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Abstract—In this contribution, a new genetic-algorithm-based
method of finding roots and poles of a complex function of a
complex variable is presented. The algorithm employs the phase
analysis of the function to explore the complex plane with the
use of the genetic algorithm. Hence, the candidate regions of root
and pole occurrences are selected and verified with the use of
discrete Cauchy’s argument principle. The algorithm is evaluated
in an electromagnetic benchmark that successfully solves the
eigenvalue problem determining the propagation of surface waves
along a spatially dispersive graphene sheet. The numerical results
show that the possibility to find all roots and poles of the function
may be limited by the initial population size, especially when the
search region is large and roots and poles are located close to
each other.

Index Terms—Genetic algorithms, optimization methods,
mathematical programming, electromagnetic analysis

I. INTRODUCTION

Nowadays, the electromagnetic field is present in almost
all areas of human life, i.e., from cell-phone communication,
Wi-Fi transmission, microwave and induction cooking up to
space and military technologies. The wave propagation is
the fundamental problem related to the electromagnetic field.
Frequently, the analysis of the electromagnetic field requires
the investigation of properties of a complex-valued function on
the complex plane. The determination of complex propagation
coefficients of surface waves is a typical example of such
an analysis. The most intuitive and direct method of finding
a solution to this problem requires its conversion into the
eigenvalue equation f(z) = 0 and complex root computations.
The paper is organized as follows: In Section II, the actual
state of the art in root finding techniques and multimodal
genetic algorithms (GAs) is presented. In Section III, the
multimodal GA with phase analysis (MGA-WPA) algorithm
is presented and analysed. Numerical benchmarks involving
complex functions applied in electromagnetic analysis are
presented in Section IV. Finally, the conclusion is drawn in
Section V.

II. STATE OF THE ART

In this section, root finding techniques and GAs dedicated
to multimodal optimization problems are presented. Let us

start considerations from Newton’s method which is one of
the oldest root finding techniques [1]. This method requires
that a function and its derivatives are continuous in a search
space. Moreover, the starting point for searching must be
located close to a solution. Bisection, secant [2] and Muller’s
[3] methods do not require function derivatives and converge
by iteratively sampling a function in two or three points and
consequently approximating the next sampling point. These
methods are efficient when the initial starting point is located
close to a root. Moreover, these methods are able to locate
only a single root for the assumed starting point.

Finding multiple roots on the complex plane is a far more
difficult task. Recently, a very efficient global complex roots
and poles finding (GPRF) algorithm based on the Delaunay
triangulation and the function phase analysis has been pro-
posed [4], [5]. This algorithm generates a regular triangular
mesh of nodes and the complex function argument (i.e., phase
quadrant) is computed in each node position. Hence, a phase
quadrant distance between adjacent nodes can be computed in
the next step. If its absolute value is equal to two, i.e., signs
of real and imaginary parts of adjacent nodes are opposite,
a region around these nodes is considered as a vicinity of
possible root or pole. Such a connection between nodes is
referred to as a candidate edge. Then, discretized Cauchy’s
argument principle (DCAP) is applied over candidate regions
to evaluate if any root/pole is indeed inside. The complex
border tracking (CBT) method, that also employs the tracking
of complex function sign changes, is proposed in [6]. This
method has a very low numerical cost but it cannot track
entire regions on the complex plane due to the application
of selective sampling. The novel stochastic population based
concept merging the particle swarm optimization (PSO) with
benefits of the function phase analysis is proposed in [7].
The stochastic nature of this method prevents from root or
pole omitting in subsequent iterations. In this contribution, we
compare mentioned above GPRF, CBT, MPSO-WPA methods
with proposed GA demonstrating their advantages and disad-
vantages.

GA was originally proposed by Holland in 1975 [8]. In
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this approach, the mathematical model of biological evo-
lution is employed to solve an optimization problem. The
algorithm is based on binary operations on chromosomes
of individuals (i.e., population members). The chromosomes
are moved to a new population by genetic-based operators
of selection, crossover and mutation. The selection operator
chooses the chromosomes in the population that are repro-
duced, the crossover operator exchanges parts of chromosomes
between individuals and the mutation operator changes alleles
in chromosomes. GA which does not require changing of a
search space into its binary representation and operates in
the continuous domain is refered to as Breeder GA (BGA)
[9]. The crossover and mutation operators are main genetic
operators for continuous functions. The mutation scheme
in two-dimensional search space generates new population
members in a square area (hypercube in a multidimensional
search space) defined by coordinates of a mutated individual
and a mutation range. The crossover scheme generates new
population members in a rectangular area between candidates
with most promising chromosomes. Benchmarks indicate that
BGA outperforms classical GA in continuous search problems
[10]. Moreover, the algorithm is very intuitive, easy to im-
plement and applicable to many optimization problems. The
original algorithm aims at finding a single best solution of
fitness function and cannot deal with multimodal searching
with multiple good solutions. Therefore, the original algorithm
must be extended by a set of rules allowing for the population
diversity and precise exploration of distant regions on the
complex plane. Various approaches to diversify population can
be found in [11]. Some algorithms diversify by generating
multiple, independent populations that do not interact with
each other, whereas some of algorithms are focused on a single
population clustering and restriction of interactions beetwen
individuals to closest neighbours only. For instance, the island
model [12] runs multiple subpopulations in parallel. On the
other hand, the cellular GA [13] concentrates on population
clustering.

In this paper, BGA is mixed with the selection of individual
candidates based on the analysis of function phase. Therefore,
the population diversity stems from the spatial segregation
around candidate regions. Information obtained from the
candidate selection is binary (i.e., an individual is either a
candidate or not), thus, a new population is easily diversified
and generated only in regions of root or pole occurrences.
The mutated or crossed individuals are not replaced by new
individuals, thus, the population size increases in each iteration
step.

III. THE MGA-WPA ALGORITHM

The flowchart of the MGA-WPA algorithm is presented in
Fig. 1. This algorithm is executed in the following steps:

A. Algorithm Initialization and Generation of Initial Popula-
tion Members

Initialize algorithm parameters such as the algorithm accu-
racy ε, the size of search region, the size of initial population,

the mutation range RM , the mutation operator KM . Then,
generate the uniformly distributed random population on the
complex plane

Z = {z1, z2, ..., zn} (1)

where n is the population size. Initially, n is set to the size of
initial population.

B. Search for Regions with Potential Root or Pole Occurrence

For each individual population member, whose coordinates
on the complex plane are denoted as zi (i = 1, 2, ..., n),
evaluate the fitness function argument and compute the phase
quadrant in which the corresponding function value is located

Qi =


1, 0 ≤ arg f(zi) <

π
2

2, π
2 ≤ arg f(zi) < π

3, π ≤ arg f(zi) <
3π
2

4, 3π
2 ≤ arg f(zi) < 2π

 . (2)

Then, apply the Delaunay triangulation to coordinates zi, i.e.,
generate triangular connections between population members.
Compute the phase quadrant distance along each of the con-
nections

∆Qp = Qp2 −Qp1. (3)

Search for connections such as |∆Qp| = 2. Individuals
connected in this way must have different signs of the real
and imaginary parts of the function values. These connections
called candidates are considered as a potential vicinity of either
root or pole. If there is no root nor pole on the complex plane,
candidate connections are not found and the algorithm execu-
tion is terminated. If at least a single candidate connection is
found, then the candidate-connection length is computed. If
the highest length of the collected candidate connections is
less than the assumed accuracy, then the algorithm proceeds
to the step D. In other cases, the algorithm proceeds to the
next step C.

C. Crossover and Mutation of Population

New members of population are generated by the genetic
operations of crossover and mutation. The genetic operations
are executed on coordinates of candidate connections. The
crossover is executed on two individuals that form a candidate
connection. Then, the coordinates of a new individual resulting
from the crossover are given by

zn+i = Re(zi,1 + ai(zi,2 − zi,1))

+jIm(zi,1 + bi(zi,2 − zi,1))
(4)

where i = 1, 2, ..., k, zn+i denotes the new individual coordi-
nates, zi,1 denotes the coordinates of the first individual within
the i-th candidate connection, zi,2 denotes the coordinates of
the second individual within the i-th candidate connection,
ai and bi are random numbers between 0 and 1, n is the
number of individuals in the current population and k is
the number of candidate connections detected in the current
iteration. The mutation operation is executed by the mutation
of coordinates of candidate-connection centres. Hence, the
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subsequent individual coordinates resulting from the mutation
are given by

zn+k+i = Re(si + 0.5|zi,1 − zi,2|RMcimi)

+jIm(si + 0.5|zi,1 − zi,2|RMdimi)
(5)

si = 0.5(zi,1 + zi,2) (6)

mi = 2−uiKM (7)

where i = 1, 2, ..., k, zn+k+i denotes the new individual
coordinates, zi,1 denotes the coordinates of the first individual
within the i-th candidate connection, zi,2 denotes the coor-
dinates of the second individual within the i-th candidate
connection, si denotes the coordinates of the i-th candidate-
connection center, ci and di are random numbers between -1
and 1, RM denotes the mutation range, ui is a random number
between 0 and 1, KM denotes the mutation precision and k
is the number of candidate connections. As a result of the
crossover and mutation operations, new population members
are generated. The number of generated new individuals
depends on the number of detected candidate connections. For
each candidate connection, two individuals (i.e., one crossed
and one mutated) are generated, hence, the population size n is
increased by 2k in each iteration. After the generation of new
population members, the algorithm is looped to the searching
for candidates step B.

D. Verification of root or pole occurrence

Confirm the existence of root/pole applying DCAP by inte-
grating quadrant differences along the path between population
members around the candidate region

q =
1

4

P∑
p=1

∆Qp. (8)

The parameter q is a positive integer when a root is found, a
negative integer when a pole is found and zero when there
is neither root nor pole in the selected region. If multiple
roots/poles are located inside the region of integration, then
the parameter q is multiple of the number of roots/poles found.

IV. NUMERICAL RESULTS

The propagation of surface waves in spatially dispersive
graphene sheet decomposited on a dielectric silicon substrate
is the electromagnetic problem under analysis [14]. The dis-
persion coefficients for TM modes propagating along the
graphene sheet are obtained by solving the equation f(z) = 0
for the following function:

f(z) = Y TM1 + Y TM2 + Y TMσ (9)

Y TM1 =
ωεr1ε0
kz1

(10)

Y TM2 =
ωεr1ε0
kz2

(11)

Y TMσ = σlo + k2pαsd − k2pβsd (12)

Fig. 1. Flowchart of the MGA-WPA algorithm.

kz1 = ±
√
k21 − k2p (13)

kz2 = ±
√
k22 − k2p (14)

k1 =
√
εr1k0 (15)

k2 =
√
εr2k0 (16)

kp = −izk0 (17)

σlo =
−iq2ekBT

π~(ω − iτ−1)2
ln

(
2 + 2cosh

(
µC
kBT

))
(18)

αsd =
−3v2Fσlo

4(ω − iτ−1)2
(19)

βsd =
αsd
3
. (20)
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In (9)–(20), k0 = 2πf/c is the free space wave number, ε0
is the permittivity of free space, εr1 and εr2 are the relative
permittivities of the surrounding media, qe is the electron
charge, vF is the Fermi velocity, kB is the Boltzmann constant
and ~ is the reduced Planck constant. The graphene parameters
are the chemical potential µc = 0.05qe and the electron
relaxation time τ = 0.135 psec. The relative permittivity of
silicon substrate is equal to 11.9. The temperature is equal
to T = 300 K. Finding roots and poles is executed for the
frequency equal to f = 1 THz. The search region is given by
−100 ≤ real(z) ≤ 500 and −100 ≤ imag(z) ≤ 500. The
considered complex function f(z) = 0 is a pointwise product
of four Riemann sheets [15], hence, function discontinuities
are eliminated and roots remain the same values.

The MGA-WPA code is executed on a personal computer
equipped with Intel i7-4700MQ processor. The computation
time, the number of iterations and the number of individuals
necessary for the convergence vary for each run of the code. It
is caused by the stochastic nature of implemented GA. Initial
and final population distributions for the exemplary run of the
MGA-WPA algorithm are respectively presented in Figs. 2
and 3. The initial population size is set to 1037 individuals.

Fig. 2. Initial population distribution (1037 individuals) generated by MGA-
WPA for analysis of propagation in spatially dispersive graphene in bounded
region −100 ≤ real(z) ≤ 500 and −100 ≤ imag(z) ≤ 500. Phase
quadrants of population members on the z-plane: • Q=1, • Q=2, • Q=3, •
Q=4.

The total number of generated individuals to converge with the
accuracy ε = 1E−6 is 2813 individuals. The code is executed
49 times in the loop to achieve required convergence. The
execution time is 0.66 sec. The algorithm finds eight single
roots as follows:

z(1) = −38.17772− 32.52952i
z(2) = −32.10196− 27.43086i
z(3) = 332.7449 + 282.2431i

Fig. 3. Final population distribution (2813 individuals) generated by MGA-
WPA for analysis of propagation in spatially dispersive graphene in bounded
region −100 ≤ real(z) ≤ 500 and −100 ≤ imag(z) ≤ 500. Phase
quadrants of population members on the z-plane: • Q=1, • Q=2, • Q=3, •
Q=4.

z(4) = 336.2203 + 285.1911i
z(5) = 371.0076 + 314.7004i
z(6) = 368.4395 + 312.5221i
z(7) = 38.17772 + 32.52952i
z(8) = 32.10196 + 27.43086i.

In the analysed region, the algorithm is able to identify the
following two second-order poles:

z(9) = (−3.2867E − 08)− 3.4496i
z(10) = (−8.2787E − 08) + 3.4496i.

For the sake of comparison, the GPRF method is evaluated
which returns the same root and pole values as the MGA-
WPA method. The region analysed in this example is compu-
tationally difficult because the roots and poles are concentrated
close to each other. Moreover, two clusters of roots and poles
are located far away from each other and almost in opposite
corners of the search region. In this case, the initial population
size must be large enough to avoid overlapping of candidate
connections. It is worth noticing that the mesh obtained from
the Delaunay triangulation is very irregular and fine in the
vicinity of any root or pole. The mesh for the final population
and the zoomed area around roots and poles are respectively
presented in Figs. 4 and 5. The proposed MGA-WPA method
is based on a stochastic generator, hence, each code run is
different. Therefore, to obtain a reasonable evaluation results,
mean values have to be computed from several code runs. In
Table I, mean values from 5 runs for various algorithm accu-
racies are presented for the final population size, the algorithm
execution time and the number of algorithm iterations. In Table
II, the computational results obtained for the same problem
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Fig. 4. Delaunay triangulation applied to final population members in bounded
region −100 ≤ real(z) ≤ 500 and −100 ≤ imag(z) ≤ 500.

Fig. 5. Zoomed irregular mesh generated by MGA-WPA around four roots
and two second-order poles.

with the use of the GPRF method are presented. The number
of individuals necessary for the convergence of the MGA-
WPA algorithm is much lower than for the GPRF method,
especially when a high accuracy is necessary. However, MGA-
WPA is slower than GPRF, because the MGA-WPA algorithm
loop is iterated more times. Moreover, the stochastic nature of
MGA-WPA requires additional control if individuals are not
duplicated. The comparison of recently published root/pole
finding methods that employ the phase analysis of complex

TABLE I
POPULATION SIZE, EXECUTION TIME AND NUMBER OF LOOP ITERATIONS

FOR VARYING ACCURACY OF MGA-WPA

Accuracy Population size Ex. time (sec) Number of iterations

1E − 03 2258 0.38 33

1E − 06 2904 0.71 55

1E − 09 3542 1.01 74

1E − 12 4157 1.64 97

TABLE II
NUMBER OF NODES, EXECUTION TIME AND NUMBER OF LOOP

ITERATIONS FOR VARYING ACCURACY OF GPRF

Accuracy Number of nodes Ex. time (sec) Number of iterations

1E − 03 2545 0.23 16

1E − 06 3418 0.4 26

1E − 09 4305 0.68 36

1E − 12 5215 0.97 46

TABLE III
COMPARISON OF METHODS THAT EMPLOY PHASE ANALYSIS OF COMPLEX

FUNCTION TO FIND ROOTS AND POLES

Method Advantages Disadvantages

CBT [6] - very low numerical cost - algorithm is not able to
track roots/poles located on
”island” like regions

GPRF [4] - very fast and efficient - requires initial number of
nodes to be large enough to
detect all candidate edges

MPSO-
WPA
[7]

- stochastic function explo-
ration in subsequent itera-
tions, prevents from omit-
ting roots or poles

- the final number of par-
ticles and algorithm execu-
tion time may be large, es-
pecially when high accuracy
is necessary

MGA-
WPA

- a small number of individ-
uals is sufficient to converge

- requires initial population
size to be large enough to
detect all candidate connec-
tions

function is presented in Table III.

V. CONCLUSION

The paper proposes the fast and efficient MGA-WPA al-
gorithm to solve complex equations of the electromagnetic
analysis. The method merges GA with the phase quadrant
analysis on the complex plane. A small number of individuals
is sufficient for the convergence of the method, limiting final
population size. The results obtained with the use of the MGA-
WPA algorithm are satisfactory. The method may not find root
or pole if the initial population members are separated by a
large distance. However, the stochastic nature of MGA-WPA
increases the chance of finding all roots and poles, when the
algorithm is executed multiple times.
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