
UNCORRECTED
PROOF2 Natural convective heat transfer from isothermal cuboids

3 Ewa Radziemska, Witold M. Lewandowski *

4 Department of Apparatus and Chemical Machinery, Gdansk University of Technology ul. G. Narutowicza 11/12, 80-952 Gda�nnsk, Poland

5 Abstract

6 The paper presents results of theoretical and experimental investigations of the convective heat transfer from iso-

7 thermal cuboid. The analytical solution was performed taking into account complete boundary layer length and the

8 manner of its propagation around isothermal cuboid. It arises at horizontal bottom surface and grows on vertical

9 lateral surface of the block. After changing its direction, the boundary layer occurs above horizontal surface faced up

10 and next it is transformed into buoyant convective plume. To verify obtained theoretical solution the experimental

11 study has been performed. The experiment was carried out for three possible positions of tested the same cuboid.

12 As the characteristic linear dimension in Nusselt–Rayleigh theoretical and experimental correlations we proposed

13 the ratio of six volumes to the cuboids surface area, for the analogy to the same ratio using as the characteristic di-

14 mension for the sphere, which is equal to the sphere�s diameter. It allowed performing the experimental results inde-

15 pendently from the orientation of the block. The Rayleigh numbers based on this characteristic length ranged from 105

16 to 107. The Nusselt number describing intensity of convective heat transfer from the cuboid can be expressed by:

17 Nu ¼ XRa1=5 þ YRa1=4, where X and Y are coefficients dependent on the cuboid�s dimensions. For the range of provided

18 experiment the experimental Nusselt–Rayleigh relation can be presented in the form:

Nu ¼ 1:61Ra1=5 or 0:807Ra1=4

20 with the good agreement with the theoretical one recalculated for the tested cuboid dimensions.

21 � 2002 Published by Elsevier Science Ltd.
22

23 1. Introduction

24 Free convective heat transfer, especially from bodies

25 or objects limited by cuboids surfaces, take place in

26 building engineering, central heating, electronics,

27 aeronautics, aquanauts, chemical apparatus, lighting

28 industry. In these branches cubes are very often used as

29 insulating, constructing or shielding surfaces.

30 The mechanism of heat transfer considered from all

31 surfaces of cuboid is more complicated then from flat

32 horizontal or vertical plates treated separately. The

33 boundary layer from downward faced bottom of the

34 cuboid has the significant influence on the formation of

35boundary layer on vertical side and next on boundary

36layer above horizontal top of the block. Up to now these

37configurations of surfaces (horizontal flat plates facing

38downward [1–4], horizontal flat plates facing upward [5–

3911] and vertical plates [1,9,12]) have been studied theo-

40retically and experimentally independently. In the case

41of cuboids we found significantly less papers devoted

42them. Culham et al. [13] proposed three analytical

43models presented for determining laminar and forced

44convection heat transfer from isothermal cuboids. It is a

45convenient method for calculating an average Nusselt

46number, base on cuboid dimensions, thermophysical

47properties and the approach velocity. Cha and Cha [14]

48presented the numerical and experimental investigations

49results of 3D natural convection flows around two in-

50teracting isothermal cubes. Yovanovich [15] compared

51models of Chamberlain, Stretton and Clemes for cube

52and cuboid and also Karagiosis and Saunders model for

53vertical plate in microelectronic heat sink applications.

54Meinders et al. [16] provided experiments of the local
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55 convective heat transfer from a wall-mounted single

56 array of cubical protrusions along a wall at a wind

57 tunnel. Nakamura et al. [17] presented the data about

58 the cooling design of electric equipment in the form of

59 cubes and square blocks. Culham and Yovanovich with

60 Lee [18] calculated the thermal performance of several

61 heat sinks using a flat plate boundary model, also for

62 isothermal cuboids with the square root of the surface

63 A1=2 as the characteristic length in the form:

64 Nu ffiffiAp ¼ 3:42þ 0:524Ra1=4ffiffi
A

p for cuboids with aspect

65 ratios length/width ¼ 1:1 and Nu ffiffiAp ¼ 3:89þ 0:594Ra1=4ffiffi
A

p

66 for cuboids with aspect ratios length/width ¼ 10:1.

67 This paper is focused on analytical solution of sim-

68 plified Navier–Stokes and Fourier–Kirchhoff equations,

69 described natural convective heat transfer from iso-

70 thermal cuboids immersed in fluid treated as unlimited

71 space.

72 Obtained for cuboids of different shapes (determined

73 by length, width and height) solution has been verified

74 experimentally. In the experimental study we tested the

75 same cuboid with dimensions 0:2 m � 0:1 m� 0:045 m

76 situated in three positions: vertical I, lateral II and

77horizontal III. In this way the errors of measurements

78were for all tested positions the same.

792. The theoretical considerations

80According to the surface orientation to the gravita-

81tional acceleration the cuboid was divided into three

82regions correlated with the heat transfer direction (Fig.

831). Region 1 is the bottom of the cuboid and it is treated

84as the sum of two rectangular horizontal and faced

85down rectangles (1l) with the surface (ðb� aÞa=2) each
86and eight horizontal down-faced triangles (1c) with the

87surface (a2=8) each. Region 2 is composed of two ver-

88tical rectangles (2l) with the surface (ðb� aÞc) each and

89eight vertical rectangles (2c) with the surface (ac=2) each.
90Region 3 is the rectangular horizontal plate facing up-

91ward, created by two rectangles (3l) with the surface

92(ðb� aÞa=2) each and eight triangles (3c) with the sur-

93face (a2=8) each.
94The mean heat transfer coefficient for the cuboid can

95be obtained from the energy balance (Q¼Q1 þQ2 þQ3)

Nomenclature

a ¼ k
Cp

q thermal diffusivity (m2/s)

a width of the cuboid (m)

A control surface across the boundary layer

(m2)

b length of the cuboid (m)

c height of the cuboid (m)

C NuðRaÞ relation constant (–) (Eq. (33))

cp specific heat at constant pressure (J/(kgK))

dS control surface of heated surface (m2)

F surface of the cuboid (m2)

g acceleration due to gravity (m/s2)

i enthalpy (J/kg)

I electric current (A)

L characteristic length (m)

n NuðRaÞ relation exponent (–) (Eq. (33))

Nu ¼ aL
k Nusselt number (–)

Pr ¼ m=a Prandtl number (–)
_QQ heat flux (W)

Ra ¼ gbDTL3

ma Rayleight number (–)

T temperature (�C or K)

DT temperature difference (K)

U voltage (V)

V volume of the cube (m3)

w velocity of the fluid (m/s)

x0 the boundary layer length measured along

the streamlines in the bottom corner region

(m)

Greek symbols

a heat transfer coefficient (W/(m2 K))

b average volumetric thermal expansion coef-

ficient (1/K)

d	 dimensionless boundary layer thickness (–)

d boundary layer thickness (m)

df final thickness of dimensionless boundary

layer (m)

k thermal conductivity of the fluid (W/mK)

m kinematic viscosity of the fluid (m2/s)

H dimensionless temperature defined by Eq.

(4)

Subscripts

1l region 1 lateral

1c region 1 corner

2l region 2 lateral

2c region 2 corner

3l region 3 lateral

3c region 3 corner

c convective

f final

n normal

r radiative

s tangential

w wall

1 bulk fluid
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96 by averaging heat transfer coefficients obtained for all

97 mentioned above regions and subregions:

a¼ðb�aÞaða1lþa3lÞþa2ða1cþa3cÞþ4aca2cþ2ðb�aÞca2l

2ðacþabþbcÞ
ð1Þ

99 Introducing the simplifying assumptions typical for

100 the natural convection and proposed physical model

101 such as:

102 – fluid is incompressible and its flow is laminar and stea-

103 dy,

104 – the flow is predominantly parallel to the control sur-

105 face of heated wall, with the boundary layer develop

106 with the distance along the surface,

107 – physical properties of the fluid in the boundary layer

108 and in the undisturbed region are constant,

109 – temperature of the cuboid�s surface (Tw) is constant,
110 – inertia terms, viscous dissipation and internal heat

111 sources are neglected,

112 – conductive heat losses through suspension of the cu-

113 boid to the fluid is disregard in comparison with con-

114 vective one,

115 – thickness of thermal and hydraulic boundary layers

116 are the same

117 so the Navier–Stokes equations for the control space

118 inside the boundary layer may be written for any posi-

119 tions of heated surface in terms:

m
o2ws

on2
þ gbðTs � T1Þ sin/ � 1

q
op
os

¼ 0 ð2Þ

gbðTs � T1Þ cos/ � 1

q
op
on

¼ 0 ð3Þ

123where (/) is an angle of inclination of considered sur-

124face: (/ ¼ 0) for the horizontal and (/ ¼ p=2) for ver-

125tical surface, (s) and (n) are the tangential and normal to

126the fluid flow directions.

127Instead of the direct form of the Fourier–Kirchhoff

128equation it was decided, according to Squire and Eckert

129[19,20], to make assumption that the temperature profile

130in the boundary layer is described by:

H ¼ T � T1
Tw � T1

¼ 1
�

� n
d

�2
ð4Þ

a

c

b b-a

2l

1l

2c

1c

3c

3l

Q3

Q1

Q2

Fig. 1. The regions of the cuboid, correlated with the heat

transfer phenomenon: 1––horizontal faced-down, 2––vertical,

3––horizontal faced up and subregions: l––lateral, c––corner.
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Fig. 2. The boundary layer shapes and thickness in the defined

regions.
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132 The quasi-analytical solution of Eqs. (1)–(3), pre-

133 sented in Ref. [21] in the form of the local and mean

134 velocity in control space across the boundary layer are:

ws ¼
gbDT

m
dd
ds

n4

12d2

��
� 2n5

60d3
� n2

6
þ 7dn

60

�
cos/

þ
�
� n2

2
þ n3

3d
� n4

12d2
þ dn

4

�
sin/

�
; ð5Þ

ws ¼
1

d

Z d

0

ws dy ¼
gbDTd2

m
dd
ds

cos/
72

�
þ sin/

40

�
ð6Þ

137 The change in mass flow intensity in control surface

138 across the boundary layer (A) is

dm ¼ dðAwsqÞ ð7Þ

140 The amount of the heat necessary to create this

141 change in mass flux is

dQ ¼ Didm ¼ qcpðT � T1ÞdðAwsÞ ð8Þ

143 Substitution of the mean value of the temperature

T � T1
	 


¼ 1

d

Z d

0

DT 1
�

� n
d

�2
dn ¼ DT

3
ð9Þ

145gives

dQ ¼ qCpDT dðAwsÞ
3

ð10Þ

147The heat flux described by Eq. (9) may be compared

148to the heat flux determined by Newton�s Eq. (10):

dQ ¼ aDT dS ¼ �k
oH
on

� �
n¼0

DT dS; ð11Þ

150where (dSÞ is the control surface of the heating surface.

151From simplifying assumption of the temperature

152profile inside the boundary layer (4), the dimensionless

153temperature gradient on the heated surface may be

154evaluated as:

a ¼ k
oH
on

� �
n¼0

¼ � 2k
d

ð12Þ

156Comparing the heat flux emitted by the wall surface

157with the heat flux transported by the fluid one can obtain:

Fig. 3. Three sections of tested cuboids with boundary layers: A-A––longitudinal offset section, where the left section was made

through the corner subregions, the right section -through the lateral ones; B-B––cross-section through boundary layer below down

faced surface of the bottom with stream lines patterns; C-C––cross-section through boundary layer above up faced surface of the top of

the cuboid with stream lines patterns.
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1

6

qcpd
k

dðAwsÞ ¼ dS ð13Þ

159 2.1. Detailed solution for the region 1

160 The phenomenon in this region of the cuboid is well

161 known case of the convective heat transfer from down-

162 faced horizontal plate. For the case of rectangles (Fig. 3

163 the cross-section B-B) streamlines are parallel to each

164 other. The boundary layer arises from the axes of sym-

165 metry and diagonals of the surface. According to the

166 patterns of the stream lines shown on the dawn faced

167 horizontal rectangular plate view (Fig. 3 B-B), one can

168 distinguished two sub regions: first, with two rectangles

169 (1l) and the second one, with eight triangles (1c). For the

170 first of them the control surface A has the same width

171 independently on the position along the boundary layer

172 on the plate. For the triangles (1c) the width of the

173 control surfaces A are the function of not only the

174 thickness of boundary layer (d) but also the distance

175 from the edges.

176 2.1.1. Bottom lateral side

177 For the rectangles the control surfaces can be defined

178 as (Fig. 3 B-B):

A1l ¼ ðb� aÞd1l and dS1l ¼ ðb� aÞdx ð14Þ

180 and from the mean velocity of the fluid flow along the

181 streamlines (6) is:

wx ¼
1

d1l

Z d1l

0

wx dy ¼
gbDTd2

1l

72m
dd1l

dx
ð15Þ

183 Substituting (14) and (15) into (13) one obtain

184 equation:

3d3
1l

dd1l

dx

� �2

þ d4
1l

d2d1l

dx2
¼

432 a
2

	 
3
Raa=2

ð16Þ

186 where

Raa=2 ¼
gbDT ða

2
Þ3

ma
ð17Þ

188 Eq. (16) has the solution in the form of boundary

189 layer thickness:

d1l ¼
4:478 a

2

	 
3=5
x2=5

Ra1=5a=2

ð18Þ

191 and next, according to the Eq. (12), one can calculate the

192 mean value of the heat transfer coefficient for this re-

193 gion:

a1l ¼
2

a

Z a=2

0

2k
d1l

dx ¼ 0:744k
Ra1=5a=2

a=2
ð19Þ

1952.1.2. Bottom corner side

196The streamlines below the defined above triangular

197corner�s regions (1c) are directed perpendicularly to the

198edges of the plate along the x or z-coordinate (Fig. 3 ‘‘B-

199B’’). The velocity of the fluid wx and wz is described by

200the same function due to symmetry of the phenomenon.

201The control surfaces for these rectangular triangles

202are defined as:

AIc ¼ zdIc and dS1c ¼ zdx ð20Þ

204and the mean velocity value obtained from (6) is:

wx ¼
gbDTd2

Ic

72m
ddIc

dx
ð21Þ

206Writing the Eq. (13) for this surfaces in the form:

1

6

qcpdIc

k
dðAIcwxÞ ¼ dSIc ð22Þ

208and

1

432

Ra1=5a=2

a
2

	 
3 dIc

d

dx
dIc

ddIc

dx

� �
¼ 1 ð23Þ

210one can find the solution:

d1c ¼
4:478 a

2

	 
3=5
x2=5

Ra1=5a=2

ð24Þ

212In this subregion the fluid flow starts from the hy-

213potenuse of each rectangular triangle and goes perpen-

214dicularly to the edges so the length of boundary layer

215along streamlines can be described by: (x0 ¼ ða=2Þ � x)
216(Fig. 4) which changes from x0 ¼ a=2 for z ¼ 0 to x0 ¼ 0

217for z ¼ a=2. Taking it into account in Eq. (24) one can

218obtain the boundary layer thickness in the form:

d1c ¼
4:478 a

2

	 
3=5 a
2
� x

	 
2=5
Ra1=5a=2

ð25Þ

220and next the mean heat transfer coefficient from this

221regions:

a1c ¼
1

S

Z
S

2k
d1c

dS ¼ 16k
a2

Ra1=5a=2

4:478ða
2
Þ3=5

Z a=2

0Z a=2

ða=2Þ�zð Þ

a
2

�
� x
��2=5

dxdz ¼ 0:93k
Ra1=5a=2

a
2

ð26Þ

2232.2. Solution for the region 2

224The heat transfer in this region can be treated as the

225well-known case of natural convection from isothermal

226vertical surface. Instead of the typical vertical plates for

227the cuboid the boundary layer thickness is not equal

228zero at the bottom edge but is equal to the final
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229 boundary layers thickness from the previous subregion

230 (d1lf ) or (d1cf ) (see Figs. 2 and 3 A-A). Because the values

231 of final boundary layers thickness differs from each

232 other this was the reason why the region 2 has been

233 divided into two sub regions: the vertical lateral (2l) and

234 corner (2c) one. For the first of them (2l) the initial

235 values of boundary layer thickness is constant (Eq. (18)

236 for x ¼ a=2) but for region (2c) it is the function of the

237 distance from the corner of the cuboid (Eq. (24)).

238 Both vertical lateral side (2l) and corner side (2c)

239 have the control surfaces defined as:

A2l ¼ yd2l and dS2l ¼ y dy ð27Þ

241 and the mean velocity value obtained from (6):

wy ¼
gbDTd2

2l

40m
ð28Þ

243 Comparing the heat flux emitted by the heated wall

244 with the heat flux transported by the fluid one can ob-

245 tain the equation:

1

240

Rac
c3

d2l

y
d

dy
ðyd3

2lÞ ¼ 1 ð29Þ

247 which solution is the boundary layer thickness

d2l ¼
240c3

Rac

4

7
y

� �1=4

ð30Þ

2492.2.1. The vertical lateral side

250For estimating the mean heat transfer coefficient for

251the subregion (2l) one should take the length of the

252boundary layer as (cþ d1lf ) and then integrating borders

253from ð�d1lfÞ to (c), where ðd1lf ) is the final thickness of

254boundary layer from bottom in lateral region (18) for

255(x ¼ a=2 ¼ const:), described by equation:

d1lf ¼
4:478 a

2

	 
3=5 a
2

	 
2=5
Ra1=5a=2

¼ 2:239a

Ra1=5a=2

ð31Þ

257Introduction Eq. (30) into (12) leads to the local and

258next the mean heat transfer coefficient from this region

a2l ¼
2k
c

Z c

�2:239a=Ra1=5
a=2

4

7

240c3

Rac

� ��1=4

y�1=4dy ð32Þ

260and then

a2l ¼ 0:779k
Ra1=4c

c
1

2
4 þ 2:239a

Ra1=5a=2c

 !3=4
3
5 ð33Þ

2622.2.2. The vertical corner region

263For estimating the mean heat transfer coefficient

264from the subregion (2c) one should take the length of

265boundary layer as cþ d1lc and then integrating borders

266from ð�d1cfÞ to (c), where (d1cf ) is the final thickness of

267boundary layer from bottom in the corner region. Due

268to the symmetry of the phenomenon (x ¼ z).
269Accordingly to Eq. (25) for x ¼ a=2 and z0 ¼ ða=2Þ� z
270the final value of the boundary layer thickness for this

271sub region is:

d1cfðzÞ ¼
4:478ða

2
� zÞ3=5ða

2
Þ2=5

Ra1=5a=2

ð34Þ

273The mean heat transfer coefficient from the regions

274(2c) is described by the equation:

a2c ¼
1

a=2

Z a=2

0

1

c

Z c

�d1cf ðzÞ

2k

4
7

240c3
Rac

y
� �1=4 dy

2
64

3
75dz

¼ 0:779k
Ra1=4c

c
þ 0:984k

Ra1=4c

Ra3=20a=2

a3=4

c7=4
ð35Þ

2762.3. Solution for the region 3

277Region 3 is known case of the heat transfer from the

278horizontal rectangular plate facing upward, for example

279[22]. The stream lines are shown schematically on Fig. 3

280(cross-section C-C). In this region the rectangular plate

281should also be considered as the sum of two rectangles

282and eight triangles and the heat transfer is now influ-

z

dS1c A1c

x
x’ x

a/2

0

Fig. 4. Enlarged fragment of the presented on Fig. 3 B-B the

bottom corner subregion (1c) with the explanation of fluid flow

model and control surfaces definitions.
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283 enced by boundary layer formed on the bottom and next

284 vertical sides of the cuboid. Integration of the heat

285 transfer coefficient has to take into account the final

286 boundary layer thickness d2lf and d2cf .

287 2.3.1. The upper lateral region

288 The heat transfer in this region is influenced by the

289 final boundary layer thickness from the lateral vertical

290 side (2lf). The boundary layer thickness obtained for

291 lateral top regions in the form [22]:

d3l ¼
4:478 a

2

	 
3=5
x2=5

Ra1=5a=2

ð36Þ

293 should be now integrated from (�d2lf ) to (a=2), where
294 final thickness of boundary layer ðd2lfÞ can be calculated

295 from (30) for ðy ¼ cþ d1lfÞ:

d2lf ¼ d2lðy ¼ cþ d1lfÞ

¼ 4

7

240c3

Rac

� �1=4

c

 
þ 2:239a

Ra1=5a=2

!1=4

ð37Þ

297 Then one can obtain the mean heat transfer coeffi-

298 cient:

a3l ¼
1

a=2

Z a=2

�d2lf

2k
d3l

dx

¼ 0:744k
Ra1=5a=2

a
2

1

8>>><
>>>:

þ
4
7

240c3

Rac
cþ 2:239a

Ra1=5
a=2

� �� �3=20
a
2

	 
3=5
9>>>=
>>>;

ð38Þ

300 2.3.2. The upper corner region

301 The final boundary layer thickness from (2cf) subre-

302 gion is the function of coordinates (x) or (z), so for the

303 upper triangles the Eq. (37) should be transformed as (34)

304 to:

d2cf ¼ d2cðy ¼ cþ d1cfÞ

¼ 4

7

240c3

Rac

� �1=4

c

 
þ
4:478ða

2
� xÞ3=5ða

2
Þ2=5

Ra1=5a=2

!1=4

ð39Þ

306 and the mean value of the heat transfer coefficient for

307 the regions (3c) can be described as:

a3c ¼
4

a2

Z a=2

�d2cf ðxÞ

Z a=2

�d2cf ðzÞ

2k
d3c

dx

 !
dz

¼ 0:744k
Ra1=5a=2

a=2
1

2
64 þ

4
7

240c3

Rac

� �3=20
a
2

	 
3=5 c

 
þ 1:477a

Ra1=5a=2

!3=20
3
75

ð40Þ

309where the last integrating in (40) was replaced by the

310mean value without considerable inaccuracy.

3112.4. The Nusselt–Rayleigh relation for the isothermal

312cuboid

313Substituting (19), (26), (32), (34), (37) and (39) to the

314Eq. (1) the mean heat transfer coefficient for the cube

315can be estimated. Majority of the heat transfer analyses

316are based on correlations Nusselt number versus Ray-

317leigh number in the form:

Nu ¼ CRan ð41Þ

319Nusselt and Rayleigh numbers are defined as:

NuL ¼
aL
k

and RaL ¼
gbDTL3

ma
ð42Þ

321with L as the characteristic linear dimension.

322On the base of our own and other investigators data

323we have been considered the linear characteristic length

324choice. We taken into account height of the cuboid (c),
325the boundary layer length (aþ c), the square root of the
326surface (

ffiffiffi
A

p
) and the length defined by:

L ¼ 6V
F

¼ 3abc
abþ acþ bc

ð43Þ

329where V is the volume and F is cuboid�s surface,
330Ultimately we have chosen the characteristic length

331(43) and substituting:

Raa=2 ¼ RaL
abþ acþ bc

6bc

� �3

and

Rac ¼ RaL
abþ acþ bc

3ab

� �3

ð44Þ

333the NuLðRaLÞ relation can be described in form:

NuL ¼ XRa1=5L þ YRa1=4L ð45Þ

335where

X ¼ að6bcÞ2=5

4ðabþ acþ bcÞ7=5
2:976b

8<
: þ 0:372a

þ 1:488

a
2

	 
3=5 4

7

240c3

RaLðabþacþbc
3ab Þ3

" #3=20
ðb

2
4 � aÞ

� c

 
þ 2:239a

Ra1=5L
abþacþbc

6bc

	 
3=5
!3=20

þ a c

 
þ 1:477a

Ra1=5L
abþacþbc

6bc

	 
3=5
!3=20

3
5
9=
; ð46Þ

337and
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Y ¼ cð3abÞ1=4

2ðabþ acþ bcÞ5=4
1:558ða
"

þ bÞ

þ
3:936a a

c

	 
3=4 þ 1:558ðb� aÞ 2:239 a
c

	 
3=4
Ra3=20L

abþacþbc
6bc

	 
9=20
#

ð47Þ

339 The Eq. (45) with coefficients (46) and (47) has the

340 universal form and does not depend on the cuboids

341 position––it makes allowance for the influence both the

342 horizontal and vertical sides of the block, which are

343 usually described separately with the exponents: 1/5 and

344 1/4 accordingly.

345 3. Experimental apparatus and procedure

346 Experiment was conducted in the air in a vessel with

347 the volume of 1.5 m3. The tested cuboid was made of

348 polished aluminium and had the dimensions: 0.2, 0.1,

349 and 0.045 m. It was hanged in the vessel with the use of

350 two nylon wires which was 0.5 mm thick in three posi-

351 tions of cuboid�s orientation: I-vertical-for height c ¼
352 0:2 m, II-lateral-for height c ¼ 0:1 m and III-horizontal-

353 for height c ¼ 0:045 m.

354 The electric heater (power transistors) was placed

355 inside the cuboid. Heat flux from the surface of the

356 block to surrounding test fluid was transferred mainly

357 by laminar convection and partially by radiation. Six

358 thermocouples were used to measure the surface tem-

359 perature, one on the each side of the cube. They were

360 soldered into holes of aluminium with the tips of about

361 0.001 m. Four thermocouples were used to measure the

362 bulk temperature (T1) of the fluid (air) at different levels

363 in the tank. The inaccuracy of the temperature mea-

364 surement did not exceed �0.1 K. Establishing of differ-

365 ent steady states was made by a cooling system located

366 at the top of the vessel. During the experimental runs the

367 surface temperatures of the cube, bulk temperature of

368 the fluid and the voltage (U ) and current of the heater

369 inside the cuboid (I) were measured. All these data were

370 recorded during established steady states. The time of

371obtaining a thermal equilibrium and performing of ex-

372perimental studies was about 6 h for one experimental

373point.

3744. Experimental results and analysis

375In steady-state conditions the heat balance at the

376exterior surface requires that the rate of heat gain is

377equal to the rate of heat loss. This balance must be

378maintained between the heat flux form inside the cuboid

379and the convective and radiative losses from the external

380surfaces to the air. The only source of heat flux form

381inside the cube was the electric power of the heater.

382Because thin nylon wires eliminated the solid metal

383support of the cuboid, the heat losses by conduction

384through the support have not been taken into account.

385A series of experimental runs in air according to the

386apparatus described above was made in three configu-

387rations of the cube. For every steady-state point the

388temperature of the cuboid�s sides (Tw), the bulk fluid

389(T1) and the electric power of the hater (UI) was saved
390by computer system.

391Then the Nu and Rayleigh numbers were estimated

392as:

NuL ¼
aL
k
; RaL ¼

gbðTw � T1ÞL3

ma
ð48Þ

394where a was calculated from the Newton�s law:

a ¼
_QQc

F ðTw � T1Þ ¼
UI � _QQr

F ðTw � T1Þ ð49Þ

396and _QQr is the radiative heat flux form the cuboids sur-

397face.

398All measurements were counted out with the least

399square method using three proposed characteristic

400lengths. The first one was the height of the cuboid, what

401is the equivalent of the characteristic linear dimension

402used for the vertical plates. It gave the NuðRaÞ relation

403(Fig. 5):

10

100

5.104 1.106 1.107 4.107

Rac

Nuc

Nuc=0.26.Rac
1/3

+10%

-10%

Fig. 5. Experimental results in comparison with theoretical values for three positions of the tested cuboid: (�) position I, (�) position

II, (}) position III in the logarithmic scale with the height of the cuboid as the characteristic linear dimension.
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Nuc ¼ 0:26Ra1=3c ð50Þ

405 The second linear dimension was the length of the

406 boundary layer, equal the sum of the length and height

407 of the cuboid ða=2þ cþ a=2Þ. Then obtained criterial

408 relation was similar to (50) (Fig. 6):

Nuaþc ¼ 0:27Ra1=3aþc ð51Þ

410 Ultimately the characteristic length ðL ¼ 6V =F Þ (43)
411 turned out the most useful and allowed performing all

412 experimental result, apart from the position of the cu-

413 boid (Fig. 7). The obtained relation can be drawn in

414 form

NuL ¼ 1:596Ra1=5L or NuL ¼ 0:818Ra1=4L ð52Þ

416 For the tested cuboid the Nul (Ral) relations, obtained
417 from (45) with (46) and (47) are:

NuL ¼ 0:442Ra1=5L þ 0:585Ra1=4L ð53Þ

419what is adequate to:

NuL ¼ 1:61Ra1=5L or NuL ¼ 0:807Ra1=4L ð54Þ

421that agrees well with (52) within �1.35%.

4225. Conclusions

423The natural convection heat transfer in unlimited

424space from isothermal cuboid has been theoretically and

425experimentally investigated. Obtained correlation NuL
426(RaL) allows calculating the convective heat transfer in-

427tensity for the cuboids with any dimensions and posi-

428tions regarding the direction of gravity acceleration. The

429solutions are in good agreement with experimental re-

30

100

2.106 1.107 5.107
Raa+c

Nua+c

Nua+c=0.27.Raa+c
1/3

+10%

-10%

Fig. 6. Experimental results in comparison with theoretical values for three positions of the tested cuboid: (�) position I, (�) position

II, (}) position III in the logarithmic scale with the sum of height and length of the cuboid as the characteristic linear dimension.

28
Nu

26

24

+10% Nutheor

1.106 Ra 1.8.106

22

3.105 1.106 3.106
10

50

Nutheor.=0.442.Ra1/5+ 0.585.Ra1/4NuL

RaL

4.105

+10%

-10%

-10%

Fig. 7. Experimental results in comparison with theoretical values for three positions of the tested cuboid: (�) position I, (�) position

II, (}) position III in the logarithmic scale with enlarged detail in non-logarithmic scale.
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430 sults presented in this paper and would be included into

431 prepare energy balance objects in the form of cuboid.
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