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Abstract—In this paper, a new meta-heuristic method of
finding roots and poles of a complex function of a complex
variable is presented. The algorithm combines an efficient space
exploration provided by the particle swarm optimization (PSO)
and the classification of root and pole occurrences based on the
phase analysis of the complex function. The method initially
generates two uniformly distributed populations of particles on
the complex plane and extracts the function phase in a position of
each particle. By collecting phase samples, the candidate regions
of root and pole occurrences are selected. Then, the second
population, by iteratively converging towards candidate regions,
thoroughly explores an area outside candidate regions and
reduces the possibility of root or pole omission. The subsequent
swarms are generated locally to explore candidate regions and
decrease their size. The algorithm is verified in electromagnetic
benchmark that solves the equation determining surface waves
on a microstrip antenna. The numerical results show that the
algorithm is able to solve multimodal problems quickly even
with a small initial population and a small number of generated
swarms.

Index Terms—Particle swarm optimization, optimization meth-
ods, mathematical programming, electromagnetic analysis

I. INTRODUCTION

The electromagnetic analysis very often requires the study
of function properties on the complex plane. Fundamental
problems related to electromagnetic field, e.g., the wave
propagation in transmission lines or the leaky-wave radiation,
are described by parameters that are complex numbers. For
dielectric materials, electric susceptibility and permittivity
are complex numbers with imaginary parts characterizing
material losses. The loss tangent widely used to character-
ize material losses and implemented in most commercially
available electromagnetic simulators is defined as the ratio of
imaginary and real parts of the complex permittivity. Thus,
solving electromagnetic problems is inseparably related to
the complex-domain analysis. However, such an analysis in
the complex domain is much more difficult than in the real
one. The key to the solution of any complex electromagnetic
problem is its transformation into a single equation f(z) = 0
and consideration of a root-finding problem for the function
f(z). This paper introduces the particle swarm optimization

(PSO) method for finding roots and poles in electromagnetic
analysis. The paper is organized as follows: In Section II,
the actual state of the art in PSO and root finding techniques
is presented. In Section III, the multimodal PSO with phase
analysis (MPSO-WPA) algorithm is presented and analysed.
Numerical benchmarks involving complex functions applied in
electromagnetic analysis are presented in Section IV. Finally,
the conclusion is drawn in Section V.

II. STATE OF THE ART

With the advent of fast computational machines and rapid
development of artificial intelligence technologies, many new
optimization techniques have arisen to solve complex elec-
tromagnetic problems. In this paper, we investigate the PSO
algorithm [1], [2], which employs the swarm intelligence [3],
[4] observed in social and cooperative behavior of various
intelligent colonies in nature. PSO alike genetic algorithms
is initialized with a random population of swarm particles. It
tracks coordinates of particles in space which are associated
with best known solutions as well as simultaneously samples
the space while moving populations towards them. Two very
important concepts result from this approach. First one is the
exploration, which is the ability of the algorithm to search for
solutions in regions that are far away from the actual solution.
Second one is the exploitation, which is the ability to search
for solutions in regions that are close to the actual solution.
The trade-off between the global space exploration and the
local exploitation is the inherent issue of the PSO technique.
Moreover, the original algorithm is dedicated to the detection
of a single global minimum and has to be extended to explore
multimodal functions. The term ”multimodal” should not
be confused with the term ”multiobjective” which describes
several fitness functions evaluated at the same time. The
multimodal optimization is focused on exploration of a single
fitness function to find multiple (most accurate) solutions,
usually in different distant space regions. Since the PSO
introduction in 1995, many variants of the original method
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have been proposed. Mostly known variant [5] introduces the
inertia to the original formula as follows:

vi = wv′i + c1u1(pi − xi) + c2u2(pg − xi) (1)

xi = x′i + vi. (2)

In (1)–(2), vi and v′i are respectively current and previous
velocities of the i-th particle. The variables pi and pg are
respectively the best so far coordinates found by the individual
particle and the best so far coordinates found by the whole
swarm. The scaling factors c1 and c2 represent respectively
attractions towards the best position of the i-th particle and
the best position of the whole swarm. Parameters u1 and
u2 are randomly generated numbers between 0 and 1. The
inertia weight w determines how much the previous velocity
is preserved. The most common and intuitive practice is to
initialize the inertia with a large value, giving priority to the
global exploration, and decrease it in subsequent iterations to
obtain more accurate local exploitation [6], [7]. The particle
coordinates xi are updated by adding velocity vi to the previ-
ous particle coordinates x′i. The original PSO algorithm is very
efficient when is applied to basic functions. Its exceptional
properties stem from dynamic particle interactions. However,
its efficiency deteriorates when solving multimodal functions
because information is gathered from global and local sources,
which may vary between them. This could lead to delays, poor
convergence, oscillations or two steps forward one step back
phenomenon [8]. Moreover, the original method suffers from
the premature convergence to the global solution, because all
particle velocities are updated in each iteration by pg . It has
led to the uprise of new learning techniques that determine
the information distribution between particles [9], [10]. The
swarm learning methods employ not only movement direction
and velocity, but can also define how the swarms are divided
and distributed in the search region. It is extremely important,
especially in the case of multimodal search, where regions of
interest are distant.

The swarm algorithm proposed in this work is developed
to solve equations of electromagnetic analysis. In many cases,
these equations can be transformed into complex equations on
the complex plane, which can be solved by finding complex
roots. The Newton-Raphson technique is the classic method to
find quickly a local root [11]. The drawback of this technique
is that it requires function derivatives and an initial starting
point. Davidenko’s method [12], being a reduction of Newton’s
method into n-coupled first-order differential equations of
a dummy variable for the numerical solution of n-coupled
nonlinear algebraic equations, has been widely used to solve
complex eigenvalue equations [13], [14]. The drawback of this
method is that it requires the analytical expression for the first
derivative of the considered complex function. Kuhn’s algo-
rithm [15] overcomes this limitation, hence, it is successfully
used to find surface waves in microstrip antenna problems
[16]. The algorithm based on the simplex chain vertices search
(SCVS) [17], [18] and supplemented with the complex boarder
tracking (CBT) method [19] is applied to solve dispersion

equations in the complex domain, demonstrating high effi-
ciency and low numerical costs. Unfortunately, the majority
of root finding techniques is not suitable to search for roots
globally. Most of the methods is efficient when exploring small
regions with a few roots and favorable initial starting point.
However, an efficient and fast global complex roots and poles
finding algorithm (GRPF) based on the Delaunay triangulation
and phase analysis in the complex domain has been recently
proposed [20], [21]. This technique is based on sampling of
the function phase in nodes of a triangular mesh. Relying on
phase changes between nodes, candidate regions with possible
root/pole occurrence are selected. Subsequently, discretized
Cauchy’s argument principle (DCAP) is applied over the
candidate region to evaluate if any root or pole is indeed inside
the candidate region. This algorithm can be applied to a wide
class of analytic functions. However, it assumes a uniform
meshing in the first iteration. Hence, it can be inefficient if
an initial mesh is very wide, especially when large regions
are analysed on the complex plane. Moreover, the initial mesh
does not contain any random nodes. Hence, a procedure is
needed to validate if the initial mesh is fine enough to find
all roots and poles. Therefore, we decided to propose the
technique that employs the stochastic distribution of nodes
and executes differently in each run. Statistical probability of
omitting root/pole decreases with the number of runs. The
proposed algorithm also employs the phase analysis but the
mesh is obtained with the use of the stochastic distribution
of swarm particles. Hence, the PSO effectiveness of global
exploration and local exploitation is merged with a precise
selection of candidate regions obtained from the analysis of
the function phase.

III. THE MPSO-WPA ALGORITHM

The flowchart of the MPSO-WPA algorithm is presented in
Fig. 1. This algorithm is executed in the following steps:

A. Algorithm Initialization and Generation of Initial Swarm

Initialize algorithm parameters such as the algorithm ac-
curacy ε, the search area size, the number of particles in
the swarm population n, the inertia w, the scaling factor c,
the initial velocity of particles v0, the number of iterations
to create subsequent swarm a. Then, generate the uniformly
distributed random swarm on the complex plane

Zi,j = {zi,j,1, zi,j,2, ..., zi,j,n}. (3)

where i is the swarm number and j is the iteration number.
The indices i and j are equal to zero for the initial swarm
Z0,0, which is not updated in subsequent iterations.

B. Generation of the Second Global Swarm

Increase the index i and generate the second uniformly
distributed swarm on the complex plane. The second swarm is
generated to perform global exploration. Proceed to the step
D.
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C. Generation of Subsequent Local Swarm

Increase the index i and generate the subsequent swarm
on the complex plane. The swarm is split and distributed in
candidate regions. Subsequent local swarms are generated to
perform local exploitation of candidate regions. Proceed to the
step D.

D. Search for Regions Around Potential Root or Pole

Evaluate the function argument for each particle coordinates
and compute the phase quadrant in which the corresponding
function value is placed

Qi =


1, 0 ≤ arg f(zi) <

π
2

2, π
2 ≤ arg f(zi) < π

3, π ≤ arg f(zi) <
3π
2

4, 3π
2 ≤ arg f(zi) < 2π

 . (4)

Then, apply the Delaunay triangulation to particle coordi-
nates, i.e., generate triangular connections (i.e., edges) between
particles. Compute the quadrant distance along each of the
connections, i.e.,

∆Qp = Qp2 −Qp1. (5)

Search for connections such as |∆Qp| = 2. Particles connected
in this way must have different signs of the real and imaginary
parts of function values. These connections (called candidates)
are considered as a potential vicinity of either root or pole.
If candidate connections are not detected then the algorithm
execution is terminated, i.e., there is no root nor pole on the
complex plane. When any candidate connection is detected,
compute the coordinates of the centre of the candidate con-
nection and its length. If the longest length of the collected
candidate connections is less than the assumed accuracy, then
proceed to the step F. If the current iteration number j is equal
to the number of iterations to create subsequent swarm a, then
increase the swarm number i, set j = 0 and execute the loop
to the step C. In other cases, increase the iteration number j
and proceed to the next step E.

E. Exploitation of Candidate Regions

Compute distances between particle coordinates and coordi-
nates of candidate centres. For each particle, select the shortest
distance and store the corresponding coordinates of candidate
centre in the set

Pi,j = {pi,j,1, pi,j,2, ..., pi,j,n} (6)

where i is the swarm number and j is the iteration number.
Accelerate the particles in i-th swarm towards the closest p
by updating the velocity of each particle

Vi,j+1 = wVi,j + cu(Pi,j − Zi,j). (7)

In (7), Zi,j denotes the particle coordinates in the i-th swarm,
Pi,j denotes the coordinates of the closest candidate centres
relative to the particle coordinates of the i-th swarm, Vi,j
denotes the particle velocities of i-th swarm, c denotes the
scaling factor representing the attraction, w denotes inertia
weight which determines how much the particles remain along

their original direction, u denotes a random number between 0
and 1. The mathematical operations (i.e., addition, subtraction,
multiplication) are executed on corresponding array elements.
Then, update the coordinates of the population by

Zi,j+1 = Zi,j + Vi,j+1. (8)

Finally, go to the searching for candidates step D.

F. Verification of Root or Pole Occurrence

Confirm the existence of root or pole applying DCAP
by integrating quadrant differences along the path between
particles around the candidate region

q =
1

4

P∑
p=1

∆Qp. (9)

The parameter q is a positive integer when a root is found, a
negative integer when a pole is found and zero when there is
neither root nor pole in the selected region.

IV. NUMERICAL RESULTS

The analysis of surface waves on a microstrip antenna [16],
[21], [22] is a typical problem in microwave engineering
requiring the searching for roots. The eigenvalue equation
f(z) = 0 for this problem is formulated based on the following
function:

f(z) = z2tan2z + ε2rz
2 + ε2r(k0h)2(1− εrµr). (10)

In (10), h is the thickness of dielectric, εr, µr are respectively
the relative permittivity and permeability, and k0 = 2πf/c is
the wave number. Typical values used in benchmarks are as
follows: εr = 5 − 2i, µr = 1 − 2i, f = 1 GHz and h = 1
cm. The number of roots and poles found depends on the
size of analysed region. Most benchmarks are limited to a
small searching region with a few poles, e.g., |z| ≤ 1 with
fixed starting point. MPSO-WPA is very fast and efficient in
the case of only a few distant roots that are located in the
search region. Then, uniformly distributed particles converge
very fast. Each algorithm run is unique due to the stochastic
base of swarm distribution. Therefore, the computation time,
the number of iterations and the number of particles necessary
to obtain the assumed accuracy vary for each run. Exemplary
run results with particle movements in subsequent iterations
are presented in Fig. 2. The algorithm is executed on a
personal computer equipped with Intel i7-4700MQ processor.
The algorithm finds two roots ±(0.51511 − 0.50711i) in the
constrained area |z| ≤ 1. The MPSO-WPA algorithm tested in
five runs always returned the same root values. The obtained
results of computations for varying accuracy settings, to check
the computing time, the number of particles and iterations
necessary to converge, are presented in Table I. The average
execution time from five runs for the accuracy ε = 1E−15
is equal to 0.5 sec. On average, it involves 36 iterations with
the final population of 1970 particles. In comparison to the
results obtained by the multimodal genetic algorithm with
phase analysis (MGA-WPA) [23] and the GRPF algorithm
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Fig. 1. Flowchart of the MPSO-WPA algorithm.

[20], MPSO-WPA is slightly slower than both methods. The
MGA-WPA method requires about 0.44 sec whereas GRPF
requires 0.35 sec to converge in this case. It stems from
the global exploration performed by the second swarm in
regions that are far away from detected candidates. However,
the wide space exploration is an invaluable advantage of the
MPSO-WPA method, which in consequence does not allow
for the root/pole omission if the initial detection of candidate
regions fails. In the case of the problem with two roots, the
solution is found very fast. More difficult task is to explore
the space where multiple roots are close to each other. It is

Fig. 2. Distribution of swarm particles for analysis of surface waves on
microstrip antenna in region |z| ≤ 1. (a) Initial particle distribution. (b)
Particle distribution after first iteration. (c) Particle distribution after second
iteration. (d) Final particle distribution. Phase quadrants of particles on the
z-plane: • Q=1, • Q=2, • Q=3, • Q=4.

TABLE I
COMPUTATION TIME, NUMBER OF PARTICLES AND ITERATIONS

NECESSARY TO CONVERGE FOR VARYING ACCURACY

Accuracy Time (sec) Particles no. Iterations

1E-05 0.10 930 15

1E-06 0.12 1000 16

1E-07 0.13 1010 18

1E-08 0.15 1170 20

1E-09 0.17 1250 21

1E-10 0.21 1370 24

1E-11 0.26 1450 27

1E-12 0.28 1530 28

1E-13 0.30 1650 30

1E-14 0.38 1770 33

1E-15 0.50 1970 36

benchmarked by expanding the search region of the surface-
wave function to |z| ≤ 2. Exemplary run results, including
particle distributions as well as the Delaunay triangulation
applied to the final swarm distribution, are presented in Fig.
3. All roots and poles are found in the search region. It is
worth noticing that the Delaunay triangulation creates irregular
mesh of particle connections concentrated around roots and
poles. The subsequent swarms converge effectively towards
these points. The results of the analysis of surface waves on
the microstrip antenna with listed roots and poles found are
presented in Table II.
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Fig. 3. Distribution of swarm particles for analysis of surface waves on
microstrip antenna in region |z| ≤ 2. (a) Initial particle distribution. (b)
Final particle distribution. (c) Delaunay triangulation applied to final particle
distribution. (d) Zoomed mesh around single pole −1.57 + 0i and two roots
−1.62+0.18i and−1.52−0.17i. Phase quadrants of particles on the z-plane:
• Q=1, • Q=2, • Q=3, • Q=4.

TABLE II
ROOTS AND POLES FOUND IN SEARCH REGION |z| ≤ 2

Region Root/Pole Qualification

1 −1.6247 + 0.1821i root

2 −1.5708− (1.6567E − 6)i pole

3 1.5708− (1.4158E − 6)i pole

4 −0.5151 + 0.50711i root

5 1.6247− 0.1821i root

6 −1.5202− 0.17367i root

7 1.5202 + 0.17367i root

8 0.5151− 0.50711i root

V. CONCLUSION

This paper proposes the efficient MPSO-WPA algorithm to
solve complex equations occurring in microwave engineering
and electromagnetic theory. The algorithm merge stochastic,
population-based optimization technique with phase quadrant
analysis on the complex plane. Hence, the algorithm prevents
from omitting roots/poles due to the stochastic space explo-
ration by subsequent swarms. The results obtained with the use
of the MPSO-WPA algorithm are demonstrated and discussed.
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