the context of mobile agent computing, one may ask what possible restric-
tions imposed on agents in distributed computations are essential from the point
of view of problem solvability. For example, how much more resources (in terms
of total energy and/or the number of agents) are needed when only local com-
munication is assumed or when the agents have more limited initial knowledge
(e.g. related to the structure of the underlying graph). (Note that our centralized
setting is equivalent to the mobile agent system in which a global communication
with size-unrestricted messages is used.)

141

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Chapter 6

Conclusions

In lieu of repetition of the discussions in Sections 4.7 and 5.5, we would like to
offer the reader only a list of the main results and a compilation of applications of
our work.In this work we have proved the following:

1. The heterogeneous graph searching problem is not monotone (Theorem 1)
and NP-Hard in the class of trees (Theorem 3).

2. The monotone heterogeneous graph searching problem is NP-Complete in
the class of trees (Theorem 4).

3. The (connected) heterogeneous graph searching problem admits a polyno-
mial time algorithm when edges associated with each label form a connected
subtree (Theorem 5).

4. The gossiping problem in trees with energy-constrained agents can be de-
composed into broadcast and convergcast subproblems (Theorem 6).

5. The gossiping problem admits an O(k2n2) time algorithm, where k is the
number of agents and n the number of nodes in a tree (Theorem 7).

6.1 Applications

Out of the concern for more practically oriented readers, we have gathered ex-
amples of practical, or at least potential, uses of aspects of our work. While not
specifically a part of our original research, the survey part of this thesis is also
concerned with distributed environments. To this end, connected and internal
search strategies better reflect the nature of autonomous entities operating with
a hostile entity in mind, as remarked in [11, 13]. Many different variants (both
distributed and centralized) were introduced since the inception of the problem,
and while not all of them are applicable to physical entities, they could be used
by software agents (one such example is cloning [119]). We note that the results

143

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

from the discipline can also be adapted to the more human-friendly, 2-dimensional
space. Although humans themselves are unlikely to act according to graph search-
ing algorithms, they find their use in the field of robotics. We support this claim
with the following examples: [148, 147] (see also other works of Hollinger at al.)
and a survey [55].

Our heterogeneous approach fits this broad category of adaptations by allowing
to differentiate agents in order to match the needs of a given environment. We
trust that it is not a controversial statement to say that the concept of using
heterogeneous agents has garnered relatively little attention in theoretical research.
Certainly, even in its broadest sense, it is not as widespread as constructions of
weighted versions of various graph problems. Nonetheless, we give an example of
[179] which models traffic flow with different vehicles assigned to heterogeneous
classes and confronts them with real-world scenarios.

Another way to look at the usefulness of graph searching is to connect the
results with other recognized graph parameters. In particular, pathwidth and
treewidth come to mind. We mention a few commonly cited cross-discipline appli-
cations: graph drawing [96], design of algorithms [23] and electric circuits [108, 81],
a theory in natural language processing [170], database management [142]. Never-
theless, sometimes a game-like approach is more convenient, e.g. ensuring privacy
in distributed systems [133]. Finding these links is not trivial. The authors of [10]
note that (their attention was directed to the fact that) connected search number
of trees can be used to define Horton–Strahler number, a well established measure
in hydrology [150, 218, 219] (first relevant citation is from 1945, over half a century
later [139] has been published on the topic). Through this link, tree searching can
be related to: memory used in arithmetic calculations [110], mathematical descrip-
tion of a respiratory system [41, 149] and community analysis in social networks
[4].

As far as our work on the topic of graph searching is concerned, we hope to
provide clues that will (eventually) lead to closing of the open question of NP-
Completeness of connected graph searching. [10, 29]. To this end, we follow the
route of [29] and provide a model which is non-monotone for trees — a historically
promising class to research. Furthermore, our problem admits a relatively simple
way of generating a significant number of recontaminations. It remains to be seen
if a non-polynomial size strategy (i.e. a certificate that cannot be evaluated in a
polynomial time) can be found.

Next, let us discuss gossiping and adjacent problems. As a general all-to-
all communication problem [145, 151] it is applicable in: construction of routing
tables [210], radio communication [135, 134] (see also works of Gąsieniec at al.),
modeling telephone communication [132] and wireless mobile ad-hoc networks [78].
The problem is naturally related to broadcast, one-to-all communication ([52, 63])
and convergcast.

Beyond these links to these common communication problems (classically uti-
lizing messages), the mobile aspect of our work lends itself to a description of a
more mundane model of vehicle routing [227]. The angle of optimization for the
used amount of energy can be found in creating patterns from mobile entities [221],

144

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

load balancing [7], piecemeal graph exploration [6] and the premise of [1], which
proposes it as a third general optimization parameter to join the ever popular
space and time.

6.2 Contributions
Let us finish with the outline of the contribution of the author of this thesis to the
obtained results. The author hereby lays claim to the following:

• Active participation in the discussions leading to facts and lemmas in Section
4.2.2 culminating in the development of ideas behind 4.3 and 4.6. Writing
down and developing Section 4.3.

• Refinement of a jointly developed idea of reduction in Section 4.4 into a
formal, written proof.

• The extension of the above to a non-monotone model and the associated
proof in Section 4.5, including the development of the notation and writing.

• The ideas presented in Section 5.3 are a result of a joint discussion. Nonethe-
less, Sections 5.4.3, 5.4.2 and in 5.4.4 containing the formalized proof of cor-
rectness of the developed approach were written by the author of this thesis.
In particular we lay claim to the leading role in the development of the proof
in Section 5.4.4.

145

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Bibliography

[1] Susanne Albers. Energy-efficient algorithms. Communications of the ACM,
53(5):86–96, 2010.

[2] Brian Alspach, Danny Dyer, Denis Hanson, and Boting Yang. Time con-
strained graph searching. Theoretical Computer Science, 399(3):158–168,
2008.

[3] Julian Anaya, Jérémie Chalopin, Jurek Czyzowicz, Arnaud Labourel, An-
drzej Pelc, and Yann Vaxès. Collecting information by power-aware mobile
agents. In Distributed Computing: 26th International Symposium, DISC
2012, Salvador, Brazil, October 16-18, 2012. Proceedings 26, pages 46–60.
Springer, 2012.

[4] Alex Arenas, Leon Danon, Albert Diaz-Guilera, Pablo M Gleiser, and Roger
Guimera. Community analysis in social networks. The European Physical
Journal B, 38:373–380, 2004.

[5] Stefan Arnborg, Derek G Corneil, and Andrzej Proskurowski. Complexity of
finding embeddings in ak-tree. SIAM Journal on Algebraic Discrete Methods,
8(2):277–284, 1987.

[6] Baruch Awerbuch, Margrit Betke, Ronald L Rivest, and Mona Singh. Piece-
meal graph exploration by a mobile robot. Information and Computation,
152(2):155–172, 1999.

[7] Yossi Azar. On-line load balancing. Online algorithms: the state of the art,
pages 178–195, 2005.

[8] Evangelos Bampas, Shantanu Das, Dariusz Dereniowski, and Christina
Karousatou. Collaborative delivery by energy-sharing low-power mobile
robots. In Algorithms for Sensor Systems: 13th International Symposium
on Algorithms and Experiments for Wireless Sensor Networks, ALGOSEN-
SORS 2017, Vienna, Austria, September 7-8, 2017, Revised Selected Papers
13, pages 1–12. Springer, 2017.

[9] Max Bannach and Sebastian Berndt. Recent advances in positive-instance
driven graph searching. Algorithms, 15(2):42, 2022.

147

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

[10] Lali Barrière, Paola Flocchini, Fedor V Fomin, Pierre Fraigniaud, Nicolas
Nisse, Nicola Santoro, and Dimitrios M Thilikos. Connected graph searching.
Information and Computation, 219:1–16, 2012.

[11] Lali Barriere, Paola Flocchini, Pierre Fraigniaud, and Nicola Santoro. Cap-
ture of an intruder by mobile agents. In Proceedings of the fourteenth annual
ACM symposium on Parallel algorithms and architectures, pages 200–209,
2002.

[12] Lali Barriere, Pierre Fraigniaud, Nicola Santoro, and D Thilikos. Connected
and internal graph searching. In 29th Workshop on Graph Theoretic Concepts
in Computer Science (WG), Springer-Verlag, LNCS, volume 2880, pages 34–
45. Citeseer, 2003.

[13] Lali Barriere, Pierre Fraigniaud, Nicola Santoro, and Dimitrios M Thilikos.
Searching is not jumping. In International Workshop on Graph-Theoretic
Concepts in Computer Science, pages 34–45. Springer, 2003.

[14] A. Bärtschi, J. Chalopin, S. Das, Y. Disser, D. Graf, J. Hackfeld, and
P. Penna. Energy-efficient delivery by heterogeneous mobile agents. In
34th Symposium on Theoretical Aspects of Computer Science, STACS 2017,
March 8-11, 2017, Hannover, Germany, pages 10:1–10:14, 2017.

[15] Andreas Bärtschi. Efficient delivery with mobile agents. PhD thesis, ETH
Zurich, 2017.

[16] Andreas Bärtschi, Evangelos Bampas, Jérémie Chalopin, Shantanu Das,
Christina Karousatou, and Matúš Mihalák. Near-gathering of energy-
constrained mobile agents. Theoretical Computer Science, 849:35–46, 2021.

[17] Andreas Bärtschi, Jérémie Chalopin, Shantanu Das, Yann Disser, Barbara
Geissmann, Daniel Graf, Arnaud Labourel, and Matúš Mihalák. Collabora-
tive delivery with energy-constrained mobile robots. Theoretical Computer
Science, 810:2–14, 2020.

[18] Andreas Bärtschi, Daniel Graf, and Paolo Penna. Truthful mechanisms for
delivery with mobile agents. arXiv preprint arXiv:1702.07665, 2017.

[19] Jana Bazynskiego. Searching by heterogeneous agents. In Algorithms and
Complexity: 11th International Conference, CIAC 2019, Rome, Italy, May
27–29, 2019, Proceedings, volume 11485, page 199. Springer, 2019.

[20] Micah J Best, Arvind Gupta, Dimitrios M Thilikos, and Dimitris Zoros.
Contraction obstructions for connected graph searching. Discrete Applied
Mathematics, 209:27–47, 2016.

[21] Sayan Bhattacharya, Goutam Paul, and Swagato Sanyal. A cops and
robber game in multidimensional grids. Discrete Applied Mathematics,
158(16):1745–1751, 2010.

148

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

[22] Dan Bienstock, Neil Robertson, Paul Seymour, and Robin Thomas. Quickly
excluding a forest. Journal of Combinatorial Theory, Series B, 52(2):274–
283, 1991.

[23] Daniel Bienstock and Michael A Langston. Algorithmic implications of the
graph minor theorem. Handbooks in Operations Research and Management
Science, 7:481–502, 1995.

[24] Daniel Bienstock and Paul Seymour. Monotonicity in graph searching. Jour-
nal of Algorithms, 12(2):239–245, 1991.

[25] Alain Billionnet. On interval graphs and matrice profiles. RAIRO-Operations
Research, 20(3):245–256, 1986.

[26] Davide Bilò, Luciano Gualà, Stefano Leucci, Guido Proietti, and Mirko
Rossi. New approximation algorithms for the heterogeneous weighted de-
livery problem. Theoretical Computer Science, 932:102–115, 2022.

[27] Jean Blair, Fredrik Manne, and Rodica Mihai. Efficient self-stabilizing graph
searching in tree networks. In Stabilization, Safety, and Security of Dis-
tributed Systems: 12th International Symposium, SSS 2010, New York, NY,
USA, September 20-22, 2010. Proceedings 12, pages 111–125. Springer, 2010.

[28] Lélia Blin, Janna Burman, and Nicolas Nisse. Perpetual graph searching.
PhD thesis, INRIA, 2012.

[29] Lélia Blin, Janna Burman, and Nicolas Nisse. Exclusive graph searching.
Algorithmica, 77(3):942–969, 2017.

[30] Lélia Blin, Pierre Fraigniaud, Nicolas Nisse, and Sandrine Vial. Distributed
chasing of network intruders. Theoretical Computer Science, 399(1-2):12–37,
2008.

[31] H Bodlaender, L van der Gaag, and T Kloks. Some remarks on minimum
edge and minimum clique triangulations. Unpublished result.

[32] Hans L Bodlaender. A linear time algorithm for finding tree-decompositions
of small treewidth. In Proceedings of the twenty-fifth annual ACM symposium
on Theory of computing, pages 226–234, 1993.

[33] Hans L Bodlaender. A tourist guide through treewidth. Acta cybernetica,
11(1-2):1, 1994.

[34] Hans L Bodlaender. A partial k-arboretum of graphs with bounded
treewidth. Theoretical computer science, 209(1-2):1–45, 1998.

[35] Hans L Bodlaender. Fixed-parameter tractability of treewidth and path-
width. In The Multivariate Algorithmic Revolution and Beyond, pages 196–
227. Springer, 2012.

149

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

[36] Hans L Bodlaender and Ton Kloks. Efficient and constructive algorithms for
the pathwidth and treewidth of graphs. Journal of Algorithms, 21(2):358–
402, 1996.

[37] Hans L Bodlaender and Jesper Nederlof. Subexponential time algorithms for
finding small tree and path decompositions. In Algorithms-ESA 2015, pages
179–190. Springer, 2015.

[38] Hans L Bodlaender and Dimitrios M Thilikos. Computing small search num-
bers in linear time. In International Workshop on Parameterized and Exact
Computation, pages 37–48. Springer, 2004.

[39] Anthony Bonato. The game of cops and robbers on graphs. American Math-
ematical Soc., 2011.

[40] Anthony Bonato and Boting Yang. Graph searching and related problems.
Handbook of Combinatorial Optimization, pages 1511–1558, 2013.

[41] Rolf Borchert and Norman A Slade. Bifurcation ratios and the adaptive
geometry of trees. Botanical gazette, 142(3):394–401, 1981.

[42] Piotr Borowiecki, Shantanu Das, Dariusz Dereniowski, and Łukasz Kuszner.
Distributed evacuation in graphs with multiple exits. In International Col-
loquium on Structural Information and Communication Complexity, pages
228–241. Springer, 2016.

[43] Piotr Borowiecki, Dariusz Dereniowski, and Łukasz Kuszner. Distributed
graph searching with a sense of direction. Distributed Computing, 28:155–
170, 2015.

[44] Franz J Brandenburg and Stephanie Herrmann. Graph searching and search
time. In International Conference on Current Trends in Theory and Practice
of Computer Science, pages 197–206. Springer, 2006.

[45] Richard Breisch. An intuitive approach to speleotopology. Southwestern
cavers, 6(5):72–78, 1967.

[46] Jie Cai. Network Decontamination from Black Viruses. PhD thesis, Carleton
University, 2016.

[47] Jie Cai, Paola Flocchini, and Nicola Santoro. Network decontamination
from a black virus. In 2013 IEEE International Symposium on Parallel &
Distributed Processing, Workshops and Phd Forum, pages 696–705. IEEE,
2013.

[48] Jie Cai, Paola Flocchini, and Nicola Santoro. Black virus decontamination
in arbitrary networks. In New Contributions in Information Systems and
Technologies: Volume 1, pages 991–1000. Springer, 2015.

150

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

[49] Jérémie Chalopin, Shantanu Das, Yann Disser, Arnaud Labourel, and Matúš
Mihalák. Collaborative delivery on a fixed path with homogeneous energy-
constrained agents. Theoretical Computer Science, 868:87–96, 2021.

[50] Jérémie Chalopin, Shantanu Das, Matúš Mihal’ák, Paolo Penna, and Peter
Widmayer. Data delivery by energy-constrained mobile agents. In Algorithms
for Sensor Systems: 9th International Symposium on Algorithms and Exper-
iments for Sensor Systems, Wireless Networks and Distributed Robotics, AL-
GOSENSORS 2013, Sophia Antipolis, France, September 5-6, 2013, Revised
Selected Papers 9, pages 111–122. Springer, 2014.

[51] Jérémie Chalopin, Riko Jacob, Matúš Mihalák, and Peter Widmayer. Data
delivery by energy-constrained mobile agents on a line. In Automata, Lan-
guages, and Programming: 41st International Colloquium, ICALP 2014,
Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II 41, pages 423–
434. Springer, 2014.

[52] Jo-Mei Chang and Nicholas F. Maxemchuk. Reliable broadcast protocols.
ACM Transactions on Computer Systems (TOCS), 2(3):251–273, 1984.

[53] Ruay Shiung Chang. Single step graph search problem. Information pro-
cessing letters, 40(2):107–111, 1991.

[54] Marek Chrobak, Leszek Gasieniec, and Wojciech Rytter. Fast broadcasting
and gossiping in radio networks. Journal of Algorithms, 43(2):177–189, 2002.

[55] Timothy H Chung, Geoffrey A Hollinger, and Volkan Isler. Search and
pursuit-evasion in mobile robotics: A survey. Autonomous robots, 31:299–
316, 2011.

[56] Serafino Cicerone, Gabriele Di Stefano, Leszek Gąsieniec, and Alfredo
Navarra. Asynchronous rendezvous with different maps. In Structural In-
formation and Communication Complexity: 26th International Colloquium,
SIROCCO 2019, L’Aquila, Italy, July 1–4, 2019, Proceedings, pages 154–
169. Springer, 2019.

[57] N.E. Clarke and E.L. Connon. Cops, robber, and alarms. Ars Comb., 81:283–
296, 2006.

[58] N.E. Clarke and R.J. Nowakowski. Cops, robber, and photo radar. Ars
Comb., 56:97–103, 2000.

[59] N.E. Clarke and R.J. Nowakowski. Cops, robber and traps. Utilitas Mathe-
matica, 60:91–98, 2001.

[60] Jared Coleman, Evangelos Kranakis, Danny Krizanc, and Oscar Morales-
Ponce. The pony express communication problem. In Combinatorial Algo-
rithms: 32nd International Workshop, IWOCA 2021, Ottawa, ON, Canada,
July 5–7, 2021, Proceedings 32, pages 208–222. Springer, 2021.

151

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

[61] Stephen Cook and Ravi Sethi. Storage requirements for determinis-
tic/polynomial time recognizable languages. In Proceedings of the sixth an-
nual ACM symposium on Theory of computing, pages 33–39, 1974.

[62] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to algorithms. MIT press, 2022.

[63] Thomas Cover. Broadcast channels. IEEE Transactions on Information
Theory, 18(1):2–14, 1972.

[64] Jerzy Czyzowicz, Krzysztof Diks, Jean Moussi, and Wojciech Rytter. Al-
gorithms for communication problems for mobile agents exchanging energy.
arXiv preprint arXiv:1511.05987, 2015.

[65] Jerzy Czyzowicz, Krzysztof Diks, Jean Moussi, and Wojciech Rytter.
Energy-optimal broadcast in a tree with mobile agents. In Algorithms
for Sensor Systems: 13th International Symposium on Algorithms and Ex-
periments for Wireless Sensor Networks, ALGOSENSORS 2017, Vienna,
Austria, September 7-8, 2017, Revised Selected Papers 13, pages 98–113.
Springer, 2017.

[66] Jurek Czyzowicz, Dariusz Dereniowski, Robert Ostrowski, and Wojciech
Rytter. Gossiping by energy-constrained mobile agents in tree networks.
Theoretical Computer Science, 861:45–65, 2021.

[67] Jurek Czyzowicz, Krzysztof Diks, Jean Moussi, and Wojciech Rytter. Com-
munication problems for mobile agents exchanging energy. In Structural In-
formation and Communication Complexity: 23rd International Colloquium,
SIROCCO 2016, Helsinki, Finland, July 19-21, 2016, Revised Selected Pa-
pers 23, pages 275–288. Springer, 2016.

[68] Jurek Czyzowicz, Krzysztof Diks, Jean Moussi, and Wojciech Rytter. Broad-
cast with energy-exchanging mobile agents distributed on a tree. In Struc-
tural Information and Communication Complexity: 25th International Col-
loquium, SIROCCO 2018, Ma’ale HaHamisha, Israel, June 18-21, 2018,
Revised Selected Papers 25, pages 209–225. Springer, 2018.

[69] Jurek Czyzowicz, Leszek Gąsieniec, Konstantinos Georgiou, Evangelos
Kranakis, and Fraser MacQuarrie. The beachcombers’ problem: Walking
and searching with mobile robots. Theoretical Computer Science, 608:201–
218, 2015.

[70] Jurek Czyzowicz, Leszek Gąsieniec, Adrian Kosowski, and Evangelos
Kranakis. Boundary patrolling by mobile agents with distinct maximal
speeds. In Algorithms–ESA 2011: 19th Annual European Symposium, Saar-
brücken, Germany, September 5-9, 2011. Proceedings 19, pages 701–712.
Springer, 2011.

152

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

[71] Jurek Czyzowicz, Evangelos Kranakis, Dominik Pajak, and Najmeh Taleb.
Patrolling by Robots Equipped with Visibility, pages 224–234. Springer Inter-
national Publishing, Cham, 2014.

[72] Yassine Daadaa, Paola Flocchini, and Nejib Zaguia. Network decontamina-
tion with temporal immunity by cellular automata. In Cellular Automata:
9th International Conference on Cellular Automata for Research and Indus-
try, ACRI 2010, Ascoli Piceno, Italy, September 21-24, 2010. Proceedings 9,
pages 287–299. Springer, 2010.

[73] Yassine Daadaa, Paola Flocchini, and Nejib Zaguia. Decontamination with
temporal immunity by mobile cellular automata. In International Conference
on Scientific Computing (CSC), pages 172–178, 2011.

[74] Yassine Daadaa, Asif Jamshed, and Mudassir Shabbir. Network decontami-
nation with a single agent. Graphs and Combinatorics, 32:559–581, 2016.

[75] Shantanu Das. Graph explorations with mobile agents. Distributed Comput-
ing by Mobile Entities: Current Research in Moving and Computing, pages
403–422, 2019.

[76] Shantanu Das, Dariusz Dereniowski, and Christina Karousatou. Collabo-
rative exploration by energy-constrained mobile robots. In Structural In-
formation and Communication Complexity: 22nd International Colloquium,
SIROCCO 2015, Montserrat, Spain, July 14-16, 2015. Post-Proceedings 22,
pages 357–369. Springer, 2015.

[77] Shantanu Das, Dariusz Dereniowski, and Przemysław Uznański. Energy
constrained depth first search. arXiv preprint arXiv:1709.10146, 2017.

[78] Anwitaman Datta, Silvia Quarteroni, and Karl Aberer. Autonomous gossip-
ing: A self-organizing epidemic algorithm for selective information dissemi-
nation in wireless mobile ad-hoc networks. In International Conference on
Semantics for the Networked World, pages 126–143. Springer, 2004.

[79] Yves Colin De Verdiere. Multiplicities of eigenvalues and tree-width of
graphs. Journal of Combinatorial Theory, Series B, 74(2):121–146, 1998.

[80] Nick D Dendris, Lefteris M Kirousis, and Dimitrios M Thilikos. Fugitive-
search games on graphs and related parameters. Theoretical Computer Sci-
ence, 172(1-2):233–254, 1997.

[81] Narsingh Deo, Mukkai S Krishnamoorthy, and Michael A Langston. Ex-
act and approximate solutions for the gate matrix layout problem. IEEE
transactions on computer-aided design of integrated circuits and systems,
6(1):79–84, 1987.

[82] Dariusz Dereniowski. Maximum vertex occupation time and inert fugitive:
Recontamination does help. Information processing letters, 109(9):422–426,
2009.

153

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

[83] Dariusz Dereniowski. Connected searching of weighted trees. Theoretical
Computer Science, 412(41):5700–5713, 2011.

[84] Dariusz Dereniowski. Approximate search strategies for weighted trees. The-
oretical Computer Science, 463:96–113, 2012.

[85] Dariusz Dereniowski. From pathwidth to connected pathwidth. SIAM Jour-
nal on Discrete Mathematics, 26(4):1709–1732, 2012.

[86] Dariusz Dereniowski, Öznur Yaşar Diner, and Danny Dyer. Three-fast-
searchable graphs. Discrete Applied Mathematics, 161(13-14):1950–1958,
2013.

[87] Dariusz Dereniowski and Danny Dyer. On minimum cost edge searching.
Theoretical Computer Science, 495:37–49, 2013.

[88] Dariusz Dereniowski, Ralf Klasing, Adrian Kosowski, and Łukasz Kuszner.
Rendezvous of heterogeneous mobile agents in edge-weighted networks. The-
oretical Computer Science, 608:219–230, 2015.

[89] Dariusz Dereniowski, Wieslaw Kubiak, and Yori Zwols. The complexity of
minimum-length path decompositions. Journal of Computer and System
Sciences, 81(8):1715–1747, 2015.

[90] Dariusz Dereniowski, Łukasz Kuszner, and Robert Ostrowski. Searching by
heterogeneous agents. Journal of Computer and System Sciences, 115:1–21,
2021.

[91] Dariusz Dereniowski, Dorota Osula, and Paweł Rzążewski. Finding small-
width connected path decompositions in polynomial time. Theoretical Com-
puter Science, 794:85–100, 2019.

[92] Dariusz Dereniowski and Adam Stański. On tradeoffs between width-and
fill-like graph parameters. Theory of Computing Systems, 63:450–465, 2019.

[93] Dariusz Dereniowski and Dorota Urbańska. On-line search in two-
dimensional environment. In International Workshop on Approximation and
Online Algorithms, pages 223–237. Springer, 2017.

[94] Anders Dessmark, Pierre Fraigniaud, Dariusz R Kowalski, and Andrzej Pelc.
Deterministic rendezvous in graphs. Algorithmica, 46:69–96, 2006.

[95] Öznur Yaşar Diner, Danny Dyer, and Boting Yang. Four-searchable bicon-
nected outerplanar graphs. Discrete Applied Mathematics, 306:70–82, 2022.

[96] Vida Dujmović, Pat Morin, and David R Wood. Path-width and three-
dimensional straight-line grid drawings of graphs. In International Sympo-
sium on Graph Drawing, pages 42–53. Springer, 2002.

154

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

[97] Christian A Duncan, Stephen G Kobourov, and VS Anil Kumar. Optimal
constrained graph exploration. ACM Transactions on Algorithms (TALG),
2(3):380–402, 2006.

[98] Danny Dyer, Boting Yang, and Öznur Yaşar. On the fast searching problem.
In International Conference on Algorithmic Applications in Management,
pages 143–154. Springer, 2008.

[99] Miroslaw Dynia, Miroslaw Korzeniowski, and Christian Schindelhauer.
Power-aware collective tree exploration. In Architecture of Computing Sys-
tems - ARCS 2006, 19th International Conference, Frankfurt/Main, Ger-
many, March 13-16, 2006, Proceedings, pages 341–351, 2006.

[100] Gianlorenzo d’Angelo, Gabriele Di Stefano, Alfredo Navarra, Nicolas Nisse,
and Karol Suchan. Computing on rings by oblivious robots: a unified ap-
proach for different tasks. Algorithmica, 72:1055–1096, 2015.

[101] Gianlorenzo D’angelo, Alfredo Navarra, and Nicolas Nisse. A unified ap-
proach for gathering and exclusive searching on rings under weak assump-
tions. Distributed Computing, 30:17–48, 2017.

[102] John Ellis and Robert Warren. Lower bounds on the pathwidth of some
grid-like graphs. Discrete Applied Mathematics, 156(5):545–555, 2008.

[103] John Arthur Ellis, I Hal Sudborough, and Jonathan S Turner. Graph sepa-
ration and search number. University of Victoria. Department of Computer
Science, 1987.

[104] A. Farrugia, L. Gasieniec, Ł. Kuszner, and E. Pacheco. Deterministic ren-
dezvous with different maps. In Journal of Computer and System Sciences,
volume 106, pages 49–59, 2019.

[105] Ashley Farrugia, Leszek Gąsieniec, Łukasz Kuszner, and Eduardo Pacheco.
Deterministic rendezvous in restricted graphs. In SOFSEM 2015: Theory
and Practice of Computer Science: 41st International Conference on Current
Trends in Theory and Practice of Computer Science, Pec pod Sněžkou, Czech
Republic, January 24-29, 2015. Proceedings 41, pages 189–200. Springer,
2015.

[106] O. Feinerman, A. Korman, S. Kutten, and Y. Rodeh. Fast rendezvous on
a cycle by agents with different speeds. In Distributed Computing and Net-
working - 15th International Conference, ICDCN 2014, Coimbatore, India,
January 4-7, 2014. Proceedings, pages 1–13, 2014.

[107] Michael R Fellows and Michael A Langston. Nonconstructive tools for prov-
ing polynomial-time decidability. Journal of the ACM (JACM), 35(3):727–
739, 1988.

155

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

[108] Michael R Fellows and Michael A Langston. On search decision and the
efficiency of polynomial-time algorithms. In Proceedings of the twenty-first
annual ACM symposium on Theory of computing, pages 501–512, 1989.

[109] Michael R Fellows and Michael A Langston. On search, decision, and the
efficiency of polynomial-time algorithms. Journal of Computer and System
Sciences, 49(3):769–779, 1994.

[110] Philippe Flajolet, Jean-Claude Raoult, and Jean Vuillemin. The number of
registers required for evaluating arithmetic expressions. Theoretical Com-
puter Science, 9(1):99–125, 1979.

[111] Paola Flocchini, Miao Jim Huang, and Flaminia L Luccio. Decontamination
of chordal rings and tori. In Proceedings 20th IEEE International Parallel &
Distributed Processing Symposium, pages 8–pp. IEEE, 2006.

[112] Paola Flocchini, Miao Jun Huang, and Flaminia L Luccio. Contiguous search
in the hypercube for capturing an intruder. In 19th IEEE International
Parallel and Distributed Processing Symposium, pages 10–pp. IEEE, 2005.

[113] Paola Flocchini, Miao Jun Huang, and Flaminia L Luccio. Decontaminating
chordal rings and tori using mobile agents. International Journal of Foun-
dations of Computer Science, 18(03):547–563, 2007.

[114] Paola Flocchini, Miao Jun Huang, and Flaminia L Luccio. Decontamina-
tion of hypercubes by mobile agents. Networks: An International Journal,
52(3):167–178, 2008.

[115] Paola Flocchini, Fabrizio Luccio, Linda Pagli, and Nicola Santoro. Optimal
network decontamination with threshold immunity. In Algorithms and Com-
plexity: 8th International Conference, CIAC 2013, Barcelona, Spain, May
22-24, 2013. Proceedings 8, pages 234–245. Springer, 2013.

[116] Paola Flocchini, Fabrizio Luccio, Linda Pagli, and Nicola Santoro. Net-
work decontamination under m-immunity. Discrete Applied Mathematics,
201:114–129, 2016.

[117] Paola Flocchini, Flaminia L Luccio, and Lisa Xiuli Song. Size optimal strate-
gies for capturing an intruder in mesh networks. 2005.

[118] Paola Flocchini, Bernard Mans, and Nicola Santoro. Tree decontamination
with temporary immunity. In International Symposium on Algorithms and
Computation, pages 330–341. Springer, 2008.

[119] Paola Flocchini, Amiya Nayak, and Arno Schulz. Cleaning an arbitrary reg-
ular network with mobile agents. In International Conference on Distributed
Computing and Internet Technology, pages 132–142. Springer, 2005.

156

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

[120] Paola Flocchini, Amiya Nayak, and Arno Schulz. Decontamination of arbi-
trary networks using a team of mobile agents with limited visibility. In 6th
IEEE/ACIS International Conference on Computer and Information Science
(ICIS 2007), pages 469–474. IEEE, 2007.

[121] Paola Flocchini and Nicola Santoro. Distributed security algorithms for mo-
bile agents. Mobile Agents in Networking and Distributed Computing, pages
41–70, 2012.

[122] Paola Flocchini, Nicola Santoro, and Lisa Xiuli Song. On the complexity of
decontaminating an hexagonal mesh network. In 2007 International Multi-
Conference on Computing in the Global Information Technology (ICCGI’07),
pages 21–21. IEEE, 2007.

[123] Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Masafumi Ya-
mashita. Rendezvous with constant memory. Theoretical Computer Science,
621:57–72, 2016.

[124] Fedor V Fomin. Complexity of connected search when the number of
searchers is small. Open problems of GRASTA, 2017.

[125] Fedor V Fomin, Pierre Fraigniaud, and Nicolas Nisse. Nondeterministic
graph searching: From pathwidth to treewidth. Algorithmica, 53(3):358–
373, 2009.

[126] Fedor V Fomin and Petr A Golovach. Graph searching and interval comple-
tion. SIAM Journal on Discrete Mathematics, 13(4):454–464, 2000.

[127] Fedor V Fomin and Dimitrios M Thilikos. On the monotonicity of games gen-
erated by symmetric submodular functions. Discrete Applied Mathematics,
131(2):323–335, 2003.

[128] Fedor V Fomin and Dimitrios M Thilikos. An annotated bibliography on
guaranteed graph searching. Theoretical computer science, 399(3):236–245,
2008.

[129] Pierre Fraigniaud, David Ilcinkas, and Andrzej Pelc. Oracle size: a new
measure of difficulty for communication tasks. In Proceedings of the twenty-
fifth annual ACM symposium on Principles of distributed computing, pages
179–187, 2006.

[130] Pierre Fraigniaud and Nicolas Nisse. Connected treewidth and connected
graph searching. In LATIN 2006: Theoretical Informatics: 7th Latin Amer-
ican Symposium, Valdivia, Chile, March 20-24, 2006. Proceedings 7, pages
479–490. Springer, 2006.

[131] Pierre Fraigniaud and Nicolas Nisse. Monotony properties of connected
visible graph searching. Information and Computation, 206(12):1383–1393,
2008.

157

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

[132] Pierre Fraigniaud and Sandrine Vial. Approximation algorithms for broad-
casting and gossiping. Journal of Parallel and Distributed Computing,
43(1):47–55, 1997.

[133] Matthew Franklin, Zvi Galil, and Moti Yung. Eavesdropping games: a graph-
theoretic approach to privacy in distributed systems. Journal of the ACM
(JACM), 47(2):225–243, 2000.

[134] Leszek Gąsieniec and Igor Potapov. Gossiping with unit messages in known
radio networks. In Foundations of Information Technology in the Era of Net-
work and Mobile Computing: IFIP 17th World Computer Congress—TC1
Stream/2nd IFIP International Conference on Theoretical Computer Science
(TCS 2002) August 25–30, 2002, Montréal, Québec, Canada, pages 193–205.
Springer, 2002.

[135] Leszek Gąsieniec, Igor Potapov, and Qin Xin. Time efficient gossiping in
known radio networks. In International Colloquium on Structural Informa-
tion and Communication Complexity, pages 173–184. Springer, 2004.

[136] Aristotelis Giannakos, Mhand Hifi, and Gregory Karagiorgos. Data delivery
by mobile agents with energy constraints over a fixed path. arXiv preprint
arXiv:1703.05496, 2017.

[137] Archontia C Giannopoulou, Paul Hunter, and Dimitrios M Thilikos. Lifo-
search: A min–max theorem and a searching game for cycle-rank and tree-
depth. Discrete Applied Mathematics, 160(15):2089–2097, 2012.

[138] John R Gilbert, Thomas Lengauer, and Robert Endre Tarjan. The pebbling
problem is complete in polynomial space. In Proceedings of the eleventh
annual ACM symposium on Theory of computing, pages 237–248, 1979.

[139] Alexander Gleyzer, Michael Denisyuk, Alon Rimmer, and Yigal Salingar. A
fast recursive gis algorithm for computing strahler stream order in braided
and nonbraided networks 1. JAWRA Journal of the American Water Re-
sources Association, 40(4):937–946, 2004.

[140] Petr A Golovach. Equivalence of 2 formalizations of the search prob-
lem in a graph. Vestnik Leningradskogo Universiteta Seriya Matematika
Mekhanika Astronomiya, (1):10–14, 1989. Translation in translation in Vest-
nik Leningrad Univ. Math. 22 (1989), no. 1, 13–19.

[141] Petr A Golovach. A topological invariant in pursuit problems. Differ-
entsial’nye Uravneniya, 25(6):923–929, 1989. Translation in Differ. Equ.
25 (1989), no. 6, 657–661.

[142] Georg Gottlob, Zoltán Miklós, and Thomas Schwentick. Generalized hy-
pertree decompositions: Np-hardness and tractable variants. Journal of the
ACM (JACM), 56(6):1–32, 2009.

158

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

[143] András Hajnal, Eric C Milner, and Endre Szemerédi. A cure for the telephone
disease. Canadian Mathematical Bulletin, 15(3):447–450, 1972.

[144] Daniel John Harvey. On treewidth and graph minors. PhD thesis, University
of Melbourne, Department of Mathematics and Statistics, 2014.

[145] Sandra Mitchell Hedetniemi, Stephen T. Hedetniemi, and Arthur L. Liest-
man. A survey of gossiping and broadcasting in communication networks.
Networks, 18(4):319–349, 1988.

[146] Philipp Hertel and Toniann Pitassi. The pspace-completeness of black-white
pebbling. SIAM Journal on Computing, 39(6):2622–2682, 2010.

[147] G.A. Hollinger, A. Kehagias, and S. Singh. GSST: anytime guaranteed
search. Auton. Robots, 29(1):99–118, 2010.

[148] Geoffrey Hollinger, Sanjiv Singh, Joseph Djugash, and Athanasios Kehagias.
Efficient multi-robot search for a moving target. The International Journal
of Robotics Research, 28(2):201–219, 2009.

[149] Keith Horsfield. Some mathematical properties of branching trees with appli-
cation to the respiratory system. Bulletin of mathematical biology, 38(3):305–
315, 1976.

[150] Robert E Horton. Erosional development of streams and their drainage
basins; hydrophysical approach to quantitative morphology. Geological soci-
ety of America bulletin, 56(3):275–370, 1945.

[151] Juraj Hromkovič, Ralf Klasing, Andrzej Pelc, Peter Ruzicka, and Walter
Unger. Dissemination of information in communication networks: broad-
casting, gossiping, leader election, and fault-tolerance. Springer Science &
Business Media, 2005.

[152] Ju Yuan Hsiao, Chuan Yi Tang, and Ruay Shiung Chang. Solving the single
step graph searching problem by solving the maximum two-independent set
problem. Information processing letters, 40(5):283–287, 1991.

[153] Ju Yuan Hsiao, Chuan Yi Tang, and Ruay Shiung Chang. The summation
and bottleneck minimization for single-step searching on weighted graphs.
Information sciences, 74(1-2):1–28, 1993.

[154] Ju Yuan Hsiao, Chuan Yi Tang, Ruay Shiung Chang, and Richard C. T.
Lee. Single step searching in weighted block graphs. Information sciences,
81(1-2):1–29, 1994.

[155] Miao Jun Huang. Contiguous search by mobile agents in cube networks and
chordal rings. PhD thesis, University of Ottawa (Canada), 2004.

159

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

[156] Glenn Hurlbert. Graph pebbling. Handbook of Graph Theory, Ed: JL Gross,
J. Yellen, P. Zhang, Chapman and Hall/CRC, Kalamazoo, pages 1428–1449,
2013.

[157] David Ilcinkas, Nicolas Nisse, and David Soguet. The cost of monotonicity
in distributed graph searching. Distributed Computing, 22:117–127, 2009.

[158] Navid Imani, Hamid Sarbazi-Azad, and Albert Y Zomaya. Capturing an
intruder in product networks. Journal of Parallel and Distributed Computing,
67(9):1018–1028, 2007.

[159] Navid Imani, Hamid Sarbazi-Azad, Albert Y Zomaya, and Parya Moinzadeh.
Detecting threats in star graphs. IEEE Transactions on Parallel and Dis-
tributed Systems, 20(4):474–483, 2008.

[160] Mamadou M Kanté, Christophe Paul, and Dimitrios M Thilikos. A linear
fixed parameter tractable algorithm for connected pathwidth. SIAM Journal
on Discrete Mathematics, 36(1):411–435, 2022.

[161] Akitoshi Kawamura and Yusuke Kobayashi. Fence patrolling by mobile
agents with distinct speeds. Distributed Computing, 28:147–154, 2015.

[162] Alex Kesselman and Dariusz Kowalski. Fast distributed algorithm for con-
vergecast in ad hoc geometric radio networks. In Second Annual Confer-
ence on Wireless On-demand Network Systems and Services, pages 119–124.
IEEE, 2005.

[163] Jonghoek Kim. Distributed rendezvous of heterogeneous robots with motion-
based power level estimation. Journal of Intelligent & Robotic Systems,
100(3-4):1417–1427, 2020.

[164] Nancy G Kinnersley. The vertex separation number of a graph equals its
path-width. Information Processing Letters, 42(6):345–350, 1992.

[165] Nancy Gail Kinnersley. Obstruction set isolation for layout permutation
problems. Washington State University, 1989.

[166] Lefteris M Kirousis and Christos H Papadimitriou. Interval graphs and
searching. Discrete Mathematics, 55(2):181–184, 1985.

[167] Lefteris M Kirousis and Christos H Papadimitriou. Searching and pebbling.
Theoretical Computer Science, 47:205–218, 1986.

[168] Lefteris M Kirousis and Dimitris M Thilikos. The linkage of a graph. SIAM
Journal on Computing, 25(3):626–647, 1996.

[169] Ton Kloks. Treewidth: computations and approximations. Springer, 1994.

[170] András Kornai and Zsolt Tuza. Narrowness, pathwidth, and their application
in natural language processing. Discrete Applied Mathematics, 36(1):87–92,
1992.

160

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

[171] Andrea S LaPaugh. Recontamination does not help to search a graph. Jour-
nal of the ACM (JACM), 40(2):224–245, 1993.

[172] Hoàng-Oanh Le, Haiko Müller, et al. Splitting a graph into disjoint induced
paths or cycles. Discrete applied mathematics, 131(1):199–212, 2003.

[173] Bi Li, Fatima Zahra Moataz, Nicolas Nisse, and Karol Suchan. Minimum
size tree-decompositions. Electronic Notes in Discrete Mathematics, 50:21–
27, 2015.

[174] Yichao Lin. Decontamination from black viruses using parallel strategies.
PhD thesis, Université d’Ottawa/University of Ottawa, 2018.

[175] Andrzej Lingas. A pspace complete problem related to a pebble game. In
International Colloquium on Automata, Languages, and Programming, pages
300–321. Springer, 1978.

[176] Fabrizio Luccio and Linda Pagli. A general approach to toroidal mesh de-
contamination with local immunity. In 2009 IEEE International Symposium
on Parallel & Distributed Processing, pages 1–8. IEEE, 2009.

[177] Fabrizio Luccio, Linda Pagli, and Nicola Santoro. Network decontamina-
tion in presence of local immunity. International Journal of Foundations of
Computer Science, 18(03):457–474, 2007.

[178] Flaminia L Luccio. Contiguous search problem in sierpiński graphs. Theory
of Computing Systems, 44:186–204, 2009.

[179] G.A. Di Luna, P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita.
Self-stabilizing meeting in a polygon by anonymous oblivious robots. CoRR,
abs/1705.00324, 2017.

[180] Eva Ma and Lixin Tao. Embeddings among toruses and meshes. Technical
Reports (CIS), page 598, 1988.

[181] Fillia S Makedon, Christos H Papadimitriou, and Ivan Hal Sudborough.
Topological bandwidth. SIAM Journal on Algebraic Discrete Methods,
6(3):418–444, 1985.

[182] FS Makedon and Ivan Hal Sudborough. Minimizing width in linear layouts.
In International Colloquium on Automata, Languages, and Programming,
pages 478–490. Springer, 1983.

[183] Euripides Markou, Nicolas Nisse, and Stéphane Pérennes. Exclusive graph
searching vs. pathwidth. Information and Computation, 252:243–260, 2017.

[184] Frédéric Mazoit and Nicolas Nisse. Monotonicity of non-deterministic graph
searching. Theoretical Computer Science, 399(3):169–178, 2008.

161

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

[185] Stephen D McCormick, Anthony P Farrell, and Colin J Brauner. Fish phys-
iology: euryhaline fishes. Academic Press, 2013.

[186] Nimrod Megiddo, S Louis Hakimi, Michael R Garey, David S Johnson, and
Christos H Papadimitriou. The complexity of searching a graph. Journal of
the ACM (JACM), 35(1):18–44, 1988.

[187] Guillaume Mescoff, Christophe Paul, and Dimitrios M Thilikos. The mixed
search game against an agile and visible fugitive is monotone. Discrete Math-
ematics, 346(4):113345, 2023.

[188] Margaret-Ellen Messinger. Methods of decontaminating networks. PhD the-
sis, Dalhousie University, 2008.

[189] Rodica Mihai and Morten Mjelde. A self-stabilizing algorithm for graph
searching in trees. In Stabilization, Safety, and Security of Distributed Sys-
tems: 11th International Symposium, SSS 2009, Lyon, France, November
3-6, 2009. Proceedings 11, pages 563–577. Springer, 2009.

[190] Rodica Mihai and Ioan Todinca. Pathwidth is NP-hard for weighted trees.
In FAW ’09: Proc. of the 3rd Inter. Workshop on Frontiers in Algorithmics,
pages 181–195, Berlin, Heidelberg, 2009. Springer-Verlag.

[191] Jaroslav Nešetřil and Patrice Ossona De Mendez. Tree-depth, subgraph
coloring and homomorphism bounds. European Journal of Combinatorics,
27(6):1022–1041, 2006.

[192] Lex Newman. Descartes’ epistemology: Evil genius doubt, 2023.
https://plato.stanford.edu/entries/descartes-epistemology/
#EvilGeniDoub [Accessed: (14.02.2024)].

[193] Nicolas Nisse. Connected graph searching in chordal graphs. Discrete Applied
Mathematics, 157(12):2603–2610, 2009.

[194] Nicolas Nisse. Network decontamination. In Distributed Computing by Mo-
bile Entities: Current Research in Moving and Computing, pages 516–548.
Springer, 2019.

[195] Nicolas Nisse and David Soguet. Graph searching with advice. Theoretical
Computer Science, 410(14):1307–1318, 2009.

[196] Robert Ostrowski. Non-monotone graph searching models. Zeszyty Naukowe
Wydziału ETI Politechniki Gdańskiej. Technologie Informacyjne, (23):90–96,
2018.

[197] Dorota Osula. Multi-agent graph searching and exploration algorithms. PhD
thesis, Politechnika Gdańska, 2020.

[198] Christos H Papadimitriou. Computational complexity. In Encyclopedia of
computer science, pages 260–265. 2003.

162

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://plato.stanford.edu/entries/descartes-epistemology/#EvilGeniDoub
https://plato.stanford.edu/entries/descartes-epistemology/#EvilGeniDoub
http://mostwiedzy.pl

[199] Torrence D Parsons. Pursuit-evasion in a graph. In Theory and applications
of graphs, pages 426–441. Springer, 1978.

[200] Andrzej Pelc. Deterministic rendezvous algorithms. In Distributed Comput-
ing by Mobile Entities: Current Research in Moving and Computing, pages
423–454. Springer, 2019.

[201] Sheng-Lung Peng, Chin-Wen Ho, Tsan-sheng Hsu, Ming-Tat Ko, and
Chuan Yi Tang. Edge and node searching problems on trees. Theoretical
Computer Science, 240(2):429–446, 2000.

[202] Nikolai Nikolaevich Petrov. A problem of pursuit in the absence of informa-
tion on the pursued. Differentsial’nye Uravneniya, 18(8):1345–1352, 1982.

[203] Z. Qian, J. Li, X. Li, M. Zhang, and H. Wang. Modeling heterogeneous traffic
flow: A pragmatic approach. Transportation Research Part B: Methodologi-
cal, 99:183–204, 2017.

[204] Jun Qiu. Best effort decontamination of networks. PhD thesis, University of
Ottawa (Canada), 2007.

[205] Livaniaina Hary Rakotomalala. Network Decontamination using Cellular
Automata. PhD thesis, Université d’Ottawa/University of Ottawa, 2016.

[206] Neil Robertson and Paul D Seymour. Graph minors. i. excluding a forest.
Journal of Combinatorial Theory, Series B, 35(1):39–61, 1983.

[207] Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects
of tree-width. Journal of algorithms, 7(3):309–322, 1986.

[208] Neil Robertson and Paul D Seymour. Graph minors. xx. wagner’s conjecture.
Journal of Combinatorial Theory, Series B, 92(2):325–357, 2004.

[209] Daniel Preston Sanders. Linear algorithms for graphs of tree-width at most
four. Georgia Institute of Technology, 1993.

[210] Nicola Santoro. Design and analysis of distributed algorithms. John Wiley
& Sons, 2006.

[211] Petra Scheffler. A linear algorithm for the pathwidth of trees. In Topics in
combinatorics and graph theory, pages 613–620. Springer, 1990.

[212] Ravi Sethi. Complete register allocation problems. In Proceedings of the fifth
annual ACM symposium on Theory of computing, pages 182–195, 1973.

[213] Paul D Seymour and Robin Thomas. Graph searching and a min-max theo-
rem for tree-width. Journal of Combinatorial Theory, Series B, 58(1):22–33,
1993.

163

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

[214] Pooya Shareghi, Navid Imani, and Hamid Sarbazi-Azad. Capturing an in-
truder in the pyramid. In Computer Science–Theory and Applications: First
International Computer Science Symposium in Russia, CSR 2006, St. Pe-
tersburg, Russia, June 8-12. 2006. Proceedings 1, pages 580–590. Springer,
2006.

[215] Lisa Xiuli Song. Intruder capture by mobile agents in mesh topologies. PhD
thesis, Carleton University, 2005.

[216] S Sreedevi and MS Anilkumar. a comprehensive review on graph pebbling
and rubbling. In Journal of Physics: Conference Series, volume 1531, page
012050. IOP Publishing, 2020.

[217] Donald Stanley and Boting Yang. Fast searching games on graphs. Journal
of combinatorial optimization, 22(4):763–777, 2011.

[218] Arthur N Strahler. Hypsometric (area-altitude) analysis of erosional topog-
raphy. Geological society of America bulletin, 63(11):1117–1142, 1952.

[219] Arthur N Strahler. Quantitative analysis of watershed geomorphology. Eos,
Transactions American Geophysical Union, 38(6):913–920, 1957.

[220] S. Sundaram, K. Krishnamoorthy, and D.W. Casbeer. Pursuit on a graph
under partial information from sensors. CoRR, abs/1609.03664, 2016.

[221] Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mobile
robots: Formation of geometric patterns. SIAM Journal on Computing,
28(4):1347–1363, 1999.

[222] Amnon Ta-Shma and Uri Zwick. Deterministic rendezvous, treasure hunts
and strongly universal exploration sequences. In Symposium on Discrete
Algorithms: Proceedings of the eighteenth annual ACM-SIAM symposium
on Discrete algorithms, volume 7, pages 599–608, 2007.

[223] Atsushi Takahashi, Shuichi Ueno, and Yoji Kajitani. Minimal acyclic for-
bidden minors for the family of graphs with bounded path-width. Discrete
Mathematics, 127(1-3):293–304, 1994.

[224] Atsushi Takahashi, Shuichi Ueno, and Yoji Kajitani. Mixed searching and
proper-path-width. Theoretical Computer Science, 137(2):253–268, 1995.

[225] Hisao Tamaki. Positive-instance driven dynamic programming for treewidth.
Journal of Combinatorial Optimization, 37(4):1283–1311, 2019.

[226] Dimitrios M Thilikos. Algorithms and obstructions for linear-width and
related search parameters. Discrete Applied Mathematics, 105(1-3):239–271,
2000.

[227] Paolo Toth and Daniele Vigo. Vehicle routing: problems, methods, and ap-
plications. SIAM, 2014.

164

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

[228] DAN WEINER. Forbidden minors and minor-closed graph properties. Lec-
ture notes.

[229] Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice
hall Upper Saddle River, 2001.

[230] Chris Worman and Boting Yang. Searching trees with sources and targets.
In FAW ’08: Proc. of the 2nd annual international workshop on Frontiers
in Algorithmics, pages 174–185, Berlin, Heidelberg, 2008. Springer-Verlag.

[231] Yuan Xue and Boting Yang. The fast search number of a cartesian product
of graphs. Discrete Applied Mathematics, 224:106–119, 2017.

[232] Yuan Xue, Boting Yang, Farong Zhong, and Sandra Zilles. Fast searching
on complete k-partite graphs. In International Conference on Combinatorial
Optimization and Applications, pages 159–174. Springer, 2016.

[233] Takahiro Yakami, Yukiko Yamauchi, Shuji Kijima, and Masafumi Ya-
mashita. Searching for an evader in an unknown dark cave by an optimal
number of asynchronous searchers. Theoretical Computer Science, 887:11–29,
2021.

[234] Boting Yang. Strong-mixed searching and pathwidth. Journal of combina-
torial optimization, 13(1):47–59, 2007.

[235] Boting Yang. Fast edge searching and fast searching on graphs. Theoretical
Computer Science, 412(12-14):1208–1219, 2011.

[236] Boting Yang. Fast–mixed searching and related problems on graphs. Theo-
retical Computer Science, 507:100–113, 2013.

[237] Boting Yang, Danny Dyer, and Brian Alspach. Sweeping graphs with large
clique number. Discrete Mathematics, 309(18):5770–5780, 2009.

[238] Daadaa Yassine. Network decontamination with temporal immunity. Univer-
sity of Ottawa (Canada), 2012.

[239] Dimitris Zoros. Obstructions and algorithms for graph layout problems. PhD
thesis, 2017.

165

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

	Introduction
	Graph searching
	Introduction to graph searching
	 Basic models
	Edge searching
	Basic monotone variants

	A wide perspective on graph parameters
	Pathwidth and treewidth
	Finding a path
	Minor interlude
	I see a path among trees
	Other layout parameters

	Fast and wide
	One giant step for searcher-kind
	A long path
	Only once

	Breaking the monotony
	Connected graph searching is hard
	Connected tree searching is easy

	In search of oddities

	Mobile agents
	Agents and their environment
	Decontamination
	A second look at connectivity
	Overview of properties
	Surveying the landscape
	Cleaning the unknown
	Black Virus
	Immunity
	Self-stabilization and its consequences

	Communication by means of moving information
	Communication and energy
	Data delivery
	Convergcast
	Broadcast
	Gossiping

	Heterogeneous problems
	Delivery
	Heterogeneous rendezvous
	Different speeds

	Heterogeneous graph searching
	Introduction
	Our work — a short outline

	Preliminaries
	Problem formulation
	Additional notation and remarks

	Lack of monotonicity
	NP-hardness for trees
	NP-hardness of non-monotone searching of trees
	Preliminaries on non-monotone strategies for SAT
	Some technical lemmas
	Adaptation to non-monotonicity — there is no going back
	Conclusion

	Polynomially tractable instances
	Conclusions and open problems

	Gossiping with energy constraints
	Outline
	Definitions and Preliminaries
	Problem Statement
	Notation

	Our Approach to Gossiping
	The Gossiping Algorithm
	The Convergecast Stage
	The Broadcast Stage
	Concatenation of Convergecast and Broadcast
	Retracing Step 1

	Summary and Open Problems

	Conclusions
	Applications
	Contributions

