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ABSTRACT
We extend our recently developed quantum-mechanical/molecular mechanics (QM/MM) approach [Dziedzic et al., J. Chem.
Phys. 145, 124106 (2016)] to enable in situ optimization of the localized orbitals. The quantum subsystem is described with
ONETEP linear-scaling density functional theory and the classical subsystem – with the AMOEBA polarizable force field. The
two subsystems interact via multipolar electrostatics and are fully mutually polarizable. A total energy minimization scheme
is employed for the Hamiltonian of the coupled QM/MM system. We demonstrate that, compared to simpler models using
fixed basis sets, the additional flexibility offered by in situ optimized basis functions improves the accuracy of the QM/MM
interface, but also poses new challenges, making the QM subsystem more prone to overpolarization and unphysical charge
transfer due to increased charge penetration. We show how these issues can be efficiently solved by replacing the classical
repulsive van der Waals term for QM/MM interactions with an interaction of the electronic density with a fixed, repul-
sive MM potential that mimics Pauli repulsion, together with a modest increase in the damping of QM/MM polarization.
We validate our method, with particular attention paid to the hydrogen bond, in tests on water-ion pairs, the water dimer,
first solvation shells of neutral and charged species, and solute-solvent interaction energies. As a proof of principle, we
determine suitable repulsive potential parameters for water, K+, and Cl−. The mechanisms we employed to counteract the
unphysical overpolarization of the QM subsystem are demonstrated to be adequate, and our approach is robust. We find
that the inclusion of explicit polarization in the MM part of QM/MM improves agreement with fully QM calculations. Our
model permits the use of minimal size QM regions and, remarkably, yields good energetics across the well-balanced QM/MM
interface.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5080384

I. INTRODUCTION

Molecular dynamics (MD) is a well-established technique
for simulating the structure and properties of systems at the
atomic scale, with over four decades of applications in bio-
chemistry and materials science, among other fields. The aim
of MD is to predict macroscopic behavior from microscopic

interactions,1 and the validity of results strongly depends
on how accurately these interactions are described by the
molecular mechanics (MM) potential.

The continual increase in available computational power
not only extends the scope of MD to larger systems and longer
time scales but also enables the refinement of MM models
describing inter- and intra-molecular interactions. The last
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two decades have witnessed the emergence of force fields that
directly capture many-body polarization effects, setting out
to circumvent well-known deficiencies of pairwise-additive,
fixed point charge models.2–5 Unable to directly account
for polarization, fixed point charge force fields struggle to
describe, e.g., the interactions of ions with π-electron systems
or polar solutes in low-dielectric media,6 and they are typ-
ically poorly transferable to environments or phases differ-
ent from those that they were parameterized for, such as
interfaces.7

The non-additive, many-body nature of polarization
interactions makes polarizable models more involved and
computationally demanding. Consequently, a variety of com-
peting treatments of polarization exists (see Refs. 7–9 for
a review): Drude oscillators,10,11 fluctuating charges,12,13

induced point dipoles,14–21 or even induced multipoles of
higher order.22 The AMOEBA force field,15–18 which is of
particular significance to this work, describes polarization
interactions using damped, induced, point dipoles, while for
permanent electrostatics, it employs fixed multipoles up to a
quadrupole in lieu of point charges.

Purely classical models, however sophisticated, cannot
describe electronic properties, such as bandgaps or solvent
shifts, or processes that intrinsically depend on the elec-
tronic degrees of freedom, such as bond-breaking. To properly
model electronic phenomena, it becomes necessary to employ
quantum-mechanical (QM) methods. In practical applications,
density functional theory (DFT) is arguably the most com-
monly used approach,23 owing to its relatively low computa-
tional cost. Even so, length scales (∼10–100 nm) and timescales
(∼1 µs) typically used in classical MD simulations remain
beyond the scope of DFT today.

QM/MM combines the quantum and classical descrip-
tions, exploiting the fact that the properties of interest are
often localized to a part of the system that can be described
quantum mechanically, such as a molecule, embedded in an
environment that can be described more approximately with
MM, e.g., a solvent. Since the seminal work of Warshel and
Levitt,24 a profusion of QM/MM approaches has been pro-
posed, targeting different types of systems and varying in the
level of sophistication (see, e.g., Refs. 25–36). Even a brief
review of QM/MM methods is beyond the scope of this paper;
however, we refer interested readers to reviews of QM/MM
methods and applications in enzymology,37 biochemistry,38

and materials science.39

Recent improvements in force fields promptly become
integrated into QM/MM methodologies, and several
approaches combining QM with polarizable forcefields
(dubbed QM/MMpol) have already been proposed. Many
of those approaches employ induced dipoles40–55 to model
polarization, and others use fluctuating charges56–59 or Drude
oscillators.60,61 Typically, the full QM density is used for all
electrostatic QM/MM interactions,5,52,55 but using auxiliary
multipolar representations of QM (for efficiency or conve-
nience) has also been proposed.51,62 Several groups have
developed models specifically focused on electronic excita-
tions, using polarizable embedding alongside time-dependent

density functional theory (TDDFT),42,43,45,46,50,54,57,59,63

where dynamic mutual polarization poses an additional
challenge.46

We recently presented51 a novel QM/MM approach
(TINKTEP), which combines the DFT methodology of ONETEP64,65

and the polarizable force field AMOEBA,15,17,18,66 as imple-
mented in TINKER.16 In the TINKTEP approach, the QM and MM
subsystems are coupled electrostatically and undergo mutual
polarization. The electrostatic effect of the MM subsystem is
included in the QM Hamiltonian, polarizing the QM subsys-
tem by deforming its electronic charge density. Conversely,
the electric field of the QM subsystem is included in the direct
field that drives the polarization of the MM subsystem. A total
energy minimization scheme is employed for the Hamiltonian
of the coupled QM/MM system. A distinguishing feature of
our approach is the use of linear-scaling DFT65,67 to describe
the QM subsystem with the aim of, ultimately, undertaking
QM/MMpol calculations with QM regions spanning thousands
of atoms.

The main limitation of our first TINKTEP model, as presented
in Ref. 51, was its use of fixed localized orbitals, which rep-
resented a trade-off between simplicity and energy accuracy.
In this work, we describe an extension of TINKTEP to the case
where the localized orbitals are optimized in situ. The ratio-
nale for using optimized orbitals is the near-complete-basis-
set accuracy that they offer, even when a minimal basis is used.
The resultant accuracy is comparable or superior to even very
large bases with fixed orbitals.68

Incorporating in situ orbital optimization requires com-
puting gradients of all energy terms with respect to the expan-
sion coefficients of the localized orbitals. We present the
relevant derivation and describe how the calculation can
be implemented to run in linear-scaling time. We subse-
quently focus on the difficulties that arise as a consequence of
using optimized orbitals – QM overpolarization and unphys-
ical charge transfer from QM to MM – and discuss workable
solutions to these two problems, using simple QM/MM sys-
tems to illustrate our points. We finish by demonstrating the
stability, robustness, and accuracy of our model on a num-
ber of test cases. We arrive at a robust, mutually polariz-
able QM/MM model with linear-scaling QM cost, which we
show to be more accurate than a non-polarizable QM/GAFF
(Generalized AMBER Force Field) approach, not only in terms
of reducing the electrostatic disruption to the QM subsystem
but also in terms of improved energetics across the QM/MM
interface.

This paper is organized as follows. In Sec. II, we recount
the original (fixed-orbital) TINKTEP approach. In Sec. III, we
outline the generalization to in situ optimized orbitals and
describe the additional steps that we found to be necessary
for obtaining a well-behaved method. The additional steps are
best justified using case studies, which, in the interest of clar-
ity of discussion, we relegated to Appendixes A and B. Sec-
tion IV is devoted to validation and demonstration of the utility
of the proposed approach on a number of carefully selected
systems. Conclusions and closing remarks are found in
Sec. V.
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II. METHOD
A. Conventions and notation

We follow the sign convention where electrons are pos-
itively charged. Atomic units are used throughout the text,
unless indicated otherwise. Quantities typeset in bold denote
Cartesian column vectors (positions r, electric fields E, dipoles
µ , etc.) or Cartesian tensors of rank 2 (e.g., T d-d

LM). Matri-
ces with dimensions other than 3 × 3 are typeset with
blackboard capitals (e.g., K). Indices A, B, and C always
refer to atoms in the QM subsystem, and indices L and
M refer to atoms in the MM subsystem. Localized orbitals
are indexed with Greek symbols. By van der Waals inter-
actions, we will mean the sum of the repulsive and dis-
persive terms, referring to the attractive term simply as
“dispersion.”

B. Initial (fixed-orbital) TINKTEP approach
We begin the exposition of the method by briefly recount-

ing the general idea behind TINKTEP – our first QM/MM
approach proposed in Ref. 51. The system is separated into a
QM subsystem and an MM subsystem, with the assumption
that the separation does not cut through covalent bonds. The
total energy of the coupled system is given by

E = EQM + EMM + EQM/MM. (1)

The QM region is described by the density matrix formulation
of DFT in the pseudopotential approximation,

EQM =

∫ [
−

1
2
∇2
r′ρ(r, r′)

]

r′=r
dr +

∫
vext(r)n(r)dr

+
1
2

∫∫
n(r)n(r′)
|r − r′ |

drdr′ + EQM
XC [n]

+
1
2

NQM∑
A

NQM∑
B,A

ZAZB

|RB − RA |
+ EQM

disp({RA }), (2)

with the above terms describing, respectively, the kinetic
energy of valence electrons, the Coulombic energy of valence
electrons in the (pseudo)potential vext(r) of the ionic cores,
the Hartree energy, the exchange-correlation energy, the
mutual Coulombic interaction of NQM cores having charges
{ZI } and positions {RI }, and empirical dispersion-correction.
Open boundary conditions have been assumed. ρ(r, r′) is the
density matrix given by

ρ(r, r′) =
∑
αβ

ϕα (r)Kαβϕ∗β (r′), (3)

where ϕα(r) are non-orthogonal generalized Wannier func-
tions (NGWFs),69 which are strictly localized within atom-
centered spherical regions. K =

[
Kαβ

]
, termed the density

kernel, is the matrix representation of the density matrix in
the duals of the NGWFs. The electronic (pseudo)density n(r) is
given by

n(r) = ρ(r, r), (4)

where we assumed a closed-shell system in the interest
of brevity. The last term, EQM

disp, is an empirical dispersion-
correction term, which accounts for the well-known defi-
ciency of generalized gradient approximation (GGA) DFT in
describing dispersion interactions.70 The exact expression
depends on the model used, but the general form is that of
a double sum of pairwise terms. This work uses the Elst-
ner71 formulation, with parameters determined by Hill and
Skylaris.70

The MM subsystem is described by the AMOEBA18 polar-
izable force-field, as implemented in the TINKER16 code, with
the following general energy expression:

EMM = EMM
perm + EMM

pol + EMM
val + EMM

vdW, (5)

with the four energy components accounting for permanent
electrostatic interactions, polarization, short-range valence
interactions, and van der Waals interactions,
respectively.

EMM
perm is a sum of purely Coulombic multipolar interactions

between atoms in the MM subsystem, with scaling factors17

used to attenuate or eliminate interactions between first-,
second-, third-, and fourth-nearest neighbors (as determined
by bond connectivity). The full expression is given in Ref. 18,
Eqs. (1) and (10). The EMM

perm term is fully local to the MM sub-
system that is to say it is insensitive to the presence of the
coupling with a QM subsystem.

EMM
pol is the polarization energy of the MM subsystem given

by [cf. Ref. 51, Eq. (A1)]

EMM
pol =

1
2

NMM∑
L

NMM∑
M

µᵀLTLMµM −

NMM∑
L

EᵀL µL

= −
1
2

NMM∑
L

µᵀLEL, (6)

where EL is the direct electric field at site L, µL is the dipole
induced at site L in response to the total electric field, and TLM
is a 3 × 3 coupling tensor between sites L and M,

TLM =



−T d-d
LM , L , M

α−1
L I, L = M

. (7)

Here, T d-d
LM is the Thole-damped, Cartesian dipole-dipole

interaction tensor between induced dipoles at sites L and M
[cf. Ref. 51, Eq. (28)]. Thole damping72–74 is a modification to
Coulombic electrostatics that helps prevent mutual positive
feedback loops involving induced point dipoles, known as a
polarization catastrophe.

In a purely MM calculation, the direct electric field EL is
simply the electric field due to the permanent multipoles of
MM sites. In a mutually polarizable QM/MM calculation, the
direct electric field includes an additional contribution aris-
ing from the multipoles representing the QM subsystem. We
give the full expression in Ref. 51, Eqs. (26)–(31), where we
also explain in detail how a classical multipolar representa-
tion of a distributed QM density is obtained (Sec. II D therein).
We stress that the non-additive nature of polarization means
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that the polarization of MM cannot be separated into additive
terms due to QM and MM, and so the entire polarization of the
MM subsystem is included in EMM

pol , which explains the absence

of an EQM/MM
pol term.

EMM
val denotes all short-range valence interactions local to

the MM subsystem. The detailed expressions for these terms
can be found in Ref. 18, Eqs. (2)–(6), and we shall refrain from
recounting them here.

EMM
vdW accounts for van der Waals (dispersion-repulsion)

interactions local to the MM subsystem. AMOEBA uses the
Halgren formulation75 of the buffered 14-7 potential,

EMM
vdW

(
Rij

)
= εij

(
1 + δ
ρij + δ

)7*.
,

1 + γ
ρ7
ij + γ

− 2+/
-
, (8)

where ρij = Rij/R0, δ = 0.07, and γ = 0.12. The parameters of
the potential are R0 and ε. Mixing rules for obtaining pairwise
values of the parameters and a description of nuances sur-
rounding hydrogen atoms (“reduction factors”) can be found
in Ref. 18, Eqs. (7) and (8).

The final term in (1), EQM/MM, accounts for all interactions
between the two subsystems, except for mutual polarization.
As pointed out earlier, QM contributions to MM polarization
have already been included in EMM

pol because they are not sepa-
rable from intra-MM polarization. The effect of MM polarizing
QM is automatically included in EQM[n(r)] by the deformation
of the electronic density n(r) in response to the electric field
of the MM subsystem.

The coupling is described by

EQM/MM = EQM/MM
perm + EQM/MM

vdW , (9)

where the first term accounts for the electrostatic coupling
between QM and permanent MM multipoles and the second
term accounts for dispersion-repulsion interactions between
QM and MM. In our model, the electrostatic coupling involves
the full QM charge density interacting with the Coulombic (not
damped) potential of the permanent MM charges, dipoles and
quadrupoles,

EQM/MM
perm =

∫
vMM

p (r)nQM(r)dr, (10)

where

nQM(r) = n(r) +
NQM∑
A

δ(r − RA)ZA, (11)

and the expression for vMM
p (r) can be found elsewhere [Ref. 51,

Eqs. (37) and (38)].
For the QM/MM van der Waals interaction, EQM/MM

vdW , our
original model uses the same classical, pairwise model that is
used for MM/MM [cf. (8)], except the repulsive wall is soft-
ened slightly by using δ = 0.21 (cf. Ref. 51, Sec. III.B.3). This
has the advantage of being straightforward but has two dis-
advantages. First, it requires choosing vdW parameter values

for atoms in the QM subsystem. Second, and more impor-
tantly, this classical form is insensitive to the electronic
density of the QM subsystem and as such its contributions
to electronic density gradients vanish. This means it fails
to provide the Pauli repulsion that would otherwise prevent
electrons from unphysically collapsing onto MM atoms. We
address this issue in the revised model presented in this
paper.

III. THEORY
The main limitation of the original model described briefly

above, and in detail in Ref. 51, was that the localized orbitals
{ϕα } were kept fixed and only the density kernel Kαβ was opti-
mized. Allowing {ϕα } to be optimized in situ constitutes the
main improvement in our revised model.

A. In situ optimized NGWFs
Optimizing the NGWFs necessitates deriving and imple-

menting functional derivatives of energy terms with respect
to the NGWFs. Out of all the energy terms that make
up the total energy (1), the following terms are specific
to our QM/MM model and have no counterparts in stan-
dard ONETEP: EMM

val , EMM
vdW, EMM

perm, EQM/MM
vdW , EQM/MM

perm , and EMM
pol .

The first three of these are local to the MM subsystem
and do not depend on the electronic degrees of freedom,
their derivatives with respect to the NGWFs thus vanish.
EQM/MM

vdW is, so far, described by an electron-independent clas-
sical pairwise sum, so its derivative similarly vanishes. We
postpone the generalization of this term to an electron-
dependent form until later in the text. The remaining
terms are EQM/MM

perm and EMM
pol , which we will consider now in

sequence.
EQM/MM

perm is given by [cf. (10) and (11)]

EQM/MM
perm =

∫
vMM

p (r)n(r)dr +
∫

vMM
p (r)

NQM∑
A

δ(r − RA)ZAdr. (12)

The potential of permanent MM multipoles vMM
p does not

depend on the electronic degrees of freedom, so the second
term above does not contribute to the derivative. The first
term represents an interaction of an electronic density with a
fixed potential and so has the same form as the second term in
(2). Thus it can be accounted for using usual ONETEP algorithms
by simply adding vMM

p (r) to vext(r).
The term due to EMM

pol is more complicated since it involves
differentiating the transformation from the QM density to
the set of multipoles representing the QM subsystem that
takes part in QM/MM polarization interactions. We refer the
reader to Ref. 51, Sec. I.D.2 for a detailed exposition of this
transformation, recounting here only the basics needed in the
derivation.

All pairs (products) of overlapping NGWFs ϕα and ϕβ are
expanded in terms of truncated spherical waves fs(r) centered
on both NGWFs, with the coefficients of the expansion given
by
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Cs
AB =

Nf∑
t

( ∑
α∈A

∑
β∈B

ϕα(r)Kαβϕ∗β (r)
����ft

)
Vts
AB

=
∑
α∈A

∑
β∈B

Kαβ
Nf∑
t

(
ϕα(r)ϕ∗β (r) |ft

)
Vts
AB

=
∑
α∈A

∑
β∈B

Kαβcsαβ , (13)

where s and t index the spherical waves originating on both
atoms (of which there are Nf in total), Vts

AB is an element of the
inverse electrostatic overlap matrix between spherical waves
originating on atoms A and B, and the notation α ∈ A used in
the summations is taken to mean “all NGWFs α belonging to
atom A.”

An alternative way to index the spherical waves, and in
turn the coefficients Cs

AB and csαβ , is via their angular, mag-
netic, and radial numbers: l, m, and q and a selector for the
site on which the spherical wave originates (1 for the first
atom from the subscript or 2 for the second atom). This index-
ing scheme is useful when using the expansion to calculate
the spherical multipole moments

{
Mlm(A)

}
that constitute the

classical representation of the density,

Mlm(A) =
∑
B

SAB,0

∑
q

Clmq,1
AB Jlq, (14)

where Clmq,1
AB correspond to Cs

AB originating only on atom A and
Jlq is a radial, analytical integral given in Ref. 51, Eq. (21). The
notation B

SAB,0 is taken to mean “atoms B whose NGWFs overlap
with those of atom A.”

The interaction energy between all multipoles represent-
ing the QM density and the induced MM dipoles is given
by

EMM
pol = tr[KP], (15)

where P is the polarization matrix, with matrix elements
α ∈ A, β ∈ B given by

Pαβ = −
1
2

∑
lq

Jlq
∑
m

(
clmq,1
αβ wlm

A + clmq,2
αβ wlm

B

)
=
∂EMM

pol

∂Kβα
, (16)

where wlm
A captures the electrostatic effect of the entire sys-

tem of MM induced dipoles on the QM site at RA: w00
A is the

Thole-damped electrostatic potential of MM induced dipoles
interacting with the charge at RA, {w1,−1

A ,w1,0
A ,w1,1

A } is their
Thole-damped electric field interacting with the dipole at
RA, and {w1,−2

A , . . . ,w1,2
A } is their Thole-damped electric field

derivative (in spherical representation) interacting with the
quadrupole at RA.

Taking the functional derivative of (15), we obtain [cf.
Ref. 76, Eq. (7.25)]

δEMM
pol

δϕ∗γ (r)
= 2

δPαβ
δϕ∗γ (r)

Kβα + 2
δKβα

δϕ∗γ (r)
Pαβ , (17)

where the Einstein convention has been used for repeated
Greek indices.

The non-vanishing derivative δKβα
δϕ∗γ (r) appearing in the sec-

ond term results from the use of a so-called purifying trans-
formation in ONETEP. It has already been derived [cf. Ref. 76,
Eq. (7.29) or Ref. 77, Eq. (4.4.6)] and implemented in ONETEP and
as such can be omitted from further discussion. Instead, we
focus on the more interesting first term, involving the quantity
δPαβ
δϕ∗γ (r) . From (16), we obtain

δPαβ
δϕ∗γ (r)

= −
1
2

∑
lq

Jlq
∑
m

δ

δϕ∗γ (r)

(
clmq,1
αβ wlm

A + clmq,2
αβ wlm

B

)
, (18)

where we have used the fact that Jlq is independent of
the NGWFs. The quantities wlm

A and wlm
B involve induced

MM dipoles and, as these induce in response to a com-
bined QM + MM electric field, they depend on the NGWFs.
However, a zero residual condition at induced dipole
self-consistency

∀L

dEMM
pol

dµL
= 0 (19)

obviates the need to calculate
δµL
δϕ∗γ (r) [compare Ref. 51, Eq. (33)],

allowing us to only consider the dependence of clmq,1
αβ and clmq,2

αβ

on the NGWFs, and so

δPαβ
δϕ∗γ (r)

= −
1
2

∑
lq

Jlq
∑
m



δclmq,1
αβ

δϕ∗γ (r)
wlm

A +
δclmq,2

αβ

δϕ∗γ (r)
wlm

B


. (20)

The remaining functional derivative
δclmq,1

αβ

δϕ∗γ (r) can be calcu-
lated as follows:

δclmq,1
αβ

δϕ∗γ (r)
=

Nf∑
t

δ

δϕ∗γ (r)

(
ϕα(r)ϕ∗β (r) |ft

)
Vt,lmq,1
AB

= δ
γ
βϕα(r)

Nf∑
t

vt(r)Vt,lmq,1
AB , (21)

where vt(r) is the potential of a spherical wave (for which an

analytical expression is available).
δclmq,2

αβ

δϕ∗γ (r) is calculated analo-
gously.

By combining (17), (20), and (21) and expressing the sums
in the first term explicitly, we obtain

δEMM
pol

δϕ∗γ (r)
= −

NQM∑
A

SAC,0

∑
α∈A

Kγα
∑
lq

Jlq
∑
m
ϕα (r)

×


wlm

A

Nf∑
t

vt(r)Vt,lmq,1
AC + wlm

C

Nf∑
t

vt(r)Vt,lmq,2
AC



+ 2
δKβα

δϕ∗γ (r)
Pαβ , (22)

where atom C is the host to the NGWF with respect we dif-
ferentiate, i.e., γ ∈ C. The presence of both wlm

C and wlm
A in (22)

indicates that the gradient with respect to a particular NGWF
γ ∈ C depends not only on the electrostatic effect of MM’s
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induced dipoles at RC but also at all centres of overlapping
NGWFs RA. This is a consequence of the two-center spherical
wave expansion scheme used in ONETEP.

To maintain linear scaling, an implementation must be
able to evaluate (22) in O(1) time since this calculation must be
repeated for all NGWFs γ, and the number of NGWFs is pro-
portional to NQM. Our implementation in ONETEP does this by
re-ordering (22) as

δEMM
pol

δϕ∗γ (r)
= −

NQM∑
A

SAC,0

UAC(r)
∑
α∈A

Kγαϕα (r) + 2
δKβα

δϕ∗γ (r)
Pαβ , (23)

where

UAC(r) =
∑
lq

Jlq
∑
m

[
wlm

A

Nf∑
t

vt(r)Vt,lmq,1
AC + wlm

C

Nf∑
t

vt(r)Vt,lmq,2
AC

]
(24)

only needs to be evaluated in the intersection of the local-
ization spheres of A and C [cf. (22)]. The cost of evaluating
UAC for a single pair of atoms A-C is system-size indepen-
dent (O(1)) and only depends on the quality of the SW basis
set. For any particular atom C, the number of atoms A whose
localization spheres overlap with it plateaus at a constant
that depends on the density of the system, even if the sys-
tem size NQM is increased to arbitrarily large values. This is
made explicit by the A-C overlap condition in the first sum-
mation of (22). This means that each evaluation of (22) has
O(1) cost and, with O(N) such operations, the approach is
linear-scaling.

B. Increased polarization damping
Polarizable force-field models that rely on the induced

point dipole approximation have to contend with what is
known as a polarization catastrophe. This well-known78 arti-
fact consists in an unbounded mutual polarization of two
nearby sites through positive feedback and reflects the break-
down of the point-dipole model at a short range. The polariza-
tion catastrophe is typically mitigated by replacing Coulombic
interactions involving induced dipoles with interactions that
are suitably attenuated at a short range using schemes such
as Thole damping.72–74 This is the case in AMOEBA15 and in
our model.51 The intensity of the damping depends on the
polarizabilities of the two atoms – i.e., interactions involv-
ing atoms that polarize more readily are more aggressively
damped. Beyond several Å, the difference between the Thole-
damped and Coulombic quantities (potential, electric field,
electric field derivative) becomes negligible and the correct
long-range behavior is recovered.

The rationale for using optimized NGWFs in our model,
and in ONETEP in general, is the near-complete-basis-set accu-
racy that they offer, comparable or superior to even very large
bases with fixed orbitals.68 However, this additional flexibility
results in the basis becoming more diffuse, which is problem-
atic in the context of distributed multipole analysis (DMA79,80)
that we employ to obtain the multipole representation QM∗

[cf. (13)–(16)]. More diffuse bases are known81,82 to engen-
der instabilities in the DMA procedure and lead to increased

charge penetration errors (CPE) due to discrepancies between
the potential of the original density and that of the multipolar
expansion although improved approaches have recently been
proposed.82,83 Indeed, our initial tests revealed that once the
NGWFs are no longer fixed and are allowed to change shape
during the SCF process, our QM/MM model becomes prone
to a QM/MM analog of polarization catastrophe, whereby the
QM subsystem becomes excessively polarized by a nearby MM
site and vice versa. The problem is particularly severe for MM
sites carrying a charge (ions) as they provide a larger initial
polarization of QM. We devote a section in the Appendix A
to an elucidation of this mode of failure using a H2O:Cl−

system as an example. In the same section, we show that
a simple increase in the damping of QM/MM polarization
interactions is sufficient to prevent the QM/MM polarization
catastrophe.

C. Repulsive MM potential
Like most QM/MM models, our initial model used a

classical, atom-pairwise description of QM/MM dispersion-
repulsion (vdW) interactions [cf. (8)]. This strictly classical
description has the disadvantage of being insensitive to the
electronic degrees of freedom in the QM subsystem that is to
say the QM/MM vdW energy only depends on the positions
and species of the atoms. The most striking manifesta-
tion of this deficiency is that electrons in the QM sub-
system do not experience any Pauli repulsion from MM
sites. This can be especially problematic when the MM site
is a cation, whose electrostatic potential attracts the QM
electrons. With no Pauli repulsion to balance this attrac-
tion, unphysical charge transfer from QM to MM takes
place.

A number of approaches have been proposed to circum-
vent the problem (see, e.g., Refs. 84–87), but not in the context
of linear-scaling QM methods, where it becomes particularly
problematic. This is because the spilled electrons accumu-
late near the peripheries of the localization regions, disrupt-
ing SCF convergence, which assumes localized orbitals to be
well-decayed at the truncation point.

We refer the reader to the Appendix B for a case study
of this undesired effect on a H2O:K+ system, where we also
demonstrate the feasibility and accuracy of an improved
model which eliminates this issue. The improvement con-
sists in replacing the repulsive term of Halgren’s vdW poten-
tial with a density overlap model86 that is sensitive to the
QM electronic degrees of freedom, accounting for QM/MM
Pauli repulsion. We retain Halgren’s classical description for
QM/MM dispersion interactions.

In an overlap model, the Pauli repulsion energy is
assumed to be proportional to the overlap between densities,
i.e.,

EQM/MM
rep =

∫
n(r)

NMM∑
L

κLnMM
L (r − RL)dr, (25)

where n(r) is the QM electronic density, nMM
L (r) is a model

density centered on MM atom L, and κL is a proportionality
constant with a suitable unit.
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A reasonable model density is that of a 1s Slater-type
function

nMM
L (r) = ���ψ1s,L(r)���

2
=
ζ3
L

π
e−2ζLr. (26)

Instead of working with model densities, we can think of
MM atoms as equipped with a model repulsive electrostatic
potential, leading to an equivalent energy expression

EQM/MM
rep =

∫
n(r)

NMM∑
L

vMMrep
L (r − RL)dr (27)

together with an equivalent MM repulsive potential

vMMrep
L (r) =

κLζ
3
L

π
e−2ζLr =

AL

π
e−2ζLr, (28)

characterized by two parameters – a magnitude A and an
inverse-width ζ , both of which depend on the chemical
species of MM atom L.

The form of (27) is that of a static external poten-
tial acting on the electronic density, which means vMMrep(r)
=

∑NMM
L vMMrep

L (r − RL) can simply be added to vext(r) in (2), and
no new energy gradient expressions need to be derived for
this term. Unless stated otherwise, all results presented in this
paper have been obtained with the model that includes the
MM repulsive potential (and excludes the repulsive contribu-
tion from the Halgren QM/MM vdW expression).

Regarding computational efficiency, we point out that the
integral in (27) only needs to be computed over the union
of localization spheres of the QM subsystem (since n(r) van-
ishes elsewhere). Furthermore, and more importantly, since
vMMrep
L (r) decays exponentially, only those regions of the QM

subsystem that are within a short cutoff radius (say, 5 Å) from
any MM atom need to be considered. Generating vMMrep

L (r) in
a sphere around RL, with the sphere radius system-size inde-
pendent, is an O(1) operation for a single MM atom L. The
number of MM atoms within a cutoff radius from the QM sub-
system will be proportional to the surface area of the QM
subsystem and so to N2/3

QM. The total cost of evaluating (27) thus

scales O(N2/3
QM).

Naturally, physically reasonable values for AL and ζL need
to be determined for all species of interest appearing in the
MM subsystem. As a proof of concept, in Sec. IV A, we show
how suitable values can be found for Cl−, K+, and H2O.

IV. RESULTS
In this section, we demonstrate the accuracy and viability

of the proposed approach on a number of systems. In all QM
calculations, we used the Perdew-Burke-Ernzerhof (PBE)88

exchange-correlation functional, with an empirical disper-
sion correction in the Elstner71 formulation, with parame-
ters determined by Hill and Skylaris.70 The NGWF localization
radius was set to 3.7 Å.

A. Interaction energy curves
We begin by examining the interaction energy curves of

three simple systems: H2O:K+, H2O:Cl−, and a water dimer.

The latter two systems were studied in our earlier studies,5,52

using a different QM/MM model and using energy decom-
position analysis (EDA) to compare AMOEBA against a high-
quality DFT functional ωB97X-V.89 For each of the systems,
we compare the predictions of the QM/MM model that is
the focus of this paper and those of AMOEBA, against refer-
ence results obtained from fully QM calculations (i.e., PBE-D
as described above). All QM calculations used a kinetic energy
cutoff of 1290 eV.

By performing a parameter scan in the space of {A, ζ },
we established MM repulsive potential parameters for K+

that, for this system, are optimal in the sense of minimizing
the mean squared difference between the interaction energy
curves from QM/MM and fully QM calculations. The values
we obtained are AK+ = 230 Ha/e and ζK+ = 1.379 a−1

0 . The
interaction energy curves are compared in Fig. 1. AMOEBA
(green curve) is seen to model this interaction faithfully,
with the position of the minimum accurate to 0.007 Å and
only very slight underbinding (less than 1 kcal/mol). This
degree of agreement is expected since the charge density
of K+ is tightly localized and thus well-approximated by a
point multipole model, with very little charge penetration
error. The QM H2O/MM K+ description is in even better
agreement with full QM – the position of the minimum
is accurate to 0.002 Å and the energy is no further than
0.3 kcal/mol from the fully QM result for all interatomic
separations.

We now turn our attention to the H2O:Cl− system, which
we expect to be more difficult for a polarizable point dipole
model due to the larger electronic delocalization of Cl−,
which increases the charge penetration error. By following the
same protocol as for the H2O:K+ system, we established opti-
mal parameters for the repulsive MM potential for Cl−: ACl−

= 250 Ha/e and ζCl− = 1.140 a−1
0 , which, compared to K+, rep-

resent a marginally stronger and somewhat less localized
potential, consistent with expectations.

FIG. 1. Interaction energy for aH2O:K+ system as a function of the O· · · K+ dis-
tance. QM/MM results (blue) are compared against full QM (black). Pure MM
results obtained with AMOEBA are shown in green.
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The interaction energy curves are compared in Fig. 2.
Compared to our QM reference, AMOEBA is seen to under-
bind at all interatomic separations, particularly at short dis-
tances, where the magnitude of the error increases from
≈1 kcal/mol to over 5 kcal/mol. A large fraction of this error
can be attributed to the neglect of charge transfer. In our ref-
erence, fully QM calculations as much as 0.22e is transferred
from the Cl− ion to the water molecule at the shortest stud-
ied separation (2.8 Å), corresponding to a stabilizing effect
of ≈−5 kcal/mol. As the separation is increased, this charge
transfer becomes less pronounced – at 4 Å only 0.05e is trans-
ferred and the corresponding change in energy is only about
−0.2 kcal/mol.

However, we must acknowledge the fact that the QM
reference curve against which AMOEBA is benchmarked is
too a result of a physical model. DFT calculations involve a
number of approximations, chief among which are the use
of an approximate exchange-correlation functional, the pseu-
dopotential approximation, the use of a finite basis, and – in
linear-scaling DFT – the use of finite radii for the localized
orbitals. Different choices for these parameters will lead to
slightly, but noticeably, different interaction energy curves,
particularly since the water molecule is well-known to be dif-
ficult to describe with GGA DFT (see, e.g., Refs. 90–92). For
instance, when instead of PBE, ωB97X-V89 is used for the
same system (as reported by some of us in Ref. 5, cf. Fig. 3
therein), the reference curve shifts upwards by ≈1 kcal/mol
in the long range (practically matching AMOEBA), and by as
much as ≈3.2 kcal/mol at 2.8 Å, reducing AMOEBA’s per-
ceived underbinding at the shortest separation studied here
to 2 kcal/mol. We thus caution against treating all differences
between MM and QM reported here strictly as deficiencies of
the MM model.

Naturally, the charge penetration error is also expected
to be more significant for Cl− than for K+. AMOEBA does
not explicitly model charge transfer or account for charge

FIG. 2. Interaction energy for aH2O–Cl− system as a function of the O· · ·Cl−

distance. QM/MM results (blue) are compared against full QM (black). Pure MM
results obtained with AMOEBA are shown in green.

penetration and must resort to approximating these effects
through polarization and vdW interactions. More severe
underbinding at short distances leads to a shift in the posi-
tion of the minimum, which, compared to our QM refer-
ence, AMOEBA overestimates by 0.08 Å (or 0.05 Å against the
QM reference of Ref. 5). Our QM/MM model achieves better
agreement with fully QM results, underbinding by less than
2 kcal/mol, with the magnitude of the error being almost inde-
pendent of the distance between Cl− and the water molecule.
Thus, the predicted interaction energy curve is very similar
in shape to the reference one, only shifted by a constant,
and the position of the minimum is predicted very accurately
(to 0.002 Å), showing the QM/MM interface to be well-
balanced in this scenario.

We now turn our attention to the H2O dimer. In earlier
work52 on the same system, we showed that charge pene-
tration is significant at the equilibrium distance and below
it, making this system challenging for AMOEBA, which has to
compensate for CPE by artificially softening the repulsive vdW
wall, relying on cancellation of errors to model the hydrogen
bond. Thus (cf. Fig. 3), the agreement between AMOEBA and
a fully QM calculation worsens at short separations, where
AMOEBA underbinds by as much as 4 kcal/mol (2.9 kcal/mol
against the QM reference of Ref. 5), but is still remarkably
good at the equilibrium distance and beyond, where AMOEBA
underbinds by only ≈0.5 kcal/mol. The rms error across the
entire curve is 1.1 kcal/mol. The position of the minimum is
also predicted accurately (to 0.004 Å).

Determining suitable parameters for our model’s repul-
sive MM potential for O and H atoms is more challenging than
in the previous two cases. First, there are four parameters
to be simultaneously optimized (AH, ζH, AO, ζO), making the
parameter scan more involved. Second, if our model is to be
well-transferable, it must accurately describe both the situ-
ation where the hydrogen bond donor is described by QM
(and the acceptor by MM), and the situation where QM is

FIG. 3. Interaction energy for a water dimer as a function of the O· · ·O distance.
QM/MM results (blue) are compared against full QM (black). Pure MM results
obtained with AMOEBA are shown in green.
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used to describe the hydrogen bond acceptor (and MM – the
donor).

After a thorough parameter scan, we determined the fol-
lowing suitable values for the parameters of the MM repul-
sive potential: AH = 35 Ha/e, ζH = 2.40 a−1

0 , AO = 550 Ha/e,
ζO = 1.58 a−1

0 . With these values, the interaction energy
curves predicted by our QM/MM model (Fig. 3, blue curves)
are in very good agreement with fully QM results. When
QM is used to model the hydrogen bond donor (solid blue
curve), the rms error in energy across the entire curve is
0.7 kcal/mol and the position of the minimum is accurate
to 0.002 Å. When QM is used to model the hydrogen bond
acceptor (dashed blue curve), the rms error in energy is
only 0.4 kcal/mol, but the position of the minimum is pre-
dicted less accurately and is underestimated by 0.026 Å.
Crucially, in both cases, the interaction energy curve stays
within 1 kcal/mol from the reference curve obtained with
fully QM calculations, even at separations below the equilib-
rium distance. This indicates that the QM/MM interface in
our model is well-balanced even in the presence of hydrogen
bonds.

The above examination of the performance of our
QM/MM model for three representative systems (MM cation,
MM anion, and MM neutral molecule with a hydrogen bond
spanning the QM/MM interface) can be considered a proof of
concept. We showed that our QM/MM model is stable for all
studied intermolecular separations, even well below the equi-
librium distance, and that it gives reasonable predictions for
interaction energy profiles, which we find remarkable given
that in the studied systems, the crucial interactions crossed
the QM/MM boundary.

In all examples so far, we used the H2O molecule for the
QM subsystem and so the question of whether our QM/MM
model is transferable, particularly concerning the parameter-
ization of the MM repulsive potential, remains open. In the
text that follows, we will examine the model’s performance
for a number of different molecules, both neutral and charged,
demonstrating that it is indeed transferable as its predictions
remain accurate.

The need to determine suitable parameters for the repul-
sive MM potential of all MM species of interest can be seen
as a weakness of our model. Intuitively, one would hope that
the parameters AL and ζL could be derived from correspond-
ing classical vdW parameters εL and R0

L – e.g., we expected
AL ∼ εL and ζL ∼ 1/R0

L . However, we found this not to be
the case. For instance, for the parameters, we determined
AH
AO
≈ 15.7, whereas εH

εO
≈ 8.1, that is, our model uses a sub-

stantially weaker potential on H. Similarly, we have ζH
ζO
≈ 1.52,

whereas
1/R0

H
1/R0

O
≈ 1.28, meaning the potential on H used in our

model is also slightly tighter.

One reason is that while vMMrep
L (r) [cf. (28)] is linear in AL

just like EMM
vdW

(
Rij

)
[cf. (8)] is linear in εL, the energy expres-

sion (27) for EQM/MM
rep is not linear in AL. This is because n(r)

implicitly depends on AL, that is to say, the electronic den-
sity responds to the MM repulsive potential by deforming

accordingly. Thus, not only is EQM/MM
rep not linear in AL, but

also other energy terms are indirectly influenced by the
repulsive MM potential through the change in n(r). Another
reason is that the vdW parameters adopted in AMOEBA
have been fitted to partially compensate for the deficiencies
in the classical treatment of electrostatics, some of which
are no longer present in our QM/MM formulation. Finally,
AMOEBA employs additional “tweaks” in its vdW formulation,
for instance, the repulsive sites of H atoms are slightly offset
from the actual atomic sites (“reduction factor”).

While we plan to investigate routes for automatically
obtaining AL and ζL in future work, in this paper, we will focus
on MM water, for which we have obtained good parameters
already. In this way, we can apply our model to a large class of
systems that is of practical interest – QM solutes embedded in
MM water. We defer applications with different MM species to
a later time.

B. Interaction energies of solutes
with water shells of increasing size

We now set out to demonstrate the transferability of
our model, turning our attention to a number of QM solutes
embedded in spherical shells of MM water. We will use the
same systems and the same methodology as in our ear-
lier work51 – the QM subsystem will only encompass the
solute, and we will study the behavior of the QM/MM sys-
tem as the size of the MM H2O shell is increased (cf. Fig. 3 in
Ref. 51).

Three of the solutes were chosen from the SAMPL4
blind challenge:93 (a) (−)-menthol, (b) diphenylhydramine, and
(c) 2-chloro-4-hydroxy-3,5-dimethoxybenzaldehyde. These
moderately sized molecules (31, 40, and 23 atoms, respectively)
encompass a number of chemical features: a cyclohexane ring
(a), an ether group (b), an aromatic ring (b), an amine group
(b), a halogen atom (c), and an aldehyde group (c). The remain-
ing three molecules were (d) ammonia (NH3), (e) the ammo-
nium ion (NH+

4), and (f) the cyanide ion (CN−) – were chosen
with the aim of verifying if our model correctly describes small
and charged solutes.

We compared four computational approaches:

(a) Fully QM calculations with no embedding (entire sys-
tem treated at the DFT level of theory), which serve as
reference;

(b) QM calculations using a purely electrostatic embedding,
where the QM subsystem encompassed only the solute,
and H2O molecules were described with fixed partial
charges. In this setup, only a fixed, external potential
is included in the QM Hamiltonian; we emphasize the
neglect of vdW interactions between the QM and the
embedding;

(c) QM/MM calculations with either a fixed point-charge
embedding (GAFF v1.594) or a polarizable embedding
(AMOEBA). Here too the QM subsystem encompassed
only the solute, and all water molecules were described
by a classical force field. For the fixed point-charge
(GAFF) embedding, vdW interactions between the
solvent and solute were included at the MM level of
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theory (Lennard-Jones potential). Thus, the MM repul-
sive potential introduced in Sec. III C was not used
in this case. Similarly, polarization damping (Sec. III B)
was not relevant here as the force field was not polar-
izable. For the polarizable embedding (AMOEBA), we
used the final, refined QM/MM model, as described in
Secs. III B–III C;

(d) Fully MM calculations, where the entire system was
treated classically (with GAFF or AMOEBA).

In fixed point charge QM/MM calculations and in QM
calculations with fixed point-charge embedding, we used par-
tial charges of 0.417e for H atoms and −0.834e for O atoms,
which are identical to the TIP3P95 model used in GAFF. All
QM calculations used a kinetic energy cutoff of 1000 eV.
The configurations were prepared by solvating the solutes
in approximately 660 explicit H2O molecules under periodic
boundary conditions. Classical polarizable MD trajectories in
the NpT ensemble (p = 1 atm, T = 298 K) were then obtained,
and the final configurations after 50 ps were used. Final
densities were 1.00 ± 0.01 g cm−3. For details on how the
configurations were processed for calculations under open
boundary conditions, details of cutoffs assumed, and the mod-
els and parameters used for the solutes and water, see Ref. 51,
Sec. 3.B.1.

We begin by comparing the interaction energies between
the QM solute and the MM water shell as a function of the size
of the shell (number of H2O molecules). To better elucidate
the long-range behavior, in Fig. 4, we only plot the error in the
energy with respect to the fully QM calculation that we use as
reference. Even though the systems studied here are the same
as in our earlier work,51 we point out that the energy error
curves are not directly comparable with those of Ref. 51, since
in current work, we used a more refined QM approach with in
situ optimized NGWFs both for QM/MM calculations and for
the fully QM reference.

Our first observation is that for all six systems, purely
MM calculations with AMOEBA (green circles) clearly out-
perform GAFF (gray diamonds). With the exception of NH3
and CN−, typical errors in the GAFF description are at least
three times larger than their AMOEBA counterparts. Even
in cases where GAFF fares relatively well (NH3), or where
AMOEBA’s error is rather large (CN−), long-range behavior
is clearly much better described by AMOEBA. This can be
appreciated from the much flatter profiles of the AMOEBA
curves, which indicate an almost constant energy shift from
the reference QM calculation. The energy changes from
adding subsequent water molecules are more erratic for GAFF,
and the convergence with the number of H2O molecules is
much worse. As expected, this is particularly pronounced for
charged solutes – in the case of CN−, for instance, the binding
energy is not well converged even at 400 MM H2O molecules.
We attribute this to polarization partly compensating for
the boundary effects that result from truncating the water
shells.

The behavior of point-charge electrostatic embedding
(QM + EE, red diamonds) is best understood by comparing
it against QM/MM with GAFF (orange crosses) since these

two approaches only differ by the neglect of QM/MM vdW
interactions in the former. This neglect leads to a very rapid
accumulation of error at a short range, particularly for larger
solutes (a)–(c), where this interaction is more significant. At
longer range, QM/MM vdW interactions are well-decayed,
which is reflected in the almost identical profiles of QM/MM-
GAFF and QM + EE curves starting at approximately 150 H2O
molecules for large solutes (a)–(c) and as early as approxi-
mately 50 H2O molecules for small solutes (d)–(f). As expected,
the neglect of QM/MM vdW interactions makes the QM + EE
approach inadequate for calculating interaction energies
between the QM solute and embedding although occasionally
(e.g., for NH3 and CN−) the error fortuitously cancels out some
of the errors in the electrostatics.

It is also worthwhile to compare the results of QM/MM-
GAFF (orange crosses) against purely MM GAFF calculations
(gray diamonds) because it reveals the effect of treating the
solute at the QM level of theory, all other components of the
two models being identical. For all six solutes, QM/MM-GAFF
is more accurate, and, as the long-range profiles of the two
curves are almost identical, it is clear that this gain in accuracy
is due to a much improved description of short-range inter-
actions, i.e., the ability of the QM subsystem to realistically
polarize in response to the MM environment.

Of greatest interest to this paper is, of course, the
comparison between QM/MM-AMOEBA (blue squares) and
QM/MM-GAFF (orange crosses). In terms of absolute errors
in energy, our model outperforms QM/MM-GAFF in all
cases except for NH3. Moreover, the long-range behavior
of QM/MM-AMOEBA is much better (flatter curves), par-
ticularly for charged solutes, where all fixed-point charge
approaches (MM-GAFF, QM/MM-GAFF, QM + EE) clearly
suffer from neglecting polarization. Out of all five mod-
els, the QM/MM-AMOEBA model has the lowest maximum
error in the long range (4 kcal/mol for CN−, compared with
9 kcal/mol of AMOEBA, and maximum errors in excess of
10 kcal/mol for the other approaches). We summarize these
results in Table I, from which it also becomes clear that,
when averaged over all six systems, our approach has the
lowest signed and unsigned errors of all the considered
approaches.

C. Dipole moments of solutes in water
shells of increasing size

Satisfied that the energetics of our QM/MM interface is
accurate, we now focus on how the QM solute is affected by
the presence of the QM/MM interface. Naturally, we would
like the electronic structure of the QM solute in the pres-
ence of MM embedding to resemble the electronic structure
of the full QM system as much as possible, i.e., for the MM
embedding to faithfully mimic QM. Since we cannot compare
electronic energy levels between QM/MM and full QM and
comparing electronic densities would require density parti-
tioning, we will use the total dipole moment of the solute as a
proxy.

In Fig. 5, we plot the magnitudes of the solute dipole
moment for the same six solutes as a function of the size of the
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FIG. 4. Error in the solute-solvent interaction energy with increasing number of H2O molecules surrounding the solute with reference to DFT calculation – with fixed point
charge embedding (red, �), with GAFF embedding (orange, ×), with AMOEBA embedding (blue, ◽), and in purely MM calculations with GAFF (gray, q) and AMOEBA (green,
◦). In QM/MM calculations, only the solute is included in the QM subsystem.
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TABLE I. Comparison of interaction energy accuracy offered by fixed point charge (GAFF) and multipolar polarizable
(AMOEBA) force-fields in MM calculations and QM/MM calculations and by electrostatic embedding (QM + EE). The val-
ues shown are errors (kcal/mol) with respect to DFT (PBE-D) reference calculations, averaged over systems with 200 + H2O
molecules. RMSE: root mean square error, MSE: mean signed error.

QM/MM
MM MM QM + EE QM/MM AMOEBA

Molecule GAFF AMOEBA (Point-charge) GAFF (this work)

(−)-Menthol 11.1 2.7 17.1 5.0 1.9
Diphenylhydramine 15.3 1.5 36.4 10.8 −3.4
2-Cl-4-OH-3,5-dimethoxy-BALD 6.2 1.0 22.2 4.9 −1.4
NH3 3.1 1.9 0.9 1.3 2.9
NH+

4 5.7 1.7 −5.0 4.4 0.0
CN− −5.8 9.0 −2.2 −4.9 4.0

RMSE 8.9 4.0 18.9 5.9 2.6

MSE 5.9 3.0 11.6 3.6 0.7

water shell. In QM/MM calculations, the solute (QM) dipoles
are immediately available. In fully QM calculations, the solute
dipoles were obtained from DMA analysis. In fully MM cal-
culations, the solute dipoles are either obtained by a suitable
vector summation of permanent dipoles with induced dipoles
(AMOEBA) or, in the absence of polarization, are simply con-
stant (GAFF). For neutral systems, the dipole moment is invari-
ant to the choice of the reference point. For charged systems,
and in fully QM calculations where charge transfer between
the solute and solvent can make the total solute charge
non-zero, we chose the centroid of the molecule as the
reference point.

Our first observation is that, particularly for larger
solutes, the solute dipole moment is rather sensitive to the
environment and can change abruptly depending on where
subsequent H2O molecules are added. The qualitative behav-
ior of this sensitivity is captured to a similar degree by all
models, except of course MM-GAFF, which does not per-
mit solute polarization. The accuracy of the constant dipole
moment of the GAFF solute is hit-and-miss – e.g., GAFF’s pre-
diction is excellent for (−)-menthol, severely underestimated
for diphenylhydramine and NH+

4, and severely overestimated
for CN−.

The predictions of QM + EE (red diamonds) and
QM/MM-GAFF (orange crosses) are expected to be identical
since the two approaches only differ by the absence/presence
of a classical QM/MM vdW term that does not affect the
electronic degrees of freedom. In practice, we observe very
small differences (<0.1 D) that are the consequence of differ-
ent smearing of the singularities of the Coulombic permanent
fixed-point charges of the embedding on the Cartesian grid on
which electronic density is evaluated in ONETEP.

For all six solutes, the predictions of our QM/MM model
are more accurate than those of AMOEBA, indicating the
expected superiority of a QM description of the solute (this is
most striking for NH+

4, which is underpolarized with AMOEBA).
For three of the six solutes ((−)-menthol, NH3, CN−), the pre-
dictions of our model are closest to the fully QM results in
absolute terms. For the remaining three molecules, our model

is slightly less accurate than QM/MM-GAFF, but not much
so. Furthermore, this only happens when AMOEBA itself fares
worse (diphenylhydramine, 2-Cl-4-OH-3,5-dimethoxy-BALD,
and NH+

4), possibly implicating the polarizable water model,
rather than the QM/MM interface, as the culprit. When the
errors are averaged over all the systems, our QM/MM model
yields the lowest root mean square error (RMSE). Details are
summarized in Table II.

D. Interaction energies of solutes
with 1st solvation shell

We now turn our attention to the interaction between
three solutes: H2O, Cl−, Na+, and their first solvation shells.
The three solutes are meant to be representative of neu-
tral, anionic, and cationic species, respectively. To bench-
mark our QM/MM approach, we model only the solute
at the QM level of theory, while the solvent (water) is
being described by AMOEBA. We calculate solute-solvent
interaction energies, comparing the performance of our
approach against a non-polarizable model (QM/MM-GAFF)
and purely classical models (where the entire system is
described with GAFF or AMOEBA). Our aim is to verify whether
our QM/MM interface correctly reproduces the purely QM
results obtained at the same level of theory. Thus, our ref-
erence is pseudopotential DFT + D with PBE, the limita-
tions of which we acknowledged earlier. We caution the
reader against interpreting the discrepancies between MM
results and our reference as “failures” of MM in absolute
terms.

To obtain meaningful statistics, we performed calcu-
lations for 100 configurations (for each solute) obtained
from MD runs, where each solute was solvated in 215 H2O
molecules. In each MD snapshot, all but N1st H2O molecules
closest to the solute were then stripped, leaving only the
first solvation shell. The values of N1st were 4, 8, and 6 for
H2O, Cl−, and Na+, respectively. The configurations studied are
the same as used in our earlier work.52 For a more detailed
description of how the configurations were obtained and the
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FIG. 5. Comparison of solute dipole moments with increasing number of H2O molecules surrounding the solute – with fixed point charge embedding (red, �), with GAFF
embedding (orange, ×), with AMOEBA embedding (blue, ◽), and in purely MM calculations with GAFF (gray, q) and AMOEBA (green, ◦). Reference QM calculations: black,
+. In QM/MM calculations, only the solute is included in the QM subsystem.
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TABLE II. Comparison of solute dipole moment accuracy offered by fixed point charge (GAFF) and multipolar polarizable
(AMOEBA) force-fields in MM calculations and QM/MM calculations and by electrostatic embedding (QM + EE). The values
shown are rms errors (D) with respect to DFT (PBE-D) reference calculations, averaged over all systems (solute + water
shells). RMSE: root mean square error.

QM/MM
MM MM QM + EE QM/MM AMOEBA

Molecule GAFF AMOEBA (Point-charge) GAFF (this work)

(−)-menthol 0.31 1.13 1.19 1.14 0.77
diphenylhydramine 3.00 1.18 0.32 0.24 0.38
2-Cl-4-OH-3,5-dimethoxy-BALD 0.45 0.73 0.30 0.28 0.61
NH3 0.47 0.94 0.95 0.95 0.70
NH+

4 0.74 0.41 0.02 0.02 0.05
CN− 1.69 0.11 0.13 0.14 0.11

RMSE 1.47 0.84 0.65 0.63 0.52

rationale for choosing N1st, we refer the reader to Ref. 52,
Sec. III.C.

The calculated solute-solvent interaction energies are
plotted in Fig. 6, while Table III reports crucial statis-
tics. For the H2O solute, our QM/AMOEBA model per-
forms well, with a general trend of underbinding by about
1 kcal/mol, and comparing favorably against QM/GAFF in all
five metrics (rms error, mean signed error, maximum error,
correlation coefficient, and slope of linear fit to the model’s
interaction energy vs. reference). We find this rather remark-
able since QM/MM models are typically not very good at
reproducing interaction energies spanning the interface. The
largest error for our model is 3.7 kcal/mol, which is bet-
ter than pure AMOEBA (4.6 kcal/mol), and much better than
pure GAFF (6.2 kcal/mol) or QM/GAFF (7.3 kcal/mol). The
correlation between the model and reference is also very
good (r = 0.95) although pure AMOEBA does marginally better
(r = 0.96).

The Cl− solute exposes the weaknesses of purely MM
treatments. GAFF is particularly inaccurate here, with rms
and mean signed errors in excess of 10 kcal/mol and a maxi-
mum error of over 40 kcal/mol, which is not surprising, given
the likely importance of polarization effects in this system,
for both the solute and solvent. These results were obtained
using the vdW parameters proposed by Fox and Kollman:96

R∗ = 1.948 Å, ε = 0.265 kcal/mol, which we used for consistency
with previous work. We note in passing that GAFF performs
slightly better here when vdW parameters tailored specifi-
cally for Cl− in TIP3P water are used (Joung and Cheatham:97

R∗ = 2.513 Å, ε = 0.0356 kcal/mol). The improved values are
shown in parentheses in Table III.

AMOEBA’s predictions are better (an rms error of
6.6 kcal/mol), but it does not avoid occasional embarrass-
ments (a max error of 20.7 kcal/mol). Both QM/MM models
perform significantly better, which highlights the importance
of treating the Cl− ion at the QM level of theory, in order to

FIG. 6. Interaction energies (kcal/mol) between three solutes (H2O, Cl−, and Na+) and their first solvation shells – a comparison of MM and QM/MM models (y axis) with fully
QM reference results (x axis) for 100 snapshots.
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TABLE III. Comparison of accuracy offered by fixed point charge (GAFF) and multipolar polarizable (AMOEBA) force-fields in
MM calculations and QM/MM calculations for the interaction energies between three solutes (H2O, Cl−, and Na+) and their
first solvation shells. ∆E are errors in energy (kcal/mol) with respect to DFT (PBE-D) reference calculations, averaged over
all 100 snapshots: ∆Erms – root mean square error, ∆Emse – mean signed error, ∆Emax – maximum error. r is the Pearson
correlation coefficient between Emodel and EQM, a is the slope of linear fit of Emodel vs. EQM. Values in bold denote the most
accurate model in each category, and values in italic denote the least accurate model. Values in parentheses were obtained
with alternative vdW parameters for Cl− (see text).

QM/MM
MM MM QM/MM AMOEBA

System GAFF AMOEBA GAFF (this work)

H2O–H2O

∆Erms 2.1 1.7 3.1 1.4
∆Emse −0.8 1.3 −2.4 0.9
∆Emax 6.2 4.6 7.3 3.7
r 0.88 0.96 0.91 0.95
a 1.05 0.91 1.17 0.85

Cl−–H2O

∆Erms 15.8 (10.7) 6.6 3.9 4.1
∆Emse −12.7 (5.8) −1.1 −1.4 3.9
∆Emax 40.2 (31.2) 20.7 9.4 7.1
r 0.47 (0.51) 0.53 0.92 0.98
a 0.77 (0.82) 0.57 1.23 0.97

Na+–H2O

∆Erms 10.4 1.0 10.5 13.5
∆Emse −9.2 0.5 −9.3 −13.3
∆Emax 19.2 2.9 19.3 19.4
r 0.95 0.99 0.95 0.95
a 1.50 0.96 1.50 0.99

be consistent with the latter. Our QM/AMOEBA model cor-
relates better with pure QM (r = 0.98 against r = 0.92 for
QM/GAFF, a linear slope of 0.97 against 1.23 for QM/GAFF),
but it is seen to underbind slightly across the board (rms error
of 4.1 kcal/mol, compared to 3.9 kcal/mol for QM/GAFF). Its
maximum error is 7.1 kcal/mol, which is rather large, but still
better than QM/GAFF (9.4 kcal/mol) and much better than
the double-digit errors of MM models.

For Na+ and its first solvation shell, AMOEBA performs
very well, while all the remaining models are rather inaccu-
rate. Since Na+ is a compact, barely polarizable ion, it is well-
described by MM methods. This explains why GAFF results
are almost identical to QM/GAFF results. What is significantly
more important in this system is the description of the water
solvent. GAFF’s water model cannot capture the polarization
of the solvent, which is highly relevant here, due to the charge
on the Na+ solute. Thus GAFF and QM/GAFF both yield a
poor description of the whole system, with rms errors above
10 kcal/mol and maximum errors of almost 20 kcal/mol.
This is despite using vdW parameters for Na+ that were
specifically tailored for a sodium ion in TIP3P water (Ref. 97,
R∗ = 1.369 Å, ε = 0.087439 kcal/mol). AMOEBA, by contrast,
performs very well, with an rms error of only 1 kcal/mol and
good correlation with purely QM results (r = 0.96), highlight-
ing the importance of a polarizable description of the water
solvent. Since our QM/AMOEBA model shares its descrip-
tion of the solvent with AMOEBA, one would expect it to
yield a similarly good description. However, this is not the
case. While the correlation with purely QM results is good
(r = 0.95, slope of 0.99), there is significant overbinding for all

snapshots, leading to large errors in energy, dominated by
a mean signed error of −13.3 kcal/mol. This almost con-
stant shift points to a deficiency of our QM/MM interface
in handling cationic solutes, presumably due to the repul-
sive MM potential having been parameterized only using
H2O–H2O interactions. We attribute the observed overbind-
ing to an insufficient repulsion between the compact Na+ and
nearby MM oxygen atoms.

We will now briefly investigate the effect of using in situ
optimized orbitals on the quality of QM/AMOEBA. We calcu-
lated the interaction energies of the three systems from Fig. 6
using fixed pseudoatomic orbitals [single-zeta (SZ), double-
zeta and polarization (DZP), triple-zeta and polarization (TZP)]
and compared them with results obtained using an in situ
optimized minimal basis. We report the results in Fig. 7 and
Table IV. As expected, for a compact Na+ cation, a minimal
(SZ) basis is sufficient, and increasing the flexibility of the basis
makes very little difference, with the slope and correlation
coefficients practically unchanged, and an essentially rigid
shift of the interaction energies by 0.5–0.7 kcal/mol compared
to an in situ optimized basis. Since our model systematically
overbinds this system, the resultant shift actually makes the
fixed-basis results marginally better, owing to cancellation of
a small fraction of the error. For a diffuse Cl− anion, the effect
of the basis size is more pronounced, with a clear system-
atic improvement of about 1.5 kcal/mol in the mean signed
error (MSE) for each time the basis set quality is increased
although the optimized basis “overshoots” by a small amount,
underbinding by 3.9 kcal/mol. Nevertheless, QM/MM with
an in situ optimised basis yields the most accurate results
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FIG. 7. Interaction energies (kcal/mol) between three solutes (H2O, Cl−, and Na+) and their first solvation shells – comparison of QM/AMOEBA using fixed pseudoatomic
orbital basis and in situ optimized minimal basis (y axis) with fully QM reference results (x axis) for 100 snapshots.

under all metrics, except for the slope (where the differences
between basis set qualities are marginal). For H2O, the effect
of using an optimized basis is dramatic, which is expected,
since we anticipate the orbitals in a molecule to be poorly
described with small basis sets. Consequently, a minimal fixed
basis (SZ) yields entirely wrong results, consistently predict-
ing large and positive interaction energies, with an MSE as
large as 31.2 kcal/mol. The addition of polarization functions
improves results dramatically, but convergence with the size

of the basis set is slow – DZP yields an MSE of 4.2 kcal/mol,
and TZP yields 3.6 kcal/mol, with correlation coefficients of
only ∼0.8. Only when in situ optimized orbitals are used do
the results improve markedly – the MSE falls below 1 kcal/mol,
the correlation coefficient exceeds 0.95, and maximum error
diminishes by a factor of 2.7 compared to TZP. The opti-
mized orbital formulation of QM/AMOEBA is a clear winner
in this case, underscoring the advantages of using an in situ
optimized basis set for the QM subsystem.

TABLE IV. Comparison of accuracy offered by the QM/AMOEBA model for the interaction energies between three solutes
(H2O, Cl−, and Na+) and their first solvation shells depending on the quality of the QM basis set. ∆E are errors in energy
(kcal/mol) with respect to DFT (PBE-D) reference calculations, averaged over all 100 snapshots: ∆Erms – root mean square
error, ∆Emse – mean signed error, ∆Emax – maximum error. r is the Pearson correlation coefficient between Emodel and EQM,
a is the slope of linear fit of Emodel vs. EQM. Nbasis is the number of QM basis functions for the solute. Values in bold denote
the most accurate model in each category, and values in italic denote the least accurate model.

QM/MM QM/MM QM/MM QM/MM AMOEBA
AMOEBA AMOEBA AMOEBA In situ optimized

System SZ DZP TZP minimal

H2O–H2O

∆Erms 34.1 4.8 4.1 1.4
∆Emse 31.2 4.2 3.6 0.9
∆Emax 68.4 10.9 10.1 3.7
r −0.07 0.78 0.82 0.95
a −0.26 0.75 0.79 0.85
Nbasis 6 23 29 6

Cl−–H2O

∆Erms 8.6 7.4 6.1 4.1
∆Emse −8.4 −7.2 −5.8 3.9
∆Emax 13.9 12.0 10.0 7.1
r 0.96 0.97 0.97 0.98
a 0.99 1.00 1.00 0.97
Nbasis 9 13 17 9

Na+–H2O

∆Erms 12.8 12.9 12.9 13.5
∆Emse −12.6 −12.7 −12.8 −13.3
∆Emax 18.1 18.5 18.5 19.4
r 0.95 0.95 0.95 0.95
a 0.99 0.99 0.99 0.99
Nbasis 8 21 29 8
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FIG. 8. Dipole moments (magnitudes) of the solute (H2O) embedded inside a first solvation shell – comparison of MM and QM/MM models (y axis) with fully QM reference
results (x axis) for 100 snapshots. Left panel – total dipole moment evaluated at the centroid of the solute. Middle panel – atom-centered dipole moment of solute O atom.
Right panel – atom-centered dipole moment of solute H atoms. MM GAFF and MM AMOEBA atom-centered dipoles (not shown here) cannot be meaningfully compared with
QM/MM because in these MM models point charges are fixed. Furthermore, MM GAFF atom-centered dipoles are zero by construction.

E. Dipole moments of solutes with 1st solvation shell
Having examined the energetics of our model, in the last

step of our analysis, we will verify how the QM subsystem
(solute) is affected by the presence of the QM/MM inter-
face. Following the rationale of Sec. IV C, we will compare
solute dipole moments as a proxy for the shape of the elec-
tronic density. As reference, we use fully QM calculations,
where we partitioned the dipole moments into atomic contri-
butions using DMA.98 We compare the magnitudes of the total
solute dipole between the two QM/MM approaches (where
the solute dipole is simply the total QM dipole) and the two
purely MM approaches [where the solute dipole is directly
obtained from atomic dipoles (including induced dipoles in the
case of AMOEBA) and charges].

We begin our discussion with the water pentamer sys-
tem. While an isolated water molecule is charge-neutral, and
its dipole moment is position-independent, in fully QM cal-
culations of a solvated water molecule, we observe moder-
ate charge transfer (below ±0.1e) between the central H2O
molecule and the solvation shell, which makes the solute
dipole position-dependent, and necessitates choosing a ref-
erence point. For consistency with the rest of this work, we
chose the centroid of the solute as the point, where we eval-
uate the dipole moment. The total dipole moments, as well
as individual atom-centered dipole moments (for O and H
atoms separately) are plotted in Fig. 8 and summarized in
Table V.

Qualitatively, the total dipole moment of the central
H2O molecule (solute) is described similarly by both MM
and QM/MM approaches – with substantial scatter and

overpolarization (of about 0.6 D) relative to the purely QM
results. We attribute this to the differences in the description
of the four surrounding H2O molecules – here only the ref-
erence uses a DFT description, while both MM and QM/MM
approaches use a classical description. Given that standard
DFT GGA models are known to struggle to correctly describe
the structure and properties of water (cf., e.g., Refs. 90–92),
and that we expect the dipole moment to be larger than the
gas phase value (1.85 D) and lower than the value for bulk water
(≈2.7 D),99 we believe that it is in fact the reference calculation
that underpolarizes the solvated H2O molecule. Neither of the
MM or QM/MM models seems to have a particular advantage
in this case although QM/AMOEBA correlates slightly better
with the reference.

It is more interesting to examine the individual atom-
centered dipoles. Here we expect MM and QM/MM results

TABLE V. Comparison of solute dipole moment accuracy offered by fixed point charge
(GAFF) and multipolar polarizable (AMOEBA) force-fields in MM calculations and
QM/MM calculations. The values shown are rms errors (debye) with respect to DFT
(PBE-D) reference calculations, averaged over 100 snapshots.

QM/MM
MM MM QM/MM AMOEBA

Solute GAFF AMOEBA GAFF (this work)

H2O 0.521 0.713 0.612 0.624
H2O (O atom) . . . . . . 0.099 0.059
H2O (H atoms) . . . . . . 0.229 0.136
Cl− 0.232 1.140 0.584 0.330
Na+ 0.044 0.021 0.013 0.007
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FIG. 9. Dipole moments (magnitudes) of
two ionic solutes (left: Cl−, right: Na+)
embedded inside their first solvations
shell – comparison of MM and QM/MM
models (y axis) with fully QM reference
results (x axis) for 100 snapshots. NB.:
In MM, GAFF atom-centered dipoles are
zero by construction.

to differ substantially because both MM approaches are dis-
advantaged by the constraint of fixed charge on the atoms,
while in QM/MM, the charge density is free to transfer
between atoms. GAFF, being non-polarizable, additionally
yields zero atom-centered dipoles by construction. Thus, it
is only meaningful here to benchmark the two QM/MM
approaches against one another. For the O atom, we find
QM/AMOEBA to be superior to QM/GAFF in terms of cor-
relation with the reference result and a lower rms error
(0.059 D vs 0.099 D). For the H atom, QM/GAFF does not
reproduce the change in the dipole moment between the
snapshots at all, while QM/AMOEBA shows the right trend
although it mostly overpolarizes.

We finish with an examination of the two ionic solutes
(Fig. 9, Table V). We evaluate the dipole at the position of
the ion. For Cl−, we find all approaches, except for the non-
polarizable GAFF, to generally overpolarize the ion, which is
again expected, given the differences between classical and
DFT treatments of the water solvent. AMOEBA is the least
accurate possibly because of the large magnitude of charge
penetration error for a diffuse Cl− ion. QM/AMOEBA performs
better than QM/GAFF (an rms error of 0.330 D vs. 0.584 D).
For Na+, which barely polarizes at all (µ < 0.1 D), QM/AMOEBA
turns out be the most accurate (an rms error of 0.007 D vs.
0.013 D for QM/GAFF) although all models are qualitatively
correct.

We conclude that, at least for small hydrated solutes, our
model is superior to QM/GAFF not only in how the QM sub-
system is affected by the QM/MM interface but also in better
energetics across the interface.

V. CONCLUSIONS
We presented and benchmarked a new mutually polariz-

able QM/MM model, where the QM subsystem is described

using DFT with in situ optimized, localized orbitals (non-
orthogonal generalized Wannier functions, NGWFs), and the
MM subsystem is described using the AMOEBA force field.
By implementing our model in the ONETEP linear-scaling
DFT framework, we pave the way for affordable large-scale
QM/MM calculations, with QM subsystems spanning thou-
sands of atoms. However, in this work, we only studied small
QM subsystems (up to 40 atoms), which are outside the
linear-scaling regime.

The rationale for optimizing NGWFs is the near-
complete-basis-set accuracy that they enable even with a
minimal basis. This high accuracy is comparable or supe-
rior to even very large bases with fixed orbitals.68 As part of
this work, we derived and implemented the necessary gra-
dients of the total QM + MM energy with respect to the
NGWFs, enabling their in situ optimization also in the context
of QM/MM calculations. We demonstrated how the additional
flexibility of an in situ optimized basis exacerbates known
problems of polarizable QM/MM methods – catastrophic
overpolarization of the QM region (particularly in the presence
of MM ions) and unphysical charge transfer (“charge spilling”)
from QM to MM sites (particularly in the presence of MM
cations).

We developed, presented, and validated conceptually
straightforward solutions to both of these issues. We demon-
strated that QM overpolarization can be mitigated by mod-
ifying the value of the Thole damping parameter only for
polarization interactions spanning the QM/MM interface.
This suitably attenuates QM/MM polarization at a very short
range while having negligible medium-range and long-range
effect. We addressed the charge spilling by introducing a more
refined model of QM/MM Pauli repulsion interactions. This
refinement replaces classical Halgren vdW repulsion with an
electrostatic repulsive potential originating on MM atoms,
which is parameterize to mimic Pauli repulsion. This approach
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is functionally equivalent to a density-overlap-based Pauli
repulsion energy model with fixed, species-dependent densi-
ties placed on MM atoms, and, crucially, actual QM densities.
This formulation is sensitive to the electronic degrees of free-
dom, which prevents the electronic density from excessive
spilling.

Our modified approach requires parameterizing the
repulsive potential with two values per MM species. We
demonstrated how suitable values could be determined for K+

and Cl− ions and for the atomic components of water, giving us
confidence that this can be performed in principle. We did not
identify a simple relation that would enable us to easily derive
the sought parameters from classical vdW parameters, but we
plan to investigate this further in future work.

We performed extensive tests to evaluate the transfer-
ability and reliability of our model with focus on the MM treat-
ment of water. Using a variety of molecules, from small ions
and neutral systems to larger molecules (up to 40 atoms), we
showed that our model is, in general, although not univer-
sally, superior to nonpolarizable QM/MM and to purely MM
approaches. This was reflected in lower disruptive effect of the
QM/MM interface on the QM subsystem (which we assessed
by comparing the dipole moments against a fully QM refer-
ence) but also by better energetics, when calculating interac-
tion energies between the QM and MM subsystems. We find
the latter particularly promising, as QM/MM models are typ-
ically very poor at describing interaction energies across the
QM/MM boundary.
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APPENDIX A: QM/MM POLARIZATION CATASTROPHE:
DIAGNOSIS AND PREVENTION

In this section, we elaborate on the QM/MM polariza-
tion catastrophe (cf. Sec. III B) that can arise when NGWFs in
the QM subsystem are optimized in situ. We use an H2O:Cl−

system as an example. Figure 10 shows the magnitudes of
atom-centered dipoles computed from the DMA procedure
for QM atoms and the induced dipole of the MM Cl− ion
(whose permanent dipole is of course zero) in the course of

FIG. 10. Atom-centered dipoles (magnitudes) on atoms in the QM subsystem (red,
blue) and in the MM subsystem (green) in the course of SCF optimization for a
H2O–Cl− system (shown in the inset). In the point-dipole model under standard
Thole damping, the two subsystems polarize one another to infinity. Dashed lines
denote reference values obtained from a fully QM calculation.

SCF optimization. A mutual positive feedback can be observed
to intensify at about step 80, quickly leading to absurdly large
dipole moments (in excess of 1000 D). The sharp, step-like
changes to the dipole values correspond to NGWF optimiza-
tion steps and the relatively flatter parts of the graph – to
the density kernel optimization steps. The classical degrees
of freedom (MM induced dipoles) are fully optimized for each
energy evaluation. The expected dipole moments on all atoms
(as calculated from a fully QM reference calculation), shown
with dashed lines, are well below 1 D. It is clear that the MM
site, in particular, is overpolarized from the very first step of
the optimization.

The main underlying reason for this is the inaccuracy of
the multipolar approximation of QM density at short range,
i.e., the charge penetration error (in this system, the Cl− ion
is 1.8 Å away from the H atom, while localized NGWFs extend
for 3.7 Å). This can be appreciated in Fig. 11, where we plot the
relevant component of the electric field due to the QM sub-
system along the line joining the MM Cl− ion and the leftmost
H atom in the QM subsystem.

At the first glance, the field from the full electronic den-
sity (solid red line) seems to agree rather well with the field
from the multipole approximation (dashed red line), up to
≈1.5 Å, where the multipole expansion starts to diverge. How-
ever, this field is to a large degree cancelled out by the field
of the QM core, making the relative error in the total (blue)
much more pronounced. Additionally, the shoulder to the left
of the Cl− ion (a result of a small fraction of the electronic
density being attracted there by the electrostatic potential dip
from Cl− ’s induced dipole) cannot be well-represented by the
multipole expansion and contributes to the charge penetra-
tion error. The issue is compounded by the fact that NGWF
optimisation is driven by a gradient expression [cf. (22)] that,
for consistency with a multipolar energy expression, has itself
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FIG. 11. Electric field due to the QM subsystem along the Cl−–H line in a H2O–Cl−

system (cf. Fig. 10). The field due to electrons alone is shown in red (solid line –
full electronic density, dashed line – point-multipole approximation). The total field
is shown in blue (solid line – full electronic density + core pseudopotential, dashed
line – point-multipole approximation). The multipole approximation breaks down at
short range (here: ≈2 Å), leading to unphysical charge transfer and lack of SCF
convergence due to a polarization catastrophe.

been derived via an intermediate step of a multipolar expan-
sion. In consequence, the NGWF gradient is only sensitive to
the MM potential, field and field derivative at the QM atom cen-
tres, rather than in the entire localization sphere [cf. comment
directly below (22)].

One way to avoid the QM/MM polarization catastrophe
is to simply reduce the NGWF localization region (e.g., we
found 3 Å to be sufficient) – this makes the orbitals less dif-
fuse and the point-multipole approximation more accurate.

FIG. 12. Atom-centered dipoles (magnitudes) on atoms in the QM subsystem (red,
blue) and in the MM subsystem (green) in the course of SCF optimization for
a H2O–Cl− system (shown in the inset of Fig. 10). With a suitable increase in
polarization damping, the polarization catastrophe is avoided. Dashed lines denote
reference values obtained from a fully QM calculation.

FIG. 13. Electric field due to the QM subsystem along the Cl−–H line in a H2O–Cl−

system (cf. Fig. 10). The field due to electrons alone is shown in red (solid line –
full electronic density, dashed line – point-multipole approximation). The total field
is shown in blue (solid line – full electronic density + core pseudopotential, dashed
line – point-multipole approximation). Once the polarization catastrophe is avoided
by increased polarization damping, the multipole approximation remains accurate
up to 1 Å and SCF convergence is achieved.

However, this would sacrifice some accuracy in the QM cal-
culation – ONETEP calculations typically use localization radii of
3.5 − 5 Å.

What we propose instead is to slightly attenuate QM/MM
polarization interactions, leaving permanent QM/MM inter-
actions and MM/MM polarization unchanged. We retain the
Thole functional form of the damping, but we reduce Thole’s
a parameter by a factor of 2.45, which has the effect of
attenuating the interactions at a very short range, having
negligible effect elsewhere. This modification can be affected
without any changes to ONETEP or TINKER simply by rescaling the
apparent polarizabilities of QM atoms as seen by TINKER by a
square of the above factor. The value of 2.45 has been found
by numerical experiments on several small QM/MM systems,
and we do not claim it to be optimal (indeed for the system
studied here it leads to slight underpolarization, as seen in
Fig. 12).

The practicability of the proposed solution is demon-
strated in Fig. 12, which shows that all dipoles now converge
to reasonable, finite values, and in Fig. 13 which shows how the
total QM (electronic + core) electric field is now much better
approximated by point multipoles, up to well below 1 Å. The
unexpected charge transfer from QM to the left of the Cl− ion
seen in Fig. 11 disappears, owing to the dipole on Cl− now being
well-behaved.

APPENDIX B: UNPHYSICAL CHARGE TRANSFER
FROM QM TO MM: DIAGNOSIS AND PREVENTION

In this section, we elaborate on the unphysical charge
transfer from QM to MM that can manifest when QM/MM
Pauli repulsion is not adequately taken into account. We will
demonstrate that our improved model (cf. Sec. III C) addresses
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this issue satisfactorily. We use an H2O:K+ system as an exam-
ple.

Figure 14, panel (a) shows an isosurface of the elec-
tronic density at one point in the SCF optimization, where the
unphysical charge transfer is apparent. The density shown is
not the converged density, as the calculation fails to converge.
This is because the spilled electrons accumulate near the
peripheries of the orbital localization regions, and a localized-
orbital formulation of DFT that assumes the orbitals to be well-
decayed by the time they can be truncated cannot cope well
with this situation. This is illustrated in Fig. 15, where a radial
cross section of one of the NGWFs on the QM oxygen atom
(red curve) is seen to differ markedly from its counterpart in a
fully QM calculation (black curve).

Once a more physically sound model is used for QM/MM
Pauli repulsion interactions (what we propose in Sec. III C),
the charge transfer is prevented [Fig. 14, panel (b)] and the

FIG. 14. Electronic density isosurface (0.1e/Å3) for a water-K+ system. Panel
(a): unphysical charge transfer from the QM subsystem to the MM subsystem.
Panel (b): Repulsive potential centered on the MM atom mimics Pauli repulsion,
preventing the unphysical charge transfer.

FIG. 15. Radial cross section of one of the p NGWFs on the QM oxygen atom
for the system in Fig. 14. The NGWF localization radius is 7 a0 ≈ 3.7 Å. In the
absence of a repulsive potential, the NGWF is excessively delocalized (red curve).
Adding the repulsive potential restores the correct behavior (green curve), as seen
by comparing against the fully QM result (black curve). The point on the x axis
indicates the position of the MM K+ ion.

orbitals reacquire the correct shape (Fig. 15, green curve). The
parameters used in this demonstration were AK+ = 230 Ha/e
and ζK+ = 1.379 a−1

0 .
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