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Abstract: The work aims to propose a novel approach for automatically identifying all instruments
present in an audio excerpt using sets of individual convolutional neural networks (CNNs)
per tested instrument. The paper starts with a review of tasks related to musical instrument
identification. It focuses on tasks performed, input type, algorithms employed, and metrics used.
The paper starts with the background presentation, i.e., metadata description and a review of
related works. This is followed by showing the dataset prepared for the experiment and its division
into subsets: training, validation, and evaluation. Then, the analyzed architecture of the neural
network model is presented. Based on the described model, training is performed, and several
quality metrics are determined for the training and validation sets. The results of the evaluation
of the trained network on a separate set are shown. Detailed values for precision, recall, and the
number of true and false positive and negative detections are presented. The model efficiency is
high, with the metric values ranging from 0.86 for the guitar to 0.99 for drums. Finally, a discussion
and a summary of the results obtained follows.
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1. Introduction

The identification of complex audio, including music, has proven to be complicated.
This is due to the high entropy of the information contained in audio signals, wide
range of sources, mixing processes, and the difficulty of analytical description, hence
the variety of algorithms for the separation and identification of sounds from musical
material. They mainly use spectral and cepstral analyses, enabling them to detect
the fundamental frequency and their harmonics and assign the retrieved patterns to
a particular instrument. However, this comes with some limitations, at the expense
of increasing temporal resolution, frequency resolution decreases, and vice versa. In
addition, it should be noted that these algorithms do not always allow the extraction
of percussive tones and other non-harmonic effects, which may therefore constitute a
source of interference for the algorithm, which may hinder its operation and reduce the
accuracy and reliability of the result.

Moreover, articulation such as glissando or tremolo causes frequency shifts in the
spectrum; transients may generate additional components in the signal spectrum. Another
important factor should be kept in mind: music in Western culture is based—to some
extent—on consonances, which, although pleasing to the ear, are based on frequency ratios
to fundamental tones. Thus, an obvious consequence is the overlap of harmonic tones in
the spectrum, which creates a problem for most algorithms.

It should be remembered that recording musical instruments requires sensors.
It is of enormous importance how a particular instrument is recorded. Indeed, the
acoustic properties of musical instruments, researched theoretically for many epochs,
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as well as sound engineering practice, prescribe how to register an instrument in a
given environment and conditions almost perfectly. These were the days of music
recording in studios with acoustics designed for that purpose or registering music
during a live concert with a lot of expertise on what microphones to use. On that basis,
identifying a musical instrument sound within a recording is reasonably affordable
both in terms of a human ear and automatic recognition. However, music instrument
recording and its processing have changed over the last few decades. Nowadays,
music is recorded everywhere and with whatever sensors are available, including
smartphones. As a consequence, the task of the automated identification process
became both much more intensive and necessary. This is because identifying musical
instruments is of importance in many areas no longer closely related to music, i.e.,
automatically creating sound for games, organizing music social services, separating
music mixes into tracks, amateur recordings, etc. Moreover, instruments may become
sensors addressing an interesting concept: could the sound of a musical instrument be
used to infer information about the instrument’s physical properties [1]? This is based
on the notion that any vibrating instrument body part may be used for measuring its
physical properties. Building new interfaces for musical expression (NIME) is another
paradigm related to new sonic creation and a new way of musical instrument sound
expression and performance [2]. Last but not least, smart musical instruments, a class of
IoT (Internet of Things) devices, should be mentioned in the context of music creation [3].
Turchet et al., devised a sound engine incorporating digital signal processing, sensor
fusion, and embedded machine learning techniques to classify the position, dynamics,
and timbre of each hit of a smart cajón [4].

Overall, both classical and sensor-based instruments need to be subject to sound
identification and further applications, e.g., computational auditory scene analysis
(CASA), human–computer interaction (HCI), music post-production, music information
retrieval, automatic music mixing, music recommendation systems, etc. The identi-
fication of various instruments in the music mix, as well as the retrieval of melodic
lines, belongs to the task of automatic music transcription (AMT) systems [5]. This also
concerns blind source separation (BSS) [6,7]. Moreover, some other methods should be
cited as they constitute the basis of BSS, e.g., independent component analysis (ICA) [8]
or empirical mode decomposition (EMD) [9].

However, the problem in some of the analyzed cases is the classification: assigning
the analyzed sample to a specific class, that is, in this case, the musical instrument. The
work aims to propose an algorithm for automatic identification of all instruments present
in an audio excerpt using sets of individual convolutional neural networks (CNN) per
tested instrument. The motivation for this work was the need for a flexible model where
any instrument could be added to the previously trained neural network. The novelty of
the proposed solution lies in splitting the model into separate processing paths, one per
instrument to be identified. Such a solution allows using models with various architecture
complexity for different instruments, adding new submodels to the previously trained
model, or replacing one instrument for another.

The paper starts with a review of tasks related to musical instrument identification.
It focuses on the tasks performed, input type, algorithms employed, and metrics used.
The main part of the study shows the dataset prepared for the experiment and its division
into subsets: training, validation, and evaluation. The following section presents the
analyzed architecture of the neural network model and its flexibility to expand. Based
on the described model, training is performed, and several identification quality metrics
are determined for training and validation sets. Then, the results of the evaluation of the
trained network on a separate set are shown. Finally, a discussion and a summary of the
results obtained follows.
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2. Study Background
2.1. Metadata

The definition of metadata refers to data that provides information about other data.
Metadata is also one of the basic sources of information about songs and audio samples.
The ID3v2 informal standard [10] evolved from the ID3 tagging system, and it is a container
of additional data embedded in the audio stream. Besides the typical parameters of the
signal based on the MPEG-7 standard [11], information such as the performer, music genre,
the instruments used, etc., usually appears in the metadata [12,13].

While in the case of newly created songs, individual sound examples, and music
datasets, this information is already inserted in the audio file, older databases may not have
such metadata tags. This is of particular importance when the task considered is to name
all musical instruments present in a song by retrieving an individual stem from an audio
file [14–17]. To this end, two approaches are still seen in this research area. The first consists
of extracting a feature vector (FV) containing audio descriptors and using the baseline
machine learning algorithms [12,15–27]. The second is based on the 2D audio representation
and a deep learning model [28–41], or a more automated version when a variational or
deep softmax autoencoder is used for the audio representation retrieval [32,42]. Therefore,
by employing machine learning, it is possible to implement a classifier for particular genres
or instrument recognition.

An example of a precisely specified feature vector in the audio domain is the MEPG-7 stan-
dard, described in ISO/IEC 15938 [11]. It contains descriptors divided into six main groups:

1. Basic: based on the value of the audio signal samples;
2. BasicSpectral: simple time–frequency signal analysis;
3. SpectralBasis: one-dimensional spectral projection of a signal prepared primarily to

facilitate signal classification;
4. SignalParameters: information about the periodicity of the signal;
5. TimbralTemporal: time and musical timbre features;
6. TimbralSpectral: description of the linear–frequency relationships in the signal.

Reviewing the literature that describes the classification of musical instruments, it can
be seen that this has been in development for almost three decades [17,18,25,28,36,41]. These
works use various sets of signals and statistical parameters for the analyzed samples, standard
MPEG-7 descriptors, spectrograms, mel-frequency cepstral coefficients (MFCC), or constant-
Q transform (CQT)—the basis for their operation. Similar to the input data, the baseline
algorithms employed for classification also differ. They are as follows: HMM (hidden Markov
model), k-NN (k-nearest neighbors) classifier, SOM (self-organizing map), SVM (support
vector machine), decision trees, etc. Depending on the FVs and algorithms applied, they
achieve an efficiency of even 99% for musical instrument recognition. However, as already
said, some issues remain, such as instruments with differentiated articulation. The newer
studies refer to deep models; however, the outcome of these works varies between works.

2.2. Related Work

Musical instrument identification also has a vital role in various classification tasks in
audio fields. One such example is genre classification. In this context, many algorithms were
used but obtained similar results. It should be noted that a music genre is conditioned by
the instruments present in a musical piece. For example, the cello and saxophone are often
encountered in jazz music, whereas the banjo is almost exclusively associated with country
music. In music genre classification, several well-known techniques have been used, such
as SVM (support vector machine) [14,19,25,26,33], ANN (artificial neural networks) [24,40],
etc., as well as CNN (convolutional neural networks) [28,30,34–40], RNN (recurrent neural
networks) [28,41], and CRNN (convolutional recurrent neural network) [31,34].

Table 1 shows an overview of various algorithms and tasks described above along
with the obtained results [14–16,18–31,33–41].
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Table 1. Related work.

Authors Year Task Input Type Algorithm Metrics

Avramidis K., Kratimenos A., Garoufis
C., Zlatintsi A., Maragos P. [28] 2021 Predominant instrument

recognition Raw audio

RNN (recurrent neural networks),
CNN (convolutional neural networks),
and CRNN (convolutional recurrent

neural network)

LRAP (label ranking average
precision)—0.747
F1 micro—0.608
F1 macro—0.543

Kratimenos A., Avramidis K., Garoufis
C., Zlatintsi, A., Maragos P. [36] 2021 Instrument identification CQT (constant-Q transform) CNN

LRAP—0.805
F1 micro—0.647
F1 macro—0.546

Zhang F. [41] 2021 Genre detection MIDI music RNN Accuracy—89.91%
F1 macro—0.9

Shreevathsa P. K., Harshith M., A. R.
M. and Ashwini [40] 2020 Single instrument

classification
MFCC (mel-frequency

cepstral coefficient)
ANN (artificial neural networks)

and CNN
ANN accuracy—72.08%
CNN accuracy—92.24%

Blaszke M., Koszewski D.,
Zaporowski S. [30] 2019 Single instrument

classification MFCC CNN
Precision—0.99

Recall—1.0
F1 score—0.99

Das O. [33] 2019 Single instrument
classification

MFCC and WLPC (warped
linear predictive coding)

Logistic regression and SVM (support
vector machine) Accuracy—100%

Gururani S., Summers C., Lerch A. [34] 2018 Instrument identification MFCC CNN and CRNN AUC ROC—0.81

Rosner A., Kostek B. [26] 2018 Genre detection FV (feature vector) SVM Accuracy—72%

Choi K., Fazekas G., Sandler M.,
Cho K. [31] 2017 Audio tagging MFCC CRNN (convolutional recurrent

neural network)
ROC AUC (receiver operator

characteristic)—0.65-0.98

Han Y., Kim J., Lee K. [35] 2017 Predominant instrument
recognition MFCC CNN F1 score macro—0.503

F1 score micro—0.602

Pons J., Slizovskaia O., Gong R.,
Gómez E., Serra X. [39] 2017 Predominant instrument

recognition MFCC CNN F1 score micro—0.503
F1 score macro—0.432

Bhojane S.B., Labhshetwar O.G.,
Anand K., Gulhane S.R. [29] 2017 Single instrument

classification
FV

(MIR Toolbox) k-NN (k-nearest neighbors)
A system that can listen to the
musical instrument tone and

recognize it (no metrics shown)

Lee J., Kim T., Park J., Nam J. [37] 2017 Instrument identification Raw audio CNN
AUC ROC—0.91
Accuracy—86%
F1 score—0.45%
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Table 1. Cont.

Authors Year Task Input Type Algorithm Metrics

Li P., Qian J., Wang T. [38] 2015 Instrument identification Raw audio, MFCC, and CQT
(constant-Q transform) CNN Accuracy—82.74%

Giannoulis D., Benetos E., Klapuri A.,
Plumbley M. D. [20] 2014 Instrument identification CQT (constant-Q transform

of a time domain signal)
Missing feature approach with AMT

(automatic music transcription) F1—0.52

Giannoulis D., Klapuri A., [21] 2013 Instrument recognition in
polyphonic audio A variety of acoustic features

Local spectral features and
missing-feature techniques, mask

probability estimation
Accuracy—67.54%

Bosch J. J., Janer J., Fuhrmann F.,
Herrera P. [14] 2012 Predominant instrument

recognition Raw audio SVM F1 score micro—0.503
F1 score macro—0.432

Heittola T., Klapuri A., Virtanen T. [16] 2009 Instrument recognition in
polyphonic audio MFCC NMF (non-negative matrix

factorization) and GMM F1 score—0.62

Essid S., Richard G., David B. [19] 2006 Single instrument
classification MFCC and FV GMM (Gaussian mixture model)

and SVM Accuracy—93%

Kostek B. [23] 2004
Single instrument

classification
(12 instruments)

Combined MPEG-7 and
Wavelet-Based FVs ANN Accuracy—72.24%

Eronen A. [15] 2003 Single instrument
classification MFCC ICA (independent component analysis)

ML and HMM (hidden Markov model) Accuracy between: 62–85%

Kitahara T., Goto M., Okuno H. [22] 2003 Single instrument
classification FV Discriminant function

based on the Bayes decision rule Recognition rate—79.73%

Tzanetakis G., Cook P. [27] 2002 Genre detection FV and MFCC SPR (subtree pruning–regrafting) Accuracy—61%

Kostek B., Czyżewski A. [24] 2001 Single instrument
classification FV ANN Accuracy—94.5%

Eronen A., Klapuri A. [18] 2000 Single instrument
classification FV k-NN Accuracy—80%

Marques J., Moreno P. J. [25] 1999 Single instrument
classification MFCC GMM and SVM Error rate—17%
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As already mentioned, the aim of this study is to build an algorithm for automatic
identification of instruments present in an audio excerpt using sets of individual convolu-
tional neural networks (CNN) per tested instrument. Therefore, a flexible model where any
instrument could be added to the previously trained neural network should be created.

3. Dataset

In our study, the Slakh dataset was used, which contains 2100 audio tracks with
aligned MIDI files, and separate instrument stems along with tagging [43]. From all of
the available instruments, four were selected for the experiment: bass, drums, guitar, and
piano. After selection, each song was split into 4-second excerpts. If the level of instrument
signal in the extracted part was lower than −60 dB, then this instrument was excluded
from the example. This made it possible to decrease computing costs and increase the
instrument count in the mix variability. Additionally, each part has a randomly selected
gain for all instruments separately. An example of spectrograms of selected instruments
and the prepared mix are presented in Figure 1.
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Figure 1. Example of spectrograms of selected instruments and the prepared mix.

The examples were then stored using the NumPy format on files that contain mixed
signals, instrument references, and vectors of labels to indicate which instruments were
used in the mix [44].

To achieve repeatability of the training results, the whole dataset was a priori divided
into three parts, but with the condition that a single audio track cannot be split into
each part:

1. Training set—116,413 examples;
2. Validation set—5970 examples;
3. Evaluation set—6983 examples.

The number of individual instrument appearances in the mix is not similar, to not
favor any of them. A class weighting vector is passed to the training algorithm to balance
the results between instruments. Calculated weights are as follows:

4. Bass—0.65
5. Guitar—1.0
6. Piano—0.78
7. Drums—0.56
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Furthermore, the number of instruments in a given sample also varies. Due to the
structure of music pieces, the largest part (about 1/3 of all of the examples in the dataset)
contains three instruments. Four, two, and then one instrument populate the remaining
parts. In addition, music samples that do not have any instrument are introduced to
the algorithm input to train the system to understand that such a case can also occur.
Histograms of the instrument classes in the mixes and the number of instruments in a mix
are presented in Figures 2 and 3.
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4. Model

The proposed neural network was implemented using the Keras framework and func-
tional API [45]. The model initially produces MFCC (mel frequency cepstral coefficients)
from the raw audio signal using built-in Keras methods [46]. The parameters for those
operations are as follows:

• 1024 samples Hamming window length;
• 512 samples window step;
• 40 MFCC bins.

In contrast to other methods where a single model performs identification or classifi-
cation of all instruments, the used model employs sets of individual identically defined
submodels—one per instrument. The proposed architecture contains 2-dimensional convo-
lution layers in the beginning. The number of filters was, respectively, 128, 64, and 32 with
(3, 3) kernels and the ReLU activation function [47]. In addition, 2-dimensional max pulling
and batch normalization are incorporated into the model after each convolution [48–50]. To
obtain the decision, four dense layers were used with 64, 32, 16, and 1 unit, respectively [50].
The model contains 706,182 trainable parameters. The topology of the network is presented
in Figure 4.
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The simplified code for model preparation is presented below. Each instrument has its
own model preparation function, where a new model could be created, or a pre-trained
model could be loaded. In the last operation, outputs from all models are concatenated and
set as a whole model output.

def prepareModel(input_shape):

dense_outputs = []
input = Input(shape = input_shape)
mfcc = prepareMfccModel(input)
dense_outputs.append(prepareBassModel(mfcc))
dense_outputs.append(prepareGuitarModel(mfcc))
dense_outputs.append(preparePianoModel(mfcc))
dense_outputs.append(prepareDrumsModel(mfcc))
concat = Concatenate()(dense_outputs)
model = Model(inputs = input, outputs = concat)
return model
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4.1. Training

The training was performed using the Tensorflow framework for the Python language.
The model was trained for 100 epochs with the mean squared error (MSE) as the loss
function. Additionally, during training, the precision, recall, and AUC ROC (area under
the receiver operating characteristic curve) were calculated. The best model was selected
based on the AUC ROC metric [51]. Precision is a ratio of true positive examples to all
examples identified as an examined class. The definition of this metric is presented in
Equation (1) [52].

precision =
True Positives

True Positives + False Positives
(1)

The recall ratio of true positive examples to all examples in the examined class is
defined by Equation (2):

recall =
True Positives

True Positives + False Negatives
(2)

Additionally, for evaluation purposes, the F1 score was used [53]. This metric rep-
resents a harmonic mean of precision and recall. The exact definition is presented in
Equation (3) [52].

F1 score = 2· precision·recall
precision + recall

(3)

The receiver operating characteristic (ROC) shows a trade-off between true and false
positive results in the function of various decision thresholds. The ROC and AUC ROC are
illustrated in Figure 5. We included this illustration to visualize the importance of true and
false positives in the identification process.
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Figure 5. Example of the receiver operating characteristic and area under the curve.

Precision, recall, and AUC ROC calculated during training are presented in Figures 6
and 7. On the training set, recall starts from 0.67 and increases to 0.93. Precision starts from
a higher value, 0.78, and increases throughout the whole training process to 0.93. AUC
ROC builds up from the lowest value, 0.63, but increases to the highest value, 0.96. The
values of the metrics for the validation sets look similar to those of the training set. During
training, both metrics increase to 0.95 and 0.97 for the training set and, respectively, 0.95
and 0.94 for the validation set. The recall starts from 0.84 and increases to 0.93, precision
from 0.82 to 0.92, and AUC ROC from 0.74 to 0.95.

The training was performed using a single RTX2070 graphics card with an AMD Ryzen
5 3600 processor and 32 GB of RAM. The duration of a single epoch is about 8 min using
multiprocessing data loading and with a batch size of 200.

4.2. Evaluation Results and Discussion

The evaluation was carried out using a set of 6983 examples prepared from audio
tracks not presented in the training and validation sets. The processing time for a single
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example was about 0.44 s, so the algorithm works approx. 10 times faster than real-time.
The averaged results for individual metrics are as follows:

• Precision—0.92;
• Recall—0.93;
• AUC ROC—0.96;
• F1 score—0.93.
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Figure 7. Metrics achieved by the algorithm on the validation set.

The individual components of precision and recall are as follows:

• True positive—17,759;
• True negative—6610;
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• False positive—1512;
• False negative—1319.

Based on the results obtained, more detailed analyses were also carried out, discerning
individual instruments. The ROC curves are presented in Figure 8. They indicate that the
most easily identifiable class is percussion, which can obtain a true positive rate of 0.95
for a relatively low false positive rate of about 0.01. The algorithm is slightly worse at
identifying bass because to achieve similar effectiveness, the false positive rate for the bass
would have to be 0.2. When it comes to guitar and piano, to achieve effectiveness of about
0.9, one has to accept a false positive rate of 0.27 and 0.19, respectively.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 5 
 

 

 
Figure 8. ROC curves for each instrument tested. 

Detailed values for precision, recall, and the number of true and false positive and 
negative detections are presented in Table 2. By comparing these results with the ROC 
plot in Figure 8, one can see confirmation that the model is more capable of recognizing 
drums and also bass. Looking at the metric values for guitar, one can see that the model 
has a similar trend when resulting in the samples received as false negatives and false 
positives. For the piano, the opposite happens, i.e., more samples are marked as false 
positives. Table 3 presents the confusion matrix. 

Table 2. Results per instrument. 

Metric Bass Drums Guitar Piano 
Precision 0.94 0.99 0.82 0.87 

Recall 0.94 0.99 0.82 0.91 
F1 score 0.95 0.99 0.82 0.89 

True positive 5139 6126 2683 3811 
True negative 1072 578 2921 2039 
False positive 288 38 597 589 
False negative 301 58 599 361 

Table 3. Confusion matrix (in percentage points). 

 
Ground Truth Instrument [%] 

Bass Guitar Piano Drums 

Predicted instrument 

Bass 81 8 7 0 
Guitar 4 69 13 0 
Piano 5 12 77 0 

Drums 3 7 6 82 

4.3. Redefining the Models 
Using the ability of the model’s infrastructure to easily swap entire blocks for indi-

vidual instruments, an additional experiment was conducted. Submodels for drums and 
guitar were changed to smaller and bigger ones. A detailed comparison of the block 
structure before and after the changes introduced is shown in Table 4. 

  

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

Bass

Drums

Guitar

Piano

Figure 8. ROC curves for each instrument tested.

Detailed values for precision, recall, and the number of true and false positive and
negative detections are presented in Table 2. By comparing these results with the ROC
plot in Figure 8, one can see confirmation that the model is more capable of recognizing
drums and also bass. Looking at the metric values for guitar, one can see that the model
has a similar trend when resulting in the samples received as false negatives and false
positives. For the piano, the opposite happens, i.e., more samples are marked as false
positives. Table 3 presents the confusion matrix.

Table 2. Results per instrument.

Metric Bass Drums Guitar Piano

Precision 0.94 0.99 0.82 0.87

Recall 0.94 0.99 0.82 0.91

F1 score 0.95 0.99 0.82 0.89

True positive 5139 6126 2683 3811

True negative 1072 578 2921 2039

False positive 288 38 597 589

False negative 301 58 599 361

4.3. Redefining the Models

Using the ability of the model’s infrastructure to easily swap entire blocks for individ-
ual instruments, an additional experiment was conducted. Submodels for drums and guitar
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were changed to smaller and bigger ones. A detailed comparison of the block structure
before and after the changes introduced is shown in Table 4.

Table 3. Confusion matrix (in percentage points).

Ground Truth Instrument [%]

Bass Guitar Piano Drums

Predicted
instrument

Bass 81 8 7 0

Guitar 4 69 13 0

Piano 5 12 77 0

Drums 3 7 6 82

Table 4. Comparison between the first submodel and models after modification.

Block Number Unified Submodel Guitar Submodel Drums Submodel

1

2D convolution:

• Kernel—3 × 3
• Filters—128

2D Max pooling:

• Kernel 2 × 2

Batch Normalization

2D convolution:

• Kernel—3 × 3
• Filters—256

2D Max pooling:

• Kernel 2 × 2

Batch Normalization

2D convolution:

• Kernel—3 × 3
• Filters—64

2D Max pooling:

• Kernel 2 × 2

Batch Normalization

2

2D convolution:

• Kernel—3 × 3
• Filters—62

2D Max pooling:

• Kernel 2 × 2

Batch Normalization

2D convolution:

• Kernel—3 × 3
• Filters—128

2D Max pooling:

• Kernel 2 × 2

Batch Normalization

2D convolution:

• Kernel—3 × 3
• Filters—32

2D Max pooling:

• Kernel 2 × 2

Batch Normalization

3

2D convolution:

• Kernel—3 × 3
• Filters—32

2D Max pooling:

• Kernel 2 × 2

Batch Normalization

2D convolution:

• Kernel—3 × 3
• Filters—64

2D Max pooling:

• Kernel 2 × 2

Batch Normalization

2D convolution:

• Kernel—3 × 3
• Filters—16

2D Max pooling:

• Kernel 2 × 2

Batch Normalization

4
Dense Layer:

• Units—64
Dense Layer:

Units—64
Dense Layer:

Units—64

5 Dense Layer:
Units—32

Dense Layer:
Units—32

Dense Layer:
Units—32

6 Dense Layer:
Units—16

Dense Layer:
Units—16

Dense Layer:
Units—16

7 Dense Layer:
Units—1

Dense Layer:
Units—1

Dense Layer:
Units—1

AUC ROC curves calculated during the training and validation stages are presented in
Figures 9 and 10. The training and validation curves look similar, but the modified model
achieves better results by about 0.01.
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4.4. Evaluation Result Comparison

The evaluation of the new model was prepared based on the same conditions as in
Section 4.2. A comparison of results for the first submodel and models after modifications
is presented in Table 5, whereas Table 6 shows results per modified instrument. Because
of rounding metric values to two decimal places, the differences are not strongly visible
when looking at the entire evaluation set. However, comparing true positive, true negative,
and false positive, all those measures are higher on the modified model than on the unified
model, namely, of about 200 examples. The only value of the false negative examples is
worse in 61 examples. Looking at the results of changed instruments, one can see that
the smaller model for drums performs similarly compared to the unified model. A larger
model obtained for guitar presents better results on precision and F1 score.

Table 5. Comparison between the first submodel and models after modifications.

Metric Unified Model Modified Model

Precision 0.92 0.93

Recall 0.93 0.93

AUC ROC 0.96 0.96

F1 score 0.93 0.93

True positive 17,759 17,989

True negative 6610 6851

False positive 1512 1380

False negative 1319 1380
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Table 6. Results per modified instrument models.

Drums Guitar

Metric Unified
Model

Modified
Model

Unified
Model

Modified
Model

Precision 0.99 0.99 0.82 0.86

Recall 0.99 0.99 0.82 0.8

F1 score 0.99 0.99 0.82 0.83

True positive 6126 6232 2683 2647

True negative 578 570 2921 3150

False positive 38 47 597 444

False negative 58 51 599 659

The ROC curves for the unified and modified models are presented in Figure 11.
Focusing on the modified models for drums and guitar, it could be noticed that the smaller
model for drums has an almost identical shape to the ROC curve. In contrast, the guitar
model shows better results using a bigger model, e.g., the true positive rate increases from
0.72 to 0.77, whereas false positive rate equals 0.1.
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Figure 12 presents reduced heatmaps for the last convolutional layers per iden-
tified instrument for one of the examples from the evaluation dataset. Comparing
heatmaps between each other, one can see that the bass model focuses mainly on lower
frequencies for the whole signal, guitar on low and mid frequencies, piano on mid and
high frequencies but also the whole signal, and finally, drums for all of the frequencies
and short-time signals.
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5. Discussion

The presented results show that it is possible to determine the instruments present in
a given excerpt of a musical recording with a precision of 93% and an F1 score of 0.93 using
a simple convolutional network based on the MFCC.

The experiment also shows that the effectiveness of identification depends on the
instrument tested. The drums are more easily identifiable, while the guitar and piano
produced worse results.

The current state of the art in audio recognition fields focuses on single or predominant
instrument recognition and genre classification. With regard to the results of those tasks, an
accuracy of about 100% can be found, but when looking at musical instrument recognition
results, the metric values are lower, e.g., AUC ROC of approximately 0.91 [37] or F1 score
of about 0.64 [36]. The proposed solution can achieve an AUC ROC of about 0.96 and an F1
score of about 0.93, outperforming the other methods.

An additional difference compared to state-of-the-art methods is the flexibility of
the model. The presented results show that an operation of a submodel switch allows,
for example, reducing the size of the model in the case when the instrument is readily
identifiable without affecting the architecture of the other identifiers. Thus, it is possible
to save computational power compared to a model with a large, unified architecture. On
the other hand, the submodel can be increased to improve the results for an instrument
presenting poorer quality without affecting the other instruments under the study.

6. Conclusions

The novelty of the proposed solution lies in the model architecture, where every
instrument has an individual and independent identification path. It produces outputs
focused on specific patterns in the MFCC signal depending on the examined instrument,
opposite to state-of-the-art methods, where a single convolutional part obtains one pattern
per all instruments.

The proposed framework is very flexible, so it could use instrument models with vari-
ous complexity—more advanced for those with weaker results and more straightforward
for those with better results. Another advantage of this flexibility is the opportunity to
extend the model with more instruments by adding new submodels in the architecture
proposed. This thread will be pursued further, especially as a new dataset is being prepared
that will contain musical instruments that are underrepresented in music repositories, i.e.,
the harp, Rav vast, and Persian cymbal (santoor). Recordings of these instruments are
created with both dynamic and condenser microphones at various distances and angles
of microphone positioning, and they will be employed for creating new submodels in the
identification system.

Additionally, the created model will be worked on toward on-the-fly musical instru-
ment identification as this will enable its broader applicability in real-time systems.

Moreover, we may use other neural network structures as known in the litera-
ture [54,55], e.g., using sample-level filters instead of frame-level input representa-
tions [56], and trying other approaches to music feature extraction, e.g., including
derivation of rhythm, melody, and harmony and determining their weights by em-
ploying the exponential analytic hierarchy process (AHP) [57]. Lastly, the model
proposed may be tested with audio signals other than music, such as classification of
urban sounds [58].
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