
Contents lists available at ScienceDirect

Applied Mathematical Modelling

journal homepage: www.elsevier.com/locate/apm

New analytical laws and applications of interaction potentials 

with a focus on van der Waals attraction

A. Borković a,b, ,∗, M.H. Gfrerer a, , R.A. Sauer c,d,e,

a Institute of Applied Mechanics, Graz University of Technology, Technikerstraße 4/II, 8010 Graz, Austria
b University of Banja Luka, Faculty of Architecture, Civil Engineering and Geodesy, Department of Mechanics and Theory of Structures, 78000 
Banja Luka, Bosnia and Herzegovina
c Institute for Structural Mechanics, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
d Department of Structural Mechanics, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
e Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India

A R T I C L E I N F O A B S T R A C T 

Keywords:

Interaction potential

van der Waals attraction

Pairwise summation

Coarse-grained approach

Contact mechanics

Beam-beam interaction

Beam-infinite half-space interaction

The paper aims to improve the efficiency of modeling interactions between slender deformable 
bodies that resemble the shape of fibers. Interaction potentials are modeled as inverse-power 
laws with respect to the point-pair distance, and the complete body-body potential is obtained 
by pairwise summation (integration). To speed-up integration, we consider the analytical pre

integration of potentials between specific geometries such as disks, cylinders, rectangles, and 
rectangular prisms. Several exact new interaction laws are obtained, such as disk-infinite half

space and (in-plane) rectangle-rectangle for an arbitrary exponent, and disk-disk and rectangle

rectangle for van der Waals attraction. To balance efficiency and accuracy, approximate laws 
are proposed for disk-disk, point-cylinder, and disk-cylinder interactions. Additionally, we have 
developed a novel formulation for the interaction between a spatial beam and an infinite half

space. The application of the pre-integrated interaction potentials within the finite element 
method is illustrated via two examples.

1. Introduction

Intermolecular interactions are the underlying mechanism that governs a myriad of macro phenomena [1]. The exact physics 
behind these interactions is complex and yet to be fully understood, but the electromagnetic potential is considered the fundamental 
cause. Intermolecular interactions are often modeled as an inverse-power law of the point-pair distance. When the exponent is greater 
than 3 and the bodies are in close proximity, the total interaction is dominated by the few closest-point pairs. The computational 
modeling of this short-range effect is both crucial and demanding, due to the competition of repulsive and attractive forces that define 
a contact. On the other hand, the modeling of long-range and transitional effects is less involved but can be equally important since 
these forces can bring the objects in proximity in the first place.

The most important interaction is van der Waals (vdW) attraction as it is responsible for practically all phenomena involving 
intermolecular interactions. The vdW forces act even between neutral molecules since they are caused by fluctuating charge distri

butions. Furthermore, they contribute to both small and large separation regimes. The accurate modeling of vdW interaction is quite 
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involved since it consists of several contributions, depends on the retardation time, and is non-additive [2]. An approximate method 
for calculating vdW interaction between bodies is the pairwise summation approach, which assumes that the total interaction is a mere 
sum of point-point interactions. In comparison with a unifying treatment of vdW and Casimir interactions [3], the pairwise sum

mation shows large discrepancies of potentials between long, semi-metallic molecules, while for compact and insulating molecules, 
such as many proteins, pairwise summation provides reasonable accuracy. These discrepancies for metallic structures occur due to 
the complex plasmon modes that influence interaction potential at small separations [4]. Nevertheless, we are here mainly referring 
to the simplified case of non-retarded vdW interaction for which the pairwise summation approach is valid and that can be modeled 
with the point-pair inverse-power law with exponent 6.

The history of the pairwise summation (integration) of interaction potentials goes back to Hamaker, who derived a sphere-sphere 
vdW law in 1937 and introduced what would be later known as the Hamaker constant [2]. The main assumption behind the point-pair 
summation approach is that a physical constant, valid for both point-pair and body-body interactions, exists. Almost two decades 
later, Lifshitz showed that this assumption does not hold [2]. However, by assuming small differences in material electromagnetic 
properties and neglecting the finite velocity of light, the so-called happy convergence of the Hamaker and Lifshitz theories follows [2]. 
The main difference is that the Hamaker constant needs to be computed from bulk material properties but the geometric influence 
of the pairwise integration is still crucial. The pairwise summation of vdW attraction is commonly used for a qualitative description 
of various phenomena, from bio-molecular to crystallization, while more appropriate models are still under consideration [5].

The numerical modeling of intermolecular interactions is often based on molecular dynamics or Monte Carlo simulations. Molecu

lar dynamics applies the laws of motion to each molecule which makes it computationally expensive, while Monte Carlo is a statistical 
method that cannot trace the actual movement of molecules [1]. An alternative to these well-established approaches is the coarse

grained model that is based on homogenization and coarse-graining of the molecular model. By utilizing the physics of molecular 
interactions with the efficacy of continuum contact formulations [6], the coarse-grained model provides a good balance between 
accuracy and efficiency [7--9]. The idea of separating the interactions that occur within the body (intrasolid) and between the bodies 
(intersolid) allows us to represent the interaction potential between two bodies as a function of the gap vector.

The main motivation for the present research is to enable efficient and accurate numerical simulation of intermolecular interactions 
between slender deformable bodies using the coarse-grained approach. In solving the resulting boundary value problem at involved 
time and space scales, integration of an interaction potential is a bottleneck. Since the numerical integration of two folded 3D 
integrals is computationally expensive, we are pursuing an analytical pre-integration over simple bodies to improve the computational 
efficiency and balance it with accuracy. For this, we focus on section-section pairs, which can be utilized for interactions between 
deformable planar beams [10--13], and section-infinite half-space pairs, which can be employed for the interaction between a spatial 
beam and an infinite plate. However, other interaction pairs can be of interest, such as section-beam [14,15]. The mentioned laws 
have not been studied much before because the idea of using the coarse-grained model within structural beam and shell theories was 
conceived only recently [10,16,17]. The present study focuses on pure geometrical and mechanical considerations, while the actual 
values of physical constants for particular materials and bodies are left unspecified.

Let us emphasize that an analytical integration of interaction potentials is not trivial, even for simple geometrical bodies in 
parallel orientation, such as disks and rectangles. Although we mainly consider sections in parallel orientation, the section-section 
approach [13] allows reasonably accurate and efficient modeling of the interaction between arbitrarily curved in-plane beams since 
the influence of orientation between disks is insignificant in such a setting. On the other hand, the orientation between sections 
is crucial to properly describe the scaling of the potential for spatial beams that cross each other. Such section-section laws have 
not yet been developed and the difficulties arising in their derivation have motivated researchers to consider alternatives, such as 
section-infinite beam models [14,15].

Let us briefly review available contributions regarding the interaction between bodies of interest. VdW attraction between rectan

gular prisms with various orientations is considered in [18]. It is emphasized that approximations are necessary to solve the six-folded 
integral. Several expressions for vdW and steric interactions between equally-sized rectangles and parallelopipeds are derived in [19]. 
These laws are used in [20] to model the finite-size effect of plate-plate interaction within the framework of a hybrid Hamaker-Lifshitz 
approach. Additionally, they are employed in [21] to create a dataset for the modeling of interaction between clay platelets.

A seminal work on vdW interaction between cylinders is given in [22], where the in-plane disk-disk law for an arbitrary exponent 
is derived in the form of a double infinite series. An application of pairwise vdW summation to the surfaces of biological interest 
and its accuracy are discussed in [23]. Although the Hamaker approach overestimates the interaction potential, it gives the correct 
results if the orientation effects are considered.

An approximate point-cylinder vdW law is derived in [24] to obtain a disk-cylinder interaction. The exact point-cylinder law is 
found in [25] and further integrated to obtain the interaction between a sphere and an infinite cylinder, considering both non-retarded 
an retarded vdW limits. An approach that can be considered as a generalization of the Derjaguin approximation is developed in [26] 
for the pairwise interaction between a 3D body and a half-space.

When an appropriate interaction potential law for all separations is not available, one approximate approach is to find asymptotic 
expressions for small and large separations, and then to interpolate these limits. This is done in [27] for cylinder-substrate and cylinder

cylinder vdW interactions using the Lifshitz theory and the pairwise summation as a guide for the definition of an interpolating 
function.

The contributions of the present paper are twofold: (i) analytical derivation of new interaction laws between simple geometrical 
bodies, and (ii) implementation of these laws into computational formulations that solve the boundary value problem of interacting 
deformable bodies. Many of the existing analytical expressions are summarized in [1,2,24]. In this research, we have derived new 
laws and improved existing ones. The main findings are exact vdW disk-disk and rectangle-rectangle laws, and an exact disk-infinite 
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Fig. 1. Various interaction pairs considered in this research. Due to parallel orientation and symmetry, the relative position between the most of interacting bodies 
is defined by a gap (horizontal double arrow) and, for disk-disk and rectangle-rectangle, by an offset (vertical double arrow). For disk-plate interaction, the relative 
position is defined with a gap and an angle.

half-space law for a general exponent. Also, novel approximate point-cylinder and disk-cylinder laws are conceived. To derive these 
expressions, many different interaction pairs have to be considered and most of them are displayed in Fig. 1. All the obtained expres

sions are verified with numerical integration and, where available, by comparison with the literature. As the main computational 
tool, we have used the computer algebra system Wolfram Mathematica 14 (WM14). All the derivations are collected in six WM14 
notebooks available as Supplementary data.

Moreover, we have implemented a new disk-disk law into the framework of in-plane beam-beam interaction and compared it 
with the existing law. Finally, based on a new disk-infinite half-space law, we have developed a novel formulation for the interaction 
between a deformable spatial beam and a rigid infinite half-space.

Due to the underlying complexity of modeling the intermolecular interactions between various bodies, the following assumptions 
are introduced:

• The point-point interaction potential is modeled as an inverse-power law of the point-pair distance.

• The total body-body interaction equals the pairwise summation (integration) of point-pair interactions.

• Only two-body interaction is considered and many-body effects are ignored.

• Analytical integration is done between bodies that are mainly in parallel and symmetric orientation, cf. Fig. 1.

• Any influence of a surrounding medium is neglected.

• There is no redistribution of particles or charges inside the bodies; that is, we are dealing with dielectric or nonconducting 
materials.

• The density distributions of particles and physical constants over the interacting bodies are constant.

Furthermore, let us state desired properties for exact interaction potential laws: (i) compact form, (ii) accurate evaluation with 
machine precision, (iii) real-valued and real arguments, (iv) general, i.e. valid for an arbitrary exponent. For approximate laws, we 
introduce additional requirements: (v) good approximation for small separations, (vi) small and bounded errors for large separations, 
(vii) correct asymptotic scaling. Satisfaction of these requirements is difficult to achieve in general cases, but they can serve as general 
guidelines.

The remaining paper is organized as follows: a general concept of pairwise integration, coordinate systems and three rules are 
discussed and defined in the next section. Circular geometries are considered in the third and rectangular geometries in the fourth 
section. Two illustrative numerical examples are presented in Section 5, which is followed by conclusions. The derivation of the new 
formulation for the interaction between a spatial beam and a half-space is scrutinized in Appendix B.

2. General considerations

In this section, we introduce the concept of the point-pair interaction and its integration over the two interacting bodies. Three 
rules and several general expressions are derived and revised as an introduction and foundation for the novel integrations that follow 
in Sections 3 and 4. Some commonly used abbreviations throughout the paper are: P for point, B for body, L for line, PN for plane, 
PT for plate, HS for half-space, R for rectangle, HST for half-strip, D for disk, C for cylinder, RP for rectangular prism, and S for sheet. 
Although some geometric bodies are infinite by definition, such as plane and half-space, we will emphasize the infinity property in 
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this section to be consistent when dealing with bodies that can have both infinite and finite dimensions, such as plate, cylinder, prism, 
etc.

Let us observe two bodies, 𝑋 and 𝑌 , that interact via some volume interaction potential. We exclusively consider point-pair 
interactions that can be represented as an inverse power law of the point-pair distance 𝑟, i.e.

Π𝑚
P−P = 𝑘𝑚 𝑟

−𝑚, 𝑚 ∈ℝ+, (1)

where 𝑘𝑚 is a physical constant, taken to be 1 in the following. We will refer to Π𝑚
P−P as an interaction potential of 𝑚𝑡ℎ order. An 

attractive potential is often defined as negative to obtain a positive force [1]. We will consider all potentials as positive here, without 
loss of generality. To find a body-body interaction potential, the point-pair law must be integrated over both volumes, i.e.

Π𝑚
B−B = ∫

𝑉𝑥

∫
𝑉𝑦

𝛽𝑥 𝛽𝑦Π𝑚
P−P d𝑉𝑦 d𝑉𝑥 , (2)

where 𝛽𝑖 are the densities of particles in the respective bodies, taken to be 1 in the following.

Since the integral (2) is difficult and often impossible to evaluate for arbitrarily shaped bodies, we pursue: (i) the derivation of 
analytical interaction laws between parallel cylinders, rectangular prisms, and their cross sections, see Fig. 2, and (ii) the application 
of interaction laws between simple geometrical bodies to the efficient integration of interaction potentials between slender deformable 
bodies. The boundary value problem of interaction between deformable bodies, or between a deformable and a rigid body, can be 
transformed into its weak form, where the equilibrium of a system is found by minimizing the total potential energy, i.e.

𝛿Πtot = 𝛿Πint + 𝛿Πext + 𝛿Π𝑚
B−B = 0, (3)

where Πint is the strain energy and Πext is the potential of external forces. Since strain energy and external potential for various 
bodies can be readily found in the literature, we focus here on the interaction term Π𝑚

B−B .

For the integration over a circular domain we mainly use the relative polar coordinate system (RPCS1) of Fig. 2b [13,22], while for 
the rectangular domain, we employ the Cartesian coordinates of Fig. 2d. If not stated differently, the origin of the coordinate system 
is at the center of the body 𝑋, and denoted 𝒙0. Therefore, the coordinates of two arbitrary interacting points are 𝑃𝑥 = (𝑥1, 𝑥2,0)
and 𝑃𝑦 = (𝑦1, 𝑦2, 𝑞1), since the offset between the cross sections is 𝑞1 = 𝑦3 − 𝑥3 = 𝑦3 − 0. Then, the distance between the points 

is 𝑟 =
√
𝑝2 + 𝑞21 , where 𝑝 is the in-plane distance between graphical projections of points into the 𝑒1𝑒2 plane. For the Cartesian 

coordinate system, this distance is simply 𝑝 =
√
(𝑦1 − 𝑥1)2 + (𝑦2 − 𝑥2)2, while for the polar coordinate systems in Fig. 2b and Fig. 2c, 

it is one of the coordinates.

Let us start with an interaction between two in-plane bodies, 𝑋 and 𝑌 , lying in parallel planes 𝛾1 and 𝛾2 with an offset 𝑞1. 
These bodies can be either points, plane curves, or plane figures/shapes (sections). Their interaction potential of 𝑚𝑡ℎ order can be 
represented as

Π𝑚
𝑋-𝑌

(𝑝, 𝑞1) = ∫
𝐴𝑌

∫
𝐴𝑋

Π𝑚
P−P(𝑝, 𝑞1) d𝐴𝑋 d𝐴𝑌 = ∫

𝐴𝑌

∫
𝐴𝑋

1 
(𝑝2 + 𝑞21)

𝑚∕2
d𝐴𝑋 d𝐴𝑌 . (4)

For the special case of an interaction between co-planar bodies, we designate their potential by Π𝑚
𝑋-𝑌IP

= Π𝑚
𝑋-𝑌

(𝑝,0). Next, consider 
the interaction potential of 𝑚𝑡ℎ order between the same body 𝑋 and a new body 𝑌∞ that is formed by infinitely extending the body 
𝑌 perpendicular to the plane 𝛾2 in both directions, i.e.

Π𝑚
𝑋-𝑌∞

(𝑝) = ∫
𝐴𝑌

∫
𝐴𝑋

∞ 

∫
−∞

Π𝑚
𝑋-𝑌

(𝑝, 𝑞1) d𝑞1 d𝐴𝑋 d𝐴𝑌 . (5)

This expression can be analytically integrated with respect to (w.r.t.) 𝑞1 , i.e.

Π𝑚
𝑋-𝑌∞

= 𝑓𝑚 ∫
𝐴𝑌

∫
𝐴𝑋

1 
𝑝𝑚−1

d𝐴𝑋 d𝐴𝑌 = 𝑓𝑚Π𝑚−1
𝑋-𝑌

(𝑝,0) = 𝑓𝑚Π𝑚−1
𝑋-𝑌IP

,

𝑓𝑚 ∶=

√
𝜋Γ

(
𝑚−1
2 

)
Γ
(
𝑚

2 
) ,

(6)

where Γ (𝑧) = ∫ ∞
0 𝑠𝑧−1𝑒−𝑤 d𝑤 is the gamma function. Equation (6) implies that the interaction potential Π𝑚

𝑋-𝑌∞
can be expressed as 

a product of the potential of (𝑚− 1)𝑡ℎ order between co-planar bodies, Π𝑚−1
𝑋-𝑌IP

, and the factor 𝑓𝑚. We will refer to this observation as 
the rule of infinite and in-plane body interaction (RIIPI). It will be readily used throughout the paper.

Remark 1. The integration of interaction potentials between two bodies is often done by assuming that one of them is infinite along 
some dimension [1]. In that case, the definite integral is much easier to evaluate and the result can be applied to many practical 
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Fig. 2. Interaction of two bodies with constant cross sections. a) Front view. b) and c) Top view in case of circular cross sections (disks). Two relative polar coordinate 
systems are employed (RPCS1 and RPCS2). d) Top view in case of rectangular cross sections.

situations. For example, a pointfinite line law for arbitrary 𝑚 involves a hypergeometric function, which makes it much more 
complicated for the evaluation and further integration than the point-infinite line law, cf. Notebook 1.

A point-infinite plane law can be found in a general form, i.e.

Π𝑚
P−PN∞23

=

∞ 

∫
−∞

∞ 

∫
−∞

1 [
𝑝2 + (𝑦2 − 𝑥2)2 + 𝑞21

]𝑚∕2 d𝑞1 d𝑦2 = 2𝜋 
(𝑚− 2)𝑝𝑚−2

for 𝑚> 2, (7)

where the distance (gap) between the point and the plane is 𝑝 = 𝑦1 − 𝑥1, cf. Notebook 1.

Now we can make one observation regarding the interaction potential between a finite-sized body 𝑋𝐸 and the body 𝑌∞ that has 
one or two infinite dimensions perpendicular to the gap, Π𝑚

𝑋𝐸−𝑌∞
. The body 𝑋𝐸 is formed such that a geometrical body 𝑋 (point, 

line, plane figure, etc.) is extended along the dimensions that are parallel to the infinite dimensions of 𝑌∞ . For such bodies, Π𝑚
𝑋𝐸−𝑌∞

represents an interaction potential per unit length or area of body 𝑋𝐸 . For example, consider an interaction potential between a point 
𝑋 and an infinite plane 𝑌∞, Π𝑚

P−PN∞
, as in Fig. 3a. Since the plane 𝑌∞ has two infinite dimensions perpendicular to the gap, let us 

define a plane 𝜅 through the point 𝑋 that is parallel to the plane 𝑌∞. The body 𝑋𝐸 is now formed by extending the point 𝑋 inside 
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Fig. 3. a) Illustration of IUI: The interaction potential between a point 𝑋 and an infinite plane 𝑌∞ is Π𝑚
P−PN∞

. A plane line and a plane figure are defined in a plane 
passing through 𝑋 and parallel to 𝑌∞ . The interaction potential of the plane line or the plane figure with the plane 𝑌∞ is obtained by multiplying Π𝑚

P−PN∞
with the 

line’s length or the figure’s area, respectively. b) Application of RIIPI and IUI: Interaction potential between finite- and infinite-length cylinders in parallel orientation, 
Π𝑚

C−C∞
, equals an interaction potential Π𝑚−1

D−DIP
between two in-plane disks multiplied by the factor 𝑓𝑚 and by the cylinder’s length.

the plane 𝜅, to form a plane line with length 𝐿𝑥 or a plane figure with area 𝐴𝑥. Since the plane 𝑌∞ is infinite, integration of the 
interaction potential Π𝑚

P−PN∞
over a line or a figure lying in the 𝜅-plane is trivial and equals the multiplication of Π𝑚

P−PN∞
with 𝐿𝑥 or 

𝐴𝑥, respectively. Therefore, a point-infinite plane interaction can be considered as (i) a plane line-infinite plane interaction per unit 
length of a line and (ii) a plane figure-infinite plane interaction per unit area of a plane figure. Let us designate this observation as 
an interaction between a unit and an infinite-dimension body in parallel orientation (IUI).

As an example, RIIPI and IUI suggest that, to find an interaction of 𝑚𝑡ℎ order between a finite-length cylinder 𝑋 and an infinite

length cylinder 𝑌∞ in parallel orientation, one only needs to calculate an interaction potential of (𝑚− 1)𝑡ℎ order between two in-plane 
disks (with appropriate radii), multiply it by the factor 𝑓𝑚 and by the length of the cylinder 𝑋, cf. Fig. 3b. We will use these 
observations to find several general interaction potential laws.

Next, let us find a point-infinite half-space interaction potential by integrating the point-infinite plane law (7) along 𝑦1, i.e.

Π𝑚
P−HS∞23

=

∞ 

∫
𝑥1+𝑞2

Π𝑚
P−PN∞23

d𝑦1 =
2𝜋 

(𝑚− 3) (𝑚− 2) 𝑞𝑚−32

for 𝑚> 4, (8)

where 𝑞2 is the gap between the point and the half-space. This expression will be employed in Subsection 3.6 to derive D−HS∞ and 
D−PT∞ laws. By integrating the P-PN∞ law (7) along the 𝑥1 and 𝑦1, i.e.

Π𝑚
PT−PT∞23

=

𝑞2+𝑏𝑥+2𝑏𝑦

∫
𝑞2+𝑏𝑥

𝑏𝑥

∫
−𝑏𝑥

Π𝑚
P−PN∞23

d𝑥1 d𝑦1

= 2𝜋
𝑞4−𝑚2 − (2𝑏𝑥 + 𝑞2)4−𝑚 − (2𝑏𝑦 + 𝑞2)4−𝑚 + [2(𝑏𝑥 + 𝑏𝑦) + 𝑞2]4−𝑚

(𝑚− 4)(𝑚− 3)(𝑚− 2) 
for 𝑚> 4,

(9)

we obtain a plate (thickness 2𝑏𝑥, unit area) - plate (thickness 2𝑏𝑦, infinite area) law, where 𝑞2 is the gap between these parallel plates. 
For the special case of vdW attraction, this expression reduces to the one given in [28]. From this general PT-PT∞ law, we can obtain 
a HS-HS∞ law, by letting 𝑏𝑥 →∞ and 𝑏𝑦 →∞, i.e.

Π𝑚
HS−HS∞

= lim 
𝑏𝑦→∞

lim 
𝑏𝑥→∞

Π𝑚
PT−PT∞23

= 2𝜋
𝑞4−𝑚2

(𝑚− 4) (𝑚− 3) (𝑚− 2)
for 𝑚> 4, (10)

which is a well-known expression [1].

Let us note that the PT-PT∞ interaction can be obtained from the HS-HS∞ interaction. If we explicitly designate HS-HS∞ law (10)

as a function of the gap 𝑎 = 𝑞2, i.e. Π𝑚
HS−HS∞

(𝑎), then the PT-PT∞ interaction is

Π𝑚
PT−PT∞

(𝑞2, 𝑏𝑥, 𝑏𝑦) = Π𝑚
HS−HS∞

(𝑞2) + Π𝑚
HS−HS∞

(2𝑏𝑥 + 2𝑏𝑦 + 𝑞2)

− Π𝑚
HS−HS∞

(2𝑏𝑥 + 𝑞2) − Π𝑚
HS−HS∞

(2𝑏𝑦 + 𝑞2).
(11)

This observation can be applied in various situations and we will designate it as the rule of infinite half-body interaction (RIHBI). It is 
valid only for rectangular geometries in a symmetric configuration, and does not require that either body extends infinitely. Although 
not explicitly defined, this rule is used, for example, in [19] to find an in-plane rectangle-rectangle interaction potential.
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Finally, from the interactions between an unit-area plate with thickness 𝑏𝑦 and an infinite plate, we can obtain an interaction 
between a rectangular section (with dimensions 2𝑏𝑦 × 2ℎ𝑥) and an infinite plate (R-PT∞) in the orthogonal orientation, by simply 
multiplying law (9) with 2ℎ𝑥. In line with IUI, this R-PT∞ law is also the interaction potential between an unit-length rectangular 
prism and an infinite plate in the parallel orientation. Rectangle-rectangle laws will be considered in Section 4.

For simplicity, we will remove indices related to direction, plane, and infinity almost everywhere in the following. We will only 
use them when necessary to avoid ambiguity.

3. Circular cross sections

First, we consider the interaction between in-plane disks and then introduce an offset between their planes. Both exact and 
approximate D-D laws are studied. Second, we deal with P-C and D-C interactions, followed with D-HS and D-PT laws.

3.1. In-plane disk-disk interaction for arbitrary exponent 𝑚

For the derivation of in-plane disk-disk (D−DIP) laws, we follow two approaches that differ in the utilized relative polar coordinate 
system [22]: (i) RPCS1, see Fig. 2b and (ii) RPCS2, see Fig. 2c. For both approaches, the distance between point pairs is 𝑟 = 𝑝. As an 
intermediate step to the D−DIP expressions, we discuss in-plane point-disk (P-DIP) laws.

Using RPCS1, the P-DIP potential is obtained by integrating the P-P potential over the area of disk 𝑋, i.e.

Π𝑚
P−DIP

= 2

𝑡+𝑅𝑥

∫
𝑡−𝑅𝑥

arccos

(
𝑝2 + 𝑡2 −𝑅2

𝑥

2𝑝𝑡 

)
1 
𝑝𝑚

𝑝d𝑝 , (12)

see [13,22] for details. This integral has analytical solutions for arbitrary integer exponents 𝑚 > 2. The expressions for 𝑚= 3,4,5, ...12
are given in Notebook 2. To find the D−DIP laws, we need to integrate P-DIP over the area of disk 𝑌 , i.e.

Π𝑚
D−D = ∫

𝐴𝑥

Π𝑚
P−DIP

d𝐴𝑥 = 2

𝑅𝑥+𝑞2+2𝑅𝑦

∫
𝑅𝑥+𝑞2

Π𝑚
P−DIP

arccos

(
𝑡2 + 𝑑2 −𝑅2

𝑦

2𝑡𝑑 

)
𝑡d𝑡 . (13)

This integration is significantly more involved than Eq. (12) and it turns out that exact analytical expressions exist only for even 
exponents 𝑚> 3, see Notebook 2.

The second approach utilizes RPCS2. With such parameterization, a general expression for the P-DIP interaction can be found, i.e.

Π̄𝑚
P−DIP

= 2

𝑅𝑥

∫
0 

𝜋

∫
0 

1 
𝑝𝑚

𝑟𝑥 d𝜑𝑥 d𝑟𝑥 = 𝜋𝑅2
𝑥
𝑡−𝑚 2𝐹1

(
𝑚

2 
,
𝑚

2 
; 2;

𝑅2
𝑥

𝑡2

)
for 𝑚> 2, (14)

see Appendix A for a detailed derivation. Here, 2𝐹1 (𝑎, 𝑏; 𝑐;𝑧) is the Gaussian hypergeometric function

2𝐹1 (𝑎, 𝑏; 𝑐;𝑧) =
∞ ∑
𝑘=0

(𝑎)𝑘 (𝑏)𝑘
(𝑐)𝑘

𝑧𝑘

𝑘! (15)

and (𝑎)𝑘 is the Pochhammer symbol

(𝑎)𝑘 =
Γ(𝑎+ 𝑘)
Γ (𝑘)

. (16)

By replacing the exponent 𝑚 with integer values, expression (14) evaluates to rational functions for even 𝑚, while the expressions are 
much more complicated for odd 𝑚 and consist of either elliptic integrals or hypergeometric functions, depending on the representation. 
Nevertheless, it is interesting that WM14 does not recognize that the expressions obtained with (12) and (14) are the same for odd 
𝑚, while it does for even 𝑚, cf. Notebook 2. When considering the numerical evaluation, these expressions are in full agreement for 
an arbitrary integer 𝑚 > 2. Finally, we need to integrate Eq. (14) over the area of disk 𝑌 to find the D−DIP law, and the result is the 
infinite series

Π̄𝑚
D−DIP

=
𝜋2𝑅2

𝑥
𝑅2
𝑦

𝑑𝑚Γ2(𝑚2 )

∞ ∑
𝑛=0 

Γ2(𝑛+ 𝑚

2 ) 
Γ(𝑛+ 1)Γ(𝑛+ 2)

(
𝑅𝑦

𝑑

)2𝑛

2𝐹1

(
𝑛+ 𝑚

2 
, 𝑛+ 𝑚

2 
; 2;

𝑅2
𝑥

𝑑2

)
for 𝑚>

7
2
, (17)

see Appendix A. Since WM14 calculates the 2𝐹1 function efficiently, evaluation of expression (17) is more efficient that the double 
series solution in [22].

For the special case of equal radii 𝑅𝑥 =𝑅𝑦 =𝑅, the series (17) can be represented as

Π̃𝑚
D−DIP

= 𝜋2𝑅4

𝑑𝑚
𝑝𝐹𝑞

(
3
2
,
𝑚

2 
,
𝑚

2 
; 2,3; 4𝑅

2

𝑑2

)
for 𝑚>

7
2
, (18)

where 𝑝𝐹𝑞 is the generalized hypergeometric function, i.e.
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𝑝𝐹𝑞(𝑎1,… , 𝑎𝑝;𝑏1,… , 𝑏𝑞 ;𝑧) =
∞ ∑
𝑘=0

(𝑎1)𝑘(𝑎2)𝑘⋯ (𝑎𝑝)𝑘
(𝑏1)𝑘(𝑏2)𝑘⋯ (𝑏𝑞)𝑘

𝑧𝑘

𝑘! 
. (19)

To the best of our knowledge, this is the first representation of the D−DIP law for equal radii and general 𝑚 in the form of a generalized 
hypergeometric function. In an elegant manner, function Π̃𝑚

D−DIP
simplifies to a rational function for even 𝑚, cf. Notebook 2. For odd 

𝑚, the result is in the form of a generalized hypergeometric function or elliptic integrals.

3.2. Exact disk-disk law for vdW attraction

When there is an offset 𝑞1 between the disks, the distance between point pairs is 𝑟 =
(
𝑝2 + 𝑞21

)1∕2
. Here, we now consider only vdW 

attraction since analytical solutions for an arbitrary 𝑚 are quite difficult or even impossible to obtain. So, for 𝑚 = 6, the interaction 
potential between two disks, using RPCS1, is

Π𝑚
D−D = ∫

𝐴𝑥

∫
𝐴𝑦

1 
𝑟6

d𝐴𝑦 d𝐴𝑥 = ∫
𝐴𝑥

∫
𝐴𝑦

(
𝑝2 + 𝑞21

)−3 d𝐴𝑦 d𝐴𝑥

= 2

𝑅𝑥+𝑞2+2𝑅𝑦

∫
𝑅𝑥+𝑞2

Π6
P−D arccos

(
𝑡2 + 𝑑2 −𝑅2

𝑦

2𝑡𝑑 

)
𝑡d𝑡 ,

(20)

where the potential between a point and a disk is

Π6
P−D = 2

𝑡+𝑅𝑥

∫
𝑡−𝑅𝑥

arccos

(
𝑝2 + 𝑡2 −𝑅2

𝑥

2𝑝𝑡 

)
1 (

𝑝2 + 𝑞21
)3 𝑝d𝑝 . (21)

As in Subsection 3.1, the first step is to find the P-D law by solving (21). The resulting primitive function has a discontinuity at 
𝑝 = 𝑡2−𝑅2

𝑥√
𝑡2+𝑅2

𝑥

and we must integrate it carefully. The resulting expression has a singularity for 𝑞1 = 0, but we can fix it by multiplying 

the numerator and denominator with appropriate factors. The final result is the vdW P-D law (with an offset)

Π6
P−D =

𝑁6

𝜌3𝐷6
, (22)

where

𝑁6 ∶= 𝜋𝑅2
𝑥

(
2𝑞61 + 𝑞41

(
5𝑅2

𝑥
+ 6𝑡2

)
+ 𝑞21

(
6𝑅2

𝑥
𝑡2 + 4𝑅4

𝑥
+ 6𝑡4

)
+ 2𝑡6 − 3𝑅2

𝑥
𝑡4 +𝑅6

𝑥

)
𝐷6 ∶= 𝑞41

(
𝜌−𝑅2

𝑥
+ 3𝑡2

)
+ 𝑞21

(
𝑅2
𝑥
+ 𝑡2

)(
2𝜌− 3𝑅2

𝑥
+ 3𝑡2

)
+
(
𝑅2
𝑥
− 𝑡2

)2 (
𝜌−𝑅2

𝑥
+ 𝑡2

)
+ 𝑞61

𝜌 ∶=
√
𝑞41 + 2𝑞21

(
𝑅2
𝑥
+ 𝑡2

)
+
(
𝑅2
𝑥
− 𝑡2

)2
.

(23)

The second step, solving integral (20), is more involving and the primitive function consists of elliptic integrals. The lower limit 
is pleasantly simple, while the upper one is significantly more complicated, see Notebook 3. The resulting vdW D-D law becomes

Π6
D−D =

2𝜋2𝑅2
𝑦

8𝑞41
+ 𝜋

8𝑞41
√
𝑎1

{
(𝑎1 + 𝑎7)𝐾( 𝑎5

𝑎1
) − 𝑎1𝐸( 𝑎5

𝑎1
) + 2(𝑞1 − 𝑖𝑞2)(𝑑4 − 𝑖𝑞1)

⎡⎢⎢⎣𝑖
(
𝑅2
𝑥
− 2𝑅2

𝑦

)
𝛱( 4𝑎4

𝑎3
,
𝑎5
𝑎1
) +

𝑅2
𝑥

(
𝑖𝑞1 +𝑅𝑥

)
𝑑1𝛱( 𝑎6

𝑎2
,
𝑎5
𝑎1
)(

𝑞1 + 𝑖𝑅𝑥

)
𝑑3

⎤⎥⎥⎦
⎫⎪⎬⎪⎭ ,

(24)

where

𝑎1 ∶=
(
𝑞1 + 𝑖𝑞2

)(
𝑞1 − 𝑖𝑑5

)(
𝑞21 + 2𝑖𝑞1𝑅𝑦 + 𝑑2𝑑4

)
𝑎2 ∶= 𝑑23

(
𝑖𝑞1 + 𝑑5

)(
𝑑2 − 𝑖𝑞1

)
𝑎3 ∶= 𝑞21 + 2𝑖𝑞1𝑅𝑥 + 𝑑2𝑑5

𝑎4 ∶=𝑅𝑦𝑑

𝑎5 ∶= −16𝑖𝑎4𝑞1𝑅𝑥

𝑎6 ∶= −4𝑎4
(
𝑞1 + 𝑖𝑅𝑥

)2
𝑎7 ∶= −

4𝑞1𝑅𝑥

[
𝑞21𝑅𝑥 +𝑅𝑥𝑑2𝑑5 + 2𝑖𝑞1

((
𝑅𝑥 − 2𝑅𝑦

)(
𝑅𝑥 +𝑅𝑦

)
− 𝑞2𝑅𝑦

)]
𝑞1 + 𝑖𝑅𝑥

(25)
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Fig. 4. Scaling of the vdW disk-disk laws for different ratios 𝑐 = 𝑞1∕𝑞2 (𝑅𝑥 =𝑅𝑦 = 1). a) Exact D-D law from Eq. (24). b) Approximate D−Dapp law from Eq. (28). 

and

𝑑 ∶= 𝑞2 +𝑅𝑥 +𝑅𝑦, 𝑑1 ∶= 𝑞2 +𝑅𝑥 + 2𝑅𝑦, 𝑑2 ∶= 𝑞2 + 2(𝑅𝑥 +𝑅𝑦)

𝑑3 ∶= 𝑞2 +𝑅𝑥, 𝑑4 ∶= 𝑞2 + 2𝑅𝑥, 𝑑5 ∶= 𝑞2 + 2𝑅𝑦.
(26)

Here 𝐾 , 𝐸, and 𝛱 are the complete elliptic integrals of the first, second, and third kind. The obtained expression is correct but has 
complex-valued arguments that do not allow taking the real part of the expression analytically. Additionally, the expression cannot 
be integrated w.r.t. 𝑞1, the limit 𝑞1 → 0 does not exist, and the evaluation for 𝑞1 ≈ 0 requires an arbitrary precision arithmetic.

On the other hand, the component of the interaction force along the gap, 𝜕Π6
D−D∕𝜕𝑞2, is much simpler than the potential, since 

the complete elliptic integrals of the third kind cancel out. This force component has a proper limit for 𝑞1 → 0 that is perfectly aligned 
with the results obtained in Subsection 3.1 for D−DIP, cf. Notebook 3. This agreement additionally confirms that the derived D-D 
law in (24) is accurate.

3.3. Approximate disk-disk law for even exponent 𝑚

An approximate disk-disk law named improved section-section interaction potential (ISSIP), which provides good accuracy for small 
separations, is derived in [13]. It is represented as a product of an approximate D-DIP law and a hypergeometric function, i.e.

ΠISSIP = Π̂𝑚
D−DIP 2𝐹1

(
2𝑚− 7

4 
,
2𝑚− 5

4 
; 𝑚
2 
;−

𝑞21

𝑞22

)
,

Π̂𝑚
D−DIP

= 2
5
2 −𝑚𝜋

3
2

√
𝑅𝑥𝑅𝑦

𝑅𝑥 +𝑅𝑦

Γ(𝑚− 7
2 )

Γ(𝑚2 )
2

𝑞
7
2 −𝑚
2 .

(27)

For even 𝑚, this law evaluates to elliptic integrals of the first and second kind, while for odd 𝑚 we obtain rational functions.

Here, we propose to further improve the ISSIP law by replacing the approximate potential Π̂𝑚
D−DIP

in (27) with the exact one for 
even 𝑚, see Subsection 3.1. Therefore, the new approximate disk-disk law, D−Dapp, is defined as

Π𝑚
D−Dapp

= Π𝑚
D−DIP 2𝐹1

(
2𝑚− 7

4 
,
2𝑚− 5

4 
; 𝑚
2 
;−

𝑞21

𝑞22

)
for 𝑚 = 4,6,8, ... (28)

Let us compare the exact and the approximate D-D laws for 𝑚= 6. The scaling factor function of the potential vs. the gap is shown in 
Fig. 4 for different values of ratio 𝑐 = 𝑞1∕𝑞2. For the D-D law and 𝑐 > 1∕10, the transition region between small and large separations 
strongly depends on ratio 𝑐, see Fig. 4a. The rate of change between small and large separation limits increases with 𝑐. Regarding 
the D−Dapp law, it returns proper asymptotic scaling, 5/2 for small and 6 for large separations. However, due to approximations in 
D−Dapp, the scaling factor is practically insensitive to 𝑐 = 𝑞1∕𝑞2, cf. Fig. 4b. The scaling of the D−Dapp law mainly corresponds to the 
scaling of the D−DIP law, which can be concluded from Fig. 4a where the results are the same for 𝑐 ≤ 1∕10. It should be emphasized 
that the previously used ISSIP law [13] is not capable of modeling correct scaling at moderate and large separations.

Now, let us scrutinize the accuracy of these two approximations. Both relative and absolute errors of the ISSIP and D−Dapp laws 
w.r.t. the exact D-D law are plotted in Fig. 5 for different ratios 𝑐 = 𝑞1∕𝑞2. For small separations, both laws provide reasonable 
accuracy, but the D−Dapp law is more accurate. The ratio 𝑐 = 𝑞1∕𝑞2 strongly affects the accuracy of the D−Dapp law, and only slightly 
affects the accuracy of the ISSIP law. For large separations, the relative error of the ISSIP law blows up, while the relative error of 
the D−Dapp law is bounded. Regarding the absolute error, it decreases monotonically for the ISSIP law, which corresponds to the 
blow-up of the relative error for large separations. For the D−Dapp law, the absolute error reduces with an increased rate for 𝑞2 > 1, 
which corresponds to the bounded values of relative errors for large separations.

We will employ the new approximate D−Dapp law (28) in Section 5 to numerically model the Lennard-Jones interaction between 
two deformable fibers, and compare the results with the ISSIP law.
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Fig. 5. Error of the ISSIP and D−Dapp laws for 𝑚 = 6 and different ratios 𝑐 = 𝑞1∕𝑞2 (𝑅𝑥 =𝑅𝑦 = 1): a) relative error, b) absolute error. D−Dapp is much more accurate 
than ISSIP, especially for large separations, but it still shows errors at large separations compared to the exact D-D law.

Remark 2. The true scaling factor function, 𝑆̄(𝑎), of the potential Π(𝑎), where 𝑎 is the gap, is here defined such that

lim 
𝜁→1

[
Π(𝜁𝑎) − 𝜁𝑆̄(𝑎)Π(𝑎)

]
= 0. (29)

In view of the inverse power laws considered, the potential decreases with increasing the gap, which implies that the true scaling 
factor is negative. For convenience, we will refer to the scaling factor as the negative value of the true scaling factor, 𝑆(𝑎) = −𝑆̄(𝑎). 
To find an explicit expression, we take the logarithm of Eq. (29) and rearrange it into

𝑆(𝑎) = − lim 
𝜁→1

log[Π(𝜁𝑎)] − log[Π(𝑎)]
log(𝜁)

. (30)

By defining 𝜁 = (𝑎+ 𝜖)∕𝑎 and making a Taylor expansion of log(𝜁) at 𝜖 = 0, we obtain a final expression for the scaling factor function 
𝑆(𝑎) of the potential Π(𝑎), i.e.

𝑆(𝑎) = − lim 
𝜖→0

log[Π(𝑎+ 𝜖)] − log[Π(𝑎)]
𝜖∕𝑎+𝑂(𝜖)2

= −𝑎
𝑑 log[Π(𝑎)]

𝑑𝑎 
. (31)

Remark 3. For the limit of large separations, the interaction between arbitrary finite-sized bodies transforms into the point-point 
interaction. Therefore, the asymptotic scaling value between finite-sized bodies for large separations is always 𝑚. For each integration 
over interacting bodies from −∞ to ∞, the asymptotic scaling factor is reduced by a value of 𝑚𝑟 = 1. Regarding the scaling at the 
limit of small separations, each interacting body can be considered infinite as the gap between them closes. For each integration, 
the asymptotic scaling factor reduces by a value 𝑚𝑟 that depends on the orientation and the shape of interacting bodies. Finding a 
general rule for the value of 𝑚𝑟 in the limit of small separations is not trivial.

Remark 4. If the offset 𝑞1 between disks is fixed, then the interaction potential converges to a finite value for 𝑞2 → 0, and the scaling 
factor for the limit of small separations is zero. Because of this, we consider the scaling behavior of section-section laws for fixed 
ratios 𝑐 = 𝑞1∕𝑞2, cf. Fig. 4.

3.4. Point-cylinder interaction

A potential between a point and an infinite cylinder is often derived as an intermediate step for deriving interactions between 
various bodies and a cylinder, [24,25]. Let us consider an 𝑚𝑡ℎ order interaction between a point 𝑌 and an infinite cylinder 𝑋, i.e.

Π𝑚
P−C = ∫

𝐴𝑥

∞ 

∫
−∞

1 
𝑟𝑚

d𝑞1 d𝐴𝑥 = ∫
𝐴𝑥

∞ 

∫
−∞

(
𝑝2 + 𝑞21

)−𝑚∕2 d𝑞1 d𝐴𝑥

=

√
𝜋Γ

(
𝑚−1
2 

)
Γ
(
𝑚

2 
) ∫

𝐴𝑥

1 
𝑝𝑚−1

d𝐴𝑥 = 𝑓𝑚Π𝑚−1
P−DIP

.

(32)

In line with RIIPI, a P-C potential of 𝑚𝑡ℎ order, Π𝑚
P−C, can be represented as a product of a factor 𝑓𝑚 and a P-DIP potential of (𝑚−1)𝑡ℎ

order, Π𝑚−1
P−DIP

. Therefore, for a P-C interaction with even exponent 𝑚, we require a P-DIP with odd exponent 𝑚−1, and vice versa. The 
P-DIP expressions are already discussed and derived in Subsection 3.1. The main issue here is that the P-DIP laws with odd exponents 
consist of elliptic integrals, see Subsection 3.1. Such a form of the P-DIP laws prevents us from finding the exact D-C laws for even 𝑚
and the exact D-DIP laws for odd 𝑚, since these elliptic integrals cannot be integrated further analytically. This issue motivates us to 
find approximate P-C laws for even exponents 𝑚> 3.
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Fig. 6. Approximate interaction of a point 𝑃𝑦 and an infinite cylinder 𝑥. a) Front view. b) 𝜅 plane. 

Fig. 7. Approximate P-Capp laws for even 𝑚 and 𝑅𝑥 = 1. a) Relative error. b) Scaling factor. 

Remark 5. For the cases of even exponents 𝑚, the expressions for Π𝑚
P−DIP

and Π𝑚
D−DIP

are rational functions and the P-C and D-C laws 
with odd exponents are pleasantly simple.

Remark 6. We can find different forms of the exact P-C laws, depending on the order of integration and the modeling of a cylinder 
geometry. For example, we have successfully modeled an infinite cylinder as an infinite set of hemispheres. Although different in 
form, all these expressions return the same numerical values.

Let us derive an approximate P-C law. A point 𝑃𝑦 and an infinite cylinder 𝑋 are sketched in Fig. 6a. The distance between the point 
and the cylinder axis is 𝑡. Let us define a plane 𝜅 that goes through the point 𝑃𝑦 and is perpendicular to the plane 𝑒1𝑒3. In general, 
the section between the plane 𝜅 and the cylinder 𝑋 has an elliptical shape, see Fig. 6b, and the P-C interaction can be obtained by 
integrating the point-ellipse interaction over 𝛼 ∈

[
−𝜋∕2, 𝜋∕2

]
. However, this integration results in elliptic integrals and so we pursue 

the following approximation: Instead of considering an interaction between a point and an elliptical section, let us approximate the 
elliptical section with an inscribed disk at the closest point, cf. Fig. 6b. The radius of the inscribed disk is 𝑅𝑥 and the distance between 
the center of the inscribed disk and 𝑃𝑦 is 𝑡. The relation between these quantities and the radius 𝑅𝑥 and distance 𝑡 are

𝑅𝑥 =𝑅𝑥 cos𝛼, 𝑡 =
𝑡−𝑅𝑥

(
cos2 𝛼 − 1

)
cos𝛼 

. (33)

Therefore, we are performing a volume integration w.r.t. the coordinates (𝑝,𝜑, 𝛼), see Notebook 4. The Jacobian of the coordinate 
transformation is 𝑝2 cos𝜑 so that the integral to calculate becomes

Π̃𝑚
P−Capp

= 2

𝜋∕2

∫
0 

𝑡+𝑅̂𝑥

∫
𝑡−𝑅̂𝑥

𝜑̂

∫
−𝜑̂

1 
𝑝𝑚

𝑝2 cos𝜑d𝜑d𝑝d𝛼 , 𝜑̂ = arccos

(
𝑝2 + 𝑡2 − 𝑅̂2

𝑥

2𝑝𝑡

)
. (34)

WM14 can solve this integral for specific values of integer 𝑚 and the results are approximate P-Capp laws for 𝑚 = 4,6, ..., cf. Notebook

4. These expressions are rational functions of 𝑎𝑟𝑐𝑡𝑎𝑛ℎ(𝑡) which makes them convenient to evaluate. The error w.r.t. the numerical 
integration and the scaling factor of these laws are displayed in Fig. 7. For small separations, the error is very small and decreases with 
an increase in 𝑚. The error increases with the gap 𝑞2 but has a horizontal asymptote at approximately 30%. The asymptotic scaling 
is correct, 𝑚−3 for small and 𝑚−1 for large separations. These results suggest that our P-Capp laws have all required properties, see 
Section 1. For example, by setting 𝑚 = 6, the approximate vdW P-Capp law is
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Π̃6
P−Capp

= 𝜋

64(𝑅𝑥 + 𝑡)2

⎡⎢⎢⎢⎢⎣
(11𝑅𝑥 + 5𝑡)arctanh

√
2𝑅𝑥

𝑅𝑥+𝑡√
2
(
𝑅𝑥 + 𝑡

)
𝑅
3∕2
𝑥

−
83𝑅3

𝑥
+ 43𝑅2

𝑥
𝑡+ 17𝑅𝑥𝑡

2 − 15𝑡3

3𝑅𝑥

(
𝑅𝑥 − 𝑡

)3
⎤⎥⎥⎥⎥⎦
. (35)

3.5. Disk-cylinder interaction

When considering an interaction between a disk and an infinite cylinder in parallel orientation, the situation is similar to the P-C 
case, since the initial integration can be done w.r.t. offset 𝑞1 and we can apply RIIPI to the D−DIP law. Also, we can start from the 
P-C laws and integrate over the cross section of a disk. This gives a potential between a disk (or a unit-length cylinder) and an infinite 
cylinder,

Π𝑚
D−C = ∫

𝐴𝑦

Π𝑚
P−C d𝐴𝑦 = 𝑓𝑚 ∫

𝐴𝑦

Π𝑚−1
P−DIP

d𝐴𝑦 = 𝑓𝑚Π𝑚−1
D−DIP

.
(36)

According to RIIPI, a D-C potential of 𝑚𝑡ℎ order can be represented as a product of a multiplier 𝑓𝑚 and the D−DIP potential of (𝑚− 1)𝑡ℎ
order, Π𝑚−1

D−DIP
. Again, the problem is that an analytical Π𝑚

D−DIP
law can be derived only for even values of exponent 𝑚 leading to the 

well-defined D-C laws for 𝑚 = 5,7,9... For even exponents 𝑚 = 6,8, ..., D-C laws must be approximated in general.

One such approximation in the form of an infinite series is already discussed in Subsection 3.1, see Eq. (17). All the observations 
related to the D−DIP law of order 𝑚 are valid for the D-C interactions of order 𝑚+ 1. For example, the D-C interaction potential for 
even 𝑚 can be represented analytically via the generalized hypergeometric function for the special case 𝑅𝑥 =𝑅𝑦, see Eq. (18).

The approximate P-C expressions for 𝑚 = 4,6,8, ... are derived in Subsection 3.4. Let us use these laws to derive approximate 
D-C laws with similar desired properties, cf. Section 1. By using RPCS1, the integral to be solved consists of the 𝑎𝑟𝑐𝑡𝑎𝑛ℎ and 𝑎𝑟𝑐𝑐𝑜𝑠
functions, i.e.

Π𝑚
D−C ≈ Π̃𝑚

D−Capp
= 2

𝑅𝑥+𝑞2+2𝑅𝑦

∫
𝑅𝑥+𝑞2

Π̃𝑚
P−Capp

[arctanh(𝑡)] arccos

(
𝑡2 + 𝑑2 −𝑅2

𝑦

2𝑡𝑑 

)
𝑡d𝑡 . (37)

The square brackets in this expression emphasize that Π̃𝑚
P−Capp

is a function of 𝑎𝑟𝑐𝑡𝑎𝑛ℎ(𝑡). To the best of our knowledge, this integral 
cannot be solved analytically and we have to introduce additional assumptions. There are multiple options for an approximation and 
we present one that has a good balance between accuracy and efficiency.

We exclusively consider vdW attraction here (𝑚 = 6). Let us assume that 𝑅𝑥 ≥𝑅𝑦 and introduce the following two approximations: 
(i) replace 𝑡 𝑎𝑟𝑐𝑐𝑜𝑠(𝑡) with its first order series expansion at 𝑅𝑥 + 𝑞2, and (ii) replace 𝑎𝑟𝑐𝑡𝑎𝑛ℎ(𝑡) with its second order series expansion 
at ∞, see Notebook 4. The resulting expression can be integrated analytically, i.e.

Π̃6
D−Capp

= 𝜋

1920

√
𝑑3
𝑑

⎛⎜⎜⎝𝑓𝑅 +
20

√
2𝑅𝑦

𝑅2
𝑥

𝑓𝑇 +
𝑖
√
2𝑅𝑦

𝑑3𝑅
2
𝑥

√
𝑑4𝑅𝑦

𝑓𝐸

⎞⎟⎟⎠ (38)

where the following new functions are introduced,

𝑓𝑅 ∶= 160
(

1 
𝑞2

− 1 
𝑑5

)
− 77 √

𝑑1𝑑2
+ 11 
𝑅𝑥

(√
𝑑1𝑑2

(
7𝑑4 − 22𝑑3

)
𝑑3𝑑4

+ 15

√
𝑑1
𝑑2

)

+
2𝑅𝑦

𝑅2
𝑥

[
1512

√
𝑑1√

𝑑2
+𝑅𝑥

(
242

√
𝑑1

𝑑
3∕2
2

+ 180
𝑑2

−
77𝑑2
𝑑31

+ 291 √
𝑑1𝑑2

+
160

(
3𝑞2 − 2𝑅𝑥 + 6𝑅𝑦

)
𝑑25

)] (39)

𝑓𝑇 ∶= 9 √
𝑑4

(
2𝑞2 + 3𝑅𝑥

)
arctan

√
2𝑅𝑦

𝑑4
− 2 
𝑞
3∕2
2

(
9𝑞22 + 12𝑞2𝑅𝑥 − 4𝑅2

𝑥

)
arctan

√
2𝑅𝑦

𝑞2
(40)

𝑓𝐸 ∶=
(
1512𝑞22 + 4371𝑞2𝑅𝑥 + 2936𝑅2

𝑥

)
𝐸(𝑖 arcsinh

√
2𝑅𝑦

𝑑3
,
𝑑3
𝑑4
)

− 11𝑅𝑥

(
96𝑞2 + 103𝑅𝑥

)
𝐹 (𝑖 arcsinh

√
2𝑅𝑦

𝑑3
,
𝑑3
𝑑4
).

(41)

Although (38) does not satisfy all of the desired properties from Section 1, the obtained expression is analytical and easy to evaluate 
in WM14. It is significantly more efficient than the infinite series solution in Eq. (17) or numerical integration.

Fig. 8 shows the error and the scaling of this new D-Capp vdW law. The error behaves similarly to the error of the P-Capp law: it is 
small for small separations and bounded for large separations, with a maximum around 30%, see Fig. 8a. The error is not a monotonic 
function of the gap 𝑞2 but shows an increase in accuracy at localized regions. We can observe that the expression is not symmetric, 
e.g. the errors for 𝑅𝑦 = 1∕2 and 𝑅𝑦 = 2 are not the same, although they should be for 𝑅𝑥 = 1. The asymptotic scaling is correct: 3∕2
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Fig. 8. Approximate D-Capp law for 𝑚= 6. The radius of the cylinder 𝑋 is set as 1, while the radius of the disk 𝑌 is varied. a) Relative error. b) Scaling factor. 

Fig. 9. Interaction between a half-space 𝑋 and a disk 𝑌 in arbitrary orientation. 

for small and 5 for large separations. The ratio between radii affects both the accuracy and the scaling. All in all, the new D-Capp law 
is not ideal but provides a reasonable balance between accuracy and efficiency.

3.6. Disk-infinite plate interaction for arbitrary 𝑚

Let us consider an interaction between a half-space 𝑋 and a disk 𝑌 in arbitrary orientation, as in Fig. 9. The origin of the global 
Cartesian coordinate system is placed at the boundary of the infinite half-space 𝑋 and the normal of the half-space is denoted 𝒆1. 
The position of the disk center is marked with 𝒅, while the normal of the disk is designated as 𝒕 (since it will be employed later in 
Appendix B as the tangent of the beam axis). The vectors 𝒆1 and 𝒕 define a plane in which the graphical projection of the disk is a 
line. The position of the disk w.r.t. the infinite half-space is, therefore, uniquely defined by vectors 𝒅 and 𝒕.

To define the position of an arbitrary point of the disk, 𝑃𝑦 , we define basis vectors that span the disk’s plane, 𝒈̃2 and 𝒈̃3, such that 
they form an orthogonal coordinate system with 𝒕. With this setting, the distance between point 𝑃𝑦 and half-space 𝑋 is 𝑎 = 𝑑1+ 𝑦̃3 cos𝛼, 
where 𝑑1 = ||𝒅 ⋅ 𝒆1|| and cos𝛼 = 𝒈̃3 ⋅ 𝒆1.

Our aim is to integrate the P-HS law for general 𝑚 (8) over the area of disk 𝑌

Π𝑚
D−HS(𝑎) = ∫

𝐴𝑦

Π𝑚
P−HS(𝑎) d𝐴𝑦 =

𝑅𝑦

∫
−𝑅𝑦

√
𝑅2
𝑦−𝑦̃23

∫
−
√
𝑅2
𝑦−𝑦̃23

Π𝑚
P−HS(𝑎) d𝑦̃2 d𝑦̃3 ,

𝑎 = 𝑑1 + 𝑦̃3 cos𝛼.

(42)

This integral has an analytical solution for arbitrary 𝑚 in the form of a hypergeometric function, i.e.

Π𝑚
D−HS(𝑑1, 𝛼) =

2𝜋2𝑑3−𝑚1
(𝑚− 3)(𝑚− 2) 2𝐹1

(
𝑚− 3
2 

,
𝑚− 2
2 

; 2; 𝑅
2 cos2 𝛼
𝑑21

)
for 𝑚>

9
2
. (43)

For integer values of 𝑚, this general expression simplifies to rational functions. For example, the vdW potential is obtained by inserting 
𝑚 = 6 in (43), which gives
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Fig. 10. General D-PT law, 𝛼 = 0,𝑅𝑥 = 1. a) Scaling factor for different exponents 𝑚 and 𝑏𝑥 = 1. b) vdW scaling factor for different values of 𝑏𝑥. 

Π6
D−HS(𝑑1, 𝛼) =

𝜋2𝑅2
𝑦

6𝑑31

(
1 − 𝑅2

𝑦 cos2 𝛼
𝑑21

)3∕2 . (44)

To the best of our knowledge, this is the first derivation of an analytical D-HS law for arbitrary 𝑚. The D-HS laws for 𝑚 = 6 and 
𝑚 = 12 were already considered in [29], and they represent special cases of Eq. (43). An implementation of the derived law for the 
interaction between a spatial beam and a half-space is given in Appendix B.

From the general D-HS law (43), it is straightforward to find the general D-PT law as a special case of RIHBI. If the thickness of 
the plate is 2𝑏𝑥, the general D-PT law is

Π𝑚
D−PT(𝑑1, 𝛼, 𝑏𝑥) = Π𝑚

D−HS
(
𝑑1, 𝛼

)
−Π𝑚

D−HS
(
𝑑1 + 2𝑏𝑥, 𝛼

)
for 𝑚 >

9
2
. (45)

In a similar way, by subtracting potentials for two disks with different radii, 𝑅𝑦1 and 𝑅𝑦2, 𝑅𝑦1 >𝑅𝑦2, Eqs. (43) and (45) allow us to 
find interaction potentials between a ring with thickness 𝑅𝑦1 −𝑅𝑦2 and a half-space or a plate.

Let us consider a special case of a disk perpendicular to the half-space (𝛼 = 0). The asymptotic scaling is 𝑚 − 4.5 for small, and 
𝑚− 3 for large separations. For small separations, the vdW D-HS interaction potential (44) further simplifies to

Π6
D−HS ≈

𝜋2√𝑅𝑦

12
√
2𝑞3∕22

for 𝑞2 = 𝑑1 −𝑅𝑦 ≪𝑅𝑦 (46)

which is another well-known expression [1].

The scaling factor of the D-PT law for 𝛼 = 0 is displayed in Fig. 10. For small separations, the potential scales with 𝑚−4.5, and for 
large with 𝑚− 2, cf. Fig. 10a. As expected, the asymptotic scaling factor at small separations is the same for the interaction of a disk 
with an infinite half-space and with a plate. Furthermore, let us observe the scaling behavior for 𝑚 = 6 and vary the thickness of the 
plate, see Fig. 10b. We can observe how, for large values of thickness and separation, the scaling factor first approaches 𝑚 − 3 = 3, 
which corresponds to the D-HS law, and then converges to the correct D-PT value of 𝑚− 2 = 4.

4. Rectangular cross sections

For an interaction between two rectangular sections, we consider the special case where the centers (or their graphical projections) 
of both sections lie in the same plane, and the sections are parallel to each other, see Fig. 2d. The dimensions of the sections are 
denoted by 2𝑏𝑥 × 2ℎ𝑥 and 2𝑏𝑦 × 2ℎ𝑦.

4.1. In-plane rectangle-rectangle interaction for arbitrary 𝑚

To find the R-RIP laws, we can employ the Cartesian coordinate system in Fig. 2d so that the integral to solve is

Π𝑚
R−RIP

=

𝑞2+𝑏𝑥+2𝑏𝑦

∫
𝑞2+𝑏𝑥

ℎ𝑦

∫
−ℎ𝑦

𝑏𝑥

∫
−𝑏𝑥

ℎ𝑥

∫
−ℎ𝑥

𝑝−𝑚 d𝑥2 d𝑥1 d𝑦2 d𝑦1 . (47)

We can solve this integral directly for every specific integer value 𝑚 = 4,5,6... However, there is a more general approach. Let us 
define an infinite half-strip as one half of a rectangle that has one side of infinite length, see Fig. 11. If we first derive an in-plane 
infinite half-strip-infinite half-strip (HST−HSTIP) law for general integer 𝑚, and apply RIHBI, we can obtain a general R-RIP law.

Therefore, let us find an interaction potential between two infinite in-plane half-strips, Π𝑚
HST−HSTIP

. A scheme of this interaction 
and the coordinate system are depicted in Fig. 11. To avoid ambiguity, we designate the gap between these two infinite half-strips 
with 𝑎, i.e.
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Fig. 11. Interaction between two infinite in-plane half-strips, HST-HSTIP. 

Π𝑚
HST−HSTIP

(𝑎) =

∞ 

∫
𝑎 

ℎ𝑦

∫
−ℎ𝑦

0 

∫
−∞

ℎ𝑥

∫
−ℎ𝑥

𝑝−𝑚 d𝑥2 d𝑥1 d𝑦2 d𝑦1 . (48)

We can not solve this integral directly for general integer 𝑚 in WM14. But, we can find the analytical solutions for two distinct cases, 
odd and even 𝑚. It turns out that both of these expressions are the same and valid for arbitrary 𝑚 ≥ 4, see Notebook 5. So, the general 
HST−HSTIP law is

Π̃𝑚
HST−HSTIP

(𝑎) = 𝑓 (𝑎,1) + 𝑓 (𝑎,−1) + 𝑔(𝑎,1) + 𝑔(𝑎,−1) + 𝑢(𝑎,1) + 𝑢(𝑎,−1) for 𝑚 ≥ 4, (49)

where

𝑓 (𝑎, 𝑠) ∶= 2 𝑠 𝑘(𝑠)2 𝑎2−𝑚

(𝑚− 3)(𝑚− 2)2(𝑚− 1) 2𝐹1

(
𝑚− 2
2 

,
𝑚− 1
2 

; 𝑚+ 1
2 

;−𝑘(𝑠)2

𝑎2

)
𝑔(𝑎, 𝑠) ∶= 2 𝑠 𝑘(𝑠)2 𝑎2−𝑚

(𝑚− 2)2 2𝐹1

(
1
2
,
𝑚− 2
2 

; 3
2
;−𝑘(𝑠)2

𝑎2

)
𝑢(𝑎, 𝑠) ∶=

2 𝑠
(
𝑘(𝑠)2 + 𝑎2

)2−𝑚∕2
(𝑚− 4)(𝑚− 3)(𝑚− 2)

𝑘 (𝑠) ∶= ℎ𝑥 + 𝑠ℎ𝑦.

(50)

This expression is accurate and can be evaluated efficiently for every 𝑚 > 4. However, for 𝑚 = 4 it has a singularity, see function 
𝑢(𝑎, 𝑠) in (50). This singularity can be fixed by finding the limit of Π̃𝑚

HST−HSTIP
(𝑎) for 𝑚→ 4, i.e.

Π̃4
HST−HSTIP

(𝑎) = lim 
𝑚→4

Π̃𝑚
HST−HSTIP

(𝑎) =

(
𝑎2

𝑘(−1) − 𝑘(−1)
)
arctan

(
𝑘(−1)
𝑎 

)
2𝑎 

+

(
𝑘(1) − 𝑎2

)
arctan

(
𝑘(1)
𝑎 

)
2𝑎𝑘(1) 

+ 1
2
ln
(
𝑘(−1) + 𝑎2

𝑘(1) + 𝑎2

)
.

(51)

This allows us to write the general HST−HSTIP law as a piecewise function,

Π𝑚
HST−HSTIP

(𝑎) =

{
Π4
HST−HSTIP

(𝑎) 𝑚 = 4
Π̃𝑚
HST−HSTIP

(𝑎) 𝑚> 4
. (52)

There is another issue with the above expression, a singularity for ℎ𝑥 = ℎ𝑦. However, the limit for ℎ𝑥 → ℎ𝑦 is well-defined and it can 
be used in special cases, i.e.

Π̂𝑚
HST−HSTIP

(𝑎) = lim 
ℎ𝑥→ℎ𝑦

Π𝑚
HST−HSTIP

(𝑎) =
⎧⎪⎨⎪⎩
𝑅4
ℎ𝑥=ℎ𝑦

𝑚 = 4

𝑅𝑚
ℎ𝑥=ℎ𝑦

𝑚 > 4
,

𝑅4
ℎ𝑥=ℎ𝑦

∶= 1
2

(
1 +

(2ℎ𝑦
𝑎 

− 𝑎 
2ℎ𝑦

)
arctan

(2ℎ𝑦
𝑎 

)
+ ln

(
𝑎2

4ℎ𝑦2 + 𝑎2

))
,

𝑅𝑚
ℎ𝑥=ℎ𝑦

∶=
2
((

4ℎ2
𝑦
+ 𝑎2

)2− 𝑚

2 − 𝑎4−𝑚
)

(𝑚− 4)(𝑚− 3)(𝑚− 2) 

+
8ℎ2

𝑦
𝑎2−𝑚

(𝑚− 2)2

⎛⎜⎜⎜⎜⎝
2𝐹1

(
1
2
,
𝑚− 2
2 

; 3
2
;−

4ℎ2
𝑦

𝑎2

)
+

2𝐹1

(
𝑚−2
2 ,

𝑚−1
2 ;

𝑚+1
2 ;−

4ℎ2𝑦
𝑎2

)
(𝑚− 3)(𝑚− 1) 

⎞⎟⎟⎟⎟⎠
.

(53)

With such well-defined HST−HSTIP law as a function of gap 𝑎, we can apply RIHBI and obtain the general R-RIP law, i.e.
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Fig. 12. Exact R-RP laws. a) Scaling factor for different values of 𝑚. Dimensions are fixed: ℎ𝑥 = 1, ℎ𝑦 = 1∕2, 𝑏𝑥 = 1, and 𝑏𝑦 = 2. b) Scaling factor for 𝑚= 6. Dimensions 
ℎ𝑥 = 1, ℎ𝑦 = 1∕2, and 𝑏𝑥 = 1 are fixed, while 𝑏𝑦 is varied.

Π𝑚
R−RIP

(𝑞2, 𝑏𝑥, 𝑏𝑦) = Π𝑚
HST−HSTIP

(
𝑞2
)
−Π𝑚

HST−HSTIP

(
2𝑏𝑥 + 𝑞2

)
−Π𝑚

HST−HSTIP

(
2𝑏𝑦 + 𝑞2

)
+Π𝑚

HST−HSTIP

(
2𝑏𝑥 + 2𝑏𝑦 + 𝑞2

)
for 𝑚 ≥ 4.

(54)

For the special case ℎ𝑥 = ℎ𝑦, we need to use expression (53).

The obtained expressions satisfy all the requirements stated in Section 1. They reduce to simple rational functions for integer 
values of 𝑚. For example, we can compare our result with the special case from the literature where equal rectangles (ℎ𝑥 = ℎ𝑦, 
𝑏𝑥 = 𝑏𝑦) with 𝑚 = 6 are considered [19]. Our general expression returns

Π̂6
R−RIP

= 1 
48

(
2 

(2𝑏𝑦 + 𝑞2)2
− 1 

(4𝑏𝑦 + 𝑞2)2
− 1 
𝑞22

)
+ 1 

128ℎ3
𝑦

[(
16ℎ4

𝑦

𝑞32

− 𝑞2

)
arctan

(2ℎ𝑦
𝑞2

)

+

(
4𝑏𝑦 + 2𝑞2 −

32ℎ4
𝑦

(2𝑏𝑦 + 𝑞2)3

)
arctan

( 2ℎ𝑦
2𝑏𝑦 + 𝑞2

)

−

(
4𝑏𝑦 + 𝑞2 −

16ℎ4
𝑦

(4𝑏𝑦 + 𝑞2)3

)
arctan

( 2ℎ𝑦
4𝑏𝑦 + 𝑞2

)]
,

(55)

which is the same as in [19], just in a different form. This confirms that our general R-RIP law correctly models the interaction 
between rectangles with arbitrary dimensions.

From the general R-RIP law for 𝑚 ≥ 4, we can simply obtain R-RP laws for 𝑚 ≥ 5 by using RIIPI from Eq. (6), i.e.

Π𝑚
R−RP = 𝑓𝑚Π𝑚−1

R−RIP
. (56)

The scaling behavior of the R-RP laws for 𝑚 = 5,6, ...12 is plotted in Fig. 12a. We can observe that, for small separations, the asymptotic 
scaling factor is 𝑚−4, while for large it is 𝑚−1, because then the rectangle and the prism resemble a point and a line. The transition 
region between small and large separations is dependent on 𝑚 and cannot be obtained by simply shifting the function for some other 
exponent.

As a special case, let us consider vdW attraction, i.e. 𝑚 = 6. After some simplification, the R-RP law can be represented as

Π6
R−RP = 𝜉

(
𝑞2
)
− 𝜉

(
2𝑏𝑥 + 𝑞2

)
− 𝜉

(
2𝑏𝑦 + 𝑞2

)
+ 𝜉

(
2𝑏𝑥 + 2𝑏𝑦 + 𝑞2

)
𝜉 (𝑎) ∶= 𝜋

12

⎛⎜⎜⎜⎝
[
𝑎2 +

(
ℎ𝑥 + ℎ𝑦

)2]3∕2
𝑎2

(
ℎ𝑥 + ℎ𝑦

)2 −

[
𝑎2 +

(
ℎ𝑥 − ℎ𝑦

)2]3∕2
𝑎2

(
ℎ𝑥 − ℎ𝑦

)2
⎞⎟⎟⎟⎠ .

(57)

The function 𝜉 is not just equal to 𝑓6Π5
R∞−R∞IP

, because some terms cancel out when we apply RIHBI and the final expression 
simplifies. The singularity for ℎ𝑥 = ℎ𝑦 can be addressed in two ways: (i) by using Eq. (53) or (ii) by transforming the expression. Let 
us first use Eq. (53) and transform the expression in the next subsection, i.e.

Π̂6
R−RP = 𝜉

(
𝑞2
)
− 𝜉

(
2𝑏𝑥 + 𝑞2

)
− 𝜉

(
2𝑏𝑦 + 𝑞2

)
+ 𝜉

(
2𝑏𝑥 + 2𝑏𝑦 + 𝑞2

)
𝜉 (𝑎) ∶=

𝜋

(
(4ℎ2

𝑦
+ 𝑎2)3∕2 − 6ℎ2

𝑦
𝑎

)
48ℎ2

𝑦
𝑎2

.

(58)

The scaling of the vdW case for different values of 𝑏𝑦 is given in Fig. 12b. For small separations and small values of 𝑏𝑦, the scaling 
factor first approaches 𝑚−3 = 3, which corresponds to the interaction between a rectangle and a prism with infinitely small thickness 
𝑏𝑦, i.e. a strip. Then it approaches 2. Analogously, for large separations and large 𝑏𝑦 , the scaling first approaches value 𝑚−2 = 4, which 
corresponds to the interaction of a rectangle and a prism with an infinite thickness 𝑏𝑦 , i.e. an infinite half-plate. Then it approaches 
5.
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Fig. 13. Scaling of the R-R law for 𝑚= 6 and different ratios 𝑐 = 𝑞1∕𝑞2 (for ℎ𝑥 = ℎ𝑦 = 𝑏𝑥 = 𝑏𝑦 = 1). 

4.2. Exact rectangle-rectangle law for vdW attraction

In this subsection, we will consider a general (with offset 𝑞1) rectangle-rectangle interaction that returns several special cases. We 
will focus only on vdW attraction, i.e. 𝑚 = 6. The integral to solve is:

Π6
R−R =

𝑞2+𝑏𝑥+2𝑏𝑦

∫
𝑞2+𝑏𝑥

ℎ𝑦

∫
−ℎ𝑦

𝑏𝑥

∫
−𝑏𝑥

ℎ𝑥

∫
−ℎ𝑥

(
𝑝2 + 𝑞21

)−3 d𝑥2 d𝑥1 d𝑦2 d𝑦1 . (59)

As in the previous subsection, we can solve this integral directly, but a more elegant approach is to apply RIHBI. Therefore, let us 
first find an interaction law between two infinite half-strips with an offset. We use the setup as in Fig. 11, i.e.

Π6
HST−HST(𝑎) =

∞ 

∫
𝑎 

ℎ𝑦

∫
−ℎ𝑦

0 

∫
−∞

ℎ𝑥

∫
−ℎ𝑥

(
𝑝2 + 𝑞21

)−3 d𝑥2 d𝑥1 d𝑦2 d𝑦1 = 𝑒 (𝑎) + 𝑗 (𝑎) , (60)

where

𝑒 (𝑎) ∶= 𝜋𝑎 
8𝑞41

[
𝑞21

𝑤 (1)
−

𝑞21
𝑤 (−1)

+ 2𝑤 (−1) − 2𝑤 (1)

]
𝑗 (𝑎) ∶= 1 

8𝑞41
[𝑣 (𝑎,1) + 𝑣 (𝑎,−1) + 𝑙 (𝑎,1) − 𝑙 (𝑎,−1)]

𝑣 (𝑎, 𝑠) ∶=

2𝑠𝑎
[
2𝑘2 (𝑠) + 𝑞21

]
arctan 𝑎 √

𝑘2(𝑠)+𝑞21√
𝑘2 (𝑠) + 𝑞21

𝑙 (𝑎, 𝑠) ∶=

2𝑘 (𝑠)
(
𝑞21 + 2𝑎2

)
arctan 𝑘(𝑠)√

𝑞21+𝑎
2√

𝑞21 + 𝑎2

𝑤 (𝑠) ∶=
√
𝑘 (𝑠)2 + 𝑞21 .

(61)

This law consists of two parts, one that is linear w.r.t. the gap 𝑎 -- 𝑒(𝑎). Due to this, the function 𝑒(𝑎) cancels out when we apply RIHBI 
to the HST-HST law and the final elegant representation of the R-R law for 𝑚 = 6 is

Π6
R−R = 𝑗

(
𝑞2
)
− 𝑗

(
2𝑏𝑥 + 𝑞2

)
− 𝑗

(
2𝑏𝑦 + 𝑞2

)
+ 𝑗

(
2𝑏𝑥 + 2𝑏𝑦 + 𝑞2

)
. (62)

The obtained expression is both accurate and efficient but has a numerical issue for 𝑞1 ≈ 0 which requires an arbitrary precision 
arithmetic. This issue can be addressed by introducing a simple piecewise function that, for example, uses machine precision and 
equation (62) for, approximately, ||𝑞1|| > 10−3, and an arbitrary precision or Π6

R−RIP
otherwise.

The scaling factor of the R-R law is presented in Fig. 13 for different values of ratio 𝑐 = 𝑞1∕𝑞2. We can observe that the asymptotic 
scaling factor for small separations is 𝑚 − 3 = 3, and 𝑚 − 0 = 6 for large separations, as expected. The ratio 𝑐 has a significant 
influence on the scaling factor in the transition range from small to large separations. As for the D-D law, cf. Fig. 4a, it turns out that 
this transition region is invariant to the ratio 𝑐 when 𝑐 < 1∕10.

By integrating Π6
R−R w.r.t. 𝑞1 from −𝐿𝑦 to 𝐿𝑦 we obtain an interaction law between a rectangle and a rectangular prism of a finite 

length 2𝐿𝑦. The same result follows if we integrate function 𝑗 (𝑎) in (61) and apply RIHBI, cf. Notebook 6. The final result is
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Π6
R−RPLy

=

𝐿𝑦

∫
−𝐿𝑦

Π6
R−R d𝑞1

= 𝐽
(
𝑞2
)
− 𝐽

(
2𝑏𝑥 + 𝑞2

)
− 𝐽

(
2𝑏𝑦 + 𝑞2

)
+ 𝐽

(
2𝑏𝑥 + 2𝑏𝑦 + 𝑞2

)
,

(63)

where

𝐽 (𝑎) ∶= 𝐹 (𝑎,1) + 𝐹 (𝑎,−1) +𝐺 (𝑎,1) +𝐺 (𝑎,−1) + 𝑃 (𝑎,1) + 𝑃 (𝑎,−1)

𝐹 (𝑎, 𝑠) ∶= −

𝑠𝑎

[
2𝑘2 (𝑠) −𝐿2

𝑦

]√
𝑘2 (𝑠) +𝐿2

𝑦
arctan 𝑎 √

𝑘2(𝑠)+𝐿2
𝑦

6𝑘2 (𝑠)𝐿3
𝑦

𝐺 (𝑎, 𝑠) ∶=
𝑠
[
𝑘2 (𝑠) + 𝑎2

]3∕2 arctan 𝐿𝑦√
𝑘2(𝑠)+𝑎2

6𝑘2 (𝑠)𝑎2

𝑃 (𝑎, 𝑠) ∶=

𝑠𝑘 (𝑠)
(
𝐿2
𝑦
− 2𝑎2

)√
𝐿2
𝑦
+ 𝑎2 arctan 𝑘(𝑠)√

𝑎2+𝐿2
𝑦

6𝑎2𝐿3
𝑦

.

(64)

Furthermore, this law allows us to find another special case, the interaction between a rectangle and a prism of infinite length, R-RP, 
by setting 𝐿𝑦 →∞. This law, for general 𝑚, is already derived in the previous section using RIIPI and finding the limit of Eq. (63)

serves as verification for our derivation approach. Indeed, the limit case of Eq. (63) for 𝐿𝑦 →∞ returns the same expression as (57), 
which confirms that our derivations are consistent.

Regarding the present singularity for ℎ𝑥 → ℎ𝑦, we have already addressed it in the previous subsection by finding the limit, see 
Eq. (58). Let us now fix this singularity by appropriate transformations. In essence, we multiply the numerator and the denominator 
by carefully selected factors, see Notebook 6. The final result is singularity-free, but less elegant since it contains a correction term 
𝑇 :

Π6
R−RP = lim 

𝐿𝑦→∞
Π6
R−RPLy

=𝑄
(
𝑞2
)
−𝑄

(
2𝑏𝑥 + 𝑞2

)
−𝑄

(
2𝑏𝑦 + 𝑞2

)
+𝑄

(
2𝑏𝑥 + 2𝑏𝑦 + 𝑞2

)
+ 𝑇 , (65)

where

𝑊 (𝑎) ∶=
√(

ℎ𝑥 − ℎ𝑦
)2 + 𝑎2

𝑄 (𝑎) ∶= 𝜋

12𝑎2

⎡⎢⎢⎢⎣
(
𝑎2 +

(
ℎ𝑥 + ℎ𝑦

)2)3∕2

(
ℎ𝑥 + ℎ𝑦

)2 −𝑊 (𝑎)
⎤⎥⎥⎥⎦

𝑇 ∶=
16𝜋𝑏𝑥𝑏2𝑦(𝑏𝑥 + 𝑏𝑦 + 𝑞2)

3𝑇1𝑇2𝑇3
𝑇1 ∶= (ℎ𝑥 − ℎ𝑦)2 + 2𝑏𝑦𝑞2 + 𝑞22 +𝑊 (𝑞2)𝑊 (2𝑏𝑦 + 𝑞2)

𝑇2 ∶=𝑊 𝑡(𝑞2) +𝑊 (2𝑏𝑥𝑞2) −𝑊 (2𝑏𝑦 + 𝑞2) −𝑊 (2𝑏𝑥 + 2𝑏𝑦 + 𝑞2)

𝑇3 ∶= 4𝑏𝑥(𝑏𝑥 + 𝑏𝑦 + 𝑞2) +𝑊 (𝑞2)𝑊 (2𝑏𝑦 + 𝑞2) +𝑊 (2𝑏𝑥 + 𝑞2)𝑊 (2𝑏𝑥 + 2𝑏𝑦 + 𝑞2).

(66)

An additional test is to compare this fixed expression for R-RP vdW interaction with the one obtained in the previous subsection for 
ℎ𝑥 → ℎ𝑦. Indeed, if we insert ℎ𝑥 = ℎ𝑦 in Eq. (65), the expression (58) follows, cf. Notebook 6. This further confirms the consistency 
of our derivations.

Next, it is straightforward to derive some additional special cases and compare them to those from Section 2. For example, if we 
let ℎ𝑦 →∞ in Π6

R−RP, a rectangle-(infinite) plate law follows. It is the same as the one in (9) for 𝑚 = 6, if we multiply it with 2ℎ𝑥, i.e.

Π6
R−PT = lim 

ℎ𝑦→∞
Π6
R−RP =

𝜋ℎ𝑥

6 

⎛⎜⎜⎝ 1 
𝑞22

− 1 (
2𝑏𝑥 + 𝑞2

)2 − 1 (
2𝑏𝑦 + 𝑞2

)2 + 1 (
2𝑏𝑥 + 2𝑏𝑦 + 𝑞2

)2 ⎞⎟⎟⎠ . (67)

This comparison shows that the R-R law (62) is sound and general since it returns well-known expressions as special cases. For 
example, it is now straightforward to obtain PT-PT, PT-HS, and HS-HS vdW laws from (67).

4.3. vdW interaction of two rectangles with common normal

Throughout the paper, we were mainly concerned with the cases that can be used for the modeling of fiber interactions. To check 
our approach and extend it to different use cases, let us derive an expression for the interaction between two rectangles, as considered 
in [19]. The authors in [19] refer to these rectangles as sheets. The main difference w.r.t. our R-R law is the orientation -- these sheets 
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share the same normal through the center and perpendicular to their planes. The integral to solve is similar as in previous subsections, 
but with two main differences: (i) the offset is 𝑞1 = 𝑦3 − 𝑥3 and we must integrate over both coordinates, (ii) the gap 𝑞2 = 𝑦1 − 𝑥1 is 
fixed and there is no integration along the 𝑒1 axis, i.e.

Π6
S−S =

𝐿𝑥

∫
−𝐿𝑥

𝐿𝑦

∫
−𝐿𝑦

ℎ𝑦

∫
−ℎ𝑦

ℎ𝑥

∫
−ℎ𝑥

[
𝑞22 +

(
𝑦2 − 𝑥2

)2 + (
𝑦3 − 𝑥3

)2]−3 d𝑥2 d𝑦2 d𝑦3 d𝑥3 . (68)

The integration is not straightforward, and several simplifications of intermediate results are required in WM14, see Notebook 6. The 
final expression is

Π6
S−S =

1 
2𝑞42

[𝐻 (1,1) +𝐻 (1,−1) +𝐻 (−1,1) +𝐻 (−1,−1)] , (69)

where

𝐻(𝑠, 𝑏) ∶= 𝑠𝑏

⎛⎜⎜⎜⎝
𝐿(𝑏)

[
2𝑘2(𝑠) + 𝑞22

]
arctan 𝐿(𝑏)√

𝑘2(𝑠)+𝑞22√
𝑘2(𝑠) + 𝑞22

+

𝑘(𝑠)
[
2𝐿2(𝑏) + 𝑞22

]
arctan 𝑘(𝑠)√

𝐿2(𝑏)+𝑞22√
𝐿2(𝑏) + 𝑞22

⎞⎟⎟⎟⎠
𝐿(𝑏) ∶=𝐿𝑥 + 𝑏𝐿𝑦.

(70)

By letting ℎ𝑥 → ℎ𝑦 and 𝐿𝑥 →𝐿𝑦 in this expression, we obtain the interaction between two rectangular sheets with the same dimensions 
2ℎ𝑦 × 2𝐿𝑦, i.e.

Π̂6
S−S = lim 

𝐿𝑥→𝐿𝑦

lim 
ℎ𝑥→ℎ𝑦

Π6
S−S =

1 
𝑞42

[
𝛿(ℎ𝑦) + 𝛿(𝐿𝑦) + 𝜎(𝐿𝑦,ℎ𝑦) + 𝜎(ℎ𝑦,𝐿𝑦)

]
(71)

where

𝛿 (𝑎) ∶= −𝑎𝑞2 arctan
2𝑎
𝑞2

𝜎 (𝑎, 𝑏) ∶=

𝑎
(
8𝑏2 + 𝑞22

)
arctan 2𝑎 √

4𝑏2+𝑞22√
4𝑏2 + 𝑞22

(72)

The obtained expression is the same as derived in [19], cf. Notebook 6. Therefore, our expression for the interaction of two rectangular 
sheets with arbitrary dimensions (69) is general and accurate. Furthermore, if we let 𝐿𝑦 →∞ and ℎ𝑦 →∞ in (69), a plane figure

infinite plane law for 𝑚 = 6 follows, cf. Eq. (7) and Notebook 1.

5. Application examples

We consider two application examples of the pre-integrated interaction potentials for numerical simulations. The first employs 
D-D laws to model the interaction between two deformable in-plane fibers. The second example deals with the interaction between 
a spatial beam and an infinite half-space, using the exact D-HS law.

5.1. Interaction between two deformable in-plane fibers

Let us consider the case of peeling and pull-off between two elastic fibers that interact via the Lennard-Jones (LJ) potential. The 
example was originally analyzed using the approximate in-plane disk-disk law which does not provide satisfactory accuracy [11]. 
The results have been improved by employing an approximate disk-cylinder law [14] and ISSIP [13]. Here, we compare the results 
obtained with ISSIP and D−Dapp, see Subsection 3.3.

The problem setup and input data are shown in Fig. 14. Two simply-supported elastic fibers with circular cross sections are initially 
set at a distance of 𝑢init, which is slightly below the equilibrium distance. A symmetric horizontal displacement of the supports, 𝑢BC, 
is applied to the right fiber such that the distance between the supports of the interacting fibers is 𝑢(𝑡) = 𝑢init + 𝑢BC = 𝑡𝐿. Here, 
𝑡 is a quasi-time parameter 𝑡 ∈ [0,1] and 𝐿 is the fiber’s length, taken as 𝐿 = 5 in the original simulations of [13,14]. To reduce 
computational time without affecting the observed phenomenon, we set 𝐿 = 2.5 here. Due to applied non-homogeneous boundary 
condition 𝑢BC, peeling between the fibers occurs. The peeling is followed by a pull between fibers and the simulation ends with a pull

off [13,30]. A straightforward solution approach is to integrate the P-P LJ potential over the volumes of both fibers. However, solving 
the two folded 3D integrals in such a highly nonlinear setting is computationally expensive. If we use a section-section (disk-disk) 
pre-integrated law, we need to integrate only two folded 1D integrals, which results in a substantial improvement in efficiency.

We consider three cases that differ in the values of the physical constants. The P-P LJ interaction potential can be represented as 
a function of two parameters: (i) the distance at which the potential is zero, 𝜎, and (ii) the minimum value of the potential, 𝜖, i.e.

Applied Mathematical Modelling 145 (2025) 116100 

19 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


A. Borković, M.H. Gfrerer and R.A. Sauer 

Fig. 14. Setup and data used for the numerical experiments. 

Fig. 15. Disk-cylinder LJ force function for three considered cases with different physical constants. The approximate disk-cylinder force functions are obtained by 
analytically integrating two disk-disk laws: D−Dapp and ISSIP. Highly accurate disk-cylinder force values are obtained by numerically integrating the exact P-C law.

ΠLJ
P−P = 4𝜖

[(
𝜎

𝑟 

)12
−
(
𝜎

𝑟 

)6
]
= 𝑘6𝑟

−6 + 𝑘12𝑟
−12. (73)

The reference physical constants are adopted as in [13], 𝑘6 = −10−7 and 𝑘12 = 5 × 10−25, which gives 𝜎 = 𝜎̄ = (200 × 55∕6)−1 and 
𝜖 = 𝜖 = −5× 109. A numerical model with these parameters is designated as Case 2. To inspect the influence of equilibrium distance, 
we divide and multiply parameter 𝜎̄ by 2, and obtain Case 1 and Case 3, respectively. For the P-P LJ interaction potential, the change 
of 𝜎 affects only the distance at which the potential is zero. However, for all interactions obtained by the integration of the P-P LJ 
potential, the change of 𝜎 affects both the equilibrium distance and the maximum value of the attractive force. Although we apply 
disk-disk laws in our numerical simulations, it is more informative to consider disk-infinite cylinder interaction to scrutinize the effect 
of parameters 𝜎 and 𝜖 on the interaction between fibers. Therefore, we integrate our D−Dapp and ISSIP laws along the offset 𝑞1 from 
−∞ to ∞ and observe the disk-infinite cylinder laws. To focus on the influence of the equilibrium distance only, we multiply and 
divide parameter 𝜖 by 11 for Case 1 and Case 3, respectively. As a result, the D-C equilibrium distances for the three consecutive cases 
differ by 2, while the maximum D-C attractive force is approximately the same. The D-C force functions are displayed in Fig. 15 for 
the adopted cases and both approximate disk-disk laws. Additionally, highly accurate values are calculated by numerical integration 
of the exact P-C laws defined in (32). By inspecting these force plots, we notice that the differences between the numerical, D−Dapp, 
and ISSIP results increase with the equilibrium distance. This is expected behavior because the differences between the D-D, D−Dapp , 
and ISSIP laws increase with the gap, cf. Fig. 5.

The fibers are modeled as Bernoulli-Euler beams and the equilibrium equations are derived by the principle of virtual work [31]. 
Each fiber is spatially discretized into 80 quartic B-spline elements with 𝐶3 interelement continuity. The equilibrium equations are 
solved by the Newton-Raphson method. Due to the large gradients of the interaction forces, 100 integration points per element are 
utilized. To improve efficiency, we employ a cutoff distance, 𝑟𝑐 , in the present simulations. For Case 2, we have already concluded 
that the value 𝑟𝑐 = 0.05 provides good accuracy [13]. Since the force range increases with the equilibrium distance, we have adopted 
the values 𝑟𝑐 = 0.0475 and 𝑟𝑐 = 0.07 for Case 1 and Case 3, respectively.

Let us consider the normal component of the distributed interaction force per unit length of a fiber, denoted 𝑓2. For brevity, we 
refer to this quantity as the interaction force. It is plotted on the left fiber for four characteristic configurations in Figs. 16, 17, and 
18. The peeling between fibers is represented in the first two plotted configurations. The third configuration represents the start 
of pulling, when the maximum repulsive force occurs. The fourth depicted configuration represents the instance before pull-of. For 
all three considered cases, the fibers behave similarly and the amplitudes of the distributed interaction force are close. However, 
significant differences exist in the net interacting forces due to the different force distribution lengths. An increase in the equilibrium 
distance of the LJ force increases the force range and the force distribution length, see also Fig. 15. These different net interaction 
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Fig. 16. Normal component 𝑓2 of the interaction force plotted on the left fiber for Case 1. Four characteristic configurations, calculated with the D−Dapp law, are 
shown.

Fig. 17. Normal component 𝑓2 of the interaction force plotted on the left fiber for Case 2. Four characteristic configurations, calculated with the D−Dapp law, are 
shown.

Fig. 18. Normal component 𝑓2 of the interaction force plotted on the left fiber for Case 3. Four characteristic configurations, calculated with the D−Dapp law, are 
shown.

forces visibly affect the deformation of fibers. For example, Case 1 provides the smallest and Case 3 the largest bending of the fibers 
at pull-off.

The distribution of the interaction force 𝑓2 at pull-off is displayed in Fig. 19 as a function of the fiber’s parametric length coordinate 
𝜉 ∈ [0,1]. The maximum values of the attraction force are in-line with the D-C interaction forces in Fig. 15. As aforementioned, the 
force distribution length increases with the equilibrium distance. Regarding the two considered approximate disk-disk laws, the 
difference between them increases with the equilibrium distance, as predicted by the D-C force law in Fig. 15.

The value of the interaction force and the curvature at the fiber’s center, as a function of parameter 𝑡, are plotted in Fig. 20 for 
all three cases and both approximate disk-disk laws. The D−Dapp law is more accurate than the ISSIP law, see also Figs. 5 and 15. In 
line with the previous considerations, significant differences between the cases are evident and the differences between the results 
obtained with the approximate disk-disk laws increase with the equilibrium distance of the LJ force, from Case 1 to Case 3.

Regarding the efficiency, the computational time for both disk-disk laws is practically the same, since it is governed by the 
evaluation of a hypergeometric function. Therefore, for efficient numerical simulations that require increased accuracy, the new 
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Fig. 19. Distribution of the normal component of the interaction force 𝑓2 at pull-off using the D−Dapp and ISSIP laws for three considered cases. 

Fig. 20. Comparison of the D−Dapp and ISSIP laws for Case 1, Case 2, and Case 3. a) The normal component of the interaction force, 𝑓2 , at center vs. 𝑡. b) The curvature 
of the fiber’s axis at center vs. 𝑡. The D−Dapp law is more accurate than the ISSIP law, see also Figs. 5 and 15.

Fig. 21. Peeling of a fiber from a half-space. Problem setup and data. 

approximate D−Dapp law is preferable over the ISSIP. This is especially important for cases with relatively large equilibrium distances 
since the difference between the laws increases with the gap.

Regarding the accuracy, the comparison of the employed approximate laws with the exact LJ D-C force in Fig. 15 shows that 
the error of the D−Dapp law also increases with the equilibrium distance. Therefore, a derivation and an implementation of a more 
accurate disk-disk law is desirable for simulations involving large gaps. The exact D-D law, derived in Subsection 3.2, is a good starting 
point, but the mentioned numerical issues should be addressed. Furthermore, an appropriate steric disk-disk potential (𝑚 = 12) should 
be derived.

5.2. Interaction between a curved fiber and a half-space

In this example, we employ the D-HS law (43) to model the LJ interaction between a curved fiber with a circular cross section 
and a rigid half-space, cf. Appendix B. We model the fiber as a spatial Bernoulli Euler beam with 4 degrees of freedom [31,32]. The 
problem setup and main data are shown in Fig. 21. The fiber lies in a plane parallel to the half-space, and the initial distance 𝑢1,𝑖𝑛𝑖𝑡
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Fig. 22. Configurations at six instances for 𝐸 = 104 . 

Fig. 23. Reaction force for three different Young’s moduli. 

is close to the D-HS equilibrium distance for the adopted LJ parameters. The fiber’s axis is defined with a cubic B-spline and the 
coordinates of the control points are given in Fig. 21. The fiber’s ends are restrained from translation and torsional rotation.

Regarding the spatial discretization, we use quartic B-splines with 𝐶3 interelement continuity. After a thorough convergence 
check, we have adopted a mesh of 160 elements, while the interaction potential is integrated with a 4-point Gauss rule per element.

Let us observe the response of the fiber due to non-homogeneous boundary conditions at the fiber’s ends along the normal of the 
half-space, 𝑢1 = 2𝑡, where 𝑡∈ [0,1] is a quasi-time parameter, as in the previous example. This setup causes peeling and then pull-off 
of the fiber from the half-space. The simulations are run for three Young’s moduli, 𝐸 = 103, 𝐸 = 104, and 𝐸 = 105. Characteristic 
configurations for 𝐸 = 104 are shown in Fig. 22, while the reaction force component normal to the half-space is given in Fig. 23. A 
rich behavior is observed. In order to initiate peeling, a strong reaction force develops at the beginning. After the peeling comes to an 
end, the central part of the beam remains attached to the half-space and the reaction force increases until the pull-off. After pull-off, 
the beam returns to the unstressed configuration, and the reaction force drops to zero. As anticipated, the value of the reaction force 
is proportional to the stiffness: The beam with the largest 𝐸 develops the largest peaks of the reaction force, while the opposite is 
valid for the beam with the smallest 𝐸. On the other hand, the instance when the pull-off occurs is reciprocal to the beam’s stiffness.

The interaction forces, plotted at characteristic time instances, are displayed in Figs. 24, 25, and 26. Although the fiber behaves 
similarly for all considered values of Young’s modulus, the main difference is the length of the peeling front, which increases with 
stiffness. This results in extremely steep gradients of the interaction force in the case of soft fibers. Animations of the deformed 
configurations, interaction forces, interaction moments, bending moments, and torsional moments are available as Supplementary
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Fig. 24. Interaction force distribution at six instances for 𝐸 = 103 . 

Fig. 25. Interaction force distribution at six instances for 𝐸 = 104 . 
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Fig. 26. Interaction force distribution at six instances for 𝐸 = 105 . 

data. From these results, we can observe that the interaction moment is approximately four orders of magnitude smaller than the 
interaction force. Furthermore, sliding occurs between the beam and the half-space, and its amount is reciprocal to the beam’s stiffness.

To summarize, the developed D-HS law allows efficient and accurate analysis of the interaction between a beam and a half-space 
for an arbitrary exponent 𝑚. The influence of interaction moment and the effect of angle 𝛼 should be further scrutinized. If their 
influence is not significant in particular applications, we can develop reduced formations that provide improved efficiency without 
sacrificing accuracy. With the derived formulation, it is straightforward to consider an interaction between a fiber and an infinite 
plate, as well as interactions between a thin-walled circular beam with an infinite half-space or an infinite plate. The addition of a 
friction potential would be beneficial for more realistic simulations.

6. Conclusions

In general, interaction potentials modeled as inverse-power laws of the point-pair distance cannot be integrated analytically over 
arbitrarily shaped interacting bodies. Even for simple geometries and constant densities, the problem is very complex and general 
analytical solutions do not exist. This problem is tackled here for several types of geometries and arbitrary interaction exponent 𝑚 but 
with a focus on vdW attraction, i.e. 𝑚 = 6. The geometries are chosen such that the results can be used as pre-integrated expressions 
for numerical simulations of interactions between deformable bodies that resemble fibers. We used Wolfram Mathematica 14 for the 
pre-integration.

We have thus obtained the following potentials, which, to the best of our knowledge, are new:

• A representation of the in-plane disk-disk interaction in the form of a generalized hypergeometric function for the case of disks 
with equal radii.

• The exact disk-disk law for 𝑚 = 6 and a new approximate disk-disk law.

• An approximate point-cylinder law for arbitrary even 𝑚.

• An approximate disk-cylinder law for 𝑚 = 6.

• The exact disk-infinite half-space law for 𝑚 > 4.5 and arbitrary orientation.

• The exact rectangle-rectangle in-plane law for arbitrary 𝑚 ≥ 4.

• The exact rectangle-rectangle law for 𝑚 = 6.

• The exact sheet-sheet law with arbitrary dimensions for 𝑚 = 6.
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Moreover, we show that analytically integrated potentials between simple bodies allow efficient numerical simulations between 
deformable bodies via two application examples. In particular, we have developed a novel formulation for the interaction between a 
beam and an infinite half-space for an arbitrary exponent.

Future research should deal with the arbitrary orientation of sections and additional applications of the pre-integrated potentials 
in numerical simulations.

Supplementary data
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Appendix A. Infinite series approach for in-plane disk-disk interaction

A step-by-step derivation of the in-plane disk-disk interaction law in the form of an infinite series is presented, see [22]. The 
relative polar coordinate system (RPCS2) of Fig. 2c is utilized and the integral to solve is

Π̄𝑚
D−DIP

= ∫
𝐴𝑥

∫
𝐴𝑦

1 
𝑝𝑚

d𝐴𝑦 d𝐴𝑥 = 4

𝑅𝑥

∫
0 

𝜋

∫
0 

𝑅𝑦

∫
0 

𝜋

∫
0 

1 
𝑝𝑚

𝑟𝑥𝑟𝑦 d𝜑𝑦 d𝑟𝑦 d𝜑𝑥 d𝑟𝑥 . (A.1)

The distances 𝑝 and 𝑡 follow from the cosine theorem, i.e.

𝑝2 = 𝑡2 + 𝑟2
𝑦
− 2𝑡𝑟𝑦 cos𝜑𝑦

𝑡2 = 𝑑2 + 𝑟2
𝑥
− 2𝑑𝑟𝑥 cos𝜑𝑥.

(A.2)

With this parameterization, one part of the integral (A.1) reduces to the following table integral, see [33] (p. 409, n. 3.665.2):

𝜋

∫
0 

sin2𝜇−1 𝑥 (
1 + 2𝑎 cos𝑥+ 𝑎2

)𝑚 d𝑥 = 𝐵

(
𝜇,

1
2

)
2𝐹1

(
𝑚,𝑚− 𝜇 + 1

2
;𝜇 + 1

2
;𝑎2

)
,

with Re𝜇 > 0 ∧ |𝑎| < 1,

(A.3)

where 𝐵(𝑤,𝑣) = Γ(𝑤)Γ(𝑣)
Γ(𝑤+𝑣) is the beta function. In our case 𝜇 = 1∕2 and the table integral (A.3) simplifies to

𝜋

∫
0 

1 (
1 + 2𝑎 cos𝑥+ 𝑎2

)𝑚 d𝑥 = 𝐵

(1
2
,
1
2

)
2𝐹1

(
𝑚,𝑚; 1;𝑎2

)
= 𝜋 2𝐹1

(
𝑚,𝑚; 1;𝑎2

)
. (A.4)

Let us first integrate (A.1) w.r.t. the area of disc 𝑋, i.e. consider the P-DIP interaction

Π̄𝑚
P−DIP

= 2

𝑅𝑥

∫
0 

𝜋

∫
0 

𝑟𝑥

𝑝𝑚
d𝜑𝑥 d𝑟𝑥 = 2

𝑅𝑥

∫
0 

𝑟𝑥

𝜋

∫
0 

(𝑡2 + 𝑟2
𝑥
− 2𝑡𝑟𝑥 cos𝜑𝑥)

− 𝑚

2 d𝜑𝑥 d𝑟𝑥 . (A.5)
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By introducing the substitution 𝑎 = − 𝑟𝑥

𝑡 , the integral becomes

Π̄𝑚
P−DIP

= 2

𝑅𝑥

∫
0 

𝑟𝑥

𝜋

∫
0 

[
𝑡2
(
1 + 𝑎2 + 2𝑎 cos𝜑𝑥

)]− 𝑚

2 d𝜑𝑥 d𝑟𝑥

= 2𝑡−𝑚
𝑅𝑥

∫
0 

𝑟𝑥

𝜋

∫
0 

(
1 + 𝑎2 + 2𝑎 cos𝜑𝑥

)− 𝑚

2 d𝜑𝑥 d𝑟𝑥 ,

(A.6)

and we can apply the table integral (A.4), i.e.

Π̄𝑚
P−DIP

= 2𝜋𝑡−𝑚
𝑅𝑥

∫
0 

𝑟𝑥 2𝐹1

(
𝑚

2 
,
𝑚

2 
; 1;

𝑟2
𝑥

𝑡2

)
d𝑟𝑥 = 2𝜋𝑡−𝑚

𝑅𝑥

∫
0 

∞ ∑
𝑛=0 

(
𝑚

2 
)
𝑛

(
𝑚

2 
)
𝑛

(1)𝑛 𝑛! 
𝑟2𝑛+1
𝑥

𝑡2𝑛
d𝑟𝑥

= 𝜋

∞ ∑
𝑛=0 

(
𝑚

2 
)
𝑛

(
𝑚

2 
)
𝑛

𝑛! (𝑛+ 1)! 
𝑅2𝑛+2
𝑥

𝑡2𝑛+𝑚
= 𝜋𝑅2

𝑥
𝑡−𝑚 2𝐹1

(
𝑚

2 
,
𝑚

2 
; 2;

𝑅2
𝑥

𝑡2

)
for 𝑚> 2.

(A.7)

Equation (A.7) represents the P-DIP law for general 𝑚 > 2 in the form of a hypergeometric function.

Now Π̄𝑚
P−DIP

is left to be integrated w.r.t. the area of disc 𝑌 , i.e.

Π̄𝑚
D−DIP

= ∫
𝐴𝑦

Π̄𝑚
P−DIP

d𝐴𝑦 = 2𝜋
∞ ∑
𝑛=0 

(
𝑚

2 
)
𝑛

(
𝑚

2 
)
𝑛

𝑛! (𝑛+ 1)! 
𝑅2𝑛+2
𝑥

𝑅𝑦

∫
0 

𝜋

∫
0 

1 
𝑡2𝑛+𝑚

𝑟𝑦 d𝜑𝑦 d𝑟𝑦 (A.8)

and the procedure is analogous to the P-DIP integral, i.e.

Π̄𝑚
D−DIP

= 2𝜋2
∞ ∑
𝑛=0 

(
𝑚

2 
)
𝑛

(
𝑚

2 
)
𝑛

𝑛! (𝑛+ 1)! 
𝑅2𝑛+2
𝑥

𝑑(2𝑛+𝑚)

𝑅𝑦

∫
0 

𝑟𝑦 2𝐹1

(
𝑛+ 𝑚

2 
, 𝑛+ 𝑚

2 
; 1;

𝑟2
𝑦

𝑑2

)
d𝑟𝑦

= 2𝜋2
∞ ∑
𝑛=0 

(
𝑚

2 
)
𝑛

(
𝑚

2 
)
𝑛

𝑛! (𝑛+ 1)! 
𝑅2𝑛+2
𝑥

𝑅𝑦

∫
0 

∞ ∑
𝑘=0

(
𝑛+ 𝑚

2 
)
𝑘

(
𝑛+ 𝑚

2 
)
𝑘

(1)𝑘 𝑘! 
𝑟2𝑘+1
𝑦

𝑑2𝑘+2𝑛+𝑚
d𝑟𝑦

= 𝜋2
∞ ∑

𝑛,𝑘=0

(
𝑚

2 
)
𝑛

(
𝑚

2 
)
𝑛

(
𝑛+ 𝑚

2 
)
𝑘

(
𝑛+ 𝑚

2 
)
𝑘

𝑛! (𝑛+ 1)!𝑘! (𝑘+ 1)! 
𝑅2𝑘+2
𝑦

𝑅2𝑛+2
𝑥

𝑑2𝑘+2𝑛+𝑚
for 𝑚>

7
2
.

(A.9)

If we substitute Pochhammer symbols with Gamma functions and introduce reduced radii 𝑅𝑥∕𝑑 and 𝑅𝑦∕𝑑, the expression becomes

Π̄𝑚
D−DIP

= 𝜋2

𝑑𝑚−4Γ2
(
𝑚

2 
) ∞ ∑

𝑛,𝑘=0

Γ2
(
𝑘+ 𝑛+ 𝑚

2 
)

𝑘!𝑛!Γ (𝑘+ 2)Γ (𝑛+ 2)

(
𝑅𝑥

𝑑

)2𝑘+2(𝑅𝑦

𝑑

)2𝑛+2
. (A.10)

This result is the same as in [22] with one difference: the authors in [22] have eliminated the first terms of both series. This expression 
can also be represented via 2𝐹1 function, i.e.

Π̄𝑚
D−DIP

=
𝜋2𝑅2

𝑥
𝑅2
𝑦

𝑑𝑚Γ2
(
𝑚

2 
) ∞ ∑

𝑛=0 

Γ2
(
𝑛+ 𝑚

2 
)

Γ (𝑛+ 1)Γ (𝑛+ 2)

(
𝑅𝑦

𝑑

)2𝑛

2𝐹1

(
𝑛+ 𝑚

2 
, 𝑛+ 𝑚

2 
,2,

𝑅2
𝑥

𝑑2

)
. (A.11)

Although the 2𝐹1 function is, in essence, an infinite series, this representation can significantly improve the computational time since 
WM14 calculates 2𝐹1 function in a very efficient way.

Appendix B. Implementation of the beam-infinite half-space law

A beam is an infinite set of sections that are attached at their centers to a finite-length smooth curve (beam axis). If we parameterize 
the curve with the coordinate 𝜉 ∈ [0,1], the position of the beam axis is 𝒚 = 𝒚(𝜉), see Fig. 27. We consider the Bernoulli-Euler spatial 
beam model where a deformed configuration is completely defined by the displacement of the beam axis, 𝒖, and the twist of the 
cross section, 𝜑1 [32]. To develop a computational model for the interaction between a beam and an infinite half-space, the D-HS 
potential needs to be added to the standard weak form of equilibrium (3) and numerically integrated along the beam axis [13]. In 
the following, we derive the variation of D-HS potential and linearize it.
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Fig. 27. Schematic representation of beam-infinite half-space interaction. 

The D-HS law (43) is defined as a function of the distance between the disk’s center and the half-space, 𝑑1, and the angle 𝛼
between the local basis vector 𝒈̃3 and the normal of the half-space 𝒆1, cf. Subsection 3.6. Let us designate this law by 𝜙 and consider 
it a function of the distance 𝑑1 and the cosine of the angle 𝛼, i.e.

𝜙(𝑑1, cos𝛼) = Π𝑚
D−HS(𝑑1, 𝛼), (B.1)

where

cos𝛼 = 𝒆1 ⋅ 𝒈̃3, 𝛼 ∈ [−𝜋∕2, 𝜋∕2], cos𝛼 ∈ [0,1],

𝑑1 = ||𝒅 ⋅ 𝒆1||. (B.2)

The distance vector between the disk’s center, attached to the beam axis, and the half-space is

𝒅 = 𝒚, 𝑑 = ‖𝒅‖, 𝒅̂ = 𝒅

𝑑
, (B.3)

while the tangent of the beam axis is

𝒕 =
d𝒚
d𝑠 

=
d𝒚
d𝜉 

d𝜉
d𝑠 

= 𝒚,1∕
√
𝑗, 𝑗 = 𝒚,1 ⋅ 𝒚,1, (B.4)

where 
√
𝑗 is the Jacobian of coordinate transformation between parametric and arc-length coordinates 𝜉 and 𝑠, respectively. The 

other two local basis vectors of the disk are

𝒈̃3 = 𝒕× 𝒈̃2 =
𝒕× 𝒆1 × 𝒕‖‖𝒆1 × 𝒕‖‖ =

𝒆1 − 𝑡1𝒕√
1 − 𝑡21

, 𝑡1 = 𝒕 ⋅ 𝒆1,

𝒈̃2 =
𝒆1 × 𝒕‖‖𝒆1 × 𝒕‖‖ .

(B.5)

To derive 𝛿𝜙, we require the following auxiliary expressions,

∇𝒚𝑑1 = 𝑠𝑑∇𝒚𝒅 ⋅ 𝒆1 = 𝑠𝑑𝒆1, 𝑠𝑑 = sign(𝒅 ⋅ 𝒆1),

∇𝒚,1
𝑡1 =

1 √
𝑗
(𝒆1 − 𝑡1𝒕),

∇𝒚,1
∇𝒚,1

𝑡1 = − 1 √
𝑗
(∇𝒚,1

𝑡1 ⊗ 𝒕+ 𝑡1∇𝒚,1
𝒕+ 𝒕⊗∇𝒚,1

𝑡1).

(B.6)

Now, the cosine of the angle 𝛼 can be expressed as

cos𝛼 = 𝒈̃3 ⋅ 𝒆1 =
𝒕× 𝒆1 × 𝒕‖‖𝒆1 × 𝒕‖‖ ⋅ 𝒆1 = ‖‖𝒆1 × 𝒕‖‖ =√

1 − 𝑡21, (B.7)

and its gradient w.r.t. the orientation of the disk (tangent vector) is

∇𝒚,1
cos𝛼 = −

𝑡1√
𝑗
𝒈̃3. (B.8)

Finally, the variation of the D-HS interaction potential is
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𝛿𝜙 =∇𝒚𝜙 ⋅ 𝛿𝒖+∇𝒚,1
𝜙 ⋅ 𝛿𝒖,1 = 𝒇 ⋅ 𝛿𝒖+ 𝒇̂ ⋅ 𝛿𝒖,1,

𝒇 = −∇𝒚𝜙 = −𝑠𝑑
𝜕𝜙 
𝜕𝑑1

𝒆1 = −𝑠𝑑𝜙,𝑑1
𝒆1,

𝒇̂ = −∇𝒚,1
𝜙 = − 𝜕𝜙 

𝜕 cos𝛼
∇𝒚,1

cos𝛼 =
𝑡1√
𝑗

𝜕𝜙 
𝜕 cos𝛼

𝒈̃3 =
𝑡1√
𝑗
𝜙,cos𝛼 𝒈̃3,

(B.9)

where 𝒇 is the interaction force per unit length and 𝒇̂ can be considered as the generalized interaction moment per unit length.

There is an issue with the singularity of vector 𝒈̃3 for cos𝛼 = 0, cf. (B.5). However, the term cos𝛼 appears in the derivatives of 
potential 𝜙 w.r.t. cos𝛼 and in the denominator of vector 𝒈̃3. By introducing reduced derivatives of the potential, we address the 
aforementioned singularity of vector 𝒈̃3, i.e.

𝒇̂ =
𝑡1√
𝑗
𝜙,cos𝛼 𝒈̃3 =

𝑡1√
𝑗
𝜙R
,cos𝛼 cos𝛼

𝒆1 − 𝑡1𝒕

cos𝛼 
= 𝑡1𝜙

R
,cos𝛼∇𝒚,1

𝑡1,

𝜙R
,cos𝛼 =

𝜙,cos𝛼

cos𝛼 
, 𝜙R

,𝑑1 cos𝛼
=
𝜙,𝑑1 cos𝛼

cos𝛼 
= 𝜙R

,cos𝛼 𝑑1 , 𝜙RR
,cos𝛼 cos𝛼 =

(𝜙R
,cos𝛼),cos𝛼
cos𝛼 

.

(B.10)

Since the weak form of equilibrium is highly non-linear, the standard procedure is to solve it by the Newton-Raphson method, 
which requires the linearization of the variation of the interaction potential [13]. The linearized increments of the interaction force 
and the interaction moment w.r.t. beam configuration are

Δ𝒇 =∇𝒚𝒇Δ𝒖+∇𝒚,1
𝒇Δ𝒖,1,

Δ𝒇̂ =∇𝒚𝒇̂Δ𝒖+∇𝒚,1
𝒇̂Δ𝒖,1,

(B.11)

where

∇𝒚𝒇 = −∇𝒚(𝑠𝑑𝜙,𝑑1
𝒆1) = − 𝜕2𝜙

𝜕𝑑21

𝒆1 ⊗ 𝒆1 = −𝜙,𝑑1𝑑1
𝒆1 ⊗ 𝒆1,

∇𝒚,1
𝒇 = 𝜕2𝜙 

𝜕𝑑1𝜕 cos𝛼
𝑡1√
𝑗
𝒈̃3 ⊗ 𝒆1 = 𝑡1𝜙

R
,𝑑1 cos𝛼

∇𝒚,1
𝑡1 ⊗ 𝒆1,

∇𝒚𝒇̂ =∇𝒚

(
𝑡1𝜙

R
,cos𝛼∇𝒚,1

𝑡1

)
= 𝑡1𝜙

R
,cos𝛼 𝑑1𝒆1 ⊗∇𝒚,1

𝑡1,

∇𝒚,1
𝒇̂ =∇𝒚,1

(
𝑡1𝜙

R
,cos𝛼∇𝒚,1

𝑡1

)
= (𝜙R

,cos𝛼∇𝒚,1
𝑡1 + 𝑡1∇𝒚,1

𝜙R
,cos𝛼)⊗∇𝒚,1

𝑡1 + 𝑡1𝜙
R
,cos𝛼∇𝒚,1

∇𝒚,1
𝑡1

= (𝜙R
,cos𝛼 − 𝑡21𝜙

RR
,cos𝛼 cos𝛼)∇𝒚,1

𝑡1 ⊗∇𝒚,1
𝑡1 + 𝑡1𝜙

R
,cos𝛼∇𝒚,1

∇𝒚,1
𝑡1.

(B.12)

With these expressions, the linearized increment of 𝛿𝜙 can be written as

Δ𝛿𝜙 = 𝛿𝒖 ⋅
(
∇𝒚𝒇Δ𝒖+∇𝒚,1

𝒇Δ𝒖,1
)
+ 𝛿𝒖,1 ⋅ (∇𝒚𝒇̂Δ𝒖+∇𝒚,1

𝒇̂Δ𝒖,1), (B.13)

or, in the matrix form,

Δ𝛿𝜙 =
[
𝛿𝒖 𝛿𝒖

,1

][∇𝒚𝒇 ∇𝒚,1
𝒇

∇𝒚𝒇̂ ∇𝒚,1
𝒇̂

][
Δ𝒖
Δ𝒖

,1

]
. (B.14)

As expected, the tangent stiffness matrix is symmetric since ∇𝒚 ,1
𝒇 = (∇𝒚𝒇̂ )𝑇 .

Data availability

The data is available in an online repository.
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